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Tracking studies are prevalent in marketing research and virtually all the other social sciences. These studies are
predominantly implemented via repeated independent, non-overlapping samples, which are much less costly
than recruiting and maintaining a longitudinal panel that track the same sample over time. In the existing
literature, data from repeated cross-sectional samples are analyzed either independently for each time period,
or longitudinally by focusing on the dynamics of the aggregate measures (e.g., sample averages). In this study,
we propose a multivariate state-space model that can be applied directly to the individual-level data from
each of the independent samples, simultaneously taking advantage of three patterns embedded in the data:
a) inter-temporal dependence within the population means of each variable, b) temporal co-movements across
the populationmeans of different variables and c) cross-sectional co-variation across individual responseswithin
each sample. We illustrate our proposed model with two applications, demonstrating the benefits of making full
use of all the available data. In the first illustration, we have access to all the individual-level purchase data from
one large population of grocery shoppers over a span of 36 months. This provides us a testing ground for
benchmarking our proposed model against existing approaches in a Monte Carlo experiment, where we show
that our model outperforms all the alternatives in inferring population dynamics using data sampled through
repeated cross-sections. We find that, as compared with using simple sample averages, our proposed model
can improve the accuracy of repeated cross-sectional tracking studies by double digits, without incurring any
additional data-gathering costs (or equivalently, reducing the data-gathering costs by double digits while main-
taining the desired accuracy level). In the second illustration, we apply the proposed model to repeated cross-
sectional surveys that track customer perceptions and satisfaction for an automotive dealer, a situation often
encountered by marketing researchers.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Tracking studies play an important role in monitoring population dy-
namics for various social, political, economic and business purposes.
These studies typically rely on two basic sampling schemes:
a) longitudinal panels, where data are gathered from the same sample
of individuals over time, and b) repeated cross-sections, where data
are gathered from different, independent samples in each period. Al-
though both sampling schemes can be used to track population-level
dynamics, only longitudinal panels can capture individual-level dynam-
ics (e.g., within-individual attitude or behavior changes). However,
because of the heavier burden on the participants in a longitudinal
panel and the resulting challenges in recruiting and retaining panel
members, maintaining representative longitudinal panels over an
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extended period of time is much more costly than recruiting repeated
cross-sections (Hsiao, 2007). Indeed, the extra costs of longitudinal
panels are in many cases unjustifiable because “relatively few analyses
are truly longitudinal” (Tourangeau, 2003, p. 7) in the strict sense of
studying individual-level dynamics.

Besides being less costly, repeated cross-sections can often provide a
better representation of changing populations than do longitudinal
panels. For example, with highly mobile populations such as the youn-
ger and less affluent, it is often difficult to track panel members as
they move, further eroding sample representativeness. Furthermore,
because the typical longitudinal panel maintains a static sample over
time, sample size is limited, preventing time aggregation to increase
sample representativeness over longer time intervals. In contrast, re-
peated cross-sections can be aggregated over time, enabling researchers
to study small sub-populations over coarser time intervals. As a result,
repeated cross-sections are far more common than longitudinal panels
in tracking studies (Hsiao, 2007; Tourangeau, 2003).

In light of the above, our focus in this paper is not on tracking studies
whose main interest is in estimating individual-level dynamics (which
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require longitudinal panels). Rather,we focus on tracking studieswhose
main interest is in monitoring the ‘state of population’. In particular, we
focus on repeated cross-sectional surveyswhosemain goal is tomonitor
populationmeans for variables of interest that aremeasured on interval
or ratio scales. Such tracking studies are prevalent inmarketing and vir-
tually all the other social sciences, e.g., the Consumer Expenditure Sur-
vey and American Time Use Survey conducted by the U.S. Bureau of
Labor Statistics, the Survey of Consumers conducted by Thomson
Reuters-University of Michigan, and numerous syndicated trackers on
product consumption, brand health and customer satisfaction that rely
on repeated cross-sections drawn from omnibus panels maintained by
large marketing research companies (e.g., Kantar Worldpanel, NPD,
YouGov, Vision Critical).

The most common approach in dealing with repeated cross-
sectional survey data is to pool the responses from all those interviewed
in the same period, calculate the sample averages, and use those sample
averages as estimates of population means in the corresponding time
period. Such an approach is easy to implement but faces a major
challenge — random sampling errors are confounded with genuine
changes in populationmeans. When one observes two sample averages
from two different time periods, one does not know the extent towhich
the difference between these two sample averages is caused by sample
composition differences or changes in population means. The former is
purely a function of whowere drawn into each sample and is therefore
of little interest to the researcher. The latter is what the researcher is
truly interested in uncovering.

The above confound is exacerbated when the sample size in each
time period is small and the population is heterogeneous, as both fac-
tors lead to large random sampling errors. As sampling errors increase,
true signals about population means become harder to detect, leading
to not only more inaccuracies but also more volatility in the estimates
of population means. In this paper, we develop a method that can sub-
stantially improve the statistical performance of tracking studies based
on repeated cross-sections, by better separating random sampling
errors from genuine changes in population means. To accomplish such
a goal, we take full advantage of three patterns that are commonly
embedded in repeated cross-sectional survey data:

1. Inter-temporal dependence in population means. While individual
responses from non-overlapping cross-sections are independent
over time, they reflect, collectively, the state of the population in
each time period, which is obviously temporally dependent. For
example, it should be rare that a brand's health would vary dramat-
ically from one month to the next, even though the perceptions of
individuals sampled in onemonth are independent from the percep-
tions of individuals sampled in the next month. By formally taking
into account inter-temporal dependence in population states, our
proposed model borrows information from all time periods in infer-
ring the population means in any given period. This implies that, in
estimating population means over time, our model smoothens the
raw sample averages by filtering out larger-than-expected fluctua-
tions (with the expected level of smoothness empirically deter-
mined), attributing these unusual shifts more to random sampling
errors than to changes in population states.

2. Temporal co-movements among populationmeans of multiple mea-
sures. In most tracking surveys, researchers gather data on multiple
variables, many of which related to the same underlying constructs
(e.g., customer attitudes with respect to different aspects of a prod-
uct). To the extent that population means of these measures are
manifestations of the same underlying population state and sample
averages are manifestations of population means, the movements
of the sample averages should be correlated over time. In other
words, by formally taking into account temporal co-variations
among sample averages, our proposed model borrows information
across the sample averages of all measures in inferring the popula-
tion means of any given measure. Intuitively, this implies that our
model filters out idiosyncratic movements in any given measure's
sample averages by triangulating them against how the other
measures' sample averages move, with the expected pattern of
co-movements empirically determined.

3. Cross-sectional co-variations across multiple measures. Due to
factors such as common method bias, halo effect, heterogeneity in
scale usage and other respondent characteristics, a respondent's an-
swers to multiple questions from the same survey can be correlated
with one another. When respondent-level data are available, such
within-sample between-measure correlation will manifest itself
and therefore can be uncovered from cross-sectional co-variations.
However, if only sample averages were available, due to random
differences in sample composition from one time period to another,
cross-sectional between-measure co-variations would lead to spuri-
ous temporal co-movements among the measures' sample averages,
which, unfortunately, would be confounded with genuine temporal
co-movements in the measures' population means. In other words,
in order to disentangle cross-sectional between-measure co-
variations from temporal between-measure co-movements in popu-
lation means, one needs to take advantage of tracking data at the re-
spondent level, which our proposed model allows us to accomplish.

In the rest of the paper, we proceed as follows. We first review
existing methods that can potentially be utilized to alleviate the con-
found between random sampling errors and genuine changes in popu-
lationmeans, highlightinghoweachmethod leverages oneor two of the
three data patterns mentioned above. We then present our proposed
approach, which, by simultaneously leveraging the three aforemen-
tioned patterns that are commonly embedded in repeated cross-
sectional survey data, goes beyond all that has been attempted in the
literature. To test our methodology and better understand the incre-
mental value of leveraging each of the three data patterns, we conduct
a Monte Carlo simulation using data from a known population from
which we draw repeated cross-sections. Given that we know the true
population means in each time period, we can make equitable compar-
isons in statistical performance across different approaches. After we
thoroughly test the performance of our proposed model against
known population means and benchmark models, we illustrate its use
by applying it to data gathered through repeated cross-sectional sur-
veys of customer perceptions and satisfaction for an automotive dealer,
a situation that is often encountered by marketing researchers.
2. Tracking population dynamics with repeated
cross-sectional samples

A seminal study on the analysis of repeated surveys was published
by Scott and Smith (1974), who were the first to realize that while the
observations fromeachwave of surveysmight be independent, thepop-
ulation means being estimated from the sample averages could in fact
be temporally dependent. Depending on the assumed inter-temporal
dependency of the population means and the type of repeated cross-
sectional sampling (overlapping or not), Scott and Smith (1974) and
Scott, Smith, and Jones (1977) suggested different ARIMA models to
better infer, from sample averages over time, the trend line of the pop-
ulation mean of a single response variable. They referred to this model-
based approach for inferring populationmeans over time as a secondary
analysis of repeated cross-sectional data, as it relies on sample averages
as inputs, as opposed to a primary analysis of raw respondent-level data.
One recent example in the marketing literature of applying time series
models to sample averages is Srinivasan, Vanhuele, and Pauwels
(2010), who used a vector-autoregressive (VARX) market-response
model in investigating the dynamics between marketing mix, brand
sales and consumer mindset metrics, which were gathered through
repeated cross-sectional surveys. Their focus, however, is not on better
inferring population means from sample averages over time, and



96 R.Y. Du, W.A. Kamakura / Intern. J. of Research in Marketing 32 (2015) 94–112
their model does not distinguish between random sampling errors and
genuine shifts in the state of the population.

