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REAL-TIME ANGULAR VELOCITY ESTIMATION OF
NON-COOPERATIVE SPACE OBJECTS USING CAMERA

MEASUREMENTS

Marcelino M. de Almeida∗, Renato Zanetti†, Daniele Mortari‡, Maruthi Akella§

This paper presents an algorithm for angular velocity estimation of a non-cooperative
space object using camera measurements. We consider that the non-cooperative
space target is one whose inertia properties and actuation torques are not known.
The relative pose of such space object with respect to the camera can be obtained
using Simultaneous Localization and Mapping (SLAM) methods. In this paper,
we specifically adopt the ORB-SLAM package, which has already been validated
in prior research as a successful tool for SLAM applications in space missions. Us-
ing the relative pose between the target and the camera, the angular velocity can
be obtained through attitude kinematics. However, the lack of a reliable propaga-
tion model for the angular velocity constrains the use of traditional Kalman Filter
based methods, which typically require some knowledge of the inertia matrix and
any perturbing torques governing the rotational dynamics of the non-cooperative
space object. Instead, our work is based on the Discrete Adaptive Angular Veloc-
ity Estimator (DAAVE) algorithm to estimate for the target’s spin axis, and use
this as prior information for a modified version of the Multiplicative Extended
Kalman Filter (MEKF) formulation. This work introduces both the DAAVE and
the modified MEKF algorithms, and presents the performance of the angular ve-
locity estimator using a camera-target simulator. In our simulator, we are able
to use the 3D model of a target of interest, which can be configured to tumble
with any desired angular rate, while being visually captured with a camera. The
simulation results demonstrate that the algorithm pipeline engagind ORB-SLAM,
DAAVE, and the modified MEKF, is successful in adequately tracking the angular
velocity of targets in multiple tumbling configurations.

INTRODUCTION

This paper presents a solution to the problem of estimating the relative angular velocity (RAV)
between a camera (onboard a chaser spacecraft) and an object in space (the target spacecraft or
celestial object) using camera measurements only. Our approach assumes no prior knowledge of
the inertial characteristics of the target space object such as shape, size, and mass distribution,
making it seamlessly applicable to different applications. If we assume that the angular velocity of
the chaser is known, then our approach provides the absolute angular velocity of the target object.
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Using camera measurements, the relative pose between the chaser and the target can be estimated
by tracking known features (assuming a known target) or through Simultaneous Localization and
Mapping (SLAM) algorithms.1 Previous works show that SLAM algorithms can be used for re-
solving the relative pose problem in space applications. More specifically, in Ref. 2, the authors
use images obtained from NASA’s STS-125 Service Mission 4∗ in tandem with the ORB-SLAM
package,3 demonstrating that it tracked closely the estimated relative pose during the mission.4 In
Ref. 5, the authors use data from the Rosetta mission† to feed an EKF-SLAM algorithm, which
estimates Rosetta’s spin state, mass, and moments, as well as the chaser’s position and velocity.

The main issue with using EKF-based algorithms for estimating the RAV of a non-cooperative
target is that the external torques upon the same might be unknown. In this case, any perturbing ex-
ternal torques have to be estimated by extending the states (assuming smooth torques with bounded
derivatives) or by using a sufficiently large process noise in the angular velocity covariance propa-
gation. The problem becomes even harder when the target’s inertia matrix is unknown, since it is
barely observable at long distances.5

The lack of precise knowledge of a system’s inertia matrix and torque vector also poses a chal-
lenge to non Kalman-filtering techniques. Many of the existing angular velocity estimators6–8 rely
on the knowledge of the target’s specific inertia and torque parameters. An exception can be made
for the derivative approach described in Ref. 7, but as the author acknowledges, the angular velocity
estimator can produce considerable error due to the presence of measurement noise. In Ref. 9, the
authors present the Pseudolinear Kalman Filter (PSELIKA), which does not depend on knowledge
of inertia matrix or input torques. However, PSELIKA is developed with the goal of “simplic-
ity rather than accuracy”,9 serving as a crude angular velocity estimator for control loop damping
purposes.

An alternative solution to the RAV problem is to use methods based on the Multiplicative Ex-
tended Kalman Filter (MEKF),10–12 since these rely on kinematics only. Still, one needs to have
tight bounds upon how fast the angular velocity of the target might be changing with time, and use
the process noise covariance as a tuning parameter (i.e., a forgetting factor). If the target is being
actuated or it is tumbling (e.g., the Toutatis asteroid‡), then the rate at which the target’s angular
velocity varies with time is not necessarily constant. In this scenario, properly tuning the forgetting
factor becomes a formidable task, thereby providing a strong motivation for the need to resort to
adaptive estimators.

In this context, the Discrete Adaptive Angular Velocity Estimator (DAAVE)13 is an attractive op-
tion for real-time applications, since it adaptive, is based on kinematics, and is not computationally
expensive. The DAAVE algorithm, as originally presented in Ref. 13, is divided in two parts: one
that estimates the angular velocity direction (AVD), and another that estimates its magnitude. In
order to calculate the AVD, the DAAVE algorithm uses a sliding window matrix of adaptive size
stacked with quaternion measurements. It was shown in Ref. 13 that the singular values of this ma-
trix can be investigated to determine whether the object is executing pure-spin around an inertially
fixed axis or if the spin axis direction is changing. Using this crucial insight, the window size can
adapt based on how close it captures pure spin with the given quaternion measurements.

