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Leveraging Large-Scale Granular Single-Source Data for TV Advertising 
 

Abstract 

This study introduces a novel instrumental variable (IV) for estimating the causal effects of linear TV 

advertising using large-scale panel data that link household second-by-second show viewership and ad 

exposure with daily purchase behavior. We exploit an institutional feature of linear TV: while advertisers 

choose which shows to target, networks quasi-randomly determine within-show ad airing times. This 

creates exogenous variation in focal brand ad exposure among partial show viewers, which we 

nonparametrically extract to construct a household-show-level IV. We establish the IV’s validity in the 

presence of endogeneity arising from advertisers’ show targeting decisions and households’ TV viewing 

behavior. Our IV offers a generalizable and flexible solution for household-level linear TV ad effect 

measurement using modern single-source data. Applying this method to data from a major food delivery 

platform, we estimate an ad response model in which both baseline purchase propensity and ad 

responsiveness vary with purchase history. Naïve estimates overstate ad elasticities by 55% compared to 

IV-corrected estimates. We also find that ad responsiveness is nonmonotonic with respect to purchase 

frequency and recency. These findings underscore the importance of addressing endogeneity in 

observational household TV ad exposure data and highlight the potential of behaviorally targeted TV 

advertising. 

 

Keywords: TV Advertising, Causal Inference, Instrumental Variable, Ad Response Model, Single-Source 

Data  
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1. Introduction 

Linear television remains one of the few media capable of reaching mass audiences in real time, 

particularly through live programming such as sports and major cultural events. This distinctive capacity 

has sustained tens of billions of dollars in annual advertiser spending despite the proliferation of digital 

channels. Yet the continued relevance of linear TV as an advertising medium depends on rigorous 

measurement of both its short- and long-term causal impact. 

Unlike digital advertising, randomized controlled trials (RCTs) are largely infeasible in the linear 

TV context because of the broadcast nature of programming and the limited infrastructure for household-

level randomization. Consequently, practitioners and academics primarily rely on observational data, 

where two sources of endogeneity complicate inference: targeting bias and activity bias (Lewis et al. 

2011, Lewis and Rao 2014, Zhang et al. 2017, Gordon et al. 2019). Targeting bias arises when advertisers 

buy placements in shows whose audiences differ in baseline purchase propensities. Activity bias occurs 

when household TV viewing patterns at specific times correlate with baseline purchase propensities. 

Recent comparisons of observational estimates with RCT benchmarks in digital advertising show 

that these biases are difficult to eliminate. Neither extensive controls nor algorithmic flexibility 

adequately address the endogeneity inherent in the data-generating process (DGP) (e.g., Gordon et al. 

2019, 2023). Most existing identification strategies for TV advertising instead rely on nonexperimental, 

exogenous variation in ad exposure at the market level (e.g., Hartmann and Klapper 2017, Stephens-

Davidowitz et al. 2017, Shapiro 2018, Thomas 2020). While informative, these approaches cannot capture 

heterogeneity across households within a market or dynamic variation within households over time. 

Against this backdrop, we introduce a method to quantify the causal effects of linear TV 

advertising using household-level observational data that link ad exposures with purchases over extended 

periods. This approach is especially timely, as advertisers increasingly gain access to modern single-

source data that merge second-by-second TV viewership from millions of households with first-party 
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purchase histories.1 

Our method offers two key advantages that facilitate practical adoption: generalizability and 

flexibility. It is generalizable because causal identification does not depend on advertiser- or campaign-

specific exogenous shocks. It is flexible because it scales to millions of households, accommodates 

repeated ad exposures, and leverages longitudinal purchase data. Together, these features allow 

estimation of cross-sectional heterogeneity in TV ad effects and separation of short-term responses from 

long-term dynamics such as carryover and state dependence. By providing a more accurate and nuanced 

assessment of television advertising effectiveness, the method informs strategic refinement and reinforces 

linear TV’s continued role as a viable mass medium. 

The core of our identification strategy leverages an institutional feature of U.S. linear TV: while 

advertisers decide which shows to target, networks determine the precise timing of ad airings within those 

shows. To ensure fairness, networks generally implement an equitable rotation of advertisers’ ads across 

the available slots within a show—a practice often referred to as “quasi-random ordering” (Wilbur et al. 

2013, Gordon et al. 2021, McGranaghan et al. 2022). This practice generates exogenous variation in focal 

brand ad exposure when a household watches only part of a targeted show, as exposure depends on 

whether the focal brand ad happens to air during the segment(s) the household viewed. 

Building on this insight, we propose a household-show-level instrumental variable (IV) to 

identify the causal effects of linear TV ad exposures. Intuitively, when a household watches only part of a 

show targeted by the focal brand, the network’s quasi-random allocation of within-show ad slots across 

advertisers functions as a natural experiment, introducing a degree of randomness in realized focal brand 

ad exposure that is orthogonal to its endogenous determinants.  

We isolate this network-induced exogenous shock by first constructing an expected focal brand 

 
1 With the advent of automatic content recognition (ACR) technology and the widespread adoption of ACR-enabled 

smart TVs and set-top boxes (STBs), providers such as Comscore, iSpot, and LG Ad Solutions now collect second-

by-second TV viewership data from tens of millions of households (NBCUniversal 2022). When such granular TV 

viewing data from large-scale panels are merged with advertisers’ first-party response data (e.g., via meshed IP-

address matching), they produce what we term modern single-source data. 
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ad exposure measure for each household during each targeted show. Conceptually, this measure captures 

the likelihood that a household would be exposed to the focal brand ad, given the portion of the show it 

watched and the network’s typical within-show ad insertion pattern. Empirically, it is derived from two 

inputs: (a) the household’s second-by-second viewership of the targeted show and (b) the empirical 

distribution of the network’s within-show ad airing times. 

Our household-show-level IV is then defined as the difference between this expected exposure 

and the household’s realized treatment status. In this way, the IV captures variation in focal brand ad 

exposure arising not from household show viewing behavior or the focal brand’s show targeting 

decisions, but from the network’s quasi-random ordering of within-show ad placements. 

To illustrate, suppose a household watched only the middle third of a targeted show. Based on the 

network’s typical within-show ad insertion pattern, 40% of ad slots would be expected to fall in the 

middle third, yielding an expected focal brand ad exposure of 0.4 for the household, given its viewing 

window and the network’s quasi-random allocation of ad slots across advertisers. If the focal brand ad did 

air in the middle third, the household’s realized treatment status would be 1, producing an IV of 0.6 (= 1 – 

0.4). If it did not, the realized treatment status would be 0, producing an IV of –0.4 (= 0 – 0.4). 

The validity of our decompositional approach to IV construction, i.e., subtracting expected from 

realized treatment, rests on the expected component capturing all endogenous determinants of the latter, 

leaving only exogenous variation in the residual. In other words, our identification strategy hinges on 

estimating expected focal brand ad exposure in a way that fully accounts for all pathways through which 

unobserved confounders could affect realized exposure (e.g., via the focal brand’s show targeting 

decisions or the household’s show viewing behavior).  

Two identifying assumptions are required for our proposed IV to be valid. First, we assume that 

networks assign within-show ad slots quasi-randomly across advertisers, irrespective of the identity of the 

focal brand or household. This “quasi-random ordering” assumption ensures a degree of exogenous 

variation in the precise timing of focal brand ad airing within a targeted show.  

Second, we assume that a household’s viewership of a targeted show is independent of the timing 
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of the focal brand ad within that show. In other words, households are assumed to watch or skip the focal 

brand ad in the same manner as ads from other brands, without selectively adjusting their viewing 

behavior based on whether the focal brand ad is shown. This “non-strategic viewership” assumption 

allows us to estimate a household’s probability of within-show focal brand ad exposure directly from its 

observed viewership of the targeted show. In our empirical application, both identifying assumptions are 

supported by their respective diagnostic checks. 

As we demonstrate through formal proofs in a general setting and a stylized numerical example 

with a known DGP, our proposed IV is valid and satisfies three key properties under the identifying 

assumptions: (a) zero mean, (b) positive correlation with realized treatment, and (c) no correlation with 

confounders. Although instrument exogeneity in real-world applications is inherently untestable, our 

construction of the IV from observables enables falsification checks that can be implemented 

empirically—an approach we validate through both the formal proofs and the numerical example. 

We apply our method to a panel dataset that combines second-by-second TV viewing data from 

LG Ad Solutions (LGADS) with first-party purchase data from a major food delivery platform, the focal 

brand in our study.2 Our data cover 1.4 million U.S. households over a 4.5-month period (November 15, 

2020–March 28, 2021), linking linear TV ad exposures to daily household purchase behavior over time. 