Other authors (Feder, 2001; Harvey & Chung, 2000; Pfefferman,
1991; Tam, 1987) have viewed the potential inter-temporal dependen-
cy of population means from a state-space perspective (Kalman, 1960),
where the population means are treated as latent state variables that
evolve over time and the sample averages obtained from repeated
cross-sectional surveys are noisy manifestations of the underlying
population means. From such a state-space perspective, these authors
typically specify an observation equation such as,

yt ¼ μt þ εt ð1Þ

where yt is a vector of sample averages for M measures at time t, μ t is
a latent vector representing the corresponding population means at
time t, and εt is a vector of random sampling errors, such that E(εt) =
0; E(εtε′t − k)= 0, k N 0; E(εtε′t)= V. Instead of being treated as tempo-
rally independent, μt (i.e., the population means that are not directly
observable) is assumed to evolve from one time period to the next
following a state equation such as,

μ t ¼ μ t−1 þ ξt; ð2Þ

where ξt is a vector of latent state shocks, such that E(ξt) =
0, E(ξtξt − k′) = E(ξtεt − k′) = 0, k N 0, E(ξtξt′) = Qt, and
E(ξtεt′) = 0.

Like ARIMA and VARX, the above state-space model formulation also
falls into the category of secondary analysis, where sample averages are
used as inputs, instead of raw respondent-level data. Unlike ARIMA and
VARX, the above state-space model formulation makes an explicit
attempt at separating genuine changes in population means from
random sampling errors. This separation between signal and noise is ac-
complished by leveraging the fact that there should be inter-temporal de-
pendence in population means and that random sampling errors should
be independent from one period to another. In the marketing literature,
many studies have applied this idea offiltering and smoothing in separat-
ing signals from noises in aggregate time series measures (see Xie, Song,
Sirbu, & Wang, 1997 for an application of the Kalman filter and Pauwels
& Hanssens, 2007 for an application of the Hodrick–Prescott filter).

More recently, marketing researchers (e.g., Du & Kamakura, 2012;
Norris, Peters, & Naik, 2012) have applied dynamic factor analysis
(DFA), a special case of the general state-space model, in analyzing
multivariate time series data with random measurement errors.
Like the state-space formulation delineated in Eqs. (1) and (2), a DFA
model makes an explicit attempt at separating genuine changes in the
latent state variables from randommeasurement errors in themanifest
variables. Unlike Eq. (2), a DFA model in our context assumes that the
M-dimensional (unobservable) population means μt can be expressed
a linear function of N-dimensional latent factors zt, which evolves over
time following, for example, a random walk:

μ t ¼ Λzt ð3Þ

zt ¼ zt−1 þ ξt ξt � N 0;Ωð Þ; z0 � N a0;Ω0ð Þ: ð4Þ

Because the dimensionality of the latent factors zt is typically much
smaller than that of the population means μt (i.e. N ≪ M), a DFA
model such as the above provides a parsimonious way to capture the
temporal co-movement patterns embedded in the evolution of the
population means. This is important in the context of tracking studies
because most of these studies measure multiple variables, and many
of these variables can be driven by common underlying factors
(e.g., consumer expenditures across different product categories tend
to move together because they are all a function of discretionary
income). To the extent that sample averages are manifestations of
populationmeans, co-movements in the latterwillmanifest in temporal
co-variations in the former. In otherwords, by tapping into temporal co-
variations in sample averages, a DFA model borrows information from
the sample averages of all measures in inferring the population means
of any given measure. Intuitively, this implies that a DFA model filters
out idiosyncratic movements in any given measure's sample averages
by triangulating them against how the othermeasures' sample averages
move over time, following an empirically-determined factor-analytic
co-movement pattern.

In short, DFA models currently available in the marketing literature
(Du & Kamakura, 2012; Norris et al., 2012) can potentially improve
the statistical performance of repeated surveys by simultaneously
leveraging two patterns that are commonly embedded in the data:
inter-temporal dependence in population means of a single variable,
and temporal co-movements among population means of multiple var-
iables. However, to the best of our knowledge, the focus of DFA models
in the marketing literature has been on extracting the latent dynamic
factors, i.e., zt in Eqs. (3) and (4) (e.g., for spotting common underlying
trends in Du & Kamakura, 2012, or for making causal inferences regard-
ing the relationship between advertising and how consumers think-
feel-do about brands in Norris et al., 2012). None of the DFA models in
themarketing literature have been applied in the context of the current
study; that is, how populationmeans can be better inferred from track-
ing data based on repeated cross-sections.

One limitation of applying DFA to aggregate tracking data based
on repeated cross-sections is that it still falls into the category of second-
ary analysis, as opposed to primary (i.e., respondent-level) analysis
(Pfefferman, 1991). When researchers have access to individual-level
data, likemost vendors of tracking surveys and their clients do, informa-
tion at the respondent level is ignored (Lind, 2005) in the Secondary
DFA. In particular, a respondent's answers to multiple survey questions
can be correlated with one another, which in turn would lead to cross-
sectional between-measure co-variations. By tapping into respondent-
level data, as opposed to sample averages only, researchers can better
distinguish between temporal co-movements in population means
from cross-sectional co-variations in individual responses, because the
latter can be better identified through the pattern of within-sample
between-measure co-variations. In other words, population means
can potentially be inferred with more accuracy by replacing the
Secondary DFA of sample averages with the primary analysis of
respondent-level data, as we will demonstrate later.

Extending a state-space model from the secondary analysis to the
primary analysis seems straightforward at a first glance. One could sim-
ply replace Eq. (1) as follows and keep the rest of themodel unchanged:

yi tð Þ ¼ μ t þ εi tð Þ εi tð Þ � N 0;Σð Þ ð5Þ

where yi(t) denotes the M responses from respondent i who is sampled
in period t, μ t denotes the latent population means in period t, and εi(t)
denotes respondent i's deviations from the population means, which is
assumed to be normally distributed with mean 0 and variance-and-
covariance Σ.

In reality, however, implementing the above state-spacemodel faces
the “curse of dimensionality” and is often deemed infeasible because it
requires inverting matrices whose dimensionality equals the number
of response variablesmultiplied by the sample size for each time period
in each iteration of the Kalman filter (Lind, 2005, p. 4). For studies of
realistic sample sizes (say Nt = 500) that track, say, M = 10 response
variables, it would require the inversion of a 5000 × 5000 matrix for
each time period in each iteration of the Kalman filter. Fortunately,
Lind (2005), through ingenious matrix algebra, shows how the compu-
tations can be simplified considerably, requiring only the inversion of an
M×Mmatrix in amodified Kalman filter (Eq. (10) on p. 4 and the proof
in the Appendix on pp. 8–9 of Lind, 2005). With Lind's simplified
Kalman filter, state-space models become computationally feasible in
performing the primary analyses of tracking data based on repeated
cross-sections, as opposed to only using the sample averages.
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Surprisingly, to the best of our knowledge, Lind's (2005) ingenious
solution has never been put to practical use in marketing (or, for that
matter, in any other disciplines) and Lind's modified Kalman filter has
been relatively obscure (with only seven citations in almost 10 years).
Building on Lind's work, in the next section we propose our Primary
DFA model for inferring population means from respondent-level
data, leveraging on two patterns that are commonly embedded in re-
peated cross-sectional data: inter-temporal dependence in population
means and cross-sectional between-measure co-variations. By impos-
ing a parsimonious dynamic factor structure on the latent states, our
model can also tap into one additional pattern in the data: temporal
co-movements among population means, a source of information that
was not efficiently leveraged in previous research, including Lind
(2005). Finally, aside from putting Lind's (2005) algorithm to practical
use for the first time, we also examine the statistical performance of
the Primary DFA. To the best of our knowledge, no prior research has
systematically examined the actual empirical performance of the
primary analysis using state space models.

3. A state-space model for the primary analysis of repeated
cross-sectional data

Let yi(t) denote anM×1vector of observed indicators for respondent
i in period t in a tracking study based on repeated cross-sectional
surveys. The goal is to infer the corresponding population means. The
observation equation for our state-space model is,

yi tð Þ ¼ μ t þ εi tð Þ εi tð Þ � N 0;Σð Þ ð6Þ

and the state equations are,

μ t ¼ Λzt þ Βxt ð7Þ

zt ¼ zt−1 þ ξt ξt � N 0;Ωð Þ; z0 � N a0;Ω0ð Þ ð8Þ

where, μ t(M × 1) denotes the population mean vector in period
t, zt(K × 1) denotes a vector of latent states, Λ(M × K) maps the latent
states zt into the population means μt, xt(H × 1) is a vector of observed
covariates in period t, and B(M×H)maps the covariates xt into the pop-
ulation means μ t. Λ(M × K), B(M × H), Σ(M ×M),Ω(K × K), a0, and Ω0

are to be determined empirically.
The observation Eq. (6) relates yi(t) (M responses for respondent i in

period t) to the corresponding population means (μ t) and deviations
from the means (εi(t)), which is assumed to normally distributed with
mean zero and covariance Σ. The first state Eq. (7) specifies a factor de-
composition of the population means into a K-dimensional latent space
defined by the loadings Λ and latent states zt, alongwith a regression of
the population means on a vector of covariates xt. The second state
Eq. (8) defines the temporal structure of the latent states zt. In its cur-
rent form, this state equation specifies a simple random walk, which
can be extended to more elaborate structural time series formulations
(e.g., Du & Kamakura, 2012).