In Ref. 13, the angular velocity’s magnitude (AVM) is estimated by performing “dirty” deriva-

∗Service Mission to the Hubble Space Telescope carried out in May-2009.
†https://www.aerosociety.com/news/lecture-report-rosetta-how-we-landed-on-a-comet/
‡https://science.nasa.gov/science-news/science-at-nasa/2012/12dec_toutatis/
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tives on the most recently measured quaternions. In contrast, the work of 14 showed that one can
obtain better results by pre-filtering the measured quaternions before employing the derivative. The
results in Ref. 14 demonstrate the efficacy of the DAAVE algorithm for estimating the angular
velocity of a gyroscope with unknown inertial properties, which is actuated by unknown external
forces.

One important issue with the AVM solutions in Refs. 13 and 14 is that the AVM estimate can be
biased in presence of noise. To address this limitation, the present work synthesizes the DAAVE
algorithm together with a modified MEKF. In the formulation for this paper, the DAAVE algorithm
is still employed to estimate the AVD, while a modified MEKF uses the knowledge of AVD to
estimate the AVM only. Instead of three tuning parameters (as would be required in a pure MEKF
approach10–12), only one parameter is needed in new this formulation, which encapsulates the rate
of change of the AVM.

The work in this paper also departs from the results in Refs. 13 and 14 by utilizing a different
method for adapting the size of the sliding window. Ref. 13 suggests to compare the lower singular
values of the sliding window with a threshold, but the guidelines on how to establish this threshold
for any specific application require further attention. In this paper, we propose the use of residual
autocorrelation to determine whether the sliding window size can increase or not.15–17

In terms of the overall algorithm implementation, our approach uses camera images to feed into
a SLAM algorithm, which is able to determine the relative pose between the target and the chaser.
Towards this goal, we employ the ORB-SLAM algorithm that was also used earlier in Ref. 2. As al-
ready shown in Ref. 2, ORB-SLAM is capable of running in real time (no need for post-processing),
and it has been documented to produce satisfactory results in numerous applications. In order to
estimate the AVD, we use the DAAVE algorithm, and our Modified MEKF (MMEKF) is employed
for estimating the AVM.

The remainder of this paper is organized as follows: first, we introduce the attitude kinematics
and dynamics, and introduce notations and parametrizations. Then, we pose the problem of estimat-
ing the angular velocity of a target object using camera measurements, also introducing the assumed
statistics of the measurement noise. The section that follows presents the DAAVE algorithm, fol-
lowed by a section that introduces the MMEKF algorithm. Finally, we present simulation results,
followed by conclusions for this work.

ATTITUDE KINEMATICS AND DYNAMICS

We adopt the notation qBA to represent the relative orientation quaternion between frames A and
B. A quaternion is written in the form

qBA =

[
qBAs
qBAv

]
, (1)

where qBAv and qBAs are the vector and scalar components of the quaternion qBA , respectively.

We denote the quaternion inverse rotation as (qBA )−1 = qAB , which is given by:

qAB =

[
qBAs
−qBAv

]
. (2)
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The quaternion composition rule is denoted as:

qCA = qCB ⊗ qBA , (3)

in which:

qCB⊗ =

[
qCBs −(qCBv)

T

qCBv qCBsI − [qCBv×]

]
, (4)

where I is the 3×3 identity matrix, and [v×] is the skew-symmetric matrix associated with a vector
v ∈ R3.

Given a vector v ∈ R3, then we define v⊗ ∈ R4×4 as:

v⊗ ,

[
0 −vT
v −[v×]

]
. (5)

With some slight abuse of notation, we define the composition of a quaternion q ∈ S3 with a
vector v ∈ R3 as:

q ⊗ v , q ⊗

[
0
v

]
. (6)

Given a vector vA ∈ R3 expressed in frame A, its representation in frame B can be obtained as:[
0

vB

]
= qBA ⊗ vA ⊗ (qBA )−1. (7)

Alternatively, vB can be calculated from vA using the expression vB = CB
Av

A, whereCB
A is the

direction cosine matrix respective to qBA :

CB
A = I − 2qBAs[q

B
Av×] + 2[qBAv×]2. (8)

An alternative attitude representation is the Gibbs vector,18 which is utilized in the derivation of
the modified MEKF. In this work, we use a scaled version of the traditional Gibbs vector gBA ∈ R3,
defined as∗:

gBA , 2
qBAv
qBAs

. (9)

The transformation from Gibbs vector to quaternion is done as follows:qBAs =
√

2
2+||gBA ||2

qBAv = 1
2q
B
Asg

B
A

(10)

∗The Gibbs vector is classically defined as gBA , qBAv/q
B
As. However, the scaled version of this attitude representation

adopter here is convenient in the derivation of the MEKF, as shown in Ref. 12.
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Figure 1: Reference frames and rotational transformations.

