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Abstract— It is well known that the Kalman filter is globally
optimal for linear time-invariant systems excited with white
Gaussian noise along the process and measurement channels.
However, its application to practical situations is often sub-
optimal because the noise covariance matrices typically are
not accurately known. This paper presents a new covariance
matching Kalman filter (CMKF) algorithm which estimates the
measurement (R) or the process (Q) noise covariance matrix in
addition to the state. The convergence of the filter for estimating
Q or R matrices respectively is proved for discrete stochastic
linear time-invariant systems under relatively mild conditions
of observability.

I. INTRODUCTION

The Kalman filter formulation ensures convergence of the
state error covariance for the case when the system dynamics
are linear and the additive process and measurement noise
are white Gaussian [1], [2]. However, a complete knowledge
about the system dynamics and the statistics of the process
and measurement errors is assumed. In practical situations,
however, these quantities are uncertain. This paper focuses
on the problem of identifying the distribution of the process
and measurement errors.

An erroneous noise model may result in divergence of
the filter under certain conditions [3], [4], [5], [6], [7],
[8]. The conditions for stability and semi-stability of the
Kalman filter under incorrect noise covariance have also
been studied [9], [10], [11]. Prior methods pre-calculate or
estimate the noise statistics offline and use it in the filter.
However, for real-time applications, studies suggest that an
online adaptation of noise covariances can improve perfor-
mance [12], [13]. Hence, online estimation of the covariance
matrices is necessary towards ensuring filter convergence.
We introduce the CMKF which simultaneously estimates the
states and the covariance of either the white Gaussian process
or measurement noises given the covariance matrix of the
other.

Reference [14] summarizes early approaches to covariance
estimation via Innovation-Based Estimation (IAE). In the
covariance matching approach the covariance of the innova-
tion sequence is estimated to calculate the noise covariance
matrices online. A rigorous proof of convergence for this
method is given in [15]. A similar approach was used to
estimate the process covariance matrix of systems with a
left-invertible observation matrix [16]. Our method only
assumes that the system is observable. Various other adaptive
Kalman filters were introduced which used the backward
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shift operator [17], H∞ filter estimate [18], M-estimation
[19] and an optimal adaptive filter [20]. Our method only
uses the measurement sequence to calculate the estimates of
the states and the covariance matrix and proves convergence
under conditions of observability and number of unknown
elements in the system.

The major contribution of this paper is an adaptive co-
variance matching technique derived for observable LTI
systems. The paper is organized as follows. The problem
statement and the assumptions are listed in section II. The
algorithm for recursively estimating both the state and the
noise covariance is given in section III. Sections IV and V
present stability results and stochastic convergence analysis.
A simulated example is presented in section VII to show the
effectiveness of the proposed algorithm. Finally, section VIII
summarizes the contributions and motivates future directions
of this research.

II. PROBLEM STATEMENT

A. Kalman Filter

The state xk ∈Rn, to be estimated using the measurements
yk ∈ Rp at time tk evolve according to the following linear
discrete-time difference equations:

xk+1 = Fxk +wk

yk = Hxk + vk
(1)

Here the process noise wk ∈ Rn, and measurement noise
vk ∈Rp are both white Gaussian and uncorrelated with each
other and the initial state x0. The constant state transition
matrix F ∈ Rn×n and the observation matrix H ∈ Rp×n

respectively are assumed to be perfectly known. The Kalman
filter equations provide the estimate of the state x̂k|k and the
error covariance matrix Pk|k at each time tk as follows [21]:

x̂k|k−1 = Fx̂k−1|k−1

x̂k|k = x̂k|k−1 +Kk(yk−Hx̂k|k−1)

Pk|k−1 = FPk−1|k−1FT +Q

Kk = Pk|k−1HT (HPk|k−1HT +R)−1

Pk|k = Pk|k−1−KkHPk|k−1

(2)

The constant process and measurement noise covariance
matrices are given by Q and R respectively. If the process and
measurement noises are white Gaussian, the state estimation
in Eqs. (2) are optimal in the mean squared error sense [22].