For the covariance (Σ) of the respondent deviations (εi(t)) from pop-
ulation means, we estimate a full matrix to capture cross-sectional
between-measure co-variations, which can arise due to factors such as
common method bias, halo effect, heterogeneity in scale usage and
other respondent characteristics. Controlling for co-variations of εi(t)
across respondents is important because it helps take into account ran-
domdifferences in sample compositions. Such differences arise because,
from one period to another, each samplemay include disproportionate-
ly more or fewer respondents from certain sub-populations. Without
properly accounting for these unobservable differences in sample com-
position, the resulting temporal co-variations in sample averageswould
be confounded with genuine changes in population means over time.
The covariance (Ω) of the latent state shocks (ξt) is fixed to be diag-
onal. We do so for two reasons. First, in DFA, a diagonalΩ has routinely
been assumed for identification purposes (Harvey, 1989, pp. 450–451;
Zuur, Fryer, Jolliffe, Dekker, & Beukema, 2003), the rationale of which
is the same as in standard factor analysis.2 Second, a diagonal Ω would
imply that the latent states are independent of one another, which is
an attractive property because it facilitates interpreting the extracted
dynamic factors (Du & Kamakura, 2012, Web Appendix, p. 6). It is
important to note that, although the dynamics of each latent factor is
independent of one another, these factors together drive the evolution
of the population means, resulting in a temporal co-movement pattern
in the populationmeans that is governed byΛ, the factor loadingmatrix.

The specification of our model, as delineated through Eqs. (6),
(7) and (8), is deceivingly simple. It in fact combines core ideas from
two sophisticated state-space models: DFA for the secondary analysis
(Du & Kamakura, 2012; Norris et al., 2012) and Lind's (2005) model
for the primary analysis. Compared with DFA, our proposed model can
account for cross-sectional between-measure co-variations as it lever-
ages all respondent-level data, as opposed to sample averages only.
Compared with Lind's primary analysis model, which specifies a one-
to-one relationship between the populationmeans and the latent states,
our proposed model accounts for temporal co-movements among pop-
ulationmeans through a parsimonious dynamic factor structure, an idea
borrowed fromDFA.We argue that this extension to Lind's model is not
trivial because our specification requires potentially a much smaller
state space as the same latent factor may contain information related
to more than one population mean. Second, the factor structure
accounts for the possibility that the different population means might
exhibit co-movements over time, allowing more efficient between-
measure information sharing.

3.1. Model estimation and interpretation

Formodel estimation, one can stack the respondent-level data with-
in each time period t:

yt ≡ y1 tð Þ
0 y2 tð Þ

0 ⋯ yNt tð Þ
0� �0

MNt � 1ð Þ ð9Þ

εt ≡ ε1 tð Þ
0 ε2 tð Þ

0 ⋯ εNt tð Þ
0� �0

MNt � 1ð Þ ð10Þ

Jt ≡ 1Nt
⊗IM MNt �Mð Þ: ð11Þ

Given the above, one can rewrite the model delineated in Eqs. (6),
(7) and (8) into a general state-space form:

yt ¼ JtΛzt þ JtBxt þ εt εt � N 0; INt
⊗Σ

� �
ð12Þ

zt ¼ zt−1 þ ξt ξt � N 0;Ωð Þ: ð13Þ

We estimate the above general state-space model via the
Expectation–Maximization estimator (Shumway & Stoffer, 2000),
where the expectation-step involves Lind's simplified Kalman filter
and smoother. The maximization-step has a closed-form solution
for each model parameter. Details about the EM estimator that is
tailored for our proposed model are provided in Appendix A.

Estimates of Σ capture cross-sectional covariance in respondent de-
viations frompopulationmeans. The size ofΣ shall highlight the built-in
advantage of the primary analysis over the secondary analysis, because
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in any secondary analysis of sample averages, the cross-sectional
covariance observed within each time period is lost due to aggregation,
making it harder to disentangle random sample composition differ-
ences from genuine population state changes.

The estimates of Λ can be interpreted in the sameway as onewould
interpret loadings in the standard factor analysis. Populationmeans that
have large loadings on the same set of factors tend to exhibit strong co-
movements over time. Similarly, the estimates of zt|T can be interpreted
in the same way as one would interpret factor scores in the standard
factor analysis, except that they represent movements over time in
the latent state space. By tracing zt|T over time one can detect the pre-
dominant trends in the latent state space defined by Λ, as we will illus-
trate later. The estimated variance of zt|T (i.e., var(zt|T)) determines the
uncertainties associated with the latent states. Estimates of population
means at time t can be obtained as μ̂ t ¼ Λ̂ztjT þ B̂xt.

4. An empirical validation of the primary dynamic factor analysis of
repeated cross-sectional data

In order to validate our proposed model, we need a realistic “testing
ground”wherewe have individual-level tracking data for eachmember
of an entire population, so that we know the true population means in
each time period. We can draw random samples from the entire popu-
lation in each period, mimicking tracking data that would have resulted
from repeated cross-sectional surveys. By applying our model to the
sampled data, we can compare the model estimates with the true pop-
ulationmeans. By repeating this process numerous times, we can assess
the accuracy of our model in inferring population means. Moreover,
in building this testing ground, we want to have multiple measures
that are correlated both cross-sectionally and longitudinally, which
would allow us to investigate the ability of our model in leveraging
1) within-measure inter-temporal dependence, 2) between-measure
co-movements in the population means, and 3) between-measure
cross-sectional co-variations.

To accomplish the above, we use a dataset provided by a grocery
chain, which contains purchase history for all the retailer's loyalty-
club members residing in one large metropolitan area in the U.S. In
total, this dataset comprises of 153,540 loyalty-club members for
whom we have information on monthly spending with the focal retail-
er, broken down into 15 major product categories over a period of 36
months. We treat this group of 153,540 loyalty-club members as the
target population, and the objective is to see how accurately we can
infer the mean category expenditure per household in each month by
relying on repeated cross-sections randomly sampled from the popula-
tion. Admittedly, the focal retailer has no need to sample from a popu-
lation of its own loyalty-club members. However, because we know
the true population means over an extended period of time, we have
the rare opportunity to conduct a Monte Carlo study based on real-life
data, systematically evaluating the statistical performances of simple
sample averages vs. secondary analysis vs. primary analysis, and large
vs. small sample sizes. In particular, we compare the population mean
estimates obtained with our proposed model (hereafter referred as
Primary III or Primary DFA) with the following five alternatives, all
using the same set of repeated cross-sections in each replication:

1. Sample averages from repeated cross-sections. This approach does
not involve anymodeling and is probably themost common in prac-
tice. By comparing this approach with the others we can see how
much one can improve the accuracy of tracking studies by better
leveraging various patterns embedded in repeated cross-sectional
multi-dimensional data. We refer to this approach hereafter as sam-
ple averages.

2. Apply a dynamic factor model (Eqs. (1), (7) and (8)) to themultivar-
iate sample averages directly, assuming that the covariance of the
error terms in Eq. (1) (V) is diagonal. This falls into the modeling
framework that Du and Kamakura (2012) have proposed for
analyzing multivariate time series. Instead of focusing on extracting
the common underlying trends, our focus here is on recovering the
trends of the individual populationmeans from sample averages. Un-
like our proposedmodel, this approach cannot separate a) between-
measure cross-sectional covariance that is caused by unobserved
individual heterogeneity within each sample from b) temporal co-
movements that is caused by co-evolution of population means
over time, because it confounds differences in sample composition
with population state changes. We refer to this approach hereafter
as Secondary I or Secondary DFA.

3. The same as (2), except that the covariance of the error terms in
Eq. (1) (V) is allowed to be non-diagonal. Albeit minor, this exten-
sion is new to the literature. Comparing this approach with (2) we
can see if allowing V to be non-diagonal can help (at least partially)
separate between-measure cross-sectional covariance from tempo-
ral co-movements in population means. We refer to this approach
hereafter as Secondary II.

4. A special case of our proposedmodel, with the covariance of the error
terms in Eq. (6) (Σ) assumed to be diagonal. This model is novel
to the literature in and of itself. Comparing this special case with
our proposed more general model can determine how much a
full Σ matrix can help further separate between-measure cross-
sectional covariance from temporal co-movements in population
means. We refer to this alternative hereafter as Primary I.

5. A less parsimonious version of the proposed model, where zt has the
samedimensionality as μt andΛ is diagonal (to ensure identification).
Comparing this approach with our proposed model helps determine
how temporal co-movements among population means can be
better leveraged through a dynamic factor structure imposed on
the latent state space, as opposed to specifying a one-to-one relation-
ship between the population means and the latent states, a less
parsimonious and potentially less efficient approach. We refer to
alternative (5) hereafter as Primary II.

4.1. Illustrative results based on a single replication

Before presenting the comprehensive validation tests across 100
replications using three sample sizes (200, 500, and 1000), to illustrate
the main features of our proposed model Table 1 presents the parame-
ter estimates from one replication, which draws an independent
random sample of 500 customers each month.