Denote ωCB/A ∈ R3 as the angular velocity of frame B w.r.t. frame A expressed in frame C.
Then, the rotational kinematics for qBA is given by:

q̇BA =
1

2
ωBB/A ⊗ q

B
A . (11)

Assume a frame A that is rotating w.r.t. an inertial frame I with angular velocity ωAA/I and a
frame B that is rotating w.r.t. the inertial frame with angular velocity ωBB/I . Then, the relative
angular velocity between the two frames is given by:

δωBB/A = ωBB/I − ω
B
A/I (12)

= ωBB/I −C
B
Aω

A
A/I (13)

Denoting the matrix JB ∈ R3×3 > 0 as the inertia tensor of a rigid body expressed in frame B,
the Euler rigid body attitude dynamics is given by:

JBω̇BB/I = −ωBB/I × J
BωBB/I + τB, (14)

where τB ∈ R3 is an external torque being actuated on the rigid body and I is an inertial frame.

PROBLEM FORMULATION

The various reference frames adopted for this problem is displayed in Fig. 1. We assume a chaser
camera (frame C) with known orientation qCI w.r.t. a star tracker inertial frame of reference (frame
I). We assume that the chaser angular velocity ωCC/I is known. Also, we assume a target object
(frame O) with unknown relative angular velocity ωOO/C , but within the field of view of the chaser’s
camera. In addition, we do not assume knowledge of the target’s inertia matrix or actuation torques.
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The objective of this work is to obtain the target’s angular velocity ωOO/I through visual inspec-
tion. We use ORB-SLAM3 to measure the relative orientation between the chaser and the target.
The measured relative orientation between C and O at time tk is denoted as the quaternion qOC (tk).
The quaternion parameterizing the absolute pose of the target at time tk is then calculated as:

qOI (tk) = qOC (tk)⊗ qCI (tk) (15)

We use the target’s pose measurements as inputs to the Discrete Adaptive Angular Velocity Es-
timator (DAAVE)13 to estimate the target’s axis of rotation, denoted as ω̄OO/I . Finally, the angular
velocity magnitude ΩO

O/I (AVM) is estimated through the MMEKF. The target’s estimated angular
velocity is then:

ωOO/I = ΩO
O/Iω̄

O
O/I (16)

The target’s kinematics can be described as:

q̇OI =
1

2
ωOO/I ⊗ q

O
I . (17)

Assuming that the target’s angular velocity ωOO/I(tk) is approximately constant throughout the
period t = [tk, tk+1), then the solution to Eq. 17 is:

qOI (tk+1) =
[
cos Ωδk

2 · I + sin Ωδk
2 · ω̄

O
O/I⊗

]
qOI (tk) (18)

= Ad · qOI (tk), (19)

where δk , tk+1 − tk andAd is the state transition matrix:

Ad[k] , cos
Ωδk

2
· I + sin

Ωδk
2
· ω̄OO/I ⊗ . (20)

For simplicity of notation, the remainder of this paper will denote qk , qOI (tk), ω , ωOO/I ,

ω̄ , ω̄OO/I , and Ω , ΩO
O/I . In the filtering section, we denoteXk|k−1 as the propagated estimation

of the quantity X at time k, while Xk|k denotes the estimate after the measurement update. We
use the notation X̂k to denote a measurement of the variable X at instant k. To be specific, the
quaternion measurement model is given by:

q̂k = qNk ⊗ qk, (21)

where qN is the noise quaternion:

qNk ,

[
cos θk2

eNk sin θk
2

]
, (22)

in which θk and eNk are independent random variables. We assume that θk is Gaussian∗ such that
θk ∼ N (0, σ2

θ), and eNk ∈ S2 is a unit-norm random vector uniformly distributed in S2 = {x ∈
R3 : ||x|| = 1} and has the characteristics E[eNk] = 0 and E[eNke

T
Nk] = 1

3I (see Appendix A).

∗Although it might be unrealistic to assume that angles are distributed as Gaussian, Ref. 19 has shown that this is a
reasonable approximation for double-precision machines as long as σθ ≤ 22 deg.
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Figure 2: Proposed Algorithm Pipeline.

The Gibbs vector associated with the noise quaternion is given by:

gNk = 2eNk tan
θk
2
. (23)

One should notice that E[gN ] = 0. In addition, assuming a small angle approximation, then

tan2 θk
2 ≈

θ2k
4 , leading to E[gNg

T
N ] = 1

3σ
2
θI .

Figure 2 depicts the suggested pipeline utilized in this work: images are fed to ORB-SLAM,
which in turn produces a relative orientation. The relative orientation is used in DAAVE to estimate
the AVD, which is then used in MMEKF to estimate for Ω.

THE DISCRETE ADAPTIVE ANGULAR VELOCITY ESTIMATOR

As previously mentioned, the DAAVE13 algorithm is used to estimate the target’s axis of rotation.
DAAVE uses a sliding window of variable size, whose length is determined by whether the motion
is in pure spin or not.

We denote the sliding window as Q̂ ∈ R4×L, which is filled with L previous quaternion mea-
surements:

Q̂ =
[
q̂k−L+1 q̂k−L+2 q̂k−L+3 · · · q̂k

]
. (24)

The length L of the sliding window Q̂ is adaptive and such that 3 ≤ L ≤ Lmax, where Lmax
is a user-specified upper bound on the window size, and L ≥ 3 makes sure that at least three
measurements are available to determine if the motion is in pure spin or not. A motion is considered
to be in pure spin when rank Q̂ = 2, i.e., all quaternion measurements in the window Q̂ belong to
the same plane of rotation. Since two quaternions always belong to the same plane of rotation, at
least three measurements are needed in Q̂ to determine the existence of out-of-plane motion.