Our empirical application focuses on two primary goals. First, we demonstrate the use of the 

proposed IV to estimate the causal impact of linear TV advertising. We empirically verify that, across 

networks, the within-show timing distributions of focal brand ads are statistically indistinguishable from 

those of non-focal brands, consistent with the quasi-random ordering practice in linear TV. We further 

show that our IV passes the falsification checks, exhibiting zero mean and no correlation with the 

expected treatment, thereby supporting its validity in our empirical setting. 

Second, we leverage repeated ad exposures and purchases over time to examine how ad effects 

 
2 LGADS collects TV viewing data through Automatic Content Recognition (ACR) technology from over 35 

million opt-in smart TVs in the U.S., spanning TV brands such as LG, Seiki, Skyworth, RCA, and Askey. Retrieved 

on August 19, 2024 from https://lgads.tv/tv-data/. 

https://lgads.tv/tv-data/
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vary with households’ purchase histories. This is important because it allows advertisers to target TV 

ads—much like digital ads—not only by demographic characteristics such as age and gender, but also by 

past purchase behavior. As the availability of addressable TV ad inventory expands, targeting based on 

behavioral history is becoming increasingly relevant (Malthouse et al. 2018, eMarketer 2022). 

To achieve the goals of our empirical application, we specify a household daily ad response 

model in which baseline purchase propensity and ad responsiveness vary with purchase frequency (i.e., 

number of past purchases) and recency (i.e., days since the last purchase). To correct for endogeneity, we 

incorporate the proposed IV via a control function term in the latent utility of a probit purchase model. 

Two key findings emerge. First, failing to correct for endogeneity results in a 55% overstatement 

of TV ad effectiveness: average same-day (30-day) ad elasticity declines from 0.072 (0.222) to 0.045 

(0.143) after IV correction. Second, both baseline purchase propensity and ad responsiveness vary 

systematically with purchase history, consistent with state dependence. For baseline purchase propensity, 

we observe a “habit formation” effect, whereby a prior purchase increases the likelihood of a subsequent 

one, and a “recency trap” effect, whereby the likelihood of a new purchase declines as more time passes 

since the last purchase. For ad responsiveness, we find an inverted U-shaped relationship with purchase 

frequency and a U-shaped relationship with purchase recency.  

Together, these findings underscore (a) the debiasing power of the proposed IV and (b) the value 

of targeting TV ads based on household purchase history. Whereas causal inferences from aggregate data 

obscure cross- and within-household variation in ad exposures and responses, estimates derived from 

modern single-source data yield a more accurate and nuanced understanding of TV ad effects. This, in 

turn, enables advertisers to better determine which consumers to target and when. Our methodological 

advance thus provides a powerful tool for enhancing the return on investment (ROI) of TV advertising. 

2. Related Literature and Intended Contributions 

Our research contributes to a growing body of work developing identification strategies to estimate the 

causal impact of TV advertising using observational data. Table A1 in Online Appendix A summarizes 

selected studies focused on causal identification in this area. Notably, most existing strategies are 
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designed for market-level rather than household-level data. For instance, Hartmann and Klapper (2017) 

and Stephens-Davidowitz et al. (2017) exploit regional shocks in exposure to national Super Bowl ads to 

identify their effects. Shapiro (2018) leverages variation in TV ad exposures across DMA border areas, 

while Thomas (2020) exploits spillovers of mass media advertising into smaller local markets. 

Li et al. (2024) develop an IV based on preference externalities, wherein an individual’s treatment 

depends on the preferences of others in the group. Sinkinson and Starc (2019) and Moshary et al. (2021) 

identify the causal effect of TV advertising by exploiting shocks in demand for political ads during 

election cycles. Joo et al. (2014), Liaukonyte et al. (2015), and Du et al. (2019) leverage the precise 

timing of TV ad insertions and use narrow temporal windows (e.g., one hour before and after) to identify 

immediate effects on aggregate consumer responses at the brand level. McGranaghan et al. (2022) apply a 

similar approach to individual-level data, focusing on the immediate effect of ad exposure on TV viewing 

behavior (i.e., tuning, presence, and attention), and treat ad exposures as exogenous under the quasi-

random ordering of ads within a show.3  

We advance the literature on causal identification in TV advertising by introducing a novel, 

generalizable IV using household-level observational data. While prior studies have leveraged the quasi-

random ordering of ads within a show (e.g., Liaukonyte et al. 2015, McGranaghan et al. 2022), our 

contribution lies in how this variation is exploited: we construct an instrument as the residual between a 

household’s realized treatment and its expected treatment conditional on the household’s second-by-

second show viewership and the network’s empirical distribution of ad placements across show durations. 

Our research also contributes to the literature on the effects of TV advertising on household 

purchase dynamics using single-source data. Table A2 in Online Appendix A highlights the features that 

set our work apart from earlier studies. Unlike traditional scanner panel-based single-source data, the 

modern single-source data employed in our study provide substantially greater scale and granularity. For 

 
3 Most prior studies using household-level data have not explicitly addressed the endogeneity of TV ad exposure. 

Notable exceptions include Lodish et al. (1995) and Hu et al. (2007), who employ split-cable field experiments, and 

Tuchman et al. (2018), who use a simultaneous equation model to account for endogenous ad-skipping behavior. 
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example, our panel of 1.4 million households is at least two orders of magnitude larger than the single-

source panels used in prior studies (e.g., 1,775 households in Ackerberg 2001, 2003). This scale provides 

the statistical power necessary to implement our identification strategy and to capture dynamic ad effects 

such as state dependence.  

Another distinctive aspect of this research is our approach to capturing how the impact of TV 

advertising evolves with households’ past purchases. Accounting for these dynamics is essential because, 

for example, the effectiveness of TV advertising may be overstated if intertemporal substitution is ignored 

(Lambrecht et al. 2023) or understated if accelerated habit formation is not considered. Our identification 

strategy and ad response model enable advertisers to assess the relative efficacy of targeting TV ads not 

only by broad demographic characteristics such as age and gender but also by purchase frequency and 

recency. This perspective is particularly relevant to the ongoing debate about the cost-effectiveness of TV 

advertising and the search for strategies to improve its ROI (Shapiro et al. 2021). 

Finally, whereas much prior research using traditional single-source data has examined consumer 

packaged goods (CPGs) tracked through scanner panels (e.g., Bronnenberg et al. 2008, Deng and Mela 

2018), our study extends the empirical context by linking TV viewing data to first-party purchase data 

from a digital platform. A key contextual difference is that, for CPGs, consumers typically respond to TV 

ads during subsequent shopping trips, creating a longer lag between ad exposure and purchase. By 

contrast, for digital platforms such as our focal brand, consumers can respond more quickly via mobile or 

desktop devices, resulting in a shorter response window and potentially different carryover patterns.4 In 

this way, our study complements prior CPG-focused research and demonstrates how modern single-

source data can broaden understanding of TV advertising effectiveness across diverse industry contexts. 

3. Identification Strategy 

3.1. Sources of Endogeneity and Exogeneity 

 
4 This pattern is evident in our empirical setting. Our model estimates indicate a daily carryover of approximately 

0.7, which is substantially lower than the weekly carryover of 0.9 (equivalent to a daily carryover of 0.985) reported 

in prior studies of CPGs (Shapiro et al. 2021). 
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In the context of linear TV, a household’s exposure to a focal brand ad within a show results from the 

intersection of three decisions made by distinct entities. First, the focal brand must purchase an ad slot 

within the show (the show-targeting decision). Second, the household must watch at least part of the show 

(the show-viewing decision). Third, the network broadcasting the show must air the focal brand ad during 

the portion of the show that the household watches (the within-show ad airing time decision). 

Endogeneity in the focal brand’s show-targeting decision arises when the brand strategically 

places its linear TV ad buys. For example, households that frequently order food delivery may also tend 

to watch more live sports. Anticipating this pattern, the focal brand might increase ad placements during 

sports programming, generating a spurious correlation between ad exposures and purchases. Similarly, 

during holidays—when households are more likely to cook at home or dine out and thus less likely to 

order food delivery—the brand may reduce ad buys, introducing another source of spurious correlation. 

More generally, the focal brand may act on information about shows or time periods that correlates with 

households’ baseline purchase propensities, even if such information is unobservable to analysts. We 

refer to this focal brand-induced source of endogeneity as “targeting bias.” 

Even if the focal brand allocated its linear TV ad buys randomly—placing ads across shows or 

days without strategic targeting—endogeneity could still arise from households’ show-viewing behavior. 

For instance, all else equal, a household that watches more TV is a priori more likely to be exposed to 

focal brand ads. If factors influencing TV consumption—such as time spent at home or overall busyness, 

which may be unobservable to analysts—also affect baseline demand for food delivery, this can generate 

a spurious correlation between ad exposures and purchases. We refer to this household-induced source of 

endogeneity as “activity bias.” 

