REX YUXING DU and WAGNER A. KAMAKURA*

Trendspotting has become an important marketing intelligence tool for
identifying and tracking general tendencies in consumer interest and
behavior. Currently, trendspotting is done either qualitatively by trend
hunters, who comb through everyday life in search of signs indicating
major shifts in consumer needs and wants, or quantitatively by analysts,
who monitor individual indicators, such as how many times a keyword
has been searched, blogged, or tweeted online. In this study, the authors
demonstrate how the latter can be improved by uncovering common
trajectories hidden behind the coevolution of a large array of indicators.
The authors propose a structural dynamic factor-analytic model that can
be applied for simultaneously analyzing tens or even hundreds of time
series, distilling them into a few key latent dynamic factors that isolate
seasonal cyclic movements from nonseasonal, nonstationary trend lines.
The authors demonstrate this novel multivariate approach to quantitative
trendspotting in one application involving a promising new source of
marketing intelligence—online keyword search data from Google
Insights for Search—in which they analyze search volume patterns
across 38 major makes of light vehicles over an 81-month period to

uncover key common trends in consumer vehicle shopping interest.
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To keep fingers on the pulse of consumers, “market sens-
ing” has traditionally involved tracking and analyzing a few
vital marketplace indicators. As more consumers use search
engines to gather product-related information, conduct trans-
actions and reviews online, and communicate with others
through social media such as blogs, Twitter, and Facebook,
an abundance of real-time indicators of their interests, opin-
ions, and behaviors becomes available as a promising new
source of information, allowing marketers to conduct mar-
ket sensing in ways previously unattainable, leading to more
timely and potentially more insightful marketing intelligence.

Indeed, many online services already gather and track
these individual indicators, which are often charted over
time and labeled as “trends.” The better known of such
online consumer interest trending services is Google Trends
(google.com/trends)/Google Insights for Search (google.
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com/insights/search), which provides search volume indexes
for queries people have been entering into the Google search
engine since 2004. Another well-known online consumer
interest trending service is BlogPulse (blogpulse.com) by
Nielsen, which scours the blogosphere on a daily basis to
monitor the mention of individual keywords. Similarly,
researchers can track real-time trends on any individual
term in the Twitter space using services such as Trendistic
(trendistic.com). To cover multiple platforms simultane-
ously, researchers can use more integrated services such as
Trendrr (trendrr.com), which allows users to monitor public
conversations about a product, service, or brand in real-time
across a large variety of digital and social media.
Increasingly, marketers believe they can not only monitor
but also get an early read on real-world trends by studying
tracking metrics from online sources (e.g., trendly.com,
recordedfuture.com, icerocket.com). Anecdotally, an analy-
sis of Twitter activity reported by the Wall Street Journal
showed a “gradual decline in the number of people tweeting
about being unemployed and looking for work over the six
months ending Feb. 16 [2010]” (Merrit 2010), presaging an
upturn in employment. Similarly, Yellowbook.com tracked
the types of businesses consumers search for and concluded
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that an “upturn in searches related to home improvement
and remodeling began in October [2009].... In late January,
Home Depot and Lowe’s reported increased fourth-quarter
sales” (Merrit 2010).

While online trending services such as the aforemen-
tioned are potentially useful, they provide tracking data by
charting the time courses of individual terms. For example,
when a topic, brand, or celebrity is deemed to be trending
up or down, it is usually based on the trajectory of a single
indicator. Unfortunately, individual indicators can be noisy
and unreliable by themselves, containing idiosyncrasies
(e.g., seasonal fluctuations, measurement errors, pure ran-
dom shocks) that can mask or confound the real, nonsea-
sonal trend lines hidden underneath. Moreover, individual
indicators are likely to show strong co-movements. For
example, increasing searches for one product may be
accompanied by decreasing searches for its substitutes and
increasing searches for its complements. Thus, to increase
the signal-to-noise ratio and avoid reading too much into
any individual indicator, it seems reasonable to simultane-
ously examine the time courses of many related (or even
seemingly unrelated) indicators, from which a few key com-
mon trajectories may be distilled, leading to a more reliable
read on the underlying trends that have manifested through
the co-movements of a large array of individual indicators.

To help marketers take a more holistic view of the multi-
tude of tracking metrics available through online (and
offline) sources, we propose a modeling framework through
which analysts can methodically identify, interpret, and
project common trend lines hidden behind a large number
of time series. Hereinafter, we refer to such an endeavor as
“quantitative trendspotting,” the ultimate goal of which is to
help marketers uncover hidden gems of insight buried
underneath the rubble of high-dimensional tracking data.

QUANTITATIVE VERSUS QUALITATIVE
TRENDSPOTTING

Before we delve into the conceptual framework and sta-
tistical model for quantitative trendspotting, it is important
to compare and contrast it with its qualitative counterpart.
Long before the emergence of online consumer interest
trending services, marketers have carried out trend analyses
as an integral part of marketing intelligence, attempting to
identify and track general tendencies in consumer interest
and behavior. However, until the widespread use of search
engines, blogs, Twitter, Facebook, and other digital and social
media, trendspotting was mostly a qualitative endeavor,
involving highly sensitive “trend hunters” adept at detecting
far-reaching new developments by combing through every-
day life and interacting with recognized trendsetters or opin-
ion leaders. We refer to this traditional form of trendspot-
ting as “qualitative trendspotting” because it relies heavily
on the acuity, judgment, and foresight of a few people in
correctly recognizing and interpreting the manifested signs
of a new trend.

In our view, the main distinction between quantitative
and qualitative trendspotting is that they are about different
types of trends. Quantitative trendspotting is about trends in
the tradition of time-series analysis—that is, the trajectories
or trend lines of a collection of longitudinal measures. In
contrast, qualitative trendspotting is about foretelling the
onset of a path-breaking shift in consumer interest or behav-

515

ior, such as the emergence of a new paradigm in fashion or
lifestyle. In other words, quantitative trendspotting is more
evolutionary, focusing on uncovering hidden trend lines that
already exist, which may then be extrapolated into the near
future, whereas qualitative trendspotting is more revolution-
ary, attempting to seek out radical departures from the past
that may potentially reshape the marketplace for years to
come.

A CONCEPTUAL FRAMEWORK FOR QUANTITATIVE
TRENDSPOTTING

Distinctive purposes aside, quantitative and qualitative
trendspotting are both exploratory endeavors, aimed at mak-
ing better sense of the observed marketplace indicators, as
opposed to prescribing exact courses of action. The main
goal of quantitative trendspotting is to help managers distill
massive amounts of historical indicators into a few key
trend lines that have jointly shaped the evolution of these
indicators. In short, as a tool for market sensing, we envi-
sion quantitative trendspotting as an exploratory process
consisting of the following five steps:

oStep 1: Gathering individual indicators: Assemble potential
indicators from various sources. The challenge lies in the
proverbial embarrassment of riches: massive amounts of data
increasingly available, leading to tens or even hundreds of
seemingly relevant indicators. The way to deal with this chal-
lenge is to examine all of them holistically and systematically,
instead of arbitrarily creating some sort of composite index or
subjectively preselecting some indicators while ignoring oth-
ers, which could be inefficient or even misleading.

oStep 2: Extracting key common trends: Distill all the individual
indicators into a few common factors. Simultaneous analysis
of all the indicators is necessary because otherwise the co-
movement patterns they share may be indistinguishable. Fur-
thermore, individual indicators often include substantial inac-
curacies and noise that must be filtered out to uncover the more
reliable underlying trend lines shared by multiple indicators,
thus lowering the risk of overreacting to idiosyncrasies of any
individual indicator.

oStep 3: Interpreting the identified common trends: Make sense
of the trend lines identified previously. As we explain subse-
quently when we illustrate our proposed model, this interpreta-
tion is aided by parameters measuring the correlation between
the observed indicators and the latent common trends. The
resulting insights should shed light on the underlying forces
that have shaped the bulk of the observed dynamics. Further-
more, cyclical movements must be separated from noncyclical
trends. The former are typically driven by seasonal factors
(e.g., weather, annual events). The latter are less predictable
but are often more significant, reflecting genuine shifts in con-
sumer interest or behavior over time.

Step 4: Generating insights by relating the identified trends to
other variables: After the latent trends have been identified and
interpreted, to further establish their validity and generate
insights, subsequent analyses of the trends themselves can be
carried out. For example, the identified trends can be related to
potential causal variables to understand what may have shaped
them in the past. Similarly, the identified trends can be related
to outcome measures to better understand their business
impacts and managerial relevance.

oStep 5: Projecting the identified trends: The trend lines identi-
fied from historical tracking data can be extrapolated into the
near future. Equipped with such projections, managers should
be better positioned in deciding what to do proactively in an
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attempt to reverse certain unfavorable trends while leveraging
the favorable ones.

The rest of the article proceeds as follows: First, we pro-
vide an overview of dynamic factor analysis (DFA), through
which latent common trends that have jointly shaped the
observed individual time series can be identified. Then, we
present our proposed model, which extends the standard
DFA model to allow for a more flexible and more inter-
pretable dynamic process governing the evolution of the
latent common trends. We illustrate the application of our
model using data from Google Insights for Search (GIFS),
in which search volume indexes across 38 major makes of
light vehicles are analyzed simultaneously over an 81-
month period. We demonstrate how our modeling frame-
work may allow analysts and managers to better leverage
the multitude of marketplace indicators available to them,
uncovering trends and insights that would not be visible by
examining these individual indicators separately.

OVERVIEW OF DYNAMIC FACTOR ANALYSIS

Researchers are often presented with high-dimensional
longitudinal data (e.g., a large number of macroeconomic
indicators) and want to uncover a few key factors (e.g., the
health of the economy) that have shaped the observed multi-
variate time series. Instead of analyzing each series sepa-
rately or focusing on a small subset of them by arbitrarily
aggregating or preselecting certain series, DFA offers a for-
mal statistical approach for analyzing large panels of time
series simultaneously, allowing the researcher to extract a
small number of common factors from the entire data set by
uncovering the predominant co-movement patterns.

Researchers in many different fields have long used DFA
to identify common trend lines hidden underneath multiple
time series. Early applications can be found in econometrics
(e.g., Engle and Watson 1981; Geweke 1977; Harvey 1989;
Lutkepolh 1991), psychometrics (e.g., Molenaar 1985;
Molenaar, Gooijer, and Schmitz 1992), and statistics (e.g.,
Shumway and Stoffer 1982). Geweke (1977), in an analysis
of multiple macroeconomic input and output time series, is
often credited with the first DFA model in econometrics.! In
psychometrics, Molenaar (1985) first proposed a DFA
model to analyze multivariate physiological measures taken
repeatedly from a single subject, where the set of measure-
ment occasions gives rise to an ordered sample of indicators
of the subject’s latent behavioral states.