A brief summary of the DAAVE algorithm is now in order. The DAAVE algorithm tries to fit the
quaternions in Q̂ into a 4-D plane spanned by vectors û1 ∈ S3 and û2 ∈ S3, with S3 , {x ∈ R4 :
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||x|| = 1}. The cost function associated with this fitting problem is given by:
arg max

û1∈S3,û2∈S3

L∑
i=k−L+1

[
(q̂Ti û1)2 + (q̂Ti û2)2

]
s.t. ûT1 û2 = 0

(25)

Defining the cost function J(û1, û2) ,
∑L

i=k−L+1

[
(q̂Ti û1)2 + (q̂Ti û2)2

]
, then J(û1, û2) can

be rewritten as:

J(û1, û2) =
L∑

i=k−L+1

[
ûT1 q̂iq̂

T
i û1 + ûT2 q̂iq̂

T
i û2

]
(26)

= ûT1 Q̂Q̂
T û1 + ûT2 Q̂Q̂û2 (27)

Then, the optimization problem in Eq. 25 can be restated as:arg max
û1∈S3,û2∈S3

(ûT1 + ûT2 )Q̂Q̂T (û1 + û2)

s.t. ûT1 û2 = 0
(28)

The solution to the optimization problem in Eq. 25 can be obtained from the Singular Value
Decomposition Q̂ = ÛΣ̃V̂ T , where Û ∈ R4×4 =

[
û1 û2 û3 û4

]
contains the left singular

vectors of Q̂, and û1 and û2 compose the solution to the optimization problem in Eq. 28. The
matrix V̂ ∈ R4×L =

[
v̂1 v̂2 · · · v̂L

]
contains the right singular vectors of Q̂, and Σ̃ =[

Σ̂
1
2 04×(L−4)

]
contains the singular values of Q̂ within Σ̂1/2 = diag(σ̂

1/2
1 , σ̂

1/2
2 , σ̂

1/2
3 , σ̂

1/2
4 ),

wherein σ̂1 ≥ σ̂2 ≥ σ̂3 ≥ σ̂1/2
4 ≥ 0. The optimal cost is given by J∗(û1, û2) = σ̂1 + σ̂2.

For convenience, we introduce the matrix Ẑ ∈ R4×4 = Q̂Q̂T , which can be written as Ẑ =
ÛΣ̂ÛT .

Without loss of generality, the matrix Û is assumed to be constructed in proper orthogonal form,
i.e., det Û = +1. In addition, the directions of û1 and û2 must be selected consistent with the
quaternions and their derivatives, respectively. Ref. 13 recommends to choose these vectors such
that ûT1 (q̂k + q̂k−l+1) > 0 and ûT2 (q̂k − q̂k−l+1) > 0.

If the motion is in pure spin configuration (and in the absence of measurement noise), then σ̂3 =

σ̂4 = 0, and the plane of rotation can be determined as P1 ,
[
û1 û2

]
, whereas the null space

of the motion is given by P2 ,
[
û3 û4

]
. As shown in Ref. 13, the estimated angular velocity

direction vector ω̄ can be calculated as the unit vector:

ˆ̄ω = W1(P1J2P
T
1 + P2J2P

T
2 )W2, (29)

where J2,W1 andW2 are given by:

J2 =

[
0 −1
1 0

]
, W1 =

[
I 03×1

]
, W2 =

[
03×1

1

]
, (30)
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Figure 3: Residual plot for planar motion (left) and quaternion motion with out-of-plane component
(right). The index i represents the subscript for êi , q̂Ti û3.

and 03×1 ∈ R3×1 is a vector filled with zeros.

In order to determine the size of the sliding window L, we need to identify whether the quaternion
measurements in Q̂ seem to fit the model assumption of planar motion. A common procedure to
verify whether a model fits the given data can be made by analyzing the regression residuals.15

We define our vector of residuals as the projection of the quaternion measurements onto the third
singular vector û3:

êi , q̂
T
i û3, i ∈ {k − L+ 1, · · · k} =⇒ ê ,

[
êk−L+1 · · · êk

]T
= Q̂T û3. (31)

The covariace of the residual sequencePe , E[êêT ] is typically a non-diagonal matrix, implying
that the residuals within ê is an autocorrelated sequence.15 However, this correlation is generally
unimportant (weakly autocorrelated), as discussed in Ref. [16, p. 171]. Figure 3 depicts a typical
simulated scenario displaying the residual sequence êi, i ∈ {1, · · · , 40} corresponding to the case
when all quaternions within a window Q̂ of length L = 40 stem from planar motion measurements
(left plot) and when they do not (right plot). Visually inspecting, the right-hand plot in Figure 3 is,
qualitatively speaking, more autocorrelated than the plot on the left.