A common approach to mitigating targeting and activity biases is to include control variables in 

the ad response model.5 However, control variables cannot account for all the “unknown unknowns,” 

 
5 Observed household characteristics, together with random or fixed household effects, can be included as controls 

when both a household’s preference for targeted shows and its baseline demand for the focal brand are correlated 

with these characteristics. Likewise, observed temporal factors, along with random or fixed time effects, can be 

included to account for time-varying unobservables that influence all households in a similar manner. 
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particularly time-varying confounders at the household level. For example, if someone unexpectedly 

works an extra hour on a given day, they are both (a) less likely to watch TV—and thus less likely to view 

a targeted show, or only a smaller portion of it—reducing their chance of exposure to a focal brand ad, 

and (b) more likely to order food delivery because they have less time to cook. Household- and time-

specific unobservables of this kind affect both ad exposures and purchases, creating an endogeneity threat 

that control variables alone cannot fully address. 

Fortunately, in linear TV, a household’s exposure to a focal brand ad during a targeted show is 

not solely determined by the brand’s show-targeting decision and the household’s show-viewing 

behavior. For households that watch only part of a targeted show, exposure also depends on whether the 

viewed segment(s) overlap, at least partially, with the time slot of the focal brand ad. In other words, the 

network’s within-show ad airing time decision introduces an exogenous shock to a household’s treatment 

status when a targeted show is watched partially. As we will show, this shock can be extracted 

nonparametrically to construct an IV that is valid under two identifying assumptions.  

3.2. Data-Generating Process 

We begin by formalizing the DGP to clarify the sources of endogeneity and exogeneity in observed 

household focal brand linear TV ad exposures and to establish the foundation for our identification 

strategy. Let 𝐴𝑖𝑠 ∈ {0,1} indicate whether household i receives a focal brand ad exposure during linear 

TV show s. Define 𝐴𝑖𝑡 as the total number of focal brand ad exposures household i receives on day t: 

𝐴𝑖𝑡 = ∑ 𝐴𝑖𝑠𝑠∈𝑆𝑡 , where 𝑆𝑡 denotes the set of available shows on day t.  

Household Purchase Decision (𝒀𝒊𝒕). Setting aside long-term effects for ease of exposition, the 

focal brand purchase decision of household i on day t, 𝑌𝑖𝑡 ∈ {0,1}, can be expressed as a function of 

same-day focal brand ad exposure 𝐴𝑖𝑡: 

𝑌𝑖𝑡 = 𝑓(𝛼 + 𝛽𝐴𝑖𝑡 + 𝛾𝑋𝑖𝑡 + 𝑢𝑖𝑡) (1) 

where 𝑓(∙) is a generic link function (e.g., probit or logit), 𝛽 captures the causal effect of same-day ad 

exposures, 𝑋𝑖𝑡 includes observed characteristics of household i on day t, and 𝑢𝑖𝑡 denotes an unobserved 
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(to the analyst) demand shock, with 𝐸(𝑢𝑖𝑡) = 0.  

Endogeneity arises when 𝐴𝑖𝑡 in Equation (1) is correlated with 𝑢𝑖𝑡. Our goal is to obtain an 

unbiased estimate of 𝛽. Since 𝐴𝑖𝑡 is aggregated from 𝐴𝑖𝑠, it is sufficient to describe the DGP of 𝐴𝑖𝑠.  

Focal Brand Show Targeting Decision (𝑨𝒔
𝒃). For each linear TV show s, the focal brand b 

decides whether to make an ad buy, denoted by 𝐴𝑠
𝑏 ∈ {0,1}. Without loss of generality, 𝐴𝑠

𝑏 can be 

expressed as an indicator function that depends on observed show characteristics 𝑋𝑠 and unobserved (to 

the analyst) show characteristics 𝑢𝑠, with 𝐸(𝑢𝑠) = 0:  

𝐴𝑠
𝑏 = 𝑓𝑏(𝑋𝑠, 𝑢𝑠) (2) 

We remain agnostic about the exact form of 𝑓𝑏(∙). It suffices to assume that for all 𝑠 ∈ 𝑆𝑡, 𝑢𝑠 

comprises a vector of {𝑢𝑖𝑠}, where 𝑢𝑖𝑠 denotes an expanded set of confounders, one of which may be the 

demand shock 𝑢𝑖𝑡 in Equation (1). Consequently, Equation (2) accommodates targeting bias, since 𝑢𝑖𝑡 

can introduce a spurious correlation between 𝑌𝑖𝑡 and 𝐴𝑖𝑡 by influencing both the household’s focal brand 

purchase decision and the brand’s show targeting decision 𝐴𝑠
𝑏. 

Household Show Viewing Decision (𝑽𝒊𝒆𝒘𝒊𝒔). With 0 and 1 denoting the start and end of show 

s, household 𝑖 decides whether to watch the show and, if so, which segment(s), denoted by 𝑉𝑖𝑒𝑤𝑖𝑠 ⊆

[0, 1]. For example, 𝑉𝑖𝑒𝑤𝑖𝑠 = {[0,0.1], [0.5,1]} if household i watches the first 10% and the last 50% of 

show s. We assume 𝑉𝑖𝑒𝑤𝑖𝑠 is a function of observed household characteristics 𝑋𝑖𝑠 and unobserved 

characteristics 𝑢𝑖𝑠: 

𝑉𝑖𝑒𝑤𝑖𝑠 = 𝑓𝑣(𝑋𝑖𝑠, 𝑢𝑖𝑠) (3) 

where 𝑓𝑣(∙) maps {𝑋𝑖𝑠, 𝑢𝑖𝑠} to viewing segment(s) 𝑉𝑖𝑒𝑤𝑖𝑠 ⊆ [0, 1], with two extreme cases: 𝑉𝑖𝑒𝑤𝑖𝑠 = ∅ if 

the household does not watch the show, and 𝑉𝑖𝑒𝑤𝑖𝑠 = [0, 1] if the household watches the entire show. 

As with 𝑓𝑏(∙) in Equation (2), we remain agonistic about the exact form of 𝑓𝑣(∙) in Equation (3). 

It suffices to assume that 𝑉𝑖𝑒𝑤𝑖𝑠 may be influenced by 𝑢𝑖𝑠, the expanded set of confounders that may 

include the demand shock 𝑢𝑖𝑡. Thus, the DGP for 𝑉𝑖𝑒𝑤𝑖𝑠 accommodates activity bias, since 𝑢𝑖𝑡 can create 

a spurious correlation between 𝑌𝑖𝑡 and 𝐴𝑖𝑡 by affecting both the household’s focal brand purchase 
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decision and its show viewing behavior 𝑉𝑖𝑒𝑤𝑖𝑠, and thereby its likelihood of focal brand ad exposure. 

Network Within-Show Ad Airing Time Decision (𝑻𝒔
𝒃). We assume that, conditional on focal 

brand b purchasing an ad slot in show s, the network determines the within-show focal brand ad airing 

time as follows: 

𝑇𝑠
𝑏 ∼ 𝑙𝑠(𝑥), with 𝑥 ∈ [0, 1]   (4) 

where 𝑙𝑠(∙) denotes a probability density function (PDF) that is nonzero only on the interval [0, 1], and 

the within-show ad airing time 𝑇𝑠
𝑏 is drawn from the distribution defined by 𝑙𝑠(∙).

6 The value of 𝑇𝑠
𝑏 is 

observed only when focal brand b targets show s (i.e., when 𝐴𝑠
𝑏 = 1). 

Household Ad Exposure 𝑨𝒊𝒔. Given the DGPs for the focal brand’s show targeting decision 𝐴𝑠
𝑏, 

the household’s show viewing behavior 𝑉𝑖𝑒𝑤𝑖𝑠, and the network’s within-show ad airing time decision 

𝑇𝑠
𝑏, household i’s focal brand ad exposure status in show s, 𝐴𝑖𝑠, can be expressed as: 

𝐴𝑖𝑠 = 𝐴𝑠
𝑏 × 𝐼(𝑇𝑠

𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠) (5) 

Equation (5) implies that 𝐴𝑖𝑠 = 1 if and only if: (a) 𝐴𝑠
𝑏 = 1, meaning that the focal brand targets 

show s; and (b) 𝐼(𝑇𝑠
𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠) = 1, meaning that the network broadcasting show s airs the focal brand 

ad during the portion of the show viewed by the household. Here, 𝐼(∙) denotes the indicator function.  

Identifying Assumptions. Two identifying assumptions are implicit in the DGP described above.  