One of the key features of our model is the factor structure imposed
on the latent space. As in standard or dynamic factor analysis, we need
to first determine the “optimal” number of factors. Following Du and
Kamakura (2012), we rely on the Bayesian Information Criteria (BIC)
in determining the dimensionality of the factor structure, which strikes
a balance between fit and parsimony by imposing a penalty on each
additional factor. As it turns out, a three-factor structure would be the
best when the size of each sample is either 500 or 1000, and a two-
factor solution would be the best when the size of each sample is 200.
Furthermore, like standard or dynamic factor analysis, the loading
matrix Λ in our model is identified up to an orthogonal rotation. Again
following Du and Kamakura (2012), we apply a varimax rotation at
the end of the M-step after the EM estimator converges. Finally, to
control for potential seasonality in household expenditures for each
product category, we include 12 monthly dummies as covariates (xt).
The top half of Table 1 reports the estimates of the regression coeffi-
cients (B) for the monthly dummies, along with those of the loading
matrix (Λ).

The loading estimates in our model can be interpreted in the same
way as those from standard factor analysis. However, unlike standard
factor analysis, where the interpretability of the estimated factor load-
ings is of central importance, the loading estimates in our model
are merely a means to an end; they are the weights to be used to obtain
populationmean estimates for each of themanifest variables (i.e., dollar
spend per household in each product category in each month). In other
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Parameter estimates for the proposed model (repeated cross-sections of 500 customers each month).
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words, of central importance for ourmodel is how close μ̂ t ¼ Λ̂ztjT þ B̂xt
are to the true population means.

The bottom half of Table 1 reports the estimates of Σ, the cross-
sectional co-variances of individual deviations from population means.
We see a positive correlation in household spend across most of the
product categories, indicating that households spending more in some
categories (e.g., bakery and dairy) are likely to spend more on others
as well (e.g., grocery edible and meat). This is intuitive because unob-
served household heterogeneity (e.g., income, family size or lifestyle,
and loyalty to the focal retailer) can lead to above- or below-average
spending across multiple product categories. Applied to individual-
level data, our model for the primary analysis captures this pattern
through Σ and is thus able to separate 1) temporal co-movements in
sample averages that are caused by a combination of cross-sectional
co-variation and changing sample composition from 2) temporal co-
movements in sample averages that are caused by changing population
means, which is captured through the factor loading matrix Λ.
Given themodel parameter estimates and the observed data, we can
compute zt|T, the latent dynamic factor scores, through the Kalman filter
and smoother (see Appendix A for details). Given zt|T, we can produce

estimates of the population means as μ̂ t ¼ Λ̂ztjT þ B̂xt. To illustrate, for

three randomly selected categories, Fig. 1 plots Λ̂ztjT from the same

replication that led to the parameter estimates in Table 1. Λ̂ztjT can be
interpreted as de-seasonalized trends in monthly category expenditure

per household. For comparison, Fig. 1 also plots Λ̂ztjT from Secondary I,
an alternative approach that falls into the modeling framework
of Du and Kamakura (2012) and can only be applied to sample
averages.

From Fig. 1, we see that our proposed Primary DFA produces trend
lines that are much smoother than those produced by the Secondary
DFA, which seem to exhibit more random fluctuations from one
month to another. This contrast highlights the advantage of the primary
analysis over the secondary analysis in filtering out random sampling
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Fig. 1. De-seasonalized trends in category expenditure per household produced by the proposed model (Primary DFA) and Secondary DFA.
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errors and producing more stable population mean estimates. The
source of the advantage resides in the fact that the primary analysis
uses information contained in the entire data, as opposed to just the
sample averages.

Another way to appreciate the differences in statistical performance
of the different approaches is via Fig. 2, which plots the confidence
Fig. 2. a. Confidence intervals for the estimated populationmeans based on simple sample aver
(Primary DFA). c. Confidence intervals for the estimated population means based on the Secon
intervals for the estimated population means obtained from 1) the Pri-
mary DFA, 2) sample averages, and 3) Secondary DFA. In these plots, the
dots represent the actual population means, while the solid lines show
the 95% confidence intervals of the estimates. We see that our proposed
primary analysis produces interval estimates of the population means
that are tighter than those produced by simple sample averages.
ages. b. Confidence intervals for the estimated populationmeans from the proposedmodel
dary DFA.
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Table 2
Mean absolute deviations from the population mean, averaged across 36 months and 100 replications.

Category Sample size MAD % MAD reduction over sample averages

Sample averages Secondary I Secondary II Primary I Primary II Primary III

Average across All categories 200 1.423 −19.2% −29.4% −26.1% −33.9% −34.0%
500 0.904 −16.1% −21.7% −22.7% −26.6% −27.9%

1000 0.649 −13.9% −16.9% −17.8% −16.9% −22.5%
Bakery 200 0.725 −27.3% −31.3% −30.7% −33.2% −36.1%

500 0.448 −23.2% −25.4% −27.0% −29.1% −31.4%
1000 0.323 −20.4% −22.3% −23.0% −21.1% −26.7%
200 0.920 −35.3% −34.0% −36.6% −38.2% −37.2%

Bear_wine_liquor 500 0.601 −31.6% −31.0% −34.3% −34.4% −34.2%
1000 0.436 −29.7% −29.9% −32.5% −32.8% −33.3%
200 0.399 −23.3% −28.1% −26.2% −32.7% −30.9%

Candy 500 0.255 −14.8% −18.0% −19.4% −24.8% −22.5%
1000 0.177 −6.2% −9.3% −9.1% −12.1% −12.9%
200 1.650 −7.2% −24.1% −18.4% −30.7% −33.1%

Dairy 500 1.032 −4.0% −12.8% −13.6% −18.7% −23.6%
1000 0.731 −1.0% −5.8% −5.3% −5.4% −17.1%
200 1.064 −19.9% −30.0% −25.7% −32.2% −33.8%

Deli 500 0.674 −15.6% −22.4% −22.5% −22.3% −27.9%
1000 0.484 −14.8% −18.4% −17.5% −11.2% −22.1%
200 1.504 −16.8% −30.2% −24.4% −33.9% −33.5%

Frozen 500 0.903 −14.8% −19.4% −20.7% −21.8% −24.4%
1000 0.671 −10.5% −12.4% −14.8% −10.0% −17.5%
200 3.991 −9.2% −28.9% −20.7% −33.7% −32.9%

Grocery_edible 500 2.477 −6.0% −17.5% −16.2% −23.1% −23.9%
1000 1.812 −6.2% −11.9% −12.2% −9.1% −17.2%
200 2.064 −24.4% −32.3% −29.2% −36.8% −34.9%

Grocery_inedible 500 1.318 −22.2% −25.3% −26.7% −32.0% −30.6%
1000 0.939 −19.1% −22.6% −23.4% −25.0% −26.8%
200 1.285 −22.3% −30.7% −27.7% −34.5% −35.2%

HBC 500 0.845 −20.0% −26.3% −26.4% −31.4% −32.5%
1000 0.599 −17.0% −22.3% −21.3% −24.6% −28.5%
200 1.949 −18.4% −28.1% −25.8% −32.1% −34.1%

Meat 500 1.266 −14.1% −21.2% −20.6% −24.1% −27.0%
1000 0.891 −13.0% −16.3% −16.6% −13.7% −21.6%
200 0.868 −21.2% −26.3% −25.4% −29.6% −30.1%

Others 500 0.564 −14.0% −16.4% −19.7% −23.3% −23.0%
1000 0.404 −5.1% −5.6% −7.9% −12.9% −12.0%
200 1.709 −33.2% −33.2% −35.3% −39.1% −35.4%

Pharmacy 500 1.122 −29.9% −28.9% −34.2% −39.2% −34.1%
1000 0.819 −29.6% −29.8% −33.3% −37.8% −33.1%
200 0.708 −24.4% −22.6% −31.3% −33.0% −33.2%

Prepared_foods 500 0.460 −20.7% −17.8% −26.0% −28.1% −28.7%
1000 0.321 −20.7% −16.4% −20.1% −23.3% −28.5%
200 1.859 −14.1% −28.7% −22.8% −31.7% −34.5%

Produce 500 1.185 −14.4% −23.7% −22.5% −25.2% −30.8%
1000 0.841 −12.7% −16.6% −16.2% −11.2% −22.4%
200 0.652 −30.1% −31.6% −32.4% −35.1% −35.0%

Seafood 500 0.405 −23.6% −24.3% −25.6% −26.7% −27.4%
1000 0.287 −16.6% −16.6% −18.1% −17.2% −20.1%
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Moreover, the plots for the secondary analysis in Fig. 2c show that
modeling sample averages directly (therefore ignoring the covariances
within each of the cross-sections) gives a false sense of precision. Be-
cause there are far fewer degrees of freedom, the secondary analysis
over-fits the sample averages, leading to misleadingly small standard
errors for the estimates. As shown in Fig. 2c, some of the 95% confidence
intervals obtained by the secondary analysis are very narrow, and in
many cases fail to encompass the true population means.

4.2. Monte Carlo experiment across 100 replications

For a more thorough performance comparison of the alternative ap-
proaches, we draw100 random samples of sizes 200, 500 and 1000 each
month, which allows us to simulate 100 times the typical repeated
cross-sectional sampling process utilized in tracking studies. We then
apply our proposed model, along with the five alternatives discussed
earlier, to each of the datasets generated by this design.

We use two measures of accuracy: a) the mean absolute deviation
(MAD) from the known population mean in each month (μ t), assessing
the accuracy in estimating population-wide expenditure level in each
month, and b) themean absolute deviation in month-to-month change
(Δt = μ t − μ t − 1), assessing the accuracy in estimating the rate of
change in population-wide expenditure from month to month. These
accuracy measures, averaged across 36 months and 100 replications
are reported in Tables 2 and 3.