More recently, Zuur et al. (2003) introduced DFA to envi-
ronmetrics as a tool for uncovering common trajectories
shared by a large number of biological and environmental
time series, while Ludvigson and Ng (2007), in a study of
risk and return in the U.S. stock market, effectively summa-
rized the information contained in 209 series of macroeco-
nomic indicators and 172 series of financial indicators using

1Under the condition that the number of measurement occasions is small
and the observed indicators have a stationary lagged covariance structure,
a DFA model can be reformulated into a structural equation model (e.g.,
Joreskog 1979), which can then be calibrated with LISREL. However, the
assumption of stationary lagged covariance structure is too restrictive for
quantitative trendspotting exercises, which must handle a large number of
time series that can follow many types of seasonal and nonstationary tra-
jectories over extended time periods. Thus, here, we focus on DFA models
that stem from the econometrics literature (i.e., Geweke 1977).
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two eight-factor DFA models. Aruoba, Diebold, and Scotti
(2009) demonstrate how DFA can be applied for real-time
measurement of aggregate business conditions, which they
argue should be treated as a latent variable that is not tied to
any single observed indicator but rather is manifested
through the shared dynamics of many observed indicators.
In the same spirit, Doz and Lenglart (2001) apply DFA to
extract one common factor from the co-movements of 30
time series tracked by European industrial business surveys.
They show that the uncovered common factor can be used
as a composite business cycle index because the past evolu-
tion of this factor, and in particular its turning points, can be
easily interpreted in terms of major economic events in the
Euro area.

At its core, DFA is a technique for dimension reduction;
each of the n time series under study is modeled as the sum
of a residual term representing idiosyncratic movements,
and a linear combination of p (<< n) unobserved variables
representing the underlying drivers of the observed co-
movements (i.e., the latent common trends). Just as in stan-
dard factor analysis (FA), the basic principle of DFA is to
use as few latent factors as possible to retain as much varia-
tion observed in the data as possible. The argument against
applying FA to multivariate time-series data (Anderson 1963)
is that FA assumes that the factor scores are independent
across observations, which is plausible when each observa-
tion represents an element from a cross-section but inappro-
priate when the observations are taken over time. If we
apply FA to multivariate time series, the model will produce
identical factor scores and loadings even if we rearrange the
order of the observations. In other words, FA completely
ignores temporal relationships inherent to longitudinal
observations, which is inefficient and can be erroneous.

It is expedient to view DFA as a merger between standard
FA (for dimension reduction) and univariate time-series
analysis (for temporal dynamics). In its state-space form, a
DFA model consists of one set of equations for the observed
variables and another set of state equations for the latent
factors. The observation equations describe the relationship
between the n observed variables and the p latent factors.
The state equations describe the law of motion for the p
latent factors. Broadly speaking, DFA models fall into two
main types. In the first type (e.g., Engle and Watson 1981;
Zuur et al. 2003), the observation equations specify that an
observed variable at time t is a function of the latent factors
at the same instant t. These observation equations are iden-
tical to those in standard FA. What makes these models dis-
tinct from standard FA is the formulation of the state equa-
tions, which specify the latent factors at time t as a function
of their lagged values. As a result, the state equations intro-
duce dynamics into the system, capturing common tempo-
ral patterns through the estimated serial relationship
between the latent factors and their lagged values.

In contrast, the second type of DFA models (e.g., Forni et
al. 2000; Sargent and Sims 1977; Stock and Watson 2002)
does not incorporate dynamics in the state equations,
assuming that a latent factor at time t is independent of its
lagged values. What makes these models distinct from stan-
dard FA is the formulation of the observation equations,
which specify each observed variable at time t as a function
of not only the current but also the lagged latent factor
scores. In such a formulation, common temporal patterns
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embedded in the observed multivariate time series will all
be contained in the observation equations.

To develop our new DFA model, we choose the first type
because the factor scores at time t can be interpreted unam-
biguously as the “state” of the system, summarizing all that
has happened in the system up to time t; the observed
variables are manifestations of this state. In other words, the
factor scores directly represent the latent trends. In contrast,
the interpretation of the factor scores from the second type
of formulation is less straightforward, because they have an
impact on the observed variables over multiple time peri-
ods. Another (secondary) reason for choosing the first type
of formulation is that it requires substantially fewer parame-
ters because the dynamic structure is on the p state equa-
tions rather than the n (>> p) observation equations. Admit-
tedly, our overview of DFA is by no means exhaustive, and
researchers have continued to introduce new applications
and new methods of inference. For recent advances in this
area, see Croux, Renault, and Werker (2004) and Molenaar
and Ram (2009).

OTHER TIME-SERIES METHODS

Although DFA has been well established in many differ-
ent fields, to the best of our knowledge, it has not appeared
in the marketing literature, which is a bit surprising given
that marketing researchers have widely adopted standard FA
and how often they must deal with high-dimensional time-
series data (e.g., the multitude of tracking measures collected
through repeated surveys). In contrast, we argue that current
time-series methods familiar to marketing researchers are
not well suited for the task of quantitative trendspotting. For
example, it is impossible to conduct quantitative trendspot-
ting as we have envisioned using univariate time-series
techniques such as spectral analysis (Priestley 1981),
wavelet analysis (Shumway and Stoffer 2000), and Box-
Jenkins/ARIMA (Ljung 1987), because these methods can
only be applied to one indicator series at a time, thus mak-
ing them incapable of examining multiple indicators simul-
taneously to uncover their shared trend lines.

As for methods that can be applied simultaneously to
multiple time series, vector autoregression (VAR) and vec-
tor autoregressive moving average models (VARMA) are
probably the most popular among marketing researchers.
Unfortunately, standard VAR/VARMA models tend to break
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down under the curse of dimensionality as the number of
time series reaches double digits. More recently, Bayesian
VAR (BVAR) has been advocated as an alternative for deal-
ing with high-dimensional time series (e.g., De Mol, Gian-
none, and Reichlin 2008): It overcomes the curse of dimen-
sionality by restricting the parameter space a priori through
highly informative priors, and to avoid overfitting, the tight-
ness of the prior increases as the number of series increases
(Carriero, Kapetanios, and Marcellino 2009).

The effectiveness of BVAR inevitably depends on the
quality of the priors, which can pose a challenge when the
dimensionality is high and there is little prior knowledge
about the data under study. Furthermore, imposing tight pri-
ors may not help when presumptions about the underlying
dynamic structure are ultimately wrong. In contrast, DFA,
similar in spirit to other exploratory factor-analytic meth-
ods, lets the data speak for themselves, revealing, post hoc,
the underlying joint dynamics through the structure of the
estimated factor loadings. Finally, and more important, nei-
ther standard nor Bayesian VAR produces outputs that can
be interpreted as common trend lines hidden beneath the
observed time series, thereby precluding their use for quan-
titative trendspotting, the main purpose of our study. Table 1
summarizes the comparisons between DFA, our extension of
it (which is introduced next), and other time-series methods.

STRUCTURAL DFA MODEL

In this section, we present our novel DFA model for
quantitative trendspotting, which we named structural DFA
(SDFA). It is structural in the sense that, instead of assum-
ing that each latent factor follows a random walk or a sim-
ple autoregressive process (as DFA models typically do), we
impose a directly interpretable and more flexible structure
on the law of motion, decomposing each latent factor into a
seasonal component and a nonseasonal component that fol-
lows a locally quadratic trend line. Such a statistical decom-
position of the underlying dynamic process falls into what
is known in the econometrics literature as structural time-
series analysis (Harvey 1989; Harvey and Shephard 1993).
A major distinction is that our SDFA model uses the struc-
ture in the latent factor space and therefore can be applied
to uncover trends from high-dimensional time series, while
existing structural time-series models cannot.

Table 1
SUMMARY OF METHOD COMPARISONS

Bayesian Structural Time-
ARIMA VAR/VARMA VAR Standard FA DFA Series Analysis SDFA
Examines multivariate time series simultaneously No Yes Yes No Yes No Yes
to account for co-movements
Accounts for temporal interdependence Yes Yes Yes No Yes Yes Yes
Applies to large panels of time series without Yes No Yes Yes Yes Yes Yes
breaking down under the curse of dimensionality
Makes flexible projections into the future Yes Yes Yes No No Yes Yes
Helps the analyst see the big picture by identifying No No No No Yes No Yes
common trend lines hidden behind all the
available indicator series
Decomposes law of motion into directly No No No No No Yes Yes

interpretable stochastic, nonstationary seasonal
and nonseasonal movements
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Suppose that an analyst observes a vector y, containing n
indicators over periods t = 1,2, ..., T and wants to identify,
track, and extrapolate the key common trend lines behind
these n time series. Our proposed model is formulated as the

following system of vector equations:
(1) y=B+Lfi+y u, ~N(0,%,) observed indicator

unobserved
dynamic factor

(2 fi=ox+v

nonseasonal trend
component

Co=0_1+PB_1+¢ &~N(@O,Z

(22) Bi=Pi-1+0_1+m N ~N(O,X; slope of

nonseasonal trend

(23) 8,=8,_;+ ¢, M ~N(, %) change rate of

slope

Q24) %=-Ii%-j+&  &~N(©,%) scasonal

component

Equation 1 models the n-dimensional indicators (y,) as the
sum of (1) intercepts, B; (2) a linear combination of p unob-
served dynamic factors, f; and (3) an irregular component
u, that is assumed to be independent over time and normally
distributed with mean 0 and variance . Matrix L (n X p)
reflects how the p unobserved dynamic factors f; load onto
the n observed indicators y,, with p << n. All else being equal,
the larger the absolute value of Ly, the stronger is the cor-
relation between the hth unobserved dynamic factor and the
gth observed indicator. Indicators with strong co-movements
will have high loadings on the same factors.