B. Problem Description

Given a full knowledge of the system (F , H, Q and R),
the Kalman filter is the best estimator of the system given



in Eq. (1). However, most practical applications approximate
the values of Q and R. Given F , H, and the measurements
yk, we develop an algorithm to estimate the state xk and R
given Q and also to estimate xk and Q given R.

C. Assumptions

For this work, the following assumptions are made.
Assumption 1: Matrices F , H, Qk =Q� 0, and Rk =R� 0

are constant with time.
Assumption 2: The pair (F,H) is assumed completely

observable and the pair (F,Q
1
2 ) is assumed to be stabilizable.

Remark 1: Detectability and stabilizability assumptions
above ensure that the Kalman filter from Eq. (2) converges
[23].

Assumption 3: Either R or Q is perfectly known (no
uncertainty), while the other is taken to be unknown.

Assumption 4: (F,Q
1
2 ) has no unreachable nodes on the

unit circle in the complex plane.
Remark 2: This assumption along with the others stated

above ensure the existence of a stabilizing solution of the
algebraic Riccati equation [3], [24].

Assumption 5: The matrix S defined in Eq. (27) and
matrix T defined in Eq. (31) has full column rank.

Remark 3: This assumption has to do with the estimability
of Q and R matrices. A similar assumption was made about
the number of unknown elements in Q matrix by [15]. The
implications of this assumptions are discussed in section VI.

III. THE CMKF ALGORITHM

The CMKF algorithm is derived in three steps, namely,
formulating stacked dynamics, eliminating the state, and then
estimating R or Q matrix.

A. Stacked Dynamics

Stacking n measurements vertically allows us to have the
observability matrix Mo as the state transition matrix. The
dynamics of the stacked measurements are derived below.

xk+1 = Fxk +wk (3)

xk+2 = F2xk +Fwk +wk+1 (4)

xk+n−1 = Fn−1xk +Fn−2wk + · · ·+wk+n−1 (5)
yk = Hxk + vk (6)

yk+1 = HFxk +Hwk + vk+1 (7)

yk+2 = HF2xk +HFwk +Hwk+1 + vk+2 (8)

yk+n−1 = HFn−1xk +HFn−2wk + . . .

· · ·+Hwk+n−2 + vk+n−1 (9)


yk+n−1
yk+n−2

...
yk


︸ ︷︷ ︸

,Yk

=


HFn−1

HFn−2

...
H


︸ ︷︷ ︸

,Mo

xk+


H HF HF2 · · · HFn−2

000 H HF · · · HFn−3

...
...

. . .
...

...
000 000 000 000 H
000 000 000 000 000


︸ ︷︷ ︸

,Mw


wk+n−2
wk+n−3

...
wk


︸ ︷︷ ︸

,Wk

+


vk+n−1
vk+n−2

...
vk


︸ ︷︷ ︸

,Vk

(10)

Eq. (10) can be compactly expressed as follows:

Yk = Moxk +MwWk +Vk (11)
Yk+1 = Moxk+1 +MwWk+1 +Vk+1 (12)

B. Eliminating the state

Assumption 2 ensures that the observability matrix Mo has
full column rank. Hence, the Moore-Penrose pseudo inverse
defined by M†

o is such that M†
o Mo is the identity matrix. Pre-

multiplying by M†
o in Eqs. (11) and (12),

M†
oYk = xk +M†

o MwWk +M†
oVk (13)

FM†
oYk = Fxk +FM†

o MwWk +FM†
oVk (14)

M†
oYk+1 = xk+1 +M†

o MwWk+1 +M†
oVk+1 (15)

= Fxk +wk +M†
o MwWk+1 +M†

oVk+1 (16)

Subtracting Eq. (16) and (14) and eliminating the state,

M†
oYk+1−FM†

oYk︸ ︷︷ ︸
,Zk

= wk +M†
o MwWk+1−FM†

o MwWk︸ ︷︷ ︸
,Wk

+M†
oVk+1−FM†

oVk︸ ︷︷ ︸
,Vk

(17)

wherein Zk, Wk and Vk are functions of the measurement
sequence, the process noise and the measurement noise
respectively. Note that here the time subscript k is used for
simplicity even though the constituents have different time
subscripts.

C. Estimating R Matrix

Given independent and identically distributed (i.i.d.) white
Gaussian process and measurement noise sequences, the
sequence Zk is a zero mean stationary process. Therefore,
the covariance of Zk which is constant in time can be written
as follows.

Cov(Z ) =Cov(W )+Cov(V ) (18)

Simplifying Eq. (17), we get

Wk = A1wk +A2wk+1 + · · ·+An−1wk+n−1 (19)
Vk = B0vk +B1vk+1 + · · ·+Bnvk+n (20)

Here the constant matrices Ai and Bi can be pre-calculated.
Note that this is a linear strictly stationary moving average
time series with output Zk and inputs wk and vk.

Cov(W ) = A1QAT
1 + · · ·An−1QAT

n−1 (21)

Cov(V ) = B0RBT
0 + · · ·BnRBT

n (22)



The time subscripts are dropped because of the stationarity
assumptions in place. In order to estimate R given the Q
matrix, Cov(Z ) has to be estimated. Given that the sequence
Zk is zero mean, the following estimator is used.

Cov(Z )k =
1
k

k

∑
i=1

ZiZ
T

i (23)

Assuming Cov(Z )0 = 0, Eq. (23) can be recursively calcu-
lated as follows.

Cov(Z )k =
k−1

k
Cov(Z )k−1 +

1
k
ZkZ

T
k (24)

From Eqs. (18) and (22), R̂k satisfies,

Cov(Z )k−Cov(W ) = B0R̂kBT
0 + · · ·BnR̂kBT

n (25)

Let Ck =Cov(Z )k−Cov(W ) and let vec(·) be the operation
of vectorizing a matrix. For example, vec(A)l = Ai j where
l = n(i−1)+ j for A ∈ Rn×n.

vec(Ck) = vec(B0R̂kBT
0 + · · ·BnR̂kBT

n ) (26)

vec(Ck) = (B0⊗B0 + · · ·Bn⊗Bn)︸ ︷︷ ︸
,S

vec(R̂k) (27)

wherein, ‘⊗’ is the Kronecker product. Using assumption 5,
we calculate the estimate R̂k as follows.

vec(R̂k) = S†vec(Ck) (28)

D. Estimating Q matrix

Cov(Z )k−Cov(V )︸ ︷︷ ︸
Dk

= A1Q̂kAT
1 + · · ·AnQ̂kAT

n (29)

vec(Dk) = vec(A1Q̂kAT
1 + · · ·AnQ̂kAT

n ) (30)

vec(Dk) = (A1⊗A1 + · · ·An⊗An)︸ ︷︷ ︸
,T

vec(Q̂k) (31)

From assumption 5, we calculate the estimate Q̂k as follows.

vec(Q̂k) = T †vec(Dk) (32)

E. CMKF Algorithm

The pseudo-code of the CMKF algorithm is as Algo-
rithm 1. Note that R̂k may turn out to be occasionally negative
semidefinite because of a outstanding measurement. In the
CMKF algorithm, the if statement retains the most recent
positive definite R̂k in the filter equations.

IV. CONVERGENCE ANALYSIS FOR R̂k

This section is divided into two subsections. The con-
vergence in probability of the estimate R̂k to the actual
covariance R is shown. Then, the convergence of the new
filter using the estimate is shown.

A. Convergence of R̂

Using Eqs. (19) and (20), we get,

Zk =
n−1

∑
i=1

Aiwk+i−1 +
n

∑
i=0

Bivk+i (33)

Algorithm 1 CMKF algorithm
Initialization: F , H, Q, x̂0, P0, Cov(Z )0 = 0
Input: measurement sequence {yk}
Output: state estimate {x̂k}
for k = 1 to n do

Using {yk} calculate Zk . Eq. (17)
Using Zk calculate Cov(Z )k . Eq. (24)
Using Cov(Z )k calculate R̂k . Eq. (28)
if R̂k � 0 then

R̂k = R̂k−1
end if
x̂k|k−1 = Fx̂k−1|k−1
x̂k|k = x̂k|k−1 +Kk(yk−Hx̂k|k−1)
Pk|k−1 = FPk−1|k−1FT +Q
Kk = Pk|k−1HT (HPk|k−1HT + R̂k)

−1

Pk|k = Pk|k−1−KkHPk|k−1
end for

Since the noises are white Gaussian and uncorrelated with
each other, Eq. (33) can be interpreted as a linear strictly
stationary Gaussian time series. The central limit theorem for
linear stationary time series ensures the following element-
wise convergence result proved in [25].

√
k{Cov(Z )k−Cov(Z )}i j

D−→N (0,Ωi j) (34)

Here, the subscript i j denotes the element corresponding to
the ith row and jth column of the matrix and the D denotes
convergence in distribution. From Eqs. (18) and (25), we get,

Cov(Z )k−Cov(Z ) =
n

∑
l=0

Bl(R̂k−R)BT
l (35)

√
k
{ n

∑
l=0

Bl(R̂k−R)BT
l
}

i j
D−→N (0,Ωi j) (36)

√
k{S vec(R̂k−R)}t

D−→N (0,Ωi j) (37)

wherein, t = p(i− 1) + j. Using assumption 5 and pre-
multiplying by S†, the limiting distribution is a sum of white
Gaussian distributions which is again white Gaussian with a
finite covariance Ω̄i j (independent of k).

√
k{R̂k−R}i j

D−→N (0,Ω̄i j) (38)

lim
k−→∞

Pr
{
{R̂k−R}i j > ε

}
= 0, ∀ ε > 0 (39)

B. Convergence of the state error covariance

Three different error covariance matrix sequences are
considered here, namely, P̂k, the one-step predictor error
covariance, Pk, the true error covariance of the filter which
uses the true R to propagate the uncertainty but uses R̂k to
calculate the filter gain, and finally Pk,opt , the optimal error
covariance matrix of the filter given full knowledge of the
noise statistics. More specifically,

P̂k+1 =
ˆ̄FkP̂k

ˆ̄FT
k + K̂kR̂kK̂T

k +Q (40)

Pk+1 =
ˆ̄FkPk

ˆ̄FT
k + K̂kRK̂T

k +Q (41)

Pk+1,opt = F̄kPk,opt F̄T
k +KkRKT

k +Q (42)



wherein,

K̂k = FP̂kHT (HP̂kHT + R̂k)
−1, (43)

Kk = FPk,optHT (HPk,optHT +R)−1, (44)
ˆ̄Fk = F− K̂kH, and F̄k = F−KkH (45)

Let us first look at the asymptotics of the matrix sequence
P̂k−Pk. Subtracting equations (40) and (41), we get

P̂k+1−Pk+1 =
ˆ̄Fk(P̂k−Pk)

ˆ̄FT
k + K̂k(R̂k−R)K̂T

k (46)

The initial knowledge about the state is the same in each of
the three matrix sequences. Hence, using P̂0 = P0 = P0,opt ,

P̂k+1−Pk+1 =
k

∑
i=0

φ̂iKr
i (R̂i−R)K̂T

i φ̂
T
i (47)

lim
k−→∞

(P̂k+1−Pk+1) =
∞

∑
i=0

φ̂iKr
i (R̂i−R)K̂T

i φ̂
T
i (48)

where φ̂i = ˆ̄Fi
ˆ̄Fi−1 · · · ˆ̄F0 is the state transition matrix corre-

sponding to ˆ̄Fk from initial time to the ith time. Consider the
partial sum ∆Pm,n from m to n as follows.

∆Pm,n =
n

∑
i=m

φ̂iK̂i(R̂i−R)K̂T
i φ̂

T
i (49)

We know that,

lim
k−→∞

Pr
{
{R̂k−R}i j > ε

}
= 0 (50)

Therefore, ∀ ε > 0, ∀ δ > 0, ∃N; ∀ n≥ N,

Pr{‖R̂k−R‖< ε}> 1−δ (51)

Now using Eq. (49),

‖∆Pm,n‖= ‖
n

∑
i=m

φ̂iK̂i(R̂i−R)K̂T
i φ̂

T
i ‖ (52)

≤
n

∑
i=m
‖φ̂iK̂i(R̂i−R)K̂T

i φ̂
T
i ‖ (53)

≤
n

∑
i=m
‖φ̂i‖2‖K̂i‖2‖R̂i−R‖ (54)

From Eq. (51), one can choose a fixed δ and an εk corre-
sponding to the R̂k such that,

εk =
ε

(n−m)‖φ̂k‖2
∞‖K̂k‖2

∞

We know that ∃ Nk satisfying Eq. (51) for ε = εk. Using
N = max

k∈[n,m]
{Nk}, we get the following result.

For all ε > 0, ∀ δ > 0, ∃N;∀ n≥ N,

Pr{‖∆Pm,n‖<ε}> 1−δ (55)
Therefore, lim

m,n−→∞
Pr{‖∆Pm,n‖< ε}= 1 (56)

This proves that the sequence ∆P0,n is a Cauchy sequence.
This implies that this sequence has a limit point or there
exists a convergent subsequence ∆P0,nk . However, the limit
point of this subsequence is in fact, lim

k−→∞
Pr{‖∆P0,nk‖< ε}.

Hence,

lim
k−→∞

Pr{‖P̂k−Pk‖< ε}= 1 (57)

P̂k
P−→ Pk as k→ ∞ (58)

We just proved the following,

K̂k
P−→ FPkHT (HPkHT +R)−1 as k→ ∞ (59)

Hence, we can say that Eq. (41) converges in probability to
the Algebraic Riccati equation (Eq. (42)).

Pk+1 = FPkFT +FPkHT (HPkHT +R)−1HPkFT +Q (60)

This equation is exactly the same as Eq. (42), and hence, both
share a solution at steady state. However, we still have to dis-
cuss the contribution of the terms during transition at lower
k values. Using the assumption that (F,H) is observable, we
know that the state transition matrix corresponding to ˆ̄Fk and
F̄k are stable ([3] Lemma 3.1). Therefore, the contribution
of the transient terms, weighted by a stable state transition
matrix diminishes in the limit as k→∞. This is also evident
when eq. (41) and (42) are expanded as follows:

Pk+1 = φ̂kP0φ̂
T
k +

k

∑
i=0

φ̂i
[
K̂k−iRK̂T

k−i +Q
]
φ̂

T
i (61)

Pk+1,opt = φkP0φ
T
k +

k

∑
i=0

φi
[
Kk−iRKT

k−i +Q
]
φ

T
i (62)

lim
k→∞

Pk+1 =
∞

∑
i=0

φ̂i
[
K̂k−iRK̂T

k−i +Q
]
φ̂

T
i (63)

lim
k→∞

Pk+1,opt =
∞

∑
i=0

φi
[
Kk−iRKT

k−i +Q
]
φ

T
i (64)

Here, φk = F̄kF̄k−1 · · · F̄0. The initial terms of both the infinite
series have low contribution to the series sum. Hence,

Pk
P−→ Pk,opt as k→ ∞ (65)

Using Eqs. (58) and (65), we get

P̂k
P−→ Pk,opt as k→ ∞ (66)

V. CONVERGENCE ANALYSIS FOR Q̂k

A. Convergence of Q̂

Using similar arguments from section IV-A, we get a
similar set of equations for Q̂k.

√
k{Cov(Z )k−Cov(Z )}i j→N (0,Λi j) (67)

Cov(Z )k−Cov(Z ) =
n

∑
l=1

Al(Q̂k−Q)AT
l (68)

√
k{

n

∑
l=1

Al(Q̂k−Q)AT
l }i j→N (0,Λi j) (69)

√
k{T vec(Q̂k−Q)}t →N (0,Λi j) (70)

wherein t = n(i−1)+ j. Again, using assumption 5,
√

k{Q̂k−Q}i j
D−→N (0, Λ̄i j) (71)

lim
k−→∞

Pr
{
{Q̂k−Q}i j > ε

}
= 0, ∀ ε > 0 (72)



B. Convergence of error covariance

We consider three error covariances as before with the
only difference being that the R matrix is perfectly known
and the Q̂k is being updated recursively.