First, the Quasi-Random Ordering Assumption (𝑇𝑠
𝑏 ∼ 𝑙𝑠(𝑥)). Because 𝑙𝑠(∙) is indexed by neither 

brand nor household, the implicit assumption is that the network broadcasting show s determines the 

within-show ad airing time 𝑇𝑠
𝑏 according to the same process across brands and households. In other 

words, although we remain agnostic about the exact form of 𝑙𝑠(∙), we assume the network does not tailor 

its within-show ad-slot assignment to the focal brand or to any particular household.  

If this assumption holds, analysts can infer 𝑙𝑠(∙) from the observed distribution of within-show ad 

airing times. The assumption would be violated if, for example, the focal brand systematically secured a 

 
6 For ease of exposition, we treat 𝑇𝑠

𝑏 as a point rather than an interval. 
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specific slot in advance (e.g., the first position in a commercial pod), or if the network adjusted the focal 

brand’s ad airing time based on household characteristics (e.g., through addressable TV). In the context of 

linear TV, however, this quasi-random ordering assumption generally holds and can be empirically 

assessed by comparing the distributions of within-show ad airing times for focal versus non-focal brands. 

Significant differences across distributions would warrant caution in relying on this assumption. 

Second, the Non-Strategic Viewership Assumption (𝑉𝑖𝑒𝑤𝑖𝑠 ⊥ 𝑇𝑠
𝑏). As specified in Equation (3), 

𝑉𝑖𝑒𝑤𝑖𝑠 is not a function of whether the focal brand ad happens to air during the household’s viewing 

segment(s). The implicit assumption is that the household’s show viewership would remain the same 

regardless of whether the focal brand’s ad airing time 𝑇𝑠
𝑏 falls within its viewing window.  

This assumption would be violated if a household alters its viewing specifically in response to a 

focal brand ad—for instance, by switching channels or turning off the TV—in a manner different from its 

response to other brands’ ads. Importantly, simply skipping the focal brand’s ad does not constitute a 

violation if such behavior is consistent with the household’s general ad-skipping patterns. Empirically, 

this assumption can be evaluated by comparing ad-skipping rates for focal versus non-focal brands.  

In Section 4.3, we present evidence that both the quasi-random ordering and non-strategic 

viewership assumptions pass their respective diagnostic checks in our empirical application. 

3.3. Proposed Instrumental Variable 

We now formalize our proposed instrument based on the DGP and the identifying assumptions outlined in 

Section 3.2. To facilitate exposition, we begin by introducing the notation for a key construct, 𝑃𝑖𝑠.  

Let 𝑃𝑖𝑠 ∈ [0,1] denote the probability that a focal brand ad, if aired within show s, occurs at a 

time 𝑇𝑠
𝑏 that falls within household i’s viewing window 𝑉𝑖𝑒𝑤𝑖𝑠. Mathematically, 

𝑃𝑖𝑠 ≡ Pr(𝑇𝑠
𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠 | 𝑉𝑖𝑒𝑤𝑖𝑠) = ∫ 𝑙𝑠(𝑥) 𝑑𝑥𝑉𝑖𝑒𝑤𝑖𝑠

 (6) 

where 𝑙𝑠(∙) is the PDF governing the within-show ad airing time assignment. 

Equation (6) implies that 𝑃𝑖𝑠 = 0 when household i does not watch any part of show s (i.e., 

𝑉𝑖𝑒𝑤𝑖𝑠 = ∅), and 𝑃𝑖𝑠 = 1 when the household watches the entire show (i.e., 𝑉𝑖𝑒𝑤𝑖𝑠 = [0,1]). When the 
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household watches only part of the show (i.e., 𝑉𝑖𝑒𝑤𝑖𝑠 ⊂ [0,1]), we have 0 < 𝑃𝑖𝑠 < 1.  

Equation (6) also offers an alternative interpretation of 𝑃𝑖𝑠: it can be viewed as an “area under the 

curve” (AUC) measure representing the proportion of within-show ad placements that typically fall 

within the normalized viewing segment(s) 𝑉𝑖𝑒𝑤𝑖𝑠 ⊆ [0, 1]. The AUC is obtained by integrating the 

density function 𝑙𝑠(∙) over 𝑉𝑖𝑒𝑤𝑖𝑠. Empirically, 𝑙𝑠(∙) can be operationalized using the normalized 

histogram of within-show ad placements observed for the network broadcasting show s. When 𝑙𝑠(∙) 

follows a uniform distribution over [0,1], 𝑃𝑖𝑠 simplifies to the normalized viewing duration of household i 

for show s, denoted by 𝑉𝑖𝑠 ∈ [0, 1]. More generally, 𝑃𝑖𝑠 is expected to be positively correlated with 𝑉𝑖𝑠. 

Finally, for a show targeted by the focal brand, the realized value of 𝐼(𝑇𝑠
𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠), as defined 

in Equation (5), is effectively a Bernoulli draw with expected value 𝐸(𝐼(𝑇𝑠
𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠)) = 𝑃𝑖𝑠; that is, 

𝐼(𝑇𝑠
𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠) ~ Bernoulli(𝑃𝑖𝑠).  

Identification Strategy. Our approach to causal inference hinges on decomposing the observed 

household focal brand ad exposure 𝐴𝑖𝑠 into two components: an endogenous part potentially correlated 

with the confounder 𝑢𝑖𝑠, and an exogenous part that is not. To achieve this, we leverage 𝑃𝑖𝑠, as defined in 

Equation (6), and re-express 𝐴𝑖𝑠 from Equation (5) as follows: 

𝐴𝑖𝑠 = 𝐴𝑠
𝑏 × 𝐼(𝑇𝑠

𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠) = 𝐴𝑠
𝑏 × (𝑃𝑖𝑠 + 𝐼(𝑇𝑠

𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠) − 𝑃𝑖𝑠)           

                       = 𝐴𝑠
𝑏𝑃𝑖𝑠⏟  

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

+      𝐴𝑠
𝑏(𝐼(𝑇𝑠

𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠) − 𝑃𝑖𝑠)⏟                
𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡

  (7) 

In Equation (7), the term 𝐴𝑠
𝑏𝑃𝑖𝑠 combines two endogenous determinants of 𝐴𝑖𝑠: the focal brand’s 

show targeting decision 𝐴𝑠
𝑏 and the household’s show viewing behavior 𝑉𝑖𝑒𝑤𝑖𝑠, which—through 

Equation (6)—determines 𝑃𝑖𝑠, the household’s probability of focal brand ad exposure within show s if the 

show is targeted. 𝐴𝑠
𝑏𝑃𝑖𝑠 thus represents the expected treatment of household i during show s, conditional 

on 𝐴𝑠
𝑏, 𝑉𝑖𝑒𝑤𝑖𝑠, and 𝑙𝑠(∙), the within-show ad airing time assignment process. The realized treatment 𝐴𝑖𝑠 

deviates from 𝐴𝑠
𝑏𝑃𝑖𝑠 depending on the realized 𝑇𝑠

𝑏, the actual within-show focal brand ad airing time.  

As we will elaborate, provided the identifying assumptions hold, the deviation between realized 
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and expected treatment, i.e., 𝐴𝑖𝑠 − 𝐴𝑠
𝑏𝑃𝑖𝑠, is correlated with 𝐴𝑖𝑠 but orthogonal to the confounder 𝑢𝑖𝑠, and 

therefore can serve as a valid instrument for 𝐴𝑖𝑠. 

To further simplify notation, let Δ𝑖𝑠 ≡ 𝐼(𝑇𝑠
𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠) − 𝑃𝑖𝑠. Recalling the definition of 𝑃𝑖𝑠 in 

Equation (6), our proposed instrument in Equation (7) can be rewritten as: 

𝐼𝑉𝑖𝑠 ≡ 𝐴𝑖𝑠 − 𝐴𝑠
𝑏𝑃𝑖𝑠 = 𝐴𝑠

𝑏Δ𝑖𝑠 = {
0, 𝑖𝑓 𝐴𝑠

𝑏 = 0, 𝑜𝑟 𝐴𝑠
𝑏 = 1 𝑎𝑛𝑑 𝑉𝑖𝑒𝑤𝑖𝑠 ∈ {∅, [0,1]}

𝐼(𝑇𝑠
𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠) − ∫ 𝑙𝑠(𝑥) 𝑑𝑥𝑉𝑖𝑒𝑤𝑖𝑠

≠ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (8) 

Before formally presenting the proposition that establishes the validity of 𝐼𝑉𝑖𝑠, we highlight the 

core intuition behind our identification strategy. For targeted shows, ∆𝑖𝑠—the deviation between realized 

and expected within-show focal brand ad exposure—arises from the quasi-random ordering mechanism 

through which linear TV networks allocate ad slots across advertisers within a show. This stochasticity in 

within-show ad insertion timing effectively constitutes a series of natural experiments conducted by 

networks during show broadcasts. We therefore refer to ∆𝑖𝑠 as the “network-induced within-show ad 

exposure shifter,” or simply the “network-induced shifter.” As we will demonstrate, this shifter represents 

an exogenous shock orthogonal to the demand shock. 