The set of state equations (Equations 2.1-2.4) indicates
that f;, the dynamic factors, can be further decomposed into
a nonseasonal trend component, 0., and a seasonal compo-
nent, ¥;. The dynamics of the nonseasonal trend o is gov-
erned by Equations 2.1-2.3, while the dynamics of the sea-
sonal component 7, is governed by Equation 2.4. Equation 2.1
states that the nonseasonal trend o is updated from its lagged
value o _ | as a result of two additive terms, €, and 3, _ ;. We
assume the first term, &; (a random shock received at t), to
be a priori independent over time and normally distributed
with mean 0 and diagonal variance ¥,. The second term, f3,_ |,
represents a time-varying slope in the latent trend. B, _ |
evolves over time according to Equation 2.2, where 1, (a
random shock received at t) is assumed a priori to be inde-
pendent over time and normally distributed with mean O and
diagonal variance X,. In Equation 2.2, 8, _| represents the
expected slope change rate at t, which evolves over time fol-
lowing a random walk defined by Equation 2.3, where diag-
onal X¢ denotes the variance of ¢, (arandom shock received
att).

To better explain the dynamics that Equations 2.1-2.3
can generate and how our SDFA extends DFA, it helps to set
aside the seasonal component ¥, for the time being and focus
on several more restricted formulations of the law of motion
for the nonseasonal trend component o,. Beginning with the
most basic, remove o, _; and 3, _ | from Equation 2.1, such
that o, = €, and the system degenerates into standard FA.
Relaxing this assumption so that o, = ¢, _ | + €, produces the
standard DFA. This extension of FA to DFA is deceptively
simple because with o, = o, _ | + €, as opposed to o, = &,
the likelihood function becomes much more complex,

JOURNAL OF MARKETING RESEARCH, AUGUST 2012

requiring joint calculation of the stochastic term € across all
time periods.

A key limitation of standard DFA lies in that it is not well
suited for projecting trends because, given o; = 0 _ | + €, the
model would extend a flat trend line into the future at the
end of the observation window. In quantitative trendspot-
ting, analysts and managers are often interested in distin-
guishing trend lines that are headed up from those that are
headed down, and trend lines that are accelerating from
those that are losing momentum, which becomes the main
motivation for our extension of DFA into SDFA by relaxing
some of its restrictions.

First, we can relax the standard DFA formulation (o, =
04 _ 1 + € ) by making o, = o _ | + Bg + & , which can be
rewritten as

t
2.1.2) o = 0 + Byt + )i

k=1

which can be viewed as a random walk in the level (g)
superimposed on a linear trend line that has a constant slope
of Bo.

Furthermore, instead of using a constant slope, we allow
the slope to evolve over time by making o, = oy _ + B +
g and B; = B;_ + 9y, leading to a nonseasonal trend o that
can be rewritten as

-1 L
o = 0 +Bot+80t(t2 )+ ng,
k=1

(2.1.b)

which can be viewed as a random walk in the level (g;)
superimposed on a quadratic trend line that has an initial
slope of By — 8y/2 and a constant slope change rate of §y,.

Moreover, instead of a constant slope change rate, we allow
the change rate to evolve over time by making 3, =,_; +
8o + M. This leads to a nonseasonal trend o that can be
rewritten as

t—1

t(t-1) \
(2.1.0) (Xt=Oc0+BOt+80 (2 )+];€k+;nk(t—k),

which can be viewed as a random walk in the level (g)
superimposed to a quadratic trend line that has an initial
slope of By — 8y/2, which then changes over time following
a random walk (1);) with a constant drift of .

Finally, our complete SDFA model relaxes the constant
drift restriction by adding a random walk to the slope
change rate (i.e., Equation 2.3, §, = 8, _ | + (). Together,
Equations 2.1, 2.2, and 2.3 imply the following law of
motion for the nonseasonal trend component o:

(2.1.d)

t
t(t—1
oct=oc0+B0t+80(2 )+ E €
k=1

t—1

I NS gy Gl [ (L)}
k=1 k=1

2

The upshot of Equation 2.1.d is that our SDFA model
implies a locally quadratic trend line for the latent nonsea-
sonal component 0. It is important to distinguish a locally



Quantitative Trendspotting

quadratic trend line from a globally quadratic one. With a
globally quadratic trend line, the level and linear and quad-
ratic terms are all constant over time. With a locally quad-
ratic trend line, as in Equation 2.1.d, the level and linear and
quadratic terms are all dynamically adjusted depending on
the stochastic shocks (i.e., g, Nk, and ) received over
time, leading to a highly flexible trajectory. It is also impor-
tant to note that in our SDFA model, the diagonal variances
of the stochastic shocks (i.e., X, Zn’ and ZC) are all esti-
mated from data. If they turn out to be empirically indistin-
guishable from zero, the nonseasonal component o, degen-
erates into following a globally quadratic trend line shaped
by o, By, and &y, which are also empirically determined. If
the diagonals of Z¢, X, and X¢ prove to be empirically
greater than zero, the trend line will be less driven by 0, By,
and 8y and more by the shocks received over time (i.e., &
to the level, M, to the slope, and ; to the change rate of the
slope). For a recent application of the locally quadratic trend
model to a single time series, see Harvey (2010).

Equation 2.4 describes the law of motion for the seasonal
component 7Y, , which implies that each of the s seasons has
a distinct effect and the sum of any s consecutive seasonal
effects will have an expectation of zero and a diagonal
variance of X (to illustrate this, we can rewrite Equation 2.4
as Zﬁ - %)yt_j = &)). The choice of s is exogenous and typi-
cally straightforward (e.g., 12 for monthly, 4 for quarterly,
52 for weekly data).

Empirically, if the diagonal of X¢ approaches zero, Equa-
tion 2.4 degenerates into s fixed seasonal dummy effects
that are constrained to sum to zero. As the diagonal of X¢
increases, the seasonal effects will gradually evolve over
time. Modeling seasonal fluctuations separately enables us
to hone in on the genuine nonseasonal movements, which
are, in general, more significant and less predictable. This
also constitutes an important extension to standard DFA,
which does not distinguish seasonal from nonseasonal
movements in the dynamic latent factors.

In summary, each component of our SDFA model as shown
in Equations 1, 2, and 2.1-2.4 has an easy-to-understand
interpretation. Tracing out the o, and 7y, over time would
generate, respectively, p-dimensional nonseasonal and sea-
sonal trend lines. In addition, tracing out the [3; and ; would
show, respectively, how the slopes of the nonseasonal trend
lines and the change rates of those slopes have evolved over
time. Appendixes A and B provide details about (1) how the
latent state variables (i.e.,z, = [0t By & Y, ... Vi _s_o]") can be
inferred on the basis of y, observed from t = 1 through T and
extrapolated h periods into the future for t =T + 1 through T +
h and (2) how our SDFA model can be reformulated in a
state-space form and calibrated with a highly efficient and
robust expectation-maximization algorithm.

To recap, we propose a novel model for uncovering and
projecting common trend lines hidden behind a large number
of time series, the SDFA model. First, it is factor analytic
because, similar to standard FA, it extracts a small number
of common latent factors from a large number of observed
variables. By reducing the dimensionality of the observed
data, the latent factors help identify key patterns of co-
movement. Second, our model is dynamic because it takes
into account that indicators observed over time are tempo-
rally dependent. Finally, our model is structural because,
unlike standard DFA, which extends a flat trend line, our
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model allows much more flexibility. The particular dynamic
structure we impose on the latent factors consists of sea-
sonal and nonseasonal components, both directly inter-
pretable. The nonseasonal component is modeled as follow-
ing a locally quadratic trend line governed by three separate
stochastic processes—one in the level, one in the slope, and
one in the slope change rate.

QUANTITATIVE TRENDSPOTTING WITH SDFA

We apply our SDFA model in a scenario that is becoming
increasingly common. Consider a business analyst who has
been charged with gathering marketing intelligence on the
U.S automotive industry. The analyst is particularly inter-
ested in finding out how consumer interests in various
makes of vehicles have evolved over the years and whether
there have been any predominant common trend lines.
Moreover, the analyst is interested in learning more about
what may have shaped these trend lines, how they may be
correlated with performance measures such as sales, and
where these trend lines may be headed in the near future.

Because the Internet has become such a dominant source
of information for vehicle shopping, the analyst plans to use
GIFS as the primary data source for this task, which offers
many advantages. First, GIFS provides volume indexes for
any queries people have been entering into the Google
search engine, dating back to January 2004. Second, real-
time data are readily accessible to the public for free. Third,
GIFS allows filtering by categories and subcategories (e.g.,
searches for “Toyota” can be limited to the “Automotive”
category, which can be narrowed down to subcategories
such as “Vehicle Shopping” or “Vehicle Maintenance”).

The analyst gathered the data needed as follows: First, a
list of the top 38 makes of light vehicles in the U.S. was
obtained from Automotive News. Second, using the Key-
word Tool from Google AdWords, the analyst obtained the
search terms that are commonly used for each vehicle make,
including popular abbreviations and misspellings (e.g.,
Volkswagen + VW + Volkswagon, Mercedes + Benz +
Mercedez, Chevrolet + Cheverolet + Chevorlet + Chev).
Third, the search terms were entered into the query box on
the home page of GIFS, with the filters set to “Web Search”
in the “United States” for “2004—present” within the “Vehi-
cle Shopping” subcategory. Monthly search volume indexes
(measured on a 100-point scale, with the maximum set to
100) were obtained from the displayed charts, from January
2004 to September 2010. Finally, all the raw search indexes
were log-transformed to reduce skewness and then stan-
dardized to have zero mean and unit standard deviation (for
more discussion on the issue of standardization, see Web
Appendix B at www.marketingpower.com/jmr_webappen-
dix). Figure 1, Panels A and B, presents the resulting 38
time series.2

A cursory observation of Figure 1, Panels A and B,
reveals a few notable temporal patterns regarding consumer
interest in vehicle shopping. First, many series show strong
seasonality, with peaks and valleys at regular intervals, but
not necessarily sharing the same cycle. Second, seasonal

2The standardized data are used in all subsequent analyses. Beyond the
existing data period, the analyst can return to the nonstandardized scale by
simply multiplying the standard deviation and adding the mean, both cal-
culated according to raw data from the existing data period.
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Figure 1
SEARCH VOLUME PATTERNS FOR THE TOP 38 VEHICLE MAKES IN THE UNITED STATES FROM JANUARY 2004
TO SEPTEMBER 2010
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fluctuations aside, most series seem nonstationary, with a
few showing substantial and consistent growth (e.g.,
Hyundai, Kia, Suzuki) or decline (e.g., Hummer, Isuzu,
Saab) during the 81-month observation window. To see
through the 38 individual series and grasp the “big picture,”
the analyst needs a device that can help identify the com-
mon trajectories hidden underneath all the observed data.
As we demonstrate subsequently, when uncovered using our
SDFA model, such common trajectories can stimulate an
open, exploratory process, leading to insights that would
otherwise be unattainable.