Lookingfirst at estimating the populationmeans over time (Table 2),
the full version of our proposed Primary DFA (Primary III) performs con-
siderably better than the simple sample averages, reducing MADs
(across 15 categories, 36 months, and 100 replications) by 34.0% when
monthly sample size is 200, 27.9% when monthly sample size is 500,
and 22.5% when monthly sample size is 1000 (see the last column and
top three rows of Table 2). It is remarkable that even when monthly
sample size reaches 1000, the overall estimation error can still be re-
duced by over 20%. Another way to look at this is: applying our model
to data gathered from a monthly sample of 500 can have about the
same level of estimation error as using simple sample averages based
on a monthly sample of 1000 (in other words, in the context of our
empirical test, as compared with using simple sample averages as



Table 3
Mean absolute deviations from month-to-month shifts in the population mean, averaged across 36 months and 100 replications.

Category Sample size MAD % MAD reduction over sample averages

Sample averages Secondary I Secondary II Primary I Primary II Primary III

Average across All categories 200 2.012 −22.4% −36.6% −31.0% −37.9% −38.0%
500 1.279 −19.8% −30.2% −28.7% −32.4% −33.2%

1000 0.920 −17.6% −23.9% −23.8% −24.9% −26.5%
Bakery 200 1.004 −29.9% −36.3% −33.8% −37.5% −37.8%

500 0.624 −26.5% −31.5% −31.4% −33.6% −34.3%
1000 0.456 −24.1% −27.7% −28.7% −28.5% −30.0%
200 1.288 −37.9% −39.8% −39.6% −40.7% −41.0%

Bear_wine_liquor 500 0.875 −35.8% −37.8% −38.3% −39.5% −39.3%
1000 0.632 −34.4% −37.3% −37.5% −38.3% −38.6%
200 0.563 −23.6% −30.5% −27.5% −31.7% −31.7%

Candy 500 0.364 −14.4% −20.4% −19.7% −22.7% −22.9%
1000 0.251 −2.7% −7.1% −5.9% −8.9% −9.1%
200 2.323 −9.7% −35.5% −25.1% −37.1% −37.9%

Dairy 500 1.449 −7.5% −25.9% −22.5% −26.6% −31.2%
1000 1.024 −4.5% −17.0% −15.8% −16.2% −22.4%
200 1.503 −23.4% −36.0% −31.0% −37.0% −37.3%

Deli 500 0.957 −19.9% −30.1% −29.3% −31.9% −32.9%
1000 0.686 −20.1% −24.5% −24.5% −24.0% −26.3%
200 2.137 −19.6% −34.9% −28.9% −36.2% −36.1%

Frozen 500 1.278 −17.3% −26.6% −24.9% −28.6% −28.7%
1000 0.951 −12.2% −17.8% −17.8% −19.6% −20.2%
200 5.624 −11.9% −36.3% −27.1% −37.7% −37.6%

Grocery_edible 500 3.459 −9.1% −27.2% −24.0% −29.3% −30.1%
1000 2.571 −9.6% −18.9% −18.6% −19.4% −21.4%
200 2.971 −28.2% −39.1% −34.3% −40.0% −39.8%

Grocery_inedible 500 1.865 −26.3% −33.0% −32.7% −35.2% −35.0%
1000 1.335 −23.3% −29.6% −28.5% −30.7% −31.1%
200 1.830 −25.1% −37.5% −32.1% −38.8% −38.9%

HBC 500 1.203 −24.4% −35.0% −32.1% −37.9% −37.9%
1000 0.858 −23.1% −32.7% −29.5% −35.0% −35.3%
200 2.738 −21.2% −37.4% −31.4% −38.8% −39.3%

Meat 500 1.788 −16.6% −29.1% −26.5% −31.3% −32.2%
1000 1.256 −15.3% −22.1% −22.4% −22.8% −24.5%
200 1.226 −26.3% −32.0% −29.5% −33.2% −33.1%

Others 500 0.805 −17.7% −21.9% −22.5% −24.5% −24.8%
1000 0.576 −11.5% −12.0% −13.7% −14.9% −14.9%
200 2.411 −37.1% −39.9% −39.2% −41.0% −40.7%

Pharmacy 500 1.612 −35.1% −38.1% −39.1% −40.7% −40.2%
1000 1.137 −33.8% −36.5% −37.0% −38.5% −37.9%
200 1.009 −32.8% −34.3% −35.8% −38.0% −38.1%

Prepared_foods 500 0.665 −30.3% −31.8% −35.2% −37.5% −37.8%
1000 0.459 −27.6% −29.0% −33.0% −33.0% −35.6%
200 2.629 −16.7% −35.5% −27.1% −36.5% −37.0%

Produce 500 1.655 −16.8% −31.5% −27.6% −33.5% −35.1%
1000 1.196 −15.7% −23.3% −22.6% −23.0% −26.1%
200 0.919 −32.8% −36.2% −35.4% −37.0% −37.3%

Seafood 500 0.582 −28.9% −29.9% −30.8% −31.3% −31.8%
1000 0.406 −19.6% −18.0% −20.0% −18.5% −19.7%
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population mean estimates, by applying our model one can produce
estimates that have the same level of error with only half the cost3).

Comparing the last five columns, we can see that the full version of
our proposed model (Primary III) also outperforms all the other
model-based alternatives, i.e., Secondary I and II and Primary I and II.
In terms of reducing overall estimation errors (i.e., the top three
rows), except for Primary II with a monthly sample of 200 or 500,
the improvements of Primary III over the other alternatives are all
statistically significant (p b .05). Moreover, by comparing Primary I
with Secondary I, and Primary II with Secondary II, we can clearly see
the advantage of the primary analysis over the secondary analysis, hold-
ing the basicmodel formulation the same. Finally, comparing Primary III
with Primary II, we can see they perform equally well when the
monthly sample size is relatively small (200 or 500); however, Primary
III significantly outperforms Primary II when monthly sample size
3 .904 ∗ (1–27.9%) = .652≈ .649.
reaches 1000, indicating the advantage of imposing a dynamic factor
structure on the latent space becomes more salient as the sample size
increases.

Table 3 compares the different alternatives on their ability to esti-
mate month-to-month shifts in population means. This is a more strin-
gent task because month-to-month shifts will be affected by random
sampling errors from two consecutive months, doubling the amount
of noise. Again, we see that the full version of our proposed Primary
DFA (Primary III) performs considerably better than the simple sample
averages, reducing MADs in the estimated population mean shifts
(across 15 categories, 36 months, and 100 replications) by 38.0% when
monthly sample size is 200, 33.2% when monthly sample size is 500,
and 26.5% when monthly sample size is 1000 (see the last column and
top three rows of Table 3). Similarly, comparing the last five columns
of Table 3, we see that the full version of our proposed model outper-
forms all the other model-based alternatives. In terms of reducing
overall estimation errors (i.e., the top three rows), except for Primary
II with a monthly sample of 200, all the improvements of Primary III
are statistically significant (p b .05).
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5. Tracking customer perceptions and satisfaction with the primary
dynamic factor analysis

The previous application served as a realistic testing ground because
we had access to the entire population of the focal retailer's loyalty
program in the selected region and therefore, were able to use the
true population means as the evaluation criteria. The main goals of the
first application were in 1) validating our proposed model for
conducting the primary analysis with repeated cross-sectional data
and 2) comparing its statistical performance with simple sample
averages and other model-based alternatives.

The purpose of the application below is different. Here we want to
illustrate how a marketing researcher could apply the proposed model
to make better use of repeated cross-sectional data currently gathered
to track customer perceptions and satisfaction. This illustration typifies
repeated surveys conducted bymost service-oriented enterprises (hotel
chains, banks, retail chains, etc.) in monitoring their service quality and
customer satisfaction. In particular, we use monthly tracking data
gathered by a distributor of a brand of luxury automobiles in an emerg-
ing market. The survey is designed to measure customer perceptions
and satisfaction with the distributor's repair and maintenance services.
Tables 4a and 4b present summary statistics for the data, with monthly
samples of about 100 customers who used the distributor's mainte-
nance and repair services in themonth of survey. Because they consider
eachmonthly sample in isolation, these summary statistics do not show
any distinct temporal pattern, and are not very informative about trends
in customer perceptions and satisfaction. Monthly changes in the sam-
ple averages are volatile, but vary within a range due to regression to
themean, something that is typical with customer satisfaction trackers.
Moreover, the sample sizes displayed in Table 4b show large variations
across the 13 survey items, because respondents were not forced to
answer all the questions in the survey.

Table 5 displays within-sample between-item correlations (averaged
across the 24 monthly samples), where one can see substantial
multicollinearity, potentially due to halo effects (i.e., (dis)-satisfied cus-
tomers tend to rate all items accordingly). These strong cross-sectional
covariations must be isolated from longitudinal co-movements in cus-
tomer perceptions and satisfaction, highlighting the challenge of
disentangling common-method biases (manifested cross-sectionally)
from genuine changes over time. Obviously, just tracking sample aver-
ages or secondary analyses ignores this problem, running the risk of
“throwing the baby out with the bath water” by ignoring all the higher
moments of each cross section, resulting in more volatile estimates of
population trends, as shown later.