Properties of the Proposed IV. Two properties implied by Equation (8) are worth emphasizing. 

First, Nonzero IV under Partial Targeted Show Viewership Only. Note that 𝐼𝑉𝑖𝑠 = 0 when a 

household watches a show not targeted by the focal brand (𝐴𝑠
𝑏 = 0), or when it watches either 0% of a 

targeted show (𝐴𝑠
𝑏 = 1 and 𝑉𝑖𝑒𝑤𝑖𝑠 = ∅, hence ∆𝑖𝑠= 0 − 0 = 0) or 100% of it (𝐴𝑠

𝑏 = 1 and 𝑉𝑖𝑒𝑤𝑖𝑠 =

[0,1], hence ∆𝑖𝑠= 1 − 1 = 0). This implies that 𝐼𝑉𝑖𝑠 ≠ 0 only when a household watches a targeted show 

partially (𝐴𝑠
𝑏 = 1 and 𝑉𝑖𝑒𝑤𝑖𝑠 ⊂ [0,1]), allowing the network’s within-show ad placement process to 

introduce a nonzero shifter between realized and expected focal brand ad exposure (i.e., ∆𝑖𝑠≠ 0). 

In turn, this property implies that for 𝐼𝑉𝑖𝑠 to serve as an effective instrument, there must be a 

sufficient number of incidences where 𝐴𝑠
𝑏 = 1 and 𝑉𝑖𝑒𝑤𝑖𝑠 ⊂ [0,1] to ensure adequate statistical power for 

identification. Moreover, because 𝐼𝑉𝑖𝑠 ≠ 0 only under partial viewing, the generalizability of the 

identified ad effects relies on the assumption that households engaging in partial viewing (at least 
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occasionally) exhibit ad responsiveness comparable to those who do not.  

Second, Mean Zero for Nonzero IV. When 𝐴𝑠
𝑏 = 1 and 𝑉𝑖𝑒𝑤𝑖𝑠 ⊂ [0,1], we have 𝐼𝑉𝑖𝑠 = ∆𝑖𝑠≠ 0, 

where ∆𝑖𝑠 is effectively drawn from a two-point distribution: ∆𝑖𝑠∼ {
1 − 𝑃𝑖𝑠 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑖𝑠
−𝑃𝑖𝑠, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑃𝑖𝑠

. This 

follows directly from Δ𝑖𝑠 ≡ 𝐼(𝑇𝑠
𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠) − 𝑃𝑖𝑠, and 𝐼(𝑇𝑠

𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠) ~ Bernoulli(𝑃𝑖𝑠). 

The distributional property of nonzero ∆𝑖𝑠 implies that nonzero 𝐼𝑉𝑖𝑠 has a mean of zero, because: 

𝐸(𝐼𝑉𝑖𝑠|𝐼𝑉𝑖𝑠 ≠ 0) = 𝐸(Δ𝑖𝑠|𝐴𝑠
𝑏 = 1, 𝑉𝑖𝑒𝑤𝑖𝑠 ⊂ [0,1]) = (1 − 𝑃𝑖𝑠)𝑃𝑖𝑠 − 𝑃𝑖𝑠(1 − 𝑃𝑖𝑠) = 0. Consequently, 

the overall mean of 𝐼𝑉𝑖𝑠—combining both zero and nonzero values—is also zero. This mean-zero 

property of 𝐼𝑉𝑖𝑠, which holds under our identifying assumptions, provides a basis for falsification testing 

in empirical applications. A statistically significant deviation of the mean from zero would call into 

question the validity of the constructed IV. 

Validity of the Proposed IV. Formally, Proposition 1 and Corollary 1 establish that 𝐼𝑉𝑖𝑠 can 

serve as a valid household-show-level instrument for 𝐴𝑖𝑠, and 𝐼𝑉𝑖𝑡 = ∑ 𝐼𝑉𝑖𝑠𝑠∈𝑆𝑡  can serve as a valid 

household-day-level instrument for 𝐴𝑖𝑡 = ∑ 𝐴𝑖𝑠𝑠∈𝑆𝑡 , provided the identifying assumptions hold. Proofs of 

all propositions and the corollary are presented in Online Appendix B for expositional brevity. 

Proposition 1: Under the assumption that the DGP of 𝐴𝑖𝑠 follows Equations (1)–(5), it holds that 

𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝐴𝑖𝑠) > 0 and 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝑢𝑖𝑠) = 0, thereby satisfying the relevance condition and the exclusion 

restriction, respectively, for 𝐼𝑉𝑖𝑠 to be a valid instrument for 𝐴𝑖𝑠. 

Corollary 1: Under the assumption that the DGP of 𝐴𝑖𝑠 follows Equations (1)–(5), it holds that 

𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑡 , 𝐴𝑖𝑡) > 0 and 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑡 , 𝑢𝑖𝑡) = 0, thereby satisfying the relevance condition and the exclusion 

restriction, respectively, for 𝐼𝑉𝑖𝑡 to be a valid instrument for 𝐴𝑖𝑡. 

Because 𝑢𝑖𝑠 is unobservable to analysts, the exogeneity condition 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠 , 𝑢𝑖𝑠) = 0 cannot be 

tested directly in empirical applications. However, falsification checks can be derived from observable 

quantities: 𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑠, 𝐴𝑠
𝑏𝑃̂𝑖𝑠), 𝑐𝑜𝑟𝑟(𝑖,𝑠)(𝐼𝑉̂𝑖𝑠, 𝐴𝑠

𝑏), and 𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑠, 𝑃̂𝑖𝑠), where 𝑃̂𝑖𝑠 is an estimate of 𝑃𝑖𝑠, and 
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𝐼𝑉̂𝑖𝑠 = 𝐴𝑖𝑠 − 𝐴𝑠
𝑏𝑃̂𝑖𝑠.

7  

Conceptually, if 𝐼𝑉̂𝑖𝑠 is truly orthogonal to the confounder 𝑢𝑖𝑠—as claimed in Proposition 1—it 

should be uncorrelated with any endogenous components of the DGP. These include: (1) the focal brand’s 

show targeting decision 𝐴𝑠
𝑏; (2) household i’s probability of within-show focal brand ad exposure, 𝑃𝑖𝑠, 

which is a function of its show viewing behavior 𝑉𝑖𝑒𝑤𝑖𝑠; and (3) household i’s expected treatment, 𝐴𝑠
𝑏𝑃𝑖𝑠, 

which incorporates endogenous variation from both (1) and (2). Significant correlations between 𝐼𝑉̂𝑖𝑠 and 

any of these endogenous components would challenge the exogeneity of the instrument and warrant 

careful re-evaluation of its validity. 

 Proposition 2: Under the assumption that the DGP of 𝐴𝑖𝑠 follows Equations (1)–(5), it holds that 

𝑐𝑜𝑟𝑟(𝑖,𝑠)(𝐼𝑉𝑖𝑠, 𝐴𝑠
𝑏) = 0, 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝑃𝑖𝑠) = 0, and 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠 , 𝐴𝑠

𝑏𝑃𝑖𝑠) = 0. 

For both Propositions 1 and 2 to hold, the core requirement is that, for targeted shows (𝐴𝑠
𝑏 = 1) 

and partial household viewing (0 < 𝑃𝑖𝑠 < 1), the network-induced ad exposure shifter Δ𝑖𝑠 follows a two-

point distribution with an expected value of zero: Pr[Δ𝑖𝑠 = 1 − 𝑃𝑖𝑠] = 𝑃𝑖𝑠, and Pr[Δ𝑖𝑠 = −𝑃𝑖𝑠] = 1 − 𝑃𝑖𝑠. 

As long as this distributional property of Δ𝑖𝑠 holds, 𝐼𝑉𝑖𝑠 satisfies the exogeneity condition and is 

uncorrelated with the endogenous determinants of 𝐴𝑖𝑠, including 𝐴𝑠
𝑏, 𝑃𝑖𝑠, and their product 𝐴𝑠

𝑏𝑃𝑖𝑠. 