P̂k+1 =
ˆ̄FkP̂k

ˆ̄FT
k + K̂kRK̂T

k +Q̂k (73)

Pk+1 =
ˆ̄FkPk

ˆ̄FT
k + K̂kRK̂T

k +Q (74)

Pk+1,opt = F̄kPk,opt F̄T
k +KkRKT

k +Q (75)

wherein,

K̂k = FP̂kHT (HP̂kHT +R)−1, (76)

Kk = FPk,optHT (HPk,optHT +R)−1, (77)
ˆ̄Fk = F− K̂kH, and F̄k = F−KkH (78)

Subtracting Eq. (73) and (74), we get

P̂k+1−Pk+1 =
ˆ̄Fk(P̂k−Pk)F̄T

k +(Q̂k−Q) (79)

P̂k+1−Pk+1 =
k

∑
i=0

φ̂i(Q̂k−i−Q)φ T
i (80)

Using arguments similar from those in section IV-B, we can
show that the above sequence is a Cauchy sequence and
further prove the following convergence.

Pr{‖P̂k−Pk‖> ε} k→∞−→ 0 (81)

P̂k
P−→ Pk as k→ ∞ (82)

Now comparing the actual error covariance (Eq. (74)) with
the optimal Kalman filter error covariance (Eq. (75)), we use
arguments from section IV-B to prove the following.

Pk
P−→ Pk,opt as k→ ∞

Therefore, P̂k
P−→ Pk,opt as k→ ∞

VI. ESTIMABILITY OF R AND Q

If assumption 5 fails, S and T matrices can be modified in
some cases by using the structure of the R and Q matrices to
be estimated, e.g., symmetry, known elements and constraints
on the elements. In these cases, the corresponding columns
of S and T matrices can be subtracted or averaged out from
the left hand side to remove the rank deficiency. Therefore,
we modify Eqs. (28) and (32) to get,

vec(R̂k)u = S̄†vec(Ck) (83)

vec(Q̂k)u = T̄ †vec(Dk) (84)

wherein (·)u denotes the unknown and unique entries and S̄
and T̄ are the modified matrices.

VII. SIMULATIONS

We adopt an example from [16] and choose a non-
invertible H matrix.

xk =

1 T 0.5T 2

0 1 T
0 0 1

xk−1 +wk−1

yk =

[
1 0 0
0 1 0

]
xk + vk

(85)

Assume that T = 0.05, and wk ∼N (0,Q), and vk ∼N (0,R)
are both i.i.d white Gaussian noises. We assume

R =

[
0.25 0

0 0.25

]
and Q =

0.25 0.04 0.04
0.04 0.25 0.04
0.04 0.04 0.25


The initial conditions in their respective simulations were
R̂0 = 5I2×2 and Q̂0 = 5I3×3. From simulation results, the 2
norm of the error between R̂k and R converges to within
10−1 while for estimating Q matrix it converges to 100 as
shown in Fig. (1). For both R and Q estimation, the three
state error covariance converge to the optimal Kalman filter
values Figs. (4) and (6) which represents the 3σ values for
the state estimation error shown in Figs. (3) and (5).

0 10 20 30 40 50

10 -2

10 -1

10 0

10 1

Fig. 1. Estimation error norm of the process covariance matrix R.

0 1000 2000 3000 4000 5000

10 -1

10 0

10 1

10 2

Fig. 2. Estimation error norm of the process covariance matrix Q. The flat
portions show the cases where the calculated Q̂k is negative definite and
hence, not updated.

VIII. CONCLUSION

A novel adaptive Kalman filter algorithm with proved
convergence was developed to estimate the process or mea-
surement noise covariance matrix of a LTI stochastic system.
The convergence of the states and the covariance matrix was
shown using a numerical simulation. Future work would ex-
plore generalizations to towards LTV systems and weakening
the observability assumption to detectability.
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Fig. 3. R̂k case: Estimation errors for the three states with the 3σ values corresponding to their predictor error covariance P̂k
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Fig. 4. R̂k case: Comparison of the three different error covariances from Eqs. (40) (red), (41) (blue) and (42) (black).
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Fig. 5. Q̂k case: Estimation errors for the three states with the 3σ values corresponding to their predictor error covariance P̂k
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