Fig. 3 displays the standardized (to the unit circle) factor loadings
obtained from the Secondary and Primary DFA respectively, showing
the main direction for each observed variable in the latent state space.
The factor structure produced by the Secondary DFA (top panel of
Fig. 3) suggests clearly unidimensional service perceptions/satisfaction,
with the 13 indicators narrowly pointing in the E/NE direction. The factor
structure produced by the Primary DFA (bottom panel of Fig. 3) shows a
more nuanced picture, with the 13 indicators spanning the entire top-
right quadrant. The unidimensionality of the Secondary DFA suggests a
strong halo effect in the sample averages. The halo effect is still present
in the Primary DFA (due to inherent common-method biases in custom-
er surveys), but the within-sample co-variance helps further distinguish
the information contained in the 13 indicators. As in any other factor
model, factor interpretation is highly subjective (and somewhat arbi-
trary, because of rotation invariance), but one can see that the second
(vertical) factor is related to final outcomes, while the first (horizontal)
factor ismore closely related to specific aspects of the service experience.
Most importantly, these latent factors serve as an orthogonal basis for
producing more reliable and stable population estimates of customer
perceptions and satisfaction over time, as we will show next.

Table 6 shows the respective error-covariance matrices (Σ) of the
Secondary and Primary DFA, which provide a cue for the differences in
uncovered factor structure between the aggregate and respondent-
level approaches. Because it ignores all the cross-sectional co-
variances observed within each sample, the Secondary DFA cannot cap-
ture any respondent-level information, and tends to over fit the data,
because of themuch smaller degrees of freedom due to the aggregation
within each period. For this reason, the estimated error variances are
very small, and all observed (longitudinal) covariances must be cap-
tured by the latent factors. In contrast, our proposed model takes into
account all the information available within each monthly sample,
capturing the cross-sectional covariance through the error-covariance
matrix (Σ), and leaving only the longitudinal covariances to be captured
by the latent factors. This covariance decomposition leads to a more
meaningful latent state-space representation and less volatile estimates
of the population state at each point in time. This distinction is made
clear in Fig. 4, which displays the monthly scores representing the
state of the population at each point in time on the two-dimensional
latent space, according to the Secondary DFA and Primary DFA respec-
tively. The top panel of Fig. 4 (Secondary DFA) shows a highly volatile
path, ending at a state that is quite close to the initial one. In contrast,
the bottom panel (Primary DFA) shows a more defined path, starting
at the (undesirable, low-satisfaction) bottom-left quadrant, moving
upwards in the direction of “would recommend” and ending in the
first (top-right) quadrant in the direction of “satisfied,” suggesting an
improvement in perceived service quality and customer satisfaction
from the first to the 24th month in our data.

While the latent state space in Fig. 3 and the longitudinal paths
shown in Fig. 4 might be meaningful to the knowledgeable analyst
and manager, their main purpose is to produce more reliable estimates
of perceived service quality and satisfaction for the population of
customers over time. We show in Fig. 5 the estimates produced by the
Secondary DFA and Primary DFA for two important indicators (“would
recommend the dealer for repairs and maintenance,” and “satisfaction
with the service department”) for the 24 months in our sample. Fig. 5
shows considerable volatility in the simple sample averages, which
confounds random sampling errors with genuine shifts in customer
satisfaction. It is clear from this same figure that the Secondary DFA
over-fits the aggregate data, producing estimates thatmimic the sample
averages. In contrast, by leveraging on information available across
respondents within each sample, over time and, most importantly,
across variables within and between samples, the Primary DFA
produces more stable population estimates, providing more reliable/
meaningful insights about the evolution of customer perceptions and
satisfaction over time.

In summary, the results shown in Figs. 4 and 5 suggest that with our
proposed approach, researchers and managers can better detect trends
in customer satisfaction that might otherwise be hidden behind volatile
sample averages. In addition to looking at trends for individual survey
items as shown in Fig. 5, researchers and managers might also want to
track the general state of their business in terms of customer percep-
tions and satisfaction, as shown in the bottom of Figs. 3 and 4.
6. Concluding remarks

With the growing emphasis on business analytics, managers are
relying more heavily on data for their decision making. While there
has been considerable growth on data about what consumers do
(e.g., scanner panels, customer databases, and search and clickstream
data), information remains limited on how consumers think and feel;
as more activities compete for their time, and they are exposed to
more survey requests, consumers are becoming less likely to participate
in surveys. Consequently, response rates continue to decline and survey
costs continue to grow, forcing researchers to make the most effective
use of the data on hand. Despite the widespread use of survey-based
trackers by the marketing research industry, the marketing literature
is surprisingly scarce on methods that can make more effective use of



Table 4a
Summary statistics for the customer perceptions and satisfaction tracking survey.

Sample averages

Month Would you
recommend this dealer
for service and repair
work

Satisfied with the
service
department of the
dealer

Technical
competence
of the staff

Friendliness/
helpfulness
of staff

Ability to
understand my
individual
problems

Information
about any
unscheduled
work

Explanation of
the work carried
out on your car

Explanation
of the bill

Getting a service
appointment
within reasonable
time

Ability to
keep an
agreed
schedule

Quality of
the work
performed

Cleanliness of
the car when it
was returned

Reliability
of cost
estimates

1 4.5 4.4 4.5 4.7 4.5 4.3 4.4 4.3 4.6 4.5 4.4 4.4 4.5
2 4.3 4.3 4.4 4.6 4.4 4.3 4.3 4.4 4.3 4.3 4.3 4.3 4.3
3 4.2 4.0 4.4 4.7 4.4 4.1 4.2 4.1 4.2 4.2 4.3 4.2 4.2
4 4.5 4.3 4.5 4.7 4.6 4.3 4.4 4.2 4.4 4.4 4.4 4.2 4.4
5 4.5 4.3 4.5 4.7 4.6 4.3 4.4 4.1 4.4 4.4 4.5 4.4 4.3
6 4.4 4.4 4.5 4.6 4.5 4.2 4.5 4.3 4.5 4.6 4.5 4.5 4.5
7 4.7 4.5 4.7 4.8 4.6 4.5 4.6 4.5 4.5 4.7 4.6 4.5 4.7
8 4.5 4.3 4.5 4.7 4.4 4.4 4.5 4.3 4.4 4.4 4.3 4.4 4.4
9 4.5 4.4 4.6 4.8 4.7 4.2 4.6 4.4 4.7 4.6 4.6 4.6 4.5
10 4.7 4.4 4.6 4.7 4.6 4.4 4.6 4.4 4.6 4.5 4.6 4.5 4.5
11 4.3 4.3 4.4 4.6 4.5 4.2 4.3 4.2 4.3 4.5 4.5 4.5 4.5
12 4.5 4.4 4.5 4.7 4.5 4.5 4.4 4.2 4.6 4.5 4.5 4.7 4.4
13 4.7 4.6 4.7 4.8 4.8 4.7 4.7 4.6 4.6 4.6 4.7 4.6 4.5
14 4.4 4.4 4.6 4.7 4.5 4.3 4.4 4.3 4.5 4.4 4.4 4.4 4.4
15 4.7 4.6 4.7 4.7 4.7 4.6 4.6 4.5 4.5 4.6 4.7 4.7 4.6
16 4.5 4.3 4.5 4.7 4.4 4.3 4.4 4.3 4.3 4.3 4.3 4.5 4.2
17 4.7 4.5 4.7 4.8 4.6 4.4 4.5 4.4 4.6 4.6 4.6 4.6 4.3
18 4.5 4.3 4.5 4.7 4.3 4.3 4.4 4.3 4.3 4.4 4.3 4.6 4.3
19 4.5 4.3 4.4 4.6 4.4 4.3 4.4 4.3 4.3 4.4 4.4 4.6 4.2
20 4.6 4.3 4.4 4.6 4.6 4.4 4.5 4.2 4.4 4.5 4.5 4.6 4.4
21 4.6 4.3 4.5 4.7 4.5 4.3 4.4 4.3 4.4 4.3 4.4 4.5 4.3
22 4.5 4.4 4.6 4.7 4.6 4.4 4.4 4.5 4.6 4.5 4.5 4.6 4.5
23 4.6 4.4 4.6 4.8 4.6 4.5 4.5 4.5 4.5 4.6 4.4 4.7 4.5
24 4.5 4.3 4.5 4.7 4.6 4.4 4.4 4.4 4.5 4.4 4.5 4.4 4.4
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Table 4a (continued)

Standard error of the mean

Month Would you
recommend this dealer
for service and repair
work

Satisfied with the
service
department of the
dealer

Technical
competence
of the staff

Friendliness/
helpfulness
of staff

Ability to
understand my
individual
problems

Information
about any
unscheduled
work

Explanation of
the work carried
out on your car

Explanation
of the bill

Getting a service
appointment
within reasonable
time

Ability to
keep an
agreed
schedule

Quality of
the work
performed

Cleanliness of
the car when it
was returned

Reliability
of cost
estimates

1 0.10 0.10 0.09 0.06 0.09 0.12 0.10 0.11 0.09 0.09 0.09 0.09 0.09
2 0.11 0.09 0.08 0.08 0.08 0.12 0.09 0.09 0.10 0.09 0.10 0.11 0.09
3 0.12 0.11 0.09 0.06 0.10 0.13 0.10 0.11 0.11 0.12 0.11 0.13 0.11
4 0.10 0.09 0.08 0.07 0.08 0.12 0.09 0.11 0.09 0.09 0.10 0.12 0.10
5 0.10 0.09 0.07 0.05 0.07 0.11 0.09 0.12 0.09 0.10 0.09 0.10 0.11
6 0.10 0.08 0.07 0.07 0.08 0.12 0.09 0.10 0.08 0.07 0.09 0.09 0.09
7 0.06 0.08 0.06 0.05 0.07 0.10 0.09 0.09 0.07 0.05 0.07 0.10 0.06
8 0.10 0.10 0.08 0.06 0.08 0.09 0.08 0.10 0.09 0.09 0.11 0.10 0.10
9 0.09 0.10 0.08 0.04 0.06 0.13 0.08 0.10 0.06 0.07 0.08 0.08 0.08
10 0.07 0.09 0.08 0.07 0.07 0.11 0.08 0.11 0.08 0.09 0.08 0.09 0.09
11 0.13 0.11 0.10 0.08 0.09 0.12 0.10 0.11 0.11 0.11 0.10 0.10 0.09
12 0.11 0.10 0.09 0.06 0.09 0.11 0.09 0.11 0.07 0.08 0.08 0.06 0.10
13 0.08 0.08 0.06 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.08 0.08
14 0.11 0.09 0.08 0.06 0.08 0.13 0.10 0.09 0.09 0.10 0.10 0.10 0.10
15 0.08 0.09 0.07 0.08 0.08 0.09 0.09 0.10 0.09 0.08 0.07 0.06 0.09
16 0.11 0.09 0.09 0.06 0.09 0.10 0.09 0.10 0.09 0.09 0.10 0.08 0.11
17 0.08 0.08 0.08 0.05 0.08 0.10 0.08 0.10 0.08 0.08 0.07 0.09 0.11
18 0.09 0.10 0.08 0.06 0.10 0.10 0.10 0.09 0.08 0.09 0.10 0.08 0.09
19 0.08 0.09 0.10 0.08 0.10 0.10 0.09 0.10 0.10 0.10 0.08 0.08 0.10
20 0.09 0.09 0.08 0.08 0.07 0.11 0.08 0.10 0.09 0.08 0.08 0.07 0.09
21 0.07 0.09 0.09 0.07 0.09 0.11 0.09 0.10 0.09 0.10 0.09 0.10 0.10
22 0.08 0.09 0.07 0.06 0.07 0.10 0.09 0.07 0.07 0.08 0.09 0.09 0.07
23 0.08 0.09 0.08 0.06 0.08 0.08 0.09 0.08 0.08 0.07 0.10 0.06 0.10
24 0.09 0.09 0.08 0.06 0.07 0.11 0.10 0.11 0.08 0.09 0.09 0.10 0.10
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Table 4b
Sample sizes for the customer perceptions and satisfaction tracking survey.

Month Would you
recommend this dealer
for service and repair
work

Satisfied with the
service
department of the
dealer

Technical
competence
of the staff

Friendliness/
helpfulness
of staff

Ability to
understand my
individual
problems

Information
about any
unscheduled
work

Explanation of
the work carried
out on your car

Explanation
of the bill

Getting a service
appointment
within reasonable
time

Ability to
keep an
agreed
schedule

Quality of
the work
performed

Cleanliness of
the car when it
was returned

Reliability
of cost
estimates

1 95 100 96 100 100 79 97 97 98 99 99 98 95
2 93 100 99 100 100 76 98 97 100 100 100 97 96
3 95 100 100 100 100 79 100 95 98 100 98 96 97
4 98 100 99 100 100 70 94 92 98 97 100 93 94
5 96 100 99 100 99 80 98 92 100 100 98 96 90
6 98 100 100 100 99 82 99 95 100 100 100 96 94
7 95 100 100 100 100 88 97 98 99 99 98 97 95
8 91 100 99 99 99 76 97 97 98 99 99 97 97
9 99 100 100 100 100 85 100 97 100 100 99 99 90
10 98 100 99 100 98 77 99 97 97 100 99 97 95
11 98 100 100 100 100 87 98 99 99 98 99 100 100
12 100 100 100 100 100 73 98 97 100 100 100 99 98
13 96 100 98 98 97 76 98 97 97 98 100 100 97
14 100 100 98 100 96 80 98 95 98 99 98 98 97
15 100 100 98 100 98 85 97 92 100 99 99 99 95
16 100 100 94 100 98 83 97 90 98 96 98 98 96
17 96 100 98 100 96 84 98 94 99 98 98 99 96
18 98 100 98 100 98 77 97 97 99 98 100 99 98
19 96 100 99 100 98 76 96 94 98 99 99 97 96
20 100 100 100 100 100 74 99 93 93 100 100 99 92
21 100 100 95 100 99 87 97 95 98 100 99 99 98
22 100 100 99 100 99 84 100 94 98 99 99 98 98
23 97 100 98 100 98 85 99 95 95 98 100 97 98
24 100 100 100 100 99 90 100 96 97 99 98 98 99
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repeated cross-sectional data, which could either improve accuracy or
reduce data-gathering costs.

The state-space model we proposed and tested in this study is
an attempt to help researchers to better track population means based
on repeated cross-sectional surveys, taking full advantage of the
respondent-level information. Our proposed model simultaneously
taps into three features that are commonly present in tracking data.
First, it treats data from independent random samples from different
periods as inter-dependent, reflecting the fact that population means
are temporally dependent and thus information can be borrowed
from other time periods in inferring the population means at any
given point in time. Second, our model is multivariate and imposes a
parsimonious factor structure to take advantage of the fact that most
tracking studies includemultiple correlated measures, thereby borrow-
ing information from all the other measures in inferring the population
means of any givenmeasure. Third, ourmodel is applied to respondent-
level data, thus controlling for cross-sectional co-variations across
variables, which helps distinguish temporal co-movements in popula-
tion means from the cross-sectional covariances between individual
responses.

Oneway to see ourmethodological contribution is to think of our pro-
posed model as a fusion between the Secondary DFAmodel proposed by
Du and Kamakura (2012) and the primary model proposed by Lind
(2005). The Secondary DFA model can leverage the first and second fea-
tures mentioned above, while Lind's model can leverage the first and
third features. However, neither Du and Kamakura (2012) nor Lind
(2005) tested theirmodel's statistical performances in recovering popula-
tion means from repeated cross-sectional data. The first of our two
b) Proposed primary DFA

Would recommend
Sa�sfac�onFriendliness

Understand your needs

Info. about new work

Explained work done

Explained the bill

Ge�ng appoint. when needed 

Keeps agreed schedule
Quality of work done

Cleanliness of the car

Reliable cost es�mates

-1.00

-0.50

0.00

0.50

1.00

1.50

-1.00 -0.50 0.00 0.50 1.00 1.50

Fa
ct

or
 2

   
   

   
   

   
   

   
 

Factor 1                      

Would recommend

Sa�sfac�on
Tech competence

Friendliness
Understand your needs

Informa�on about neew 
work

Explained work done

Explained the bill

Ge�ng appoint. when 
needed

Keeps agreed schedule
Quality of work done

Cleanliness of the car

Reliable cost es�mates

-1.00

-0.50

0.00

0.50

1.00

1.50

-1.00 -0.50 0.00 0.50 1.00 1.50

Fa
ct

or
 2

   
   

   
   

   
   

   
 

Factor 1                      

a) Secondary DFA

Tech competence

Fig. 3. Factor loadings for the Secondary DFA and the proposed Primary DFA.



Table 6
Estimated error-covariance matrices (Σ) for the Secondary DFA and proposed model (Primary DFA).

Would
recommend

Satisfaction Tech
competence

Friendliness Understand
your needs

Information about
new work

Explained
work done

Explained
the bill

Getting appointment
when needed

Keeps agreed
schedule

Quality of
work done

Cleanliness
of the car

Reliable cost
estimates

a) Secondary DFA
Would recommend 0.00383 0 0 0 0 0 0 0 0 0 0 0 0
Satisfaction 0 0.00080 0 0 0 0 0 0 0 0 0 0 0
Tech competence 0 0 0.00098 0 0 0 0 0 0 0 0 0 0
Friendliness 0 0 0 0.00224 0 0 0 0 0 0 0 0 0
Understand your needs 0 0 0 0 0.00005 0 0 0 0 0 0 0 0
Information about new work 0 0 0 0 0 0.00284 0 0 0 0 0 0 0
Explained work done 0 0 0 0 0 0 0.00069 0 0 0 0 0 0
Explained the bill 0 0 0 0 0 0 0 0.00518 0 0 0 0 0
Getting appointment when needed 0 0 0 0 0 0 0 0 0.00293 0 0 0 0
Keeps agreed schedule 0 0 0 0 0 0 0 0 0 0.00294 0 0 0
Quality of work done 0 0 0 0 0 0 0 0 0 0 0.00162 0 0
Cleanliness of the car 0 0 0 0 0 0 0 0 0 0 0 0.00616 0
Reliable cost estimates 0 0 0 0 0 0 0 0 0 0 0 0 0.00553

b) Proposed model (Primary DFA)
Would recommend 0.84 0.68 0.59 0.48 0.55 0.56 0.56 0.44 0.52 0.50 0.63 0.41 0.55
Satisfaction 0.57 0.84 0.71 0.54 0.65 0.67 0.64 0.51 0.60 0.57 0.72 0.43 0.59
Tech competence 0.45 0.54 0.67 0.61 0.66 0.64 0.63 0.51 0.54 0.52 0.64 0.41 0.56
Friendliness 0.30 0.34 0.34 0.42 0.61 0.57 0.59 0.49 0.50 0.47 0.48 0.39 0.51
Understand your needs 0.40 0.47 0.44 0.33 0.64 0.64 0.69 0.52 0.55 0.53 0.61 0.38 0.58
Information about new work 0.48 0.57 0.50 0.35 0.47 0.86 0.72 0.56 0.54 0.50 0.60 0.44 0.59
Explained work done 0.46 0.52 0.47 0.35 0.48 0.60 0.78 0.63 0.52 0.51 0.63 0.44 0.64
Explained the bill 0.39 0.45 0.40 0.31 0.39 0.49 0.54 0.94 0.49 0.47 0.50 0.40 0.64
Getting appointment when needed 0.41 0.47 0.39 0.29 0.38 0.43 0.39 0.40 0.73 0.67 0.54 0.37 0.50
Keeps agreed schedule 0.41 0.46 0.38 0.28 0.37 0.42 0.39 0.39 0.50 0.77 0.57 0.40 0.47
Quality of work done 0.52 0.60 0.48 0.29 0.44 0.51 0.50 0.43 0.42 0.45 0.82 0.46 0.57
Cleanliness of the car 0.32 0.34 0.29 0.23 0.26 0.35 0.33 0.32 0.27 0.30 0.35 0.80 0.42
Reliable cost estimates 0.46 0.49 0.41 0.31 0.42 0.48 0.51 0.56 0.39 0.37 0.46 0.34 0.86

Note: The upper diagonal cells contain correlations, while all the other cells contain variance–covariances.
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Fig. 4. Population paths, according to the Secondary DFA and the proposed Primary DFA.
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applications is designed to fill in this gap, where we know the true popu-
lation means over time and are able to draw independent random sam-
ples from the population in each period, establishing a realistic testing
ground for performance evaluation and model comparison.

While useful for model validation (because we have access to the
entire population), using shopping basket data from a retailer's loyalty
program may have been too conservative in highlighting one of
our model's most valuable features: its ability to isolate longitudinal
trends from sampling errors in the repeated cross-sections. This
happened because household expenditures on the various product cat-
egories sold by a supermarket tend to be seasonal and directly affected
by promotions by the retailer and its competition, which were not
available to us.

Nevertheless, wewere able to clearly demonstrate via aMonte Carlo
experiment (15 variables, 36 periods and 100 replications across three
different sample sizes) that our proposed model can improve the accu-
racy of repeated cross-sectional tracking studies by double digits, with-
out incurring any additional data-gathering costs (or equivalently,
reducing the data-gathering costs by double digits while maintaining
the desired accuracy level). These gains are larger when sample sizes
are smaller and when compared with using simple sample averages or
the secondary analysis. To the best of our knowledge, this is the first
study that has shown empirical evidence based on real-life data from
a large population, establishing the superior statistical performance of
the primary analysis (previous studies focused only on computational
efficiency). Even when compared with other fairly-sophisticated alter-
natives for the primary analysis, the performance of our proposed
model has proven to be either on par or superior.

Our second application, using monthly customer satisfaction survey
data gathered by a luxury automobile distributor, exemplifies how our
proposed model can be useful in uncovering the underlying population
trends in each survey indicator, along with the latent common trends
hidden behind multiple indicators. The estimates for each indicator,
obtained as μ̂ t ¼ Λ̂ztjT þ B̂xt, isolate the underlying longitudinal trends
from random sampling errors, providing the manager with a more
interpretable tracking indicator of the shifts in customer perceptions
and satisfaction. The latent scores zt|T can be interpreted (via the loading
matrix Λ) as the location of the firm in the state space of customer
perceptions/satisfaction at month t.

While our proposed model applies to continuous (interval or ratio
scaled) measures, it can be extended to discrete measures. For that, we
suggest the formulation proposed by Tanizaki (1993), which we leave
for future research. Finally, another advantage of our state-space model
for the primary analysis lies in its capability in handling missing individ-
ual responses. With the secondary analysis, missing individual responses
must be ignored or imputed when calculating sample averages in the
aggregation step. By contrast, with our proposed model, missing individ-
ual responses can be readily bypassed in the E step (Eq. (A4)).

Appendix A. Expectation-Maximization (EM) estimator for the pro-
posed model

A.1. Kalman filter (forward pass in the E-step)

Step 1 — initialize z0|0 and var(z0|0), i.e., prior of the initial state at
period 0
z0|0 = μ0, and var(z0|0) = Ω0

Repeat Steps 2 and 3 for t = 1,…, T
Step 2 — calculate zt|t − 1 and var(zt|t − 1) i.e., expectation and uncer-

tainty about the state in t given data observed up until t − 1

ztjt−1 ¼ zt−1jt−1 ðA1Þ

var ztjt−1

� �
¼ var zt−1jt−1

� �
þΩ ðA2Þ
Step 3 — calculate zt|t and var(zt|t) i.e., expectation and uncertainty
about the state in t given data observed up until t

var ztjt
� �

¼ var ztjt−1

� �−1 þ Λ0NtΣ
−1Λ

� �−1
ðA3Þ

ztjt ¼ ztjt−1 þ var ztjt
� �

Λ0NtΣ
−1 yt−Λztjt−1−Bxt

h i
; whereyt ≡

1
Nt

XNt

i tð Þ¼1

yi tð Þ:

ðA4Þ
A.2. Kalman smoother (backward pass in the E-step)

Repeat Step 4 for t = T, T − 1, …, 1

Step 4 — calculate zt − 1|T and var(zt − 1|T), i.e., expectation and uncer-
tainty about the state in period t− 1, given all the data available
through T

Lt−1 ¼ var zt−1jt−1

� �
var ztjt−1

� �h i−1 ðA5Þ

zt−1jT ¼ zt−1jt−1 þ Lt−1 ztjT−ztjt−1

h i
ðA6Þ

var zt−1jT
� �

¼ var zt−1jt−1

� �
þ Lt−1 var ztjT

� �
−var ztjt−1

� �h i
L0t−1 ðA7Þ
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Step 5 — initialize cov(zT|T, zT − 1|T), i.e., covariance of uncertainties
about states at T and T − 1

cov zTjT; zT−1jT
� �

¼ I−var zTjT
� �

Λ0NtΣ
−1Λ

h i
var zT−1jT−1

� �
ðA8Þ

Repeat Step 6 for t = T, T − 1,…, 2
Step 6 — calculate cov(zt − 1|T, zt − 2|T), i.e., covariance of uncertainties

about states at t − 1 and t − 2, given all the data available
through T

cov zt−1jT; zt−2jT
� �

¼ var zt−1jt−1

� �
L0t−2

þ Lt−1 cov ztjT; zt−1jT
� �

−var zt−1jt−1

� �h i
L0t−2:

ðA9Þ
For identification purposes, zt|T is mean-centered at the end of
each E-step.
A.3. M-step

The maximization-step is where estimates of the hyper-parameters
of the model are obtained, taking the estimates of the latent states as
given. Let Θj collect all the estimates of the hyper-parameters at
the j-th iteration of the Expectation–Maximization process (Θ j =
{Λ, B, Σ, Ω, μ0, and Ω0}). Then, to compute the expected likelihood
conditional on the observed data (Y and X) and hyper-parameters
from iteration j − 1 (Θ j − 1), the following statistics obtained from
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the E-step are sufficient: zt|T, var(zt|T), and cov(zt|T, zt − 1|T). The like-
lihood function to be maximized in iteration j of the EM algorithm is
given by:

EZjΘ j−1 −2lnL Y;X; Z;Θ j
� �n o

∝ ln Ω0j j þ tr Ω−1
0 z0jT−a0

� �
z0jT−a0

� �0 þ var z0jT
� �h in o

þ Tln ΣΩj j þ tr
X−1

Ω

XT
t¼1

ztjT−zt−1jT
� �

ztjT−zt−1jT
� �0 þ var ztjT

� �
þ var zt−1jT

� �
−cov ztjT; zt−1jT

� �
−cov ztjT; zt−1jT

� �0

2
4

3
5

8<
:

9=
;

þ
XT
t¼1

Nt ln Σj j

þ tr Σ−1XT
t¼1

XNt

i tð Þ¼1
yi tð Þ−ΛztjT−Bxt

� �
yi tð Þ−ΛztjT−Bxt

� �0 þ Λvar ztjT
� �

Λ0h in o
:

ðA10Þ

Given the expected likelihood function above, Θ j can be estimated
by solving the first-order conditions, which leads to the following
estimates:

â0 ¼ z0jT ðA11Þ

Ω̂0 ¼ diag var z0jT
� �h i

ðA12Þ

Λ̂ Β̂
� � ¼ XT

t¼1

XNt

i tð Þ¼1
yi tð Þ ztjT

� �0
yi tð Þx

0
t

h i XT
t¼1

Nt

ztjT ztjT
� �0 þ var ztjT

� �
ztjTx

0
t

xt ztjT
� �0

xtx
0
t

2
4

3
5

2
4

3
5
−1

ðA13Þ

Σ̂ ¼ 1XT
t¼1

Nt

XT
t¼1

XNt

i tð Þ¼1
yi tð Þ−Λ̂ztjT−Β̂xt

� �
yi tð Þ−Λ̂ztjT−Β̂xt

� �0 þ Λ̂var ztjT
� �

Λ̂0h i

ðA14Þ

Ω̂ ¼ 1
T

XT
t¼1

diag
ztjT−zt−1jT

� �
ztjT−zgt−1jT

� �0 þ var ztjT
� �

þ var zt−1jT
� �

−cov ztjT; zt−1jT
� �

−cov ztjT; zt−1jT
� �0

2
4

3
5:

ðA15Þ
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