In order to quantify autocorrelation in the sequence ê, we use the following one-lag autocorrela-
tion formula [17, p. 31]:

r1 =
1

L · r0

k−1∑
i=k−L+1

(êi − µe)(êi+1 − µe), (32)

where µe and r0 are, respectively, the mean and zero-lag autocorrelation of the sequence ê:

µe =
1

L

k∑
i=k−L+1

êi, r0 =
1

L

k∑
i=k−L+1

(êi − µe)2. (33)

The one-lag autocorrelation signal as defined in Eq. 32 satisfies 0 ≤ |r1| ≤ 1, where the signal is
one-lag perfectly correlated when |r1| → 1, and is one-lag uncorrelated when |r1| → 0. In addition,
our experience suggest that one-lag autocorrelation of residuals are typically negative when the
model fits the data (i.e., neighboring residuals tend to have opposite signs), while we expect positive
autocorrelation when the model does not fit the data as in the right plot of Figure 3. For instance,
the residuals in Figure 3 present one-lag autocorrelation of r1 = −0.15 (left plot) and r1 = 0.8705
(right plot).
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In order to obtain confidence bounds on whether a sequence is autocorrelated, we need to estimate
the autocorrelation covariance. To that end, we use the following expression [17, p. 188]:

σ2
r1 , var[r1] =

1

N

(
1 + 2r2

1

)
. (34)

The decision of decreasing or increasing the window length 3 ≤ L ≤ Lmax can be made by
performing the comparison of r1 with a tuning threshold r∗1. Whenever the motion is close to pure
spin, i.e. r1 < r∗1, the window length is allowed to increase (L = L + 1), otherwise whenever
r1 ≥ r∗1, it decreases (L = L− 1). Driven by extensive numerical simulations of this algorithm, we
found that a reasonable choice for the threshold is r∗1 = σr1, where σr1 is defined in Eq. 34.

The estimated direction of the angular velocity vector ˆ̄ω from Eq. 29 will be used within the
MMEKF for estimating the AVM Ω̂.

MODIFIED MEKF FOR ANGULAR VELOCITY MAGNITUDE ESTIMATION

The MMEKF presented herein assumes that the direction of the angular velocity vector is known
to be ω̄ = ˆ̄ω (Eq. 29) and that it is not a stochastic quantity.

Following the same derivations as in Ref. 12, we define the reference trajectory kinematics:

q̇R =
1

2
ωR ⊗ qR, (35)

where qR ,
[
qRs δqTRv

]T
is the reference quaternion and ωR = ΩR · ω̄ is the reference angular

velocity of the reference attitude, with magnitude ΩR and axis of rotation aligned with the true
angular velocity ω = Ω · ω̄.

The true attitude q can be represented as:

q = δq ⊗ qR, (36)

where δq ,
[
δqs δqTv

]T
represents the rotation from qR to the true rotation.

Differentiating Eq. 36, we get:

q̇ = δq̇ ⊗ qR + δq ⊗ q̇R (37)
1

2
ω ⊗ q = δq̇ ⊗ qR +

1

2
δq ⊗ ωR ⊗ qR. (38)

Post-multiplying Eq. 38 by q−1
R and isolating δq̇, we get:

δq̇ =
1

2

(
ω ⊗ q ⊗ q−1

R − δq ⊗ ωR
)

(39)

=
1

2

(
ω ⊗ δq − δq ⊗ ωR

)
(40)

=
1

2

[0 −ω
ω −[ω×]

][
δqs
δqv

]
−

[
δqs −δqTv
δqv δqsI − [δqv×]

][
0
ωR

] (41)
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After some algebraic manipulations, we get that:

δq̇s =
(
ωR − ω

)T
δqv (42)

δq̇v =
(
ω − ωR

)
δqs −

(
ω + ωR

)
× δqv. (43)

Defining the attitude error Gibbs vector:

g , 2
δqv
δqs

, (44)

then the Gibbs error kinematics is described as:

ġ = 2
δq̇v
δqs
− 2

δqv
δqs

δq̇s
δqs

(45)

=
[
I + 1

4gg
T
] (
ω − ωR

)
− 1

2

(
ω + ωR

)
× g. (46)

Since ωR is assumed to be aligned with ω, then δω = ω − ωR = (Ω − ΩR)ω̄. In addition, we
assume the first order approximations ggT ≈ 0, and δω × g ≈ 0, leading to:

ġ ≈ δω − ωR × g. (47)

Since we have no model for the dynamics of Ω, we assume it to be a random walk process:

Ω̇ = ηΩ, (48)

where ηΩ ∼ N (0, QΩ) and QΩ is a tuning knob that accommodates the expected rate at which Ω
changes with time. Alternatively, if the angular velocity magnitude Ω is also known to be bounded
with known upper bounds, then the dynamics for Ω could also be modeled as a first order Gauss-
Markov process of the type:11

Ω̇ = −1

τ
Ω + ηΩ, (49)

where τ is a time constant. The model of Eq. 49 implies that, in steady state, Ω is zero-mean and
has bounded covariance, i.e., it is likely to be in the range Ωmin ≤ Ω ≤ Ωmax with probability pΩ,
where Ωmin and Ωmax are function of QΩ, τ and the likelihood parameter pΩ ∈ [0, 1]. On the other
hand, the model in Eq. 48 has no steady state value for the covariance, implying that Ω has no range
of higher likelihood.