In summary, unlike conventional IVs that are directly observable, our household-show-level IV is 

constructed indirectly from observables by subtracting a household’s expected treatment, 𝐴𝑠
𝑏𝑃𝑖𝑠, from its 

realized treatment, 𝐴𝑖𝑠: 𝐼𝑉̂𝑖𝑠 = 𝐴𝑖𝑠 − 𝐴𝑠
𝑏𝑃̂𝑖𝑠. In empirical applications, 𝑃𝑖𝑠 is estimated nonparametrically 

by integrating the density function 𝑙𝑠(∙) over the observed 𝑉𝑖𝑒𝑤𝑖𝑠 ⊆ [0, 1], where 𝑙𝑠(∙) is approximated 

using the empirical within-show ad airing time distribution observed for the network broadcasting show 𝑠. 

To illustrate this novel IV construction, Online Appendix C presents a stylized numerical 

example in which the DGP is known and satisfies the identifying assumptions. This proof-of-concept 

exercise further clarifies the underlying intuition and reinforces confidence in our identification strategy. 

 
7 In Section 4.3, we demonstrate how 𝑃̂𝑖𝑠 can be obtained nonparametrically and present descriptive statistics of the 

proposed instruments in our empirical setting, along with supporting evidence of their validity. 
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4. Empirical Application 

We implement the proposed identification strategy in a household-day-level response model using data 

from a leading U.S. food delivery platform. Sections 4.1 describes the dataset, Section 4.2 outlines the ad 

response model, and Sections 4.3–4.4 detail the construction, validation, and implementation of the IV. 

4.1. Data and Model-Free Evidence 

Our data come from two sources: TV viewing data provided by LGADS and customer purchase data from 

the focal brand, a major U.S. food delivery platform with a dominant market position at the time of the 

study. Customers can place orders through the focal brand’s mobile app or website, and purchases from 

both channels are included in our dataset.8 Each customer in the purchase data and each household in the 

TV viewing data is identified by a unique, privacy-compliant meshed IP address, which is used to merge 

the two data sources. The resulting panel dataset tracks 1,401,902 households over 133 days, from 

November 15, 2020, to March 28, 2021. 

LGADS collects TV viewing data through Automatic Content Recognition (ACR) technology 

from a large, opt-in panel of U.S. smart TV households. These ACR data capture second-by-second 

exposure to both shows and ads during each household’s viewing sessions. Notably, all focal brand ad 

airings during the study period occurred on linear TV. Accordingly, our analysis focuses exclusively on 

linear TV advertising, which is targeted at the show level rather than the household level.  

During the study period, the focal brand aired approximately 700 linear TV ads per week, with 

fewer airings during holidays such as Thanksgiving, Christmas, and New Year’s. Most ads were placed in 

sitcoms (12.9%), comedies (7.1%), animated sitcoms (5.6%), reality shows (5.5%), and reality comedies 

(5.1%), targeting audiences inclined toward these genres. All ads were national placements and featured 

various creatives emphasizing the quality of the delivery experience, humorous interactions with 

celebrities, or collaborations with restaurant partners. 

Table 1 summarizes household TV viewing and purchase behavior in our data. On average, a 

 
8 Although each order is linked to a device ID, the data do not distinguish between mobile app and web browser 

transactions. According to the data provider, however, the majority of orders were placed through mobile apps. 
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panel household watched 4.4 hours of TV per day and was exposed to 0.14 focal brand ads per day. For 

each purchase (i.e., a food delivery order via the focal brand’s platform), we observe the customer ID, 

meshed IP address, purchase time, and a binary indicator denoting whether it was the household’s first-

ever transaction with the focal brand. At the start of the study period, none of the households in our 

sample were existing customers. Over the course of the study, 53,618 households (3.8%) made their first 

purchase (i.e., converted). Converted households made a total of 126,077 purchases, averaging 2.4 

purchases per household with an average interpurchase time of 11.3 days. Among households that 

received at least one focal brand ad exposure during the study period, over 90% of those that converted 

made their first purchase after their first exposure to a focal brand ad. 

Table 1. Descriptive Statistics 

 Mean Std. Dev. 5% 25% 50% 75% 95% 

TV Viewing per Household per Day (Hours) 4.35 5.66 0.00 0.00 1.79 7.04 17.38 

Targeted Show Viewing per Household per Day 

(Hours) 
0.11 0.49 0.00 0.00 0.00 0.00 0.66 

Number of Focal Brand Ad Exposures per 

Household per Day 
0.14 0.56 0.00 0.00 0.00 0.00 1.00 

Purchase Frequency per Converted Household 2.35 3.43 1.00 1.00 1.00 2.00 8.00 

Interpurchase Time per Converted Household (Days) 11.26 15.22 1.00 2.00 6.00 14.00 43.00 

Notes. TV viewing and purchase behavior for 1,401,902 households, November 15, 2020, through March 28, 2021. 

 

Figure 1 plots the relationships between daily purchase probability and past purchase frequency, 

recency, and same-day focal brand ad exposures. Figure 1(a) shows that a household’s daily purchase 

probability increases with the number of prior purchases. Figure 1(b) illustrates that daily purchase 

probability decreases with recency (i.e., number of days since the last purchase). Additionally, regular 

spikes in daily purchase probability occur when recency values correspond to multiples of seven (e.g., 7 

and 14), indicating that households tend to reorder on the same day of the week as their previous order. 

Figure 1(c) depicts a modest positive association between same-day TV ad exposures and purchase 

probability, suggesting a potential positive treatment effect. Collectively, these model-free patterns 

motivate our modeling choices described in the next section.9 

 
9 Online Appendix D presents additional hour-of-the-week distributions of purchases and ad exposures. 
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Figure 1. Relationships Between Daily Purchase Probability and Past Purchase Frequency, 

Recency, and Same-Day Ad Exposures 

(a) Daily Purchase Probability and 

Purchase Frequency 

(b) Daily Purchase Probability and 

Purchase Recency 

(c) Daily Purchase Probability and 

Same-Day Ad Exposures 

   

Notes. The Y-axis represents the average daily purchase probability with 95% confidence intervals, conditional on a household’s 

prior purchase frequency, recency, or same-day ad exposures. 

 

4.2. Ad Response Model  

Building on the data described earlier, we specify a household-daily ad response model to quantify the 

effect of linear TV advertising on focal brand purchases. Let 𝑌𝑖𝑡 denote whether household i makes a 

purchase on day t (𝑌𝑖𝑡 = 1) or not (𝑌𝑖𝑡 = 0). The purchase probability is determined by the utility 𝑈𝑖𝑡 that 

household i derives from purchasing from the focal brand on day t: 

𝑈𝑖𝑡 = 𝛼𝑖𝑡 + 𝛽𝑖𝑡𝐴𝑆𝑖𝑡 + 𝛾𝑋𝑖𝑡 + 𝑢𝑖𝑡 (9) 

𝑌𝑖𝑡 = 𝐼(𝑈𝑖𝑡 > 0) (10) 

where 𝐴𝑆𝑖𝑡 is the ad stock that incorporates household i’s same-day exposure and discounted past 

exposures to focal brand ads. 𝑋𝑖𝑡 denotes a set of control variables, including fixed effects for month, day 

of the week, and holidays (covering both the day before and the day of Thanksgiving, Christmas, and 

New Year’s); an indicator for the first-month post-conversion promotion; major competitors’ TV ad 

spend;10 and a set of dummies based on the remainder of purchase recency divided by seven, capturing 

the weekly spikes in daily purchase probability shown in Figure 1(b). Finally, 𝑢𝑖𝑡 represents an 

unobserved (to the analyst) demand shock that may be correlated with 𝐴𝑆𝑖𝑡.  

The ad stock 𝐴𝑆𝑖𝑡 is specified as: 

 
10 We account for the top two competitors’ TV advertising by acquiring DMA-day-level TV ad spend data from 

Kantar. Specifically, we calculate competitive ad spend per capita for each DMA-day and include it as a control 

variable in the ad response model. 
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𝐴𝑆𝑖𝑡 = ∑ (𝜆𝐴)
𝑙𝐴𝑖,𝑡−𝑙

𝑡−1
𝑙=0  (11) 

where 𝐴𝑖𝑡 is the number of focal brand TV ad exposures household i receives on day t, and 𝜆𝐴 ∈ (0,1) is 

a daily decay parameter that captures advertising carryover effects over time.  