Model Outputs and Interpretations

Our SDFA model offers a dynamic dimension-reduction
tool that allows the analyst to capture as much of the co-
movement patterns shared by the 38 series with as few
latent factors as possible. Just as in standard FA, to deter-
mine the optimal number of latent factors, the analyst needs
to balance goodness of fit, parsimony, and interpretability.

According to the Bayesian information criterion (BIC),
which penalizes overfitting, it appears that a seven-factor
solution is optimal, as compared among two- through ten-
factor solutions.3 It is remarkable that with only seven fac-
tors, the SDFA model explained 89.4% of the variance
observed across 38 series over 81 months. The last column in
Table 2 reports the percentage of variance explained for each
series, with a minimum of 49.6% and a median of 92.7% 4

When the number of factors is selected and the corre-
sponding model is estimated, the analyst can focus on two
sets of outputs: (1) the time-invariant latent factor loadings
(i.e., the L,  , matrix in Equation 1), which maps p latent
dynamic factors (f;) onto the n observed time series (y,), and
(2) the time-varying seasonal (7}, in Equation 2.4) and non-
seasonal components (0, B, and §, in Equations 2.1-2.3) of
the latent dynamic factors f;.

Table 2 presents the estimated factor loadings, obtained at
the end of the M-step of the estimator when the expectation-
maximization algorithm converges and a Varimax rotation
is applied.> These loadings estimates can be interpreted in

3For the various factor solutions, the BICs are 5071 (two-factor), 4229
(three-factor), 3769 (four-factor), 3548 (five-factor), 3446 (six-factor),
3370 (seven-factor, the smallest), 3415 (eight-factor), 3425 (nine-factor),
and 3471 (ten-factor).

4The percentage of variance explained measure is similar to the measure
of communality in standard FA.

SFor more details on the expectation-maximization estimator and Vari-
max rotation, see Web Appendix B at www.marketingpower.com/jmr_
webappendix.
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Table 2
LATENT FACTOR LOADINGS AND PERCENTAGES OF VARIANCE EXPLAINED (R2)
GM Cancelled
and Isuzu/
Subaru/  (Hyundai
Foreign US. Euro GM Lexus/ (Mazda and Kia and
id Manufacturer (Country of Origin) Make Mass Mass Lux Survived ~ (Ram) Saturn)  Suzuki) R?
1 Honda (Japan) Acura 31 21 36 08 32 08 42 96.7%
2 Volkswagen (Germany) Audi 56 36 21 13 13 24 -54 86.3%
3 BMW (Germany) BMW 32 22 73 .16 .16 -.12 02 95.3%
4 GM (United States) Buick 31 A7 35 63 -07 28 13 87.3%
5 GM (United States) Cadillac 14 44 02 63 20 01 01 77.8%
6 GM (United States) Chevrolet .16 90 24 21 -.10 07 A1 98.5%
7 Chrysler (United States) Chrysler 27 .62 20 -.02 14 =21 18 64.8%
8 Chrysler (United States) Dodge 37 61 27 04 33 -24 A1 92.1%
9 Ford (United States) Ford 38 72 31 15 -01 20 -02 92.9%
10 GM (United States) GMC .10 34 .18 84 01 -.10 .00 98.3%
11 Honda (Japan) Honda 78 21 09 .00 39 -06 -.16 99.1%
12 GM (United States) Hummer 03 23 .10 21 36 -.19 71 87.1%
13 Hyundai_Kia (Korea) Hyundai 46 32 06 -.05 -02 .16 =77 96.7%
14 Nissan (Japan) Infiniti 31 26 53 22 29 00 .18 89.1%
15 Isuzu (Japan) Isuzu 01 .19 44 08 -.19 09 77 97.7%
16 Jaguar Land Rover (United Kingdom) Jaguar 17 23 59 03 -19 05 58 83.4%
17 Chrysler (United States) Jeep 26 66 41 A5 24 —-.18 -.20 87.3%
18 Hyundai_Kia (Korea) Kia 57 36 08 -.04 14 17 =71 96.3%
19 Jaguar Land Rover (United Kingdom) Land Rover -.09 24 35 23 -23 .16 56 49.5%
20 Toyota (Japan) Lexus 29 24 26 .19 73 -07 -.09 95.5%
21 Ford (United States) Lincoln 34 57 20 24 26 -.02 13 74.1%
22 Mazda (Japan) Mazda A48 42 A48 -.03 06 -35 02 98.2%
23 Daimler (Germany) Mercedes-Benz 22 37 78 13 01 09 -.04 84.0%
24 Ford (United States) Mercury 42 61 25 17 25 —-.15 14 92.7%
25 BMW (Germany) Mini 92 -.03 07 13 =27 -.04 41 96.0%
26 Mitsubishi (Japan) Mitsubishi 34 33 50 04 -13 01 Sl 94.5%
27 Nissan (Japan) Nissan .64 43 19 21 19 -.08 -.04 94.9%
28 GM (United States) Pontiac A5 .19 -01 .10 30 —-.11 70 94.5%
29 Porsche (Germany) Porsche 01 33 94 03 -.02 03 —.11 81.4%
30 Chrysler (United States) Ram -.19 49 15 -20 -.601 06 -.08 74.9%
31 GM (United States) Saab 20 13 25 24 06 07 82 92.8%
32 GM (United States) Saturn 59 12 -.03 20 22 -34 65 95.7%
33 Toyota (Japan) Scion .60 -.02 20 08 24 11 43 95.0%
34 Subaru (Japan) Subaru Ny A8 24 07 -20 S1 05 89.1%
35 Suzuki (Japan) Suzuki 56 14 -07 -01 .00 03 -.69 92.3%
36 Toyota (Japan) Toyota 63 30 A5 09 46 -08 -.09 94.3%
37 Volkswagen (Germany) Volkswagen 61 46 32 -26 -.14 14 -37 91.7%
38 Ford (United States) Volvo 29 37 42 .10 05 07 S1 90.9%

the same way as those from standard FA, labeling each fac-
tor according to which observed time series have the largest
corresponding loadings. The larger the absolute value of the
loading L, (i.e., the gth row and hth column in Table 2), the
stronger is the correlation between the gth time series and
the hth factor. Series with strong co-movements will result
in large loadings on the same subset of factors, revealing the
trends they share.

Because the observed time series y, are standardized,
each entry in Table 2 indicates that for every one unit
increase in the hth factor, the gth time series would change
by Ly, standard deviations. Thus, if the absolute value of
Ly, is greater than that of Ly, we can conclude that factor h
is more correlated with time series g than with series k. To
label each of the seven columns in Table 2, the analyst
needs to identify the rows with the largest absolute values
and a theme that can somehow tie the corresponding vehi-
cle makes together. Admittedly, such a task is inherently a
subjective exercise: Different analysts observing the same
pattern of loadings could potentially reach different conclu-
sions. However, the subjective exercise of labeling each fac-
tor could potentially stimulate creative thinking, especially

when there are patterns that may appear counterintuitive or
unexpected at first blush but ultimately make sense post
hoc. The loadings reported in Table 2 led us to the follow-
ing interpretations and labels for the seven latent dynamic
factors identified by our model:

eFactor 1:*“Foreign Mass,” with largest loadings on Honda, Nis-
san, Toyota, Volkswagen and, somewhat unexpectedly, Mini
and Scion, indicating that although conventional wisdom
would suggest that the latter two may be considered niche
players, empirical results show they experience the same ebbs
and flows in consumer interest as the most popular mass-market
foreign makes.
eFactor 2: “U.S. Mass,” with largest loadings on mass-market
domestic makes: Chevrolet, Ford, Mercury, Chrysler, Dodge,
and Jeep. Lincoln, the luxury make of Ford, also has a rela-
tively large loading.
eFactor 3: “Euro Lux,” with largest loadings on luxury Euro-
pean makes: Porsche, Mercedes-Benz, BMW, and Jaguar.
Infiniti, Nissan’s luxury make, which is known to have a Euro-
pean style, also has a relatively large loading.
*Factor 4: “GM Survived,” with largest loadings on Buick,
Cadillac, and GMC, three of the four makes that survived
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GM’s recent portfolio restructuring. The fourth survivor,
Chevrolet, has a much larger loading on Factor 2, “U.S. Mass.”
eFactor 5: “Lexus/(Ram),” with large positive loading on Lexus,
but large negative loading on Ram, suggesting, somewhat
unexpectedly, that consumer interest in these two makes tend
to move in opposite directions.
eFactor 6: “Subaru/(Mazda and Saturn),” with relatively large
positive loading on Subaru but large negative loadings on
Mazda and Saturn, suggesting that consumer interest in Subaru
moves in the opposite direction of Mazda and Saturn.
eFactor 7: “GM Canceled and Isuzu/(Hyundai, Kia, and
Suzuki),” with large positive loadings on Saab, Hummer, Pon-
tiac, and Saturn (the four makes dropped in GM’s recent port-
folio restructuring) and Isuzu but large negative loadings on
Hyundai, Kia, and Suzuki, suggesting that the decline in con-
sumer interest for the four lackluster makes of GM and Isuzu
has been accompanied most closely by increase in interest for
relatively low-priced Asian makes.

Taken together, these results suggest that our SDFA model
has done what a typical exploratory factor analysis is designed
to achieve: uncovering and quantifying intuitive as well as
somewhat unexpected patterns of covariation. For example,
the emergence of three unambiguous main factors —Foreign
Mass, U.S. Mass, and Euro Lux, each anchored by makes
with similar, well-established positions— provides face valid-
ity for our model. Moreover, although it may not be obvious
a priori, our model’s ability to separate GM Survived from
GM Canceled and band together Hyundai and Kia, two
makes from the same parent company with a lingering
image of low-priced Korean imports, provides further face
validity for our model. Factor 6, Subaru/(Mazda and Sat-
urn), may be unexpected a priori but not surprising in hind-
sight, as it is conceivable that these three makes may indeed
attract the same niches of consumers. It is a bit puzzling to
see Factor 5, with Lexus and Ram anchoring opposite ends,
indicating that gains in consumer interest in the luxury
Japanese make are often accompanied by losses for the U.S.
truck make.