Defining the state vectorX ,
[
gT Ω

]T
and the dynamics of Eqs. 47 and 48, then the linearized

state dynamics is given by:

Ẋ =

[
−ΩR[ω̄×] ω̄

0 0

]
︸ ︷︷ ︸

,F

X +

[
0
1

]
︸︷︷︸
,G

η. (50)

We define the state transition matrix:

Fd[k] , eFδk , δk , tk+1 − tk. (51)

11



In the propagation step, the following equations are used:

qk+1|k = Ad[k]qk|k, (52)

Ωk+1|k = Ωk|k, (53)

Pk+1|k = Fd[k]Pk|kF
T
d [k] +Qd[k] (54)

where Pk|k , E[Xk|kX
T
k|k], and Pk+1|k , E[Xk+1|kX

T
k+1|k],Ad[k] is defined in Eq. 20, and:

Qd[k] = QΩGd[k]GT
d [k], (55)

where:

Gd[k] =

∫ tk+1

tk

eF (tk+1−σ)G dσ =

[
δ2k
2 ω̄

δk

]
. (56)

As for the measurement model, only quaternion measurements are available. The innovation term
is given by:

νk = 2
q̃v[k]

q̃s[k]
, (57)

where q̃s[k] and q̃v[k] are, respectively, the scalar and vector parts of q̃k, defined as:

q̃k ,

[
q̃s[k]
q̃v[k]

]
, q̂k ⊗ q−1

k|k−1. (58)

Assuming the measurement noise defined in Eq. 23, the measurement covariance is given by
Rk , E[gNg

T
N ] = 1

3σ
2
θI .

The measurement update step uses the following expressions:

Hk =
[
I3 03×1

]
, (59)

Sk = HkPk|k−1H
T
k +Rk, (60)

Kk = Pk|k−1H
T
k S
−1
k , (61)

∆xk|k = Kkνk, (62)

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkRkK

T
k , (63)

where ∆xk|k ,
[
∆x1 ∆x2 ∆x3 ∆x4

]T
is the incremental state update typical for standard

EKF formulations.

The updated state gk|k can be obtained from ∆xk|k as gk|k =
[
∆x1 ∆x2 ∆x3

]T
. Bearing in

mind that gk|k represents the attitude error respective to δqk (see Eqs. 36 and 44), then δqk|k can be
obtained from gk|k using the transformation in Eq. 10. Finally, the updated states are given by:

qk|k = δqk|k ⊗ qk|k−1, (64)

Ωk|k = Ωk|k−1 + ∆x4. (65)
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Figure 4: Itokawa rendering with different light sources.

SIMULATION RESULTS

In order to numerically test our proposed algorithm pipeline shown in Figure 2, we have devel-
oped a simulator that can obtain visual feed of a tumbling object∗. The simulator is able to obtain
rendered images in either monocular or stereo modes from 3D CAD models. The simulator is able
to display the 3D model in any pose, as well as set the camera at any pose as well, allowing us to
have a truth baseline. In addition, one can prescribe any desired values for the camera’s resolution,
focal lengths, and stereo baseline. Figure 4 shows some examples of renderings that were obtained
with the simulator using a 3D model† for the Itokawa asteroid,20 assuming a camera with resolution
of 720p. The images in Figure 4 (from left to right) display the asteroid with frontal light source,
lateral light source, and a fading lateral light source (near eclipse).

In order to test the proposed DAAVE-MMEKF algorithm outlined in this paper, we set the
Itokawa asteroid to tumble according with unperturbed attitude dynamics, assuming a normalized
inertia matrix (inertia matrix divided by the asteroid’s mass) JI given by Ref. 20:

JI =

0.00673 0 0
0 0.02122 0
0 0 0.02235

 km2. (66)

We have simulated Itokawa’s attitude dynamics in different hypothetical tumbling and lighting
conditions. Each experiment is recorded for 20 minutes and the camera pose is assumed stationary,
without loss of generality. For each scenario, we run ORB-SLAM to determine the relative pose of
the camera with respect to the asteroid. An example of the camera’s relative trajectory w.r.t. the tum-
bling asteroid is shown in Figure 5-(left), while 5-(right) displays a sample of tracked Orb features
in one frame. The ORB-SLAM algorithm is able to produce a sequence of relative poses at a rate
of approximately 10Hz‡, hence δk ≈ 0.1s. According with the data we’ve obtained, ORB-SLAM is
able to produce orientation measurements with an accuracy of σθ ≈ 0.002rad= 412.5arcsec. These
orientation measurements are fed incrementally to the DAAVE-MEKF algorithm to estimate the
∗The simulator is open source and can be downloaded from https://github.com/marcelinomalmeidan/

view_asteroid.
†https://nasa3d.arc.nasa.gov/detail/itokawa
‡These results were obtained in a computer with an Intel Core i5-4690K CPU (Quad Core 3.50GHz).
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Figure 5: Left: History of the camera’s pose with respect to the asteroid’s fixed frame determined
from running the ORB-SLAM algorithm. The red and black dots are features on the asteroid surface.
Right: Example of features taken from one frame in the image plane.

target’s RAV. The algorithm parameters for all simulations were chosen as Lmax = 200, r∗1 = σr1
(as defined in Eq. 34), and QΩ = 10−5.

Figure 6 shows the results for a simulation in which Itokawa’s initial angular velocity is given

by ω(0) =
[
0.025, 0.01, 0.005

]T
. Figure 6(a) shows the sliding window length for Q̂, Fig-

ure 6(b) shows the angular velocity magnitude error, Figure 6(c) superimposes the true axis of
rotation with the estimated one, and Figure 6(d) superimposes the true angular velocity with the
estimated one. Figure 7 shows the results for a simulation with initial angular velocity ω(0) =[
0.01, 0.02, −0.005

]T
(higher angular velocity in the unstable axis of rotation), but with fading

lateral light source (near eclipse - see Figure 4). We do not observe any algorithm performance
degradation on these results when compared to the previous one, which had better light conditions.