In Equation (9), 𝛼𝑖𝑡 and 𝛽𝑖𝑡 are household-specific and time-varying, capturing household i’s 

baseline purchase propensity and ad responsiveness on day t. We model them as: 

𝛼𝑖𝑡 = 𝛼0 + 𝛼1𝑍𝑖 + 𝐼(𝐹𝑟𝑒𝑞𝑖𝑡 ≥ 1) × 𝑓(𝐹𝑟𝑒𝑞𝑖𝑡 , 𝑅𝑒𝑐𝑖𝑡 , 𝛼2) + 𝜔𝑖
𝛼  (12) 

𝛽𝑖𝑡 = 𝛽0 + 𝛽1𝑍𝑖 + 𝐼(𝐹𝑟𝑒𝑞𝑖𝑡 ≥ 1) × 𝑓(𝐹𝑟𝑒𝑞𝑖𝑡 , 𝑅𝑒𝑐𝑖𝑡 , 𝛽2) + 𝜔𝑖
𝛽

 (13) 

𝑓(𝐹𝑟𝑒𝑞𝑖𝑡 , 𝑅𝑒𝑐𝑖𝑡 , 𝛼2) = 𝛼20 + 𝛼21log(𝐹𝑟𝑒𝑞𝑖𝑡) + 𝛼22(log(𝐹𝑟𝑒𝑞𝑖𝑡))
2 + 𝛼23 log(𝑅𝑒𝑐𝑖𝑡) +

𝛼24(log(𝑅𝑒𝑐𝑖𝑡))
2  (14) 

𝑓(𝐹𝑟𝑒𝑞𝑖𝑡 , 𝑅𝑒𝑐𝑖𝑡 , 𝛽2) = 𝛽20 + 𝛽21log(𝐹𝑟𝑒𝑞𝑖𝑡) + 𝛽22(log(𝐹𝑟𝑒𝑞𝑖𝑡))
2 + 𝛽23 log(𝑅𝑒𝑐𝑖𝑡) +

𝛽24(log(𝑅𝑒𝑐𝑖𝑡))
2  (15) 

We allow 𝛼𝑖𝑡 and 𝛽𝑖𝑡 to vary by 𝑍𝑖, a vector of observed, time-invariant household 

characteristics. 𝑍𝑖 includes average TV viewing time, focal brand ad and targeted show completion rates, 

and the allocation of TV viewing time across show genres (e.g., sports, reality, news) and dayparts (e.g., 

daytime, prime time, weekends).11 All elements of 𝑍𝑖 are calibrated using data from the month preceding 

the study period and are standardized to have a mean of zero and a standard deviation of one.12  

To capture unobserved, time-invariant heterogeneity in baseline purchase propensity and ad 

responsiveness, 𝜔𝑖
𝛼 and 𝜔𝑖

𝛽
are assumed to follow a bivariate normal distribution with correlation 𝜌: 

(
𝜔𝑖
𝛼

𝜔𝑖
𝛽)~MVN(

0
0
, [
𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ]). 

In Equations (12) and (13), 𝐹𝑟𝑒𝑞𝑖𝑡 denotes purchase frequency (i.e., number of past purchases) 

 
11 The ad completion rate is defined as the total duration of the focal brand’s ads watched by a household divided by 

the total length of all focal brand ads encountered by that household (with at least one second of exposure). The 

targeted show completion rate is defined as the total duration of targeted shows watched by a household divided by 

the total length of all targeted shows it encountered (with at least one minute of exposure). 
12 We do not have access to demographic variables such as age and gender due to the data provider’s data-sharing 

policy. Instead, we use households’ show-viewing behavior from the month preceding the study period as a proxy 

for time-invariant household characteristics. 
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and 𝑅𝑒𝑐𝑖𝑡 denotes purchase recency (i.e., number of days since last purchase).13 The indicator function 

𝐼(𝐹𝑟𝑒𝑞𝑖𝑡 ≥ 1) equals one if household i has made at least one prior purchase before day t, allowing both 

baseline purchase propensity and ad responsiveness to differ between prospective and existing customers. 

For converted households (i.e., 𝐹𝑟𝑒𝑞𝑖𝑡 ≥ 1), we allow 𝛼𝑖𝑡 and 𝛽𝑖𝑡 to evolve as functions of purchase 

frequency and recency, represented by 𝑓(𝐹𝑟𝑒𝑞𝑖𝑡 , 𝑅𝑒𝑐𝑖𝑡 , 𝛼2) and 𝑓(𝐹𝑟𝑒𝑞𝑖𝑡 , 𝑅𝑒𝑐𝑖𝑡 , 𝛽2), respectively. The 

inclusion of log- and squared-log terms in 𝑓(∙) allows both baseline purchase propensity and ad 

responsiveness to vary nonlinearly with purchase frequency and recency.14  

4.3. Operationalization and Validation of the Proposed IV  

4.3.1. Diagnostic Checks on Identifying Assumptions 

The validity of our proposed instrument depends on two identifying assumptions outlined in Section 3.2. 

The first is that the exact time at which a focal brand ad airs within a targeted show is quasi-randomly 

assigned by the network broadcasting the show. This assumption aligns with prevailing industry 

practices: in the U.S., networks typically sell linear TV ad slots based on the show and airing date, 

schedule these slots approximately 7 to 10 days in advance (Bollapragada and Garbiras 2004), and 

implement an equitable rotation of advertisers’ ads across slots within a show to ensure fairness (Wilbur 

et al. 2013, McGranaghan et al. 2022).  

In our empirical application, we assess the quasi-random ordering assumption by comparing 

within-show ad airing times for the focal brand versus non-focal brands across targeted networks. As an 

illustration, Figure 2 presents the distributions of focal and non-focal brand ad airing times across shows 

on MTV, a major network targeted by the focal brand.  

The within-show airing times for focal and non-focal brand ads exhibit nearly identical 

distributions in both the PDFs and cumulative density functions (CDFs). MTV appears to schedule both 

 
13 In the CRM literature, in addition to recency (R) and frequency (F), total monetary value (M) is often found to be 

a strong predictor of an existing customer’s future purchase behavior. However, because frequency and total 

monetary value are highly correlated in our data, we focus exclusively on recency and frequency in this study. 
14 We compare four specifications in Online Appendix E.1: (1) linear, (2) linear + squared, (3) log, and (4) log + 

squared-log. The log + squared-log specification outperforms the other three based on log-likelihood, AIC, and BIC. 
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focal and non-focal brand ads according to a tri-modal distribution. The Kolmogorov-Smirnov test 

confirms that the two distributions are statistically indistinguishable (p = 0.545), indicating that MTV 

scheduled focal brand ads in a manner comparable to other advertisers. Extending this analysis to all 

major networks (see Online Appendix E.2) yields similar results, with no significant differences in timing 

distributions between focal and non-focal brand ads. These findings suggest that potential violations of 

the quasi-random ordering assumption are minimal in our setting. 

Figure 2. PDFs and CDFs of Within-Show Ad Airing Time Distributions on MTV 

 

Notes. Within-show ad airing times are normalized by show duration, where 0 denotes the start and 1 denotes the end. 

 

The second identifying assumption, non-strategic viewership, requires that a household’s 

viewership of a targeted show be independent of the within-show airing time of the focal brand ad. This 

assumption implies that households do not watch or skip the focal brand ad in a systematically different 

manner than they do ads of other brands.  

At first glance, this may appear to be a relatively strong assumption, as households could, in 

principle, adjust their viewing behavior—watching or skipping—based on when the focal brand ad airs, 

implying that treatment might influence which segments of the show are viewed. However, in our 

empirical setting, 95.5% of focal brand ad exposures were watched in their entirety by treated 

households.15 This completion rate is statistically indistinguishable from that of non-focal brand ads 

 
15 In our empirical implementation, a household is considered treated if it is exposed to any part of a focal brand ad, 

regardless of the duration of the exposure. 
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(95.7%, p = 0.12). Moreover, focal brand ad completion rates are highly consistent across household 

types: 95.5% for converted households and 95.6% for unconverted households (p = 0.20).  

These uniformly high completion rates indicate that the risk of focal-brand-specific strategic ad-

skipping behavior is minimal in our context. Taken together, the evidence supports the plausibility of both 

identifying assumptions and provides empirical justification for estimating a household’s probability of 

focal brand ad exposure within a targeted show based on its observed show viewership. 

4.3.2. Operationalizing the Proposed IV 

With both identifying assumptions passing their respective diagnostic checks, we now operationalize the 

proposed IV. Recall from Equation (8) that our household-show-level instrument is defined as 𝐼𝑉𝑖𝑠 =

𝐴𝑖𝑠 − 𝐴𝑠
𝑏𝑃𝑖𝑠. While 𝐴𝑖𝑠 (i.e., whether household i is exposed to a focal brand ad within show s) and 𝐴𝑠

𝑏 

(i.e., whether show s is targeted by the focal brand) are directly observable in our data, constructing 𝐼𝑉𝑖𝑠 

requires estimating 𝑃𝑖𝑠—the probability that household i is exposed to a focal brand ad during show s in 

the event the show is targeted.  