Despite the distinctions discussed previously, it is impor-
tant to note that for any given row in Table 2, it is rarely the
case that each observed series is tied exclusively to a single
factor. The number of loadings per row with absolute value
greater than .2 has a minimum of 2 and a median of 4, indi-
cating that the movements of many series are jointly shaped
by multiple underlying factors. For example, although
Infiniti loads relatively heavily on Euro Lux (.53), it also
has a lighter but nevertheless significant loading on Foreign
Mass (.31).

After interpreting and labeling the latent factors based on
the estimated loadings, the next step is to focus on the
estimated dynamic factor scores (f;). As we detail in Web
Appendix A (www.marketingpower.com/jmr_webappendix),
various components of f; (= o + ;) can be derived through
a Kalman filter and smoother, given the observed data (y;
from t = 1 through T) and model parameters (B, L, X, =,
Zn, ZC’ and Zg in Equations 1, 2, and 2.1-2.4). The best way
to convey the information contained in f; is to chart its sea-
sonal (},) and nonseasonal components (0, B;, and ;) over
time, as in Figures 2—4.

Figure 2 plots the seasonal component (7;) for each latent
factor. Given that the data are monthly, the number of sea-
sons, s, is set to 12. Although our SDFA model allows sea-
sonal patterns to evolve over time, our results show that this
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component is remarkably stable during the observation win-
dow. The first three latent factors (i.e., Foreign Mass, U.S.
Mass, and Euro Lux) show considerably stronger seasonal-
ity than the other four. In addition, the seasonal patterns for
the first three factors are not only strong but also distinctive
from one another. While Foreign Mass shows consumer
interest peaking in May—July and bottoming in December,
U.S. Mass shows two peaks, one in January and the other in
July, and one valley in November. Euro Lux shows a similar
seasonal pattern to Foreign Mass, except that the bottoming
occurs in January instead of December.

After partialing out the seasonal component (7,), the non-
seasonal component (0,) reveals the genuine trend line that
is often of more interest, which we plot in Figure 3 with a
solid line. Given Equation 2.1, which we can rewrite as o, =
o + 2 '0By + Zt _ &, the nonseasonal trend can be viewed
as an initial level (o) plus the cumulative of slopes (2{{=10Bk)
and the cumulative of random shocks (Z} = 1&). By remov-
ing the random shocks, which are more volatile than the
slopes, we produce a smoother and easier-to-read trend line
(o + Ef(;lo[ik), which appears as a dashed line in Figure 3.

According to the deseasonalized and smoothed trend
lines in Figure 3, we can tell that (1) consumer interest in
Foreign Mass peaked in approximately May 2008 and
declined fast ever since, despite a small bump in the second
half of 2009, and (2) U.S. Mass peaked in mid-2009 and
trended downward ever since. The direction of these two
Mass trend lines did not bode well for a quick turnaround of
the U.S. economy in general and the automobile market in
particular. Coincidentally, according to the August 2011
report from Thomson Reuters/University of Michigan Sur-
veys of Consumers, consumer confidence dropped by
19.2% from August 2010 to August 2011, accompanied by
similar declines in buying plans for vehicles and other
household durables. Furthermore, we note that the trend line
of Foreign Mass is clearly distinct from that of U.S. Mass,
suggesting that declines of interest in one are not necessar-
ily accompanied by increases in the other, contrary to what
conventional wisdom might take for granted (e.g., Data-
monitor 2005).

Figure 3 also shows that consumer interest in Euro Lux
bottomed in the second half of 2009 and trended upward
afterward. Notably, although there is a distinct trend line for
Euro Lux, our model did not indicate a distinct trend line for
either American Lux or Japanese Lux, suggesting that it can
be overly simplistic to assume that there exists a single
overarching trend governing U.S. consumers’ interest in
luxury vehicles (e.g., The Wall Street Journal 2008).

Finally, Figure 3 indicates that (1) consumer interest in
GM Survived has remained more or less stable in the past
few years, after experiencing increases from 2004 through
2007; (2) Lexus/(Ram) peaked in 2006 and has sustained
continued drops since that time; (3) Subaru/(Mazda and Sat-
urn) went through a large swing and has trended up in the
past few years; and (4) GM Cancelled and Isuzu was on a
declining path during the entire observation window, coin-
ciding with the ascendance of Hyundai, Kia, and Suzuki.
Note that although the rise of Hyundai and Kia in the United
States is a well-recognized trend in recent years (e.g., Buss
2011), our results indicate that the growth of consumer
interest in these two Korean makes has been accompanied



524 JOURNAL OF MARKETING RESEARCH, AUGUST 2012
Figure 2
SEASONAL COMPONENT (y;) OF THE LATENT DYNAMIC FACTOR
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most closely by decreasing interest in GM Cancelled and
Isuzu.

Figure 4, Panel A, plots the slope (;) over time, which
can be viewed as the first derivative of the deseasonalized
and smoothed trend (the dashed line in Figure 3). Through
B; , we can examine the direction (sign of ;) and speed (size
of B,) of each trend line on a finer scale, obtaining a clearer
view of the periods of growth (B; > 0) and decline (; < 0).

For example, Figure 4, Panel A, indicates that Euro Lux
went through two periods of decline, from early 2004 to
early 2005 and from early 2007 to mid-2009. Figure 4, Panel
B, charts the slope change rate (9,), which can be viewed as
the second derivative of each deseasonalized and smoothed
trend line. When [, and §, are of the same sign, the trend is
accelerating; otherwise, it is decelerating.

Two pieces of information from Figure 4, Panels A and
B —the slope (B;) and its change rate (J,) at the last period of
the observation window —should be of particular interest to
the analyst, because they can be used to extrapolate the trend
lines h-period ahead according to Equation A4.1 in the Web
Appendix (www.marketingpower.com/jmr_webappendix)
(i.e., O 4 g = Oy + Brh + dp[h(h — 1)/2]). Take Foreign Mass
as an example: Toward the end of the observation window,
the reading of By from Figure 4, Panel A, is approximately
-2, and &t from Figure 4, Panel B, is approximately —.005,
suggesting that Foreign Mass, as of September 2010, is
trending downward (a negative slope) at an accelerating
speed (a negative change rate for a negative slope). In con-
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Figure 3
NONSEASONAL TREND COMPONENT oy (SMOOTHEDgAND UNSMOOTHED) OF THE LATENT DYNAMIC FACTOR
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trast, Figure 4, Panels A and B, suggests that, at the end of
the observation window, Euro Lux has an upward trend (B
of approximately .1) that is gaining momentum (81 of
approximately .005).

Testing Trend Projections

To ascertain how well the uncovered trend lines can be
extrapolated into the near future, we (1) refit the SDFA
model using data from January 2004 to May 2007, (2) infer
the latent trend lines with the Kalman filter and smoother
detailed in Web Appendix A (www.marketingpower.com/
jmr_webappendix), and (3) predict the nonseasonal trend
component o, in November 2007 (i.e., a six-step-ahead
forecast) using Equation A4.1 (see www.marketingpower.
com/jmr_webappendix). From that point onward, with each
additional month of data, we repeat the preceding steps,
extending the target date of the six-step-ahead forecast by
one month. This enables us to evaluate the ability of the
SDFA model to extrapolate the latent trend lines into the
near future. Figure 5 compares the smoothed trend lines of
the nonseasonal component 0, based on complete data from
January 2004 to September 2010 (i.e., 01) against projec-
tions of o using only data available six months earlier (i.e.,
Oy — ). Figure 5 shows that, overall, the two matched well,
suggesting that the SDFA model can not only uncover latent
common trend lines from high-dimensional time series but
also extrapolate them into the near future with reasonable
reliability.

While the tests displayed in Figure 5 attest to the reliabil-
ity of our SDFA model’s trend projections, they do not ascer-
tain the reliability and validity of the trends themselves.
Next, we present two tests of predictive and face validity of
these trends. Web Appendix C (www.marketingpower.com/
jmr_webappendix) presents a third test verifying the split-
half reliability of the dynamic factor structure.

Testing Predictive Validity

Although our seven-factor SDFA model explained 89.4%
of variance observed in the 38 time series, it could never-
theless be a result of overfitting. If that is the case, the
model should do less well in out-of-sample forecasting of
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the observed time series. To test such predictive validity, we
recalibrated the model with data from January 2004 to Sep-
tember 2009. We used the recalibrated model to forecast
each latent factor f;, which we then combined through the
loadings matrix L to arrive at forecasts for each individual
time series y, in the next 12 months (i.e., October 2009—
September 2010). As benchmarks, we use three models. The
first is series-specific ARIMA, identified and fit to each
time series using the first 69-month data, which was then
used to forecast for the next 12 months. The second is
VAR(1) with first differencing to remove nonstationarity in
the original series (i.e., Ay, = AAy,_ 1 + e;). The third is
Bayesian VAR(1), for which, following Carriero, Kapetan-
ios, and Marcellino (2009), we impose a driftless random
walk prior and set the shrinkage parameter 0 to .0001, so
that cross-series dynamics enter into the picture only if there
is overwhelming evidence of them in the data.

We evaluate out-of-sample predictive performances in
terms of mean absolute error (MAE) and mean absolute per-
centage error (MAPE). Across the 38 series, our proposed
model, SDFA, produced an overall MAE (MAPE) of .16
(41%), compared with .26 (67%) for ARIMA, .34 (88%) for
VAR(1), and .27 (71%) for Bayesian VAR(1). Comparing
out-of-sample fit for each individual series, SDFA outper-
formed ARIMA, VAR(1), and Bayesian VAR(1) in, respec-
tively, 29, 37, and 33 of 38 cases. To provide a more con-
crete sense of in-sample as well as out-of-sample fit, Figure
6 plots eight selected series, consisting of actual data
denoted by smoothed lines and SDFA’s predictions by solid
squares. These eight series ranked, respectively, Ist, 2nd,
13th, 14th, 25th, 26th, 37th, and 38th in terms of out-of-
sample MAE, covering the full range of fit.