We have also executed some simulations using a 3D model∗ of the Cassini spacecraft (see Fig-
ure 8), assuming the inertia tensor:21

Jc =

 8810 −136.8 115.3
−136.8 7922.7 192.1
115.3 192.1 4586.2

 (67)

Figure 9 shows the results for a tumbling motion of Cassini with initial angular velocity ω2 ,

ω(0) =
[
0.01, 0.02, 0.005

]T
(again, principal motion is around the unstable axis of rotation).

Similarly, Figure 10 shows the results for a perturbed tumbling motion of Cassini, with perturbation

∗https://nasa3d.arc.nasa.gov/detail/jpl-vtad-cassini
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Figure 6: Simulation results for Itokawa’s tumbling motion assuming initial angular velocity of
ω(0) = [0.025, 0.01, 0.005]T
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Figure 7: Simulation results for Itokawa’s tumbling motion with poor lighting conditions assuming
initial angular velocity of ω(0) = [0.01, 0.02, −0.005]T
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Figure 8: Simulated view of the Cassini spacecraft.

given by:

τB(t) = 10 ·

 sin(0.01t)

sin(0.01t+ 2π
3 )

sin(0.01t+ 4π
3 )

 (68)

Metrics for Analysis of Simulation Results

The simulation results in Figures 6-10 show that the DAAVE-MMEKF algorithm is able to track
closely the true angular velocities.

We define ω̄ek , ω̄Tk ˆ̄ωk as the axis estimated pointing error for the angular velocity vector, and
ēΩk , Ωk − Ωk|k is the AVM estimation error. The error metrics are defined as:

ēω̄ =
1

N

∑
ω̄ek, (69)

σω̄ =
1

N − 1

∑(
ω̄ek − ēω̄

)2
, (70)

ēΩ ,
1

N

∑
ēΩk, (71)

σΩ ,
1

N − 1

∑(
ēΩk − ēΩ

)2
. (72)

Additionally, we define the mean window length as:

µL ,
1

N

∑
Lk, (73)

where Lk is the window length of Q̂ at the k − th iteration of the algorithm.

Using the definitions above, Table 1 presents a performance comparison among the various sim-
ulation results. All simulation results indicate nearly identical performance, except for the actuated
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Figure 9: Simulation results for Cassini’s tumbling motion assuming initial angular velocity of
ω(0) = [0.01, 0.02, 0.005]T
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Figure 10: Simulation results for Cassini’s tumbling perturbed motion assuming initial angular
velocity of ω(0) = [0.0, −0.02, −0.035]T
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Itokawa Itokawa Dark Cassini Cassini Actuated
µL 66.74 67.74 76.16 36.59
ēω̄ (deg) 1.68 1.78 1.43 4.50
σω̄ (deg) 1.64 1.53 1.81 2.86

ēΩ (rad/s) 1.92 · 10−4 −2.33 · 10−5 2.49 · 10−5 9.17 · 10−4

σΩ (rad/s) 1.3 · 10−3 8.08 · 10−4 1.4 · 10−3 2.1 · 10−3

Table 1: Performance comparison for the multiple simulations.

Cassini case, which performed worse. This is expected, since all other simulations present only
tumbling motions, while the last one had the spacecraft being actuated. This led to a quickly chang-
ing motion (see Fig. 10), which substantially reduced the average window length L. An immediate
consequence of a reduced window length L is higher variance in the axis estimation error ω̄ek.
Since the angular velocity axis estimation performs worse, then it is logical that the MMEKF also
performs worse in the estimation of the AVM Ωk|k.

It is important to point out that even though the Itokawa simulation with poor light conditions
performed nearly at par with the simulation that used fair light conditions, one should not jump
to conclusions that light source quality does not play an important role. Whereas the performance
deterioration has not been captured in the simulated environment presented in this paper, one would
need to further validate these results with carefully conducted experiments using a real camera in a
real space mission. An interesting avenue for further work would be to improve the camera model of
the simulator to to make it more realistic (i.e., add measurement noise, image blur, radiation noise).

The algorithm presented in this work has two tuning parameters: r∗1 (autocorrelation threshold)
and QΩ (random walk covariance for the AVM). All our simulations were executed with r∗1 = σr1
and QΩ = 10−5. Some comments follow on algorithm tuning:

• Regarding the choice for r∗1, we are satisfied with the given choice, and we believe that this is
appropriate for the problem at hand. However, there could be other setting wherein, one could
desire to be less conservative by choosing r∗1 = 2 · σr1 or r∗1 = 3 · σr1. This would imply that
that the window length would only decrease when there is more evidence that the motion is
not in pure spin. This leads to a higher average window size L, and consequently adds more
lag to the estimation of ω̄ (not to mention having larger requirements for the memory buffer).
Instead, we prefer to choose r∗1 = σr1 because this is a conservative choice, preventing the
window from growing too much.

• When choosing QΩ, it is important to evaluate how much this parameter affects the perfor-
mance of the algorithm. Motivated by this consideration, we did not want this parameter to
have a different value for each simulation scenario. Rather, we like the choice of the QΩ

parameter to be as much hands-off as possible. In a real situation, we might not know a priori
how the target’s angular velocity magnitude changes with time. Hence, it is quite satisfy-
ing that a single value of QΩ delivered satisfactory performance in all the various simulation
examples presented in this paper. Still, if one expects the AVM to change more aggressively
with, then a higher value forQΩ may be indicated for certain applications. Future work might
explore adaptiveness of QΩ based on whiteness tests of the innovation sequence νk (Eq. 57).