Recall from Equation (6) that 𝑃𝑖𝑠 = ∫ 𝑙𝑠(𝑥) 𝑑𝑥𝑉𝑖𝑒𝑤𝑖𝑠
. Because 𝑉𝑖𝑒𝑤𝑖𝑠 is directly observable from 

household TV viewing data, operationalizing 𝑃𝑖𝑠 requires specifying 𝑙𝑠(∙), which denotes the density 

function used by the network broadcasting show s to draw the within-show airing time of the focal brand 

ad. Under the quasi-random ordering assumption, the same density function governs the timing of all 

within-show ad placements, regardless of advertiser identity.  

Accordingly, we operationalize 𝑙𝑠(∙) as the normalized histogram of within-show ad placements 

observed for the network broadcasting show s; the left panel of Figure 2 shows a representative example. 

Under this operationalization, the estimate 𝑃̂𝑖𝑠 has an intuitive interpretation: it is the proportion of 

within-show ad placements that fall within household i’s viewing segment(s), 𝑉𝑖𝑒𝑤𝑖𝑠 ⊆ [0, 1].  

With this setup, we next describe the implementation procedure in detail. Specifically, we 

nonparametrically estimate 𝑃𝑖𝑠—household i’s probability of exposure to the focal brand’s ad within 

show s, conditional on the focal brand targeting the show—in three steps. 
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Step 1: Constructing the network-specific ad airing time distribution. We discretize within-

show time at the second level and normalize each show’s duration to an interval from 0 (beginning) to 1 

(end), defining an ad’s airing time as the proportion of the show that has elapsed before the ad appears. 

For instance, an ad inserted at the 15th minute of a 30-minute show corresponds to a normalized ad airing 

time of 0.5.  

Using all ad airings of all brands, we construct the empirical PDF of within-show ad airing times 

for each targeted network. These empirical PDFs provide estimates of 𝑙𝑘𝑠(𝑥), which governs the within-

show ad airing time distribution for show s broadcast by network 𝑘𝑠, where 𝑥 ∈ [0,1] represents the 

normalized time within the show.  

The left panel of Figure 3 visualizes our estimate of 𝑙𝑘𝑠(𝑥) for MTV, a representative targeted 

network in our data. The focal brand’s ad airing times follow a tri-modal distribution, with concentrations 

just after the first and second quarters of a show and immediately before the end of the show. 

Figure 3. Within-Show Ad Airing Time Distribution and Focal Brand Ad Exposure Probability 

 

Notes. X-axis represents normalized show duration from 0 (beginning) to 1 (end), and Y-axis represents the 

probability density of an ad airing. In the right panel, the shaded area denotes the portion of the show that was 

viewed (𝑉𝑖𝑒𝑤𝑖𝑠 = {[0,0.5]}), and the red bars illustrate the calculation of estimated within-show focal brand ad 

exposure probability (𝑃̂𝑖𝑠). 
 

Step 2: Identifying household show viewing patterns. Next, we map each household’s actual 

viewership of each targeted show onto the normalized show duration, based on second-by-second TV 
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viewing data provided by LGADS. For example, if household i watched the first 15 minutes of a 30-

minute show s, then 𝑉𝑖𝑒𝑤𝑖𝑠 = {[0,0.5]}. This is illustrated in the right panel of Figure 3, where the shaded 

area represents the portion of the show that was viewed. 

Step 3: Computing the within-show probability of focal brand ad exposure. Conditional on 

the observed household show viewership 𝑉𝑖𝑒𝑤𝑖𝑠, and the estimated targeted network’s ad airing time 

PDF 𝑙𝑘𝑠(𝑥), our estimate of 𝑃𝑖𝑠, denoted by 𝑃̂𝑖𝑠, can be expressed as: 𝑃̂𝑖𝑠 = ∫𝑉𝑖𝑒𝑤𝑖𝑠
𝑙𝑘𝑠(𝑥) 𝑑𝑥. 

The red bars in the right panel of Figure 3 visualize the calculation of 𝑃̂𝑖𝑠: the red area under the 

curve (AUC) represents our nonparametric estimate of 𝑃̂𝑖𝑠 for a household that watched the first half of a 

targeted show on MTV. In this example, the red AUC accounts for 40% of the total AUC, indicating a 

40% probability that the household could be exposed to the focal brand’s ad, given 𝑉𝑖𝑒𝑤𝑖𝑠 and 𝑙𝑘𝑠(𝑥). 

For each household i and show s, given 𝑃̂𝑖𝑠, we compute the household-show-level IV as 𝐼𝑉̂𝑖𝑠 =

𝐴𝑖𝑠 − 𝐴𝑠
𝑏𝑃̂𝑖𝑠. In the illustrative example shown in Figure 3, 𝐼𝑉̂𝑖𝑠 = 1 − 0.4 = 0.6 when household i is 

actually exposed to the focal brand ad, and 𝐼𝑉̂𝑖𝑠 = 0 − 0.4 = −0.4 when the household is unexposed. The 

expected value of this IV is therefore 𝐸(𝐼𝑉𝑖𝑠) = 0.4 × 0.6 + 0.6 × (−0.4) = 0. 

Because focal brand purchases are observed at the daily level, we aggregate the household-show-

level IV across all shows broadcast on day t to obtain the household-day-level IV: 𝐼𝑉̂𝑖𝑡 = ∑ 𝐼𝑉̂𝑖𝑠𝑠∈𝑆𝑡 . 

As noted in Section 3.3, a key property of our household-show-level IV is that it is nonzero only 

when a household partially watches a targeted show. This implies that our identification strategy relies on 

variation in ad exposure status among observations where households watch targeted shows without 

completing them in full. In our data, among households that watched at least one targeted show during the 

study period, only 1.8% completed all the targeted shows they watched (i.e., “always completers”), while 

the remaining 98.2% watched at least one targeted show partially.  

Moreover, at the household-show level, only 7.6% of observations correspond to fully completed 

shows, whereas 51.1% lasted less than 10% of the show’s duration, 33% lasted between 10% and 90%, 

and the remaining 8.3% lasted between 91% and 99%.  
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Taken together, the small share of always completers (1.8%) and the large portion of partially 

completed household-show observations (92.4%) suggest that our identification strategy benefits from 

ample nonzero, network-induced exogenous shocks. This ensures sufficient statistical power to estimate 

the average treatment effect for the general population of smart TV households.16 

4.3.3. Summary Statistics of Operationalized IV and Falsification Checks 

Table 2 presents summary statistics for the realized treatment 𝐴𝑖𝑠, expected treatment 𝐴𝑠
𝑏𝑃̂𝑖𝑠, and the 

instrument 𝐼𝑉̂𝑖𝑠 = 𝐴𝑖𝑠 − 𝐴𝑠
𝑏𝑃̂𝑖𝑠 across all household-show observations in which a household watched any 

portion of a targeted show (i.e., 𝐴𝑠
𝑏 = 1 and 𝑉𝑖𝑒𝑤𝑖𝑠 ≠ ∅). Table 2 also reports summary statistics for the 

corresponding household-day-level aggregates, i.e., 𝐴𝑖𝑡 = ∑ 𝐴𝑖𝑠𝑠∈𝑆𝑡 , ∑ 𝐴𝑠
𝑏𝑃̂𝑖𝑠𝑠∈𝑆𝑡 , and 𝐼𝑉̂𝑖𝑡 = ∑ 𝐼𝑉̂𝑖𝑠𝑠∈𝑆𝑡 . 

At the household-show level, the mean of 𝐴𝑖𝑠 = 0.29 closely aligns with the mean of 𝐴𝑠
𝑏𝑃̂𝑖𝑠, 

indicating that our estimate of expected treatment is unbiased. This, in turn, yields a household-show-

level 𝐼𝑉̂𝑖𝑠 with a mean close to zero (-0.002). A similar pattern emerges at the household-day level, where 

the mean of 𝐴𝑖𝑡 = 0.51, the mean of 𝐴𝑠
𝑏𝑃̂𝑖𝑠 = 0.51, and the mean of 𝐼𝑉̂𝑖𝑡 = −0.004. These results 

indicate that both 𝐼𝑉̂𝑖𝑠 and 𝐼𝑉̂𝑖𝑡 pass the mean-zero falsification check discussed in Section 3.3. 

Table 2. Summary Statistics of Realized Ad Exposure, Expected Ad Exposure, and IV 

 Mean Std. Dev. 5% 25% 50% 75% 95% 

Household-show-level        

   Realized ad exposure (𝐴𝑖𝑠) 0.29 0.45 0.00 0.00 0.00 1.00 1.00 

   Expected ad exposure (𝐴𝑠
𝑏𝑃̂𝑖𝑠) 0.29 0.38 0.001 0.01 0.06 0.56 1.00 

   Proposed IV (𝐼𝑉̂𝑖𝑠) -0.002 0.25 -0.38 -0.04 -0.004 0.00 0.49 

Household-day-level        

   Realized ad