Taken together, we view the preceding out-of-sample per-
formances as a strong sign of predictive validity, suggesting
that SDFA is not an overfitted model for our application. Its
remarkable improvement in predictive fit over the bench-
marks comes mainly from two sources: (1) information
sharing across series such that forecasts for any individual
series are informed by other series according to their histori-
cal co-movement patterns and (2) the parsimonious factor-
analytic structure and thus less overfitting of noise in the
data. That said, we caution against treating SDFA as a
device designed for multivariate time series forecasting,
because it is not what we intended with our framework for
quantitative trendspotting. When the goal is purely to
achieve the best out-of-sample predictive fit, ARIMA, stan-
dard or Bayesian VARMA/VAR, and other parametric or
nonparametric methods may well be more suitable forecast-
ing tools than dynamic factor models such as ours. However,
what SDFA can and other methods cannot do is to uncover
common trend lines hidden behind high-dimensional time
series and decompose those trend lines into directly inter-
pretable seasonal and nonseasonal components.

Testing Face Validity

Given that the latent trends uncovered by our SDFA
model are supposed to represent the predominant trajecto-
ries in consumer interest for all the major automobile makes
in the United States, we would expect these trends to have
some explanatory power on vehicle sales over time. In other
words, relating these trends to sales should provide a test for
both face validity and managerial relevance. To conduct
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Figure 4
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such a test, we gathered from Automotive News monthly
make-level new vehicle unit sales. Then, we regressed the
log-transformed monthly sales for each of the 38 makes
against the seven latent trends and compared the R-squares
with an alternative in which a given make’s log-transformed
monthly sales is regressed against its log-transformed search
index (i.e., only one explanatory variable). Table 3 reports
the results, which make two things clear.

First, Google search indexes are clearly but imperfectly
related to new vehicle sales. (The R-squares from the
regressions of each make’s sales against its own search
index have a mean of 31.6%, median of 27.1%, minimum
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025 of 4%, and maximum of 81.9%.) The finding that the rela-
020 tionship between search and sales can be tenuous for many
015 makes is not surprising; consumer online searches should
010 only reflect interest/consideration at the early stages of the
005 purcha'lse funn'eL while a myriad of other factors can influ-
’ ence final decisions.

0 The second and more important takeaway from Table 3 is
—005 that by synthesizing information contained across all 38
-.010 search indexes, through the seven latent trends uncovered
-.015 by our model, the collective explanatory power of the

Jan Jan Jan Jan Jan Jan Jan
2004 2005 2006 2007 2008 2009 2010

search indexes increased dramatically: The R-squares from
the regressions of each make’s sales against the seven latent
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Figure 5
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trends have a mean of 73.9%, median of 77.0%, minimum
of 44.9%, and maximum of 93.1%. The high R-squares
aside, it is also reassuring, from a face validity standpoint,
to note that the Euro Lux search trend was the strongest pre-
dictor of sales for BMW, Jaguar, Mercedes-Benz, and
Porsche and that the GM Survived trend was closely tied to
the sales of Buick, Cadillac, and GMC.

We must admit that the remarkable explanatory power of
the seven latent trends on sales exceeded our original expec-
tation; its generalizability in contexts other than vehicle
shopping deserves more systematic investigation. Neverthe-
less, our basic conclusion should hold in other contexts; that
is, although individual online search indexes can be inform-

_~ Projection
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Table 3
R2 OF INDIVIDUAL SEARCH INDEX VERSUS LATENT TRENDS
IN EXPLAINING SALES

R? with Different Explanatory Variables
Individual Latent

Dependent Variable

(Sales) Search Trends Improvement
Ram 5.5% 93.1% 87.6%
Chrysler 2.8% 88.3% 85.5%
Cadillac 4% 83.2% 82.8%
Suzuki 5.6% 87.3% 81.7%
Chevrolet 3.6% 82.6% 79.0%
Buick 8.3% 86.9% 78.6%
GMC 6% 79.1% 78.5%
Jeep 7.1% 80.2% 73.1%
Ford 12.1% 81.2% 69.1%
Land Rover 3.3% 67.8% 64.5%
Mercury 12.5% 76.8% 64.2%
Lincoln 1.5% 60.8% 59.3%
Dodge 7.4% 65.8% 58.3%
Hyundai 25.7% 69.4% 43.7%
Audi 10.3% 52.8% 42.5%
Mercedes-Benz 12.3% 50.8% 38.5%
Jaguar 51.1% 87.4% 36.2%
Porsche 28.5% 62.6% 34.1%
Saturn 48.1% 80.8% 32.7%
Lexus 28.0% 59.7% 31.7%
Infiniti 36.5% 67.5% 31.0%
Mini 15.7% 44.9% 29.2%
Nissan 26.2% 54.8% 28.6%
Subaru 25.8% 54.0% 28.2%
Mitsubishi 58.4% 85.2% 26.7%
Volkswagen 35.8% 60.9% 25.1%
BMW 45.4% 70.5% 25.0%
Volvo 62.2% 86.1% 23.9%
Acura 64.4% 86.2% 21.7%
Honda 54.7% 752% 20.5%
Toyota 46.8% 67.1% 20.2%
Mazda 38.9% 58.2% 19.3%
Pontiac 58.1% 772% 19.1%
Kia 48.5% 65.8% 17.3%
Saab 73.7% 89.8% 16.1%
Hummer 74 8% 89.3% 14.5%
Isuzu 78.3% 89.5% 11.3%
Scion 81.9% 90.3% 8.4%

ative of sales by themselves (an average R-square of 31.6%
in our test), these indexes can be far more powerful when
key common underlying trends are distilled from them and
used in subsequent analyses (an average R-square of 73.9%
in our test). The challenge of practicing such a “look at
everything together” approach lies in the curse of dimen-
sionality, an issue that our SDFA model can potentially turn
into an advantage.

Understanding What May Have Shaped the Uncovered
Latent Trends

Next, we try to better understand the nonseasonal trend
lines (i.e., o) in terms of major events and variables that
may have shaped them. Figure 7 displays the “shocks” (g)
to the level of the deseasonalized trend lines. A naked-eye
inspection would reveal a small number of visible major
shocks. Searching through the archives of Google News
from approximately the time of these shocks, we identified
two major events that coincided with several of them. In
June 2005, General Motors offered its generous employee
discounts to any buyer during that month. During approxi-
mately the same period, there is a large positive shock in
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consumer interest for U.S. Mass and GM Survived. The
subsequent negative shock, especially in GM Survived,
indicates that the increase in consumer interest was only
transient, disappearing as soon as the promotion was over, a
possible sign of forward buying (Busse, Simester, and
Zettelmeyer 2010). Similarly, on July 1, 2009, the U.S. gov-
ernment initiated a Cash for Clunkers program, which began
to process claims on July 24 and ended on August 24. As
might be expected, there are large positive shocks during July
and August 2009 in consumer interest for Foreign Mass and
U.S. Mass. These large positive shocks were followed by
large negative shocks, again pointing to the short-lived
impacts of cash incentives on consumer interest. Although
there might be other events related to other shocks shown in
Figure 7, these two examples illustrate how the outputs
from our SDFA model can be used to reverse-engineer the
events that may have caused large shocks in the uncovered
trend lines.

It is evident that major interventions by a company or the
government are not the only forces shaping trends in con-
sumer interest. It would be expected that intention to buy a
vehicle and search for a particular make would also be
driven by other economic and market conditions. To address
this issue, we must relate the nonseasonal trends (c) to
exogenous variables, which requires a better model than the
standard linear regression because the impacts of exogenous
variables on the trends can extend through multiple periods
(i.e., carryover effects), and exogenous variables may lead the
trends by one or more periods (i.e., time delays). For these
reasons, we identified and estimated the best transfer func-
tion (Box, Jenkins, and Reinsel 2008) for each deseasonal-
ized trend (0t using the following exogenous variables: (1)
unemployment rate (%), (2) Consumer Sentiment Index
(Michigan Survey Research Center), (3) regular gasoline
price (in U.S. dollars per gallon), (4) GM Employee Dis-
count for all buyers (June 2005), and (5) Cash for Clunkers
program (July—August 2009).

Table 4 displays the parameter estimates of the best trans-
fer functions identified for each deseasonalized trend. The
estimates for Foreign Mass indicate that increases in unem-
ployment lead to decreases in this trend one month later
(-.389), while increases in consumer sentiment translate
into relatively small concurrent decreases in this trend
(—.021). The effect of gas prices on Foreign Mass is more
complex, with an increase in prices leading to a concurrent
positive (.904) shift on this trend and a negative (—.618)
shift one month later. The Cash for Clunkers program pro-
duced a positive shift of .977 in the Foreign Mass trend, fol-
lowed by an opposite shift at the end of the program. Unfor-
tunately, for the other trends (except GM Survived), it
would be difficult to interpret the estimated transfer func-
tions directly. Fortunately, the dynamics captured by these
functions are much easier to interpret in the form of impulse
response functions (Box, Jenkins, and Reinsel 2008), which
represent the expected change in the deseasonalized trend in
each time period, in response to a unit impulse in the exoge-
nous variable at time zero. The impulse response functions
displayed in Figure 8 suggest that the trends most affected
by the exogenous variables are Foreign Mass, U.S. Mass,
GM Survived, and, to a lesser extent, Euro Lux. As
expected, the Cash for Clunkers program had a positive
concurrent effect on Foreign Mass and U.S. Mass (see the
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Figure 7
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solid circles at time 0), while GM’s decision to extend
employee discounts to all buyers had a strong concurrent
positive effect on GM Survived and U.S. Mass (see the
solid squares at time 0). Unemployment had a negative
effect on Foreign Mass, lagged by one month, and a com-
plex distributed-lag effect on Euro Lux (see the solid dia-
monds at time 1 and afterward). Increases in gas prices
raised concurrent interest in Foreign Mass, and decreased
interest in U.S. Mass (see the solid triangles at time 0), and
in both cases, the impulse response function shows a trough
in the second month (see the solid triangles at time 2).

Identifying Impactful Events Affecting Individual Series
(but Not the Common Trends)

In addition to helping identify the latent common trends
and understand what may have shaped them over time, our
SDFA model can also help tease out idiosyncratic shocks in
each individual series, after partialing out shifts already
accounted for by movements in the common factors. In our
application, these idiosyncratic shocks (u;) can be investi-
gated to identify events that might affect consumer interest
in a particular vehicle make, but not the common trends.

Figure 9 displays the standardized idiosyncratic shocks
(1) for 4 of the 38 individual series in our study. To illus-
trate, we focused on |, values that are at least three standard
deviations in size and searched the archives of Google
News around the time of these major idiosyncratic shocks
to identify possible events behind them, which are indicated
on top of the respective charts in Figure 9. This illustration
shows how an analyst could use SDFA outputs to distin-
guish movements that are common to multiple indicators
from those that are unique to an individual indicator and
reverse-engineer the major events behind them accordingly.
The opposite of the preceding analysis, in which the events
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Table 4
TRANSFER FUNCTION MODELS RELATING DESEASONALIZED TRENDS TO EXOGENOUS VARIABLES

Estimated Model R?
AForeignMass, = —.389AUnemp, _ ; — .021ACsent, + (.904 — .618B)AGasPrice, + .977ACashClunk, + & 503

(1.933 — .821B)USMass, = —.803AGasPrice, _ | — 1.718ACashClunk; + .599AGMEmployee, + € 791
(1 — 558B)AEuroLux; = [-.157/(1 — 1.031B + .665B2)]JAUnemp; _ | + & A34
AGM, = —031ACsent, — .914AGMEmployee, + €, 283

A?LexusRam; = —.094A2CashClunk, — .060A2GasPrice, + €, 277
A2SubaMazSat, = (.143 + .117B10)A2Unemp; _ 5 + & 254
A2GMlIsuzu, = [-.058/(1 + .261B + .752B2)]JA2Unemp; _ 5 — .054A2CashClunk, + (1 — 479B)g, 513

Notes: All parameters are statistically significant at the .01 level, and portmanteau (Q) tests could not reject (at the .01 level) the hypotheses that the residu-

als are white noise.

are known a priori and the |1, are used to verify their unique
impact on an individual series, would also be useful (if not
more so) for learning whether a specific indicator has
shifted in response to the events under study.

CONCLUDING REMARKS

In this article, we propose an SDFA model that can simul-
taneously analyze large panels of time series, distilling them
into a few latent dynamic factors that isolate seasonal cyclic
movements from nonseasonal nonstationary movements.
Through its application in the context of quantitative trend-
spotting, we demonstrate how such a model can be used to
uncover a small number of key common trend lines hidden
behind the co-evolution of a large array of marketplace indi-
cators, turning the curse of dimensionality into an advan-
tage. Equipped with such a market-sensing tool, instead of
relying too much on any individual indicator (and thus risk-
ing overreacting to its idiosyncratic ups and downs), man-
agers can systematically synthesize information across multi-
ple indicators, generating more reliable market intelligence
by zeroing in on the predominant trajectories shared by
these indicators.

It must be kept in mind that, as with virtually any data
used by marketing researchers, the indicators used for quan-
titative trendspotting may contain two types of errors: ran-
dom and systematic. Our method can filter random errors
out because, by definition, they are idiosyncratic to individ-
ual indicators and will not manifest as co-movements across
series, the source of identification for common trends. As
for errors that may systematically affect multiple indicators,
they will inevitably hinder the correct identification of
trends. To guard against being misled by such systematic
data errors, we have demonstrated how to validate the iden-
tified trend lines through various tests. For example, the
estimated factor loadings could be examined to determine
whether they show strong face validity. The outlier shocks
to the common trends and individual series could be exam-
ined to determine whether they coincide with any major
events. More formally, the identified trend lines can be
related to other variables that are measured with accuracy
(e.g., in our application, gas prices, vehicle sales) to deter-
mine whether there is any meaningful relationship.

In addition to offering a conceptual framework for quan-
titative trendspotting and a novel statistical model for imple-
menting it, our study introduces a powerful dimension-

reduction method for marketing researchers whose work
requires the analysis of high-dimensional (tens or even hun-
dreds) time series. With a DFA model such as ours, analysts
no longer need to arbitrarily aggregate or preselect subsets
of time series and can objectively assess common trends
embedded in the entire data set. Although our application
used data from a promising online consumer interest trending
service—GIFS —it would be straightforward to apply our
framework and SDFA model to time-series data from more
traditional sources of marketing intelligence (e.g., tracking
measures collected through repeated surveys, transaction
data gathered by syndicated services or loyalty programs).

As directions for further research, we suggest several
promising avenues. First, for firms operating in multiple
markets, data for market sensing could come in a three-way
mode—that is, multiple indicators tracked over multiple time
periods across multiple markets. In such a case, it would be
helpful if the model could tease apart trends that are com-
mon across markets from those that are market-specific, as
a dynamic version of three-mode factor analysis.

In our empirical illustration, we used indicators available
at the monthly level, and there was no missing information
throughout the observation window. In practice, firms may
track indicators at different frequencies (e.g., daily, weekly,
monthly, quarterly, yearly), and not all indicators are avail-
able for the whole duration under study. In addition, in our
application, we used indicators from a single source that are
measured on the same scale. In practice, firms may monitor
multiple sources (e.g., searches, blog posts, tweets) for indi-
cators that are measured on different scales. Our model, as
it is currently specified, can be directly applied across meas-
ures of different scales after the standardization of each time
series. The real intriguing issue lies in blending indicators
from different sources that reflect fundamentally different
constructs (e.g., consumer searches indicating mere consid-
eration vs. purchases indicating eventual choices).

Our current model formulation assumes stability in the
latent factor structure, which a split-half reliability test
showed to be valid in our application. However, major
events might indeed change the entire co-movement pattern,
in which case, the whole model would need to be recali-
brated. The possible existence of these situations, especially
in the long run, implies that robustness checks such as split-
half reliability tests are needed. When correlation patterns
(and therefore estimated factor loadings structure) vary sub-
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Figure 8
IMPULSE RESPONSE FUNCTIONS RELATING DESEASONALIZED TRENDS TO EXOGENOUS VARIABLES
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stantially, it is usually a sign that certain past common
trends may have been replaced by new ones. It would be
useful, albeit challenging, to develop a formal statistical
model that can automatically detect such regime shifts.
Another promising area for extension would be new
product adoption and diffusion. For example, an innovation

is introduced to the marketplace, and multiple postlaunch
tracking measures are gathered. Our model can potentially
be modified to include a dynamic latent factor that follows
an S-shaped time path. The co-movement pattern shared by
the postlaunch tracking measures should help pin down the
underlying diffusion curve. Such a DFA approach should
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Figure 9
STANDARDIZED RESIDUALS (i) FOR FOUR INDIVIDUAL TIME SERIES
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produce a more reliable read on the dynamics of the diffu-
sion process than approaches that rely on any single indica-
tor series.

Finally, as we have shown in our test of face validity, the
seven latent trends distilled from 38 Google search indexes
demonstrated an extraordinary amount of explanatory
power on new vehicle sales. Two directions for more sys-
tematic exploration include (1) the relationship between
online consumer interest trending metrics and sales (and
how this relationship may differ across product categories)
and (2) a sales forecasting system fully leveraging the mul-
titudes of online consumer interest trending metrics that are
often available in real time.
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Web Appendix A — Inferring and Projecting the Latent Dynamic Factors

The procedure for inferring the latent state variables (i.e., z; &
[ac B: 6: Ve - VYi—s—2]'), from the observed indicators (i.e., y; from t = 1 through T), given the
model parameters (i.e., B, L, Z,,, Z, SINDTE and ¢ in Equations 1, 2, and 2.1 through 2.4), consists of two
passes through the data: a forward pass (periods 1 through T) referred to in the literature as Kalman
filter, and a backward pass (periods T through 1) often referred to as Kalman smoother (cf. Shumway
and Stoffer 2000). Below we provide details on this inference procedure, which is important for
understanding the mapping from the observed indicators to the latent state variables, which in turn

determine the latent dynamic factors (f).

Kalman filter (forward pass)*

Step 1 —initialize zyo and var(zo|0), i.e., prior of the initial state at period 0

® Zgjo = Ho
(] var(Z()lo) = ZO
Repeat Steps2and3fort=1,.., T

Step 2 — calculate z;;_; and var(zm_l) i.e., expectation and uncertainty about the state in t given data

observed up until t-1

* Zy-1=CZeqpt—1

! The parametric definitions of matrices u,, o, A, B, C, £, and £, that appear in the procedure described below are
given in Equations B1 and B2 in Web Appendix B.



. var(zqt_l) = Cvar(zt_1|t_1)C’+ >,

Step 3 — calculate z;; and var(zt|t) i.e., expectation and uncertainty about the state in t given data

observed up until t
-1 .
o K, =var(z;,—1)A[Avar(z;-1)A"+ ] (a.k.a. Kalman gain from t)
o Zy = Zye-1 + K[y — Azye-1 — B]  (additional data from t used to update expectation)
o wvar(zy.) = [I — K. Alvar(z;.—,) (additional data from t used to reduce uncertainty)

Kalman smoother (backward pass)

Repeat Step 4 fort=T,T-1, ..., 1

Step 4 — calculate z;_4r and var(zt_m), i.e., expectation and uncertainty about the state in period t-1,

given all the data available through T

o Ji_,= var(zt_m_l)C’[var(zqt_l)]_1

®  Zi T = Zt—1)t-1 +]t_1[zt|T — zm_l] (all data observed through T to update expectation)

o var(zt_1|T) = var(zt_m_l) +]t_1[var(zt|T) — var(zm_l)]]t'_1 (all data observed
through T to reduce uncertainty).

Step 5 —initialize cov(zT|T, ZT_1|T), i.e., covariance of uncertainties about states at T and T-1

L] COU(ZT|T, ZT—llT) = [I - KTA]vaT(Zt_llt_l)

Repeat Step 6 fort=T,T-1, ..., 2

Step 6 — calculate cov(zt_”T, zt_2|T), i.e., covariance of uncertainties about states at t-1 and t-2, given

all the data available through T

° COU(Zt—llT’ Zt—ZIT) = vaT(Zt_”t_l)];_z +]t—1[cov(zf|T’Zf—1|T) - var(zt_m_l)]];_z

The ultimate goal of applying the above Kalman filter and smoother is to infer, for t = 1 through



T, Ze1) var(qu) and cov(zt|T,zt_1|T), i.e., expectations, variances and lagged covariances of the state
variables in any period during the observation window. Charting z¢|r’s over time would show the trend
lines of the state variables, and var(zt|T)'s would determine the confidence band surrounding the

trend lines.

Given the model parameters, the inferred state variables and the corresponding dynamic factor
scores are determined by the complete history of the observed data, i.e., y; for t = 1 through T. When
data from additional periods are observed, the above procedure needs to be applied to update the
entire course of the state variables. At the end of the last observation period (T), h-step ahead forecasts

can be carried out as follows, given the model parameters and zrr:

(A1) yrinr = A'Zyr + B

(A2)  zpinr = Chzgyr.

Or, more intuitively (but equivalently),

(A3)  yrinr = Lfrynr +B (predicted indicator)

(Ad)  frynr = Orgnr + YTth|T (predicted dynamic factor score)

h(h-1)
2

(A4.1) apipr =0T + BTlTh + 611 (predicted non-seasonal trend component)
(A4.2) BT+h|T = BT|T + &rjth (predicted slope of the trend)
(A4.3) Orynr = O1yT (predicted change rate of the slope)

(A4.4) Y1inT = V1T if remainder(h/s) = 0 (predicted seasonal component)

VoinT = ]-S;g Vrojim if remainder(h/s) = 1



VT+h|T = VT—s+remainder(h/s)|T' if remainder(h/s) > 1.

From the standpoint of trend projection, Equation A4.1 is of particular interest. It shows that a
quadratic non-seasonal trend line can be extrapolated into the future, which has ot at the origin, an

initial slope of BT|T that will change at a rate of &t (Equation A4.2). A positive (negative) BT|T would
indicate a trend line heading up (down). When BT|T and &7 are of the same (opposite) sign, it indicates
the trend will accelerate (decelerate). Given oy, and Vr4njT We have fr 1 (Equation A4), which in

turn leads to predicted indicators, yp,pr (Equation A3).

Web Appendix B — Model Calibration

Although Equations 1, 2 and 2.1 through 2.4 facilitate interpretation, in order to calibrate our

SDFA model it is actually more convenient to rewrite it in a state-space form:
(B1) y,=Az +B+u; u.~N(0,%,) observation equation
(B2)  zy=Cz_q + V¢ ve~N(0, %) state equation

In Equation B1, hereafter referred to as the observation equation, y; (n X 1),B(n x 1), and u; (n X 1)
are the same as in Equation 1, representing, respectively, the observed indicators from period t, and the
intercepts and the irregularities in these indicators. The irregularities are assumed to have mean zero
and variance Z,,. The difference between Equation B1 and Equation 1 lies in z;, an m X 1 vector of latent
state variables, z; & [a; B 8 Ve o Vies—2l,and A% [Luxp Onxap  Luxp  Onxs—2)pl, the
matrix determining how each state variable affects each observed indicator. The dimensionality of the
state variables ism = (3 + s — 1)p, where s denotes the number of periods within a seasonal cycle,

and p the number of dynamic factors.



Equation B2, hereafter referred to as the state equation, indicates that the unobserved state

variables are updated from z;_4 to z; subject to transition matrix

I, I, 0 0 0 0
( 0 I, I, 0 0 0 [
0 0 I, O 0 0 _ S (e
der | [, and shocks occurred during period t, i.e., v, & | {; |, which is
0 0 0 -I —1I, ¢
0 0 0 I 0 0 1o
0 0 0 0 Is3p O

assumed a priori to be normally distributed with mean zero and variance

[Ze 0 0 O 0 1

0 5, 0 0 o |
s,el0 0 3, 0 0 |
0 0 0 3 0 |

o 0 0 0 0y zpl

In Equations B1 and B2, i.e., the state-space form of our SDFA model, matrices 4, B, Z,,, and Z,,
contain parameters to be estimated. The expected value (1) and uncertainty (Z,) of the initial state
(z) also need to be estimated. We describe next the Expectation-Maximization (EM) algorithm we use
to calibrate these parameters. For this description, denote the collection of all the model parameters as

{@}, which includes:

1. L, n x p matrix of loadings in Equation 1, mapping p X 1 latent factors f, to n X 1 observed
time series y;,

2. B, n x 1 vector of intercepts in Equation 1,

3. X,, n X n variance-and-covariance matrix of the idiosyncratic component (u,) in Equation 1,

4. %, X, X and X, p X p variance-and-covariance matrices in Equations 2.1 through 2.4,
indicating, respectively, the sizes of stochasticity in the level (e;), slope (n,) and slope change
rate (C,) of the non-seasonal trend line of the latent factor, and the sizes of stochasticity in the

seasonal component of the latent factor (&),



5. pupand X,, mean and variance of zy & [ay Lo 6o Yo - Yo-s—2], State of various
components of the latent factors before the first observation of the manifest variables.

For parsimony, X, is assumed to be diagonal, resulting in n variance terms to be estimated, as
opposed ton X (n + 1)/2 terms. The gain in parsimony can be substantial when n is large (e.g., 38 in
our application). By imposing this assumption it also means that we assume all the co-movements
among the observed time series are caused by the latent common factors. We also assume %, %, 27, Z¢
and X, to be diagonal because we intend to extract latent factors that are independent of one another,

each capturing a distinct temporal pattern.

The model parameters {0} are to be estimated given the observed time series y, € Y fort=1
through T. For a given number (p) of latent factors, the following EM algorithm can be used for model

calibration, which consists of five basic steps:

e Step 1: Initialize the parameters {@°}.

e Step 2: The E-step. Given {@0} and Y, we use the Kalman filter (the forward pass) and Kalman
smoother (the backward pass) described in Web Appendix A to derive z,r and var(zm). That
is, given the observed data and the model parameters, we can predict the expected mean and
variance of the latent factors that could have generated the observed time series.

e Step 3: The M-step. Given Y, by maximizing the likelihood function given z.r and var(qu)
for t = 0 through T from Step 2, {©°} can be updated to {®"} as follows,

For parameters related to the initial state

Ho = Zo|T
I, = diag[var(ZO|T)]

For parameters related to the observation equation

Agy © [loxp Opxzp Ipxp  Opx(s-2)p]

* def
ZtlT = Aath|T



T -1
zhrzhe +A var(z )A ! z}
t|IT“t|T ay t|IT ) ay t|T

l
t=1 t=1 |
I
|

|

Ngb

[Lh Bh] = r

Zz;lT’ T

t=1

T T

h, x 1 h
Z% Zyr ZYt
t=1 t=1

—

h = %Z"{:l[(yth - LhzaT —B")(yl - LhzaT — B")'+ (L"Agy Jvar(zyr ) (L"Agy)'], where the

superscript h indicates the h-th row of the corresponding matrix.

For parameters related to the state equation

. . . !
Z:] = % =1 [(Zfle - C“izt_1|T) (Z;T,JF — C“izt_1|T) + I“J'var(zt|T)I“J" + C“J'var(zt_HT)C“f'—
1% cov(zyr, Ze—1)r)C%’" — C%cov(zyr, zt_1|T)I“J"], where the superscript a; indicates the row

corresponding to the @ component of the j-th factor.
S .
Formula of the same form can be applied to calculate Zg’, z, ’and Zg’

Step 4: Go back to Step 2 with updated {@1} and iterate until convergence.

Step 5: Varimax Rotation. Like standard factor analysis or any other factor-analytic model, our
SDFA model is invariant to orthogonal rotation. In other words, any orthogonal rotation (i.e., Q
s.t. @ x Q' = I) to the loadings matrix (L) along with an inverse rotation to the factor scores (f)
would produce the same fit to the observed time series (i.e., L X f = (L X Q) X (Q" X ) &

L* X f*). To obtain a unique solution for the factor loadings and scores, we apply a Varimax
rotation to L and z,r, seeking a distinctive factor structure such that, for each factor, large

loadings will result for a few variables and the rest will be small?.
Lastly, in our empirical implementation we standardized all the observed time series before
applying the EM algorithm given above. It is important to note that standardization will not lead to

different trends. To see this, let y; = £~ 1y,, where y; is the standardized series and X is a diagonal

% Varimax, the most common factor rotation routine in marketing research, should be available in most popular
software packages (e.g., Proc Factor in SAS). For more on Varimax and other common factor rotation routines (e.g.,
Quartimax and Eqimax), see Basilevsky (1994), Statistical Factor Analysis and Related Method: Theory and
Applications. John Wiley & Sons; and Kaiser (1958), “The Varimax Criterion for Analytic Rotation in Factor
Analysis,” Psychometrika, 23 (3).



matrix containing standard deviations. As a result, the observation equation (Equation 1, y, = Lf; +

B + u,) is equivalent to y; = L*f; + B* + uj, where L* = 271L, B* = £71B, u; = X7 u,. This shows
that f;, the latent factor scores, will not be affected at all and the effect of standardization is equivalent
to dividing the factor loadings, intercept and noise term by the corresponding time series’ standard
deviation. After standardizing each time series, we can interpret the factor loading estimates (L) as “for
every unit change in the latent factor, one would expect to see a change of L standard deviations in the
corresponding time series.” Without standardization, differences in factor loading estimates would
confound differences in the scale/variance of the times series with differences in the correlation
between the latent factor and the series. In analyses such as ours, one care about correlation between

the factors and the observed indicators, as opposed to their covariance.

Web Appendix C — Split-Half Reliability Test

Our SDFA model assumes that the latent factor loadings (L) will be time-invariant during
the observation window, and any observed temporal variations in the time series are caused by
variations in the latent factor scores. One might question such an assumption and wonder
whether the structure of co-movements among the time series may change over time as well. To
address this concern, we conducted a split-half reliability test, where we recalibrated our model
twice, once with data from the first half of the observation window and another with data from
the second half. The table below reports three sets of correlations between the estimated
loadings: 1) the full sample and the first half, 2) the full sample and the second half, and 3) the
first half and the second half. Strong correlation coefficients in all cases indicate that the factor

loadings structure has remained largely stable across the samples (full vs. first vs. second half).



Factor \ Correlation Full sample & first half Full sample & second half First half & second half

Foreign Mass 0.92
U.S. Mass 0.83
Euro Lux 0.92
GM Survived 0.92
Lexus / (RAM) 0.88
Subaru / (Mazda & Saturn) 0.66

GM Cancelled & Isuzu /

0.74
(Hyundai Kia & Suzuki)

0.93
0.92
0.89
0.93
0.74

0.82

0.87

0.95
0.89
0.92
0.86
0.76

0.69

0.81

The above results aside, we stress the need to distinguish between non-stationarity in the
trend lines and non-stationarity in the loadings. Major shifts can take place in the trend lines with
no significant changes in the loadings structure, which is determined by co-movements among
the observed time series. Regardless of the values of the observed indicators, as long as they
follow the same co-movement patterns, the resulting loadings will remain unchanged. To see
this, suppose there was a sudden increase in gas prices due to a crisis in the Middle-East, and as a
result the trend line representing consumer interest in fuel-efficiency spiked. Despite this sudden

change, as long as vehicles of similar fuel efficiency are affected in a similar way, the correlation

between them would remain the same, which would result in the same loadings structure.
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