When formulating the MMEKF, we have assumed that the instantaneous spin axis ω̄ is known
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Figure 11: Illustration of Archimedes’ Hat-Box Theorem.

and that it is a deterministic quantity. However, the assumption is not true, since ˆ̄ω is estimated
from stochastic measurements. An important track for future work would be the statistical analysis
of the covariance of ˆ̄ω given by the DAAVE algorithm.

CONCLUSIONS

In this paper, we have introduced and analyzed the performance of the DAAVE+MMEKF algo-
rithm for the angular velocity of a non-cooperative target through visual inspection. The relative
pose between the chaser and the target is estimated using ORB-SLAM, and this information is
used to get the relative spin axis (through the DAAVE algorithm) and the relative angular velocity
magnitude (through the MMEKF algorithm).

Simulation results demonstrate that the algorithm is successful in tracking the true angular veloc-
ity of the target without much need for tuning. The same tuning parameters were used throughout
all the simulations, showing robustness of the algorithm to different scenarios. Still, tuning of a
single parameter QΩ might be necessary if the target’s angular velocity is expected to change a lot
faster than what has been analyzed in our simulation section. A suggestion of future work would
be to analyze whiteness properties of the innovation sequence νk to test consistency of MMEKF,
allowing to have an adaptive QΩ.

A surprising result that we had was that the algorithm did not perform much worse when lighting
conditions were not favorable. However, we believe that we need to improve our camera models
to make it more realistic in order to have a deeper analysis of the algorithm deterioration in face of
poor lighting conditions.

APPENDIX A

In this section we prove that if e ∈ S2 is a unit vector uniformly distributed in the 3-D unit sphere,
then: E[e] = 0 and E[eeT ] = 1

3I .

Assume a unit radius sphere and a cylinder of radius r = 1 and height h = 2. According with
Archimedes’ Hat-Box Theorem,22 if we slice both the cylinder and the sphere at the same height as
shown on Fig. 11, then the lateral surface area of the spherical segment (S1) is equal to the lateral
surface area of the cylindrical segment (S2).

To be specific, the surface area S of the cylinder parametrized with radius r = 1 and height
h = 2 is the same as the unit-radius sphere, i.e, S = 4π. A commonly used method23 to generate
uniformly distributed samples on a sphere e ∈ S2 is to uniformly sample a point in the cylinder
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through a height value z ∼ U [−1, 1], and an angle value φ ∼ U [−π, π], and then map it to the
sphere through the transformation:

e =


√

1− z2 cos(φ)√
1− z2 sin(φ)

z

 . (74)

The transformation of Eq. 74 guarantees that areas in the cylinder are preserved in the sphere after
the projection. Therefore, if a random variable is uniformly distributed in the prior space (cylindrical
space), then it should still be uniformly distributed in the posterior space (spherical space).

Denoting Pz(x) and Pφ(x) as the probability distributions of the scalar variables z and φ respec-
tively, then:

E[z] =

∫ 1

−1
xPz(x) dx =

1

2

∫ 1

−1
x dx =

1

4
x2
∣∣∣1
−1

= 0 (75)

E[z2] =

∫ 1

−1
x2Pz(x) dx =

1

2

∫ 1

−1
x2 dx =

1

6
x3
∣∣∣1
−1

=
1

3
(76)

E[1− z2] = 1− 1

3
=

2

3
(77)

E[cosφ] =

∫ π

−π
cosxPφ(x) dx =

1

2π

∫ π

−π
cosx dx =

1

2π
sinx

∣∣∣π
−π

= 0 (78)

E[sinφ] =

∫ π

−π
sinxPφ(x) dx =

1

2π

∫ π

−π
sinx dx = − 1

2π
cosx

∣∣∣π
−π

= 0 (79)

E[cosφ sinφ] =

∫ π

−π
cosx sinxPφ(x) dx =

1

2π

∫ π

−π
cosx sinx dx = − 1

4π
cos2x

∣∣∣π
−π

= 0 (80)

E[cos2 φ] =

∫ π

−π
cos2 xPφ(x) dx =

1

2π

∫ π

−π
cos2 x dx =

1

8π
(2x+ sin 2x)

∣∣∣π
−π

=
1

2
(81)

E[sin2 φ] =

∫ π

−π
sin2 xPφ(x) dx =

1

2π

∫ π

−π
sin2 x dx =

1

8π
(2x− sin 2x)

∣∣∣π
−π

=
1

2
(82)

Therefore, given that z and φ are independently distributed, we have that:

E[e] =

E[
√

1− z2 cos(φ)]

E[
√

1− z2 sin(φ)]
E[z]

 =

E[
√

1− z2]E[cos(φ)]

E[
√

1− z2]E[sin(φ)]
E[z]

 =

0
0
0

 . (83)

Also, we have that:

E[eeT ] = E


 (1− z2) cos2 φ (1− z2) cosφ sinφ (1− z2)z cosφ

(1− z2) cosφ sinφ (1− z2) sin2 φ (1− z2)z sinφ
(1− z2)z cosφ (1− z2)z sinφ z2


 (84)

=

1
3 0 0

0 1
3 0

0 0 1
3

 =
1

3
I. (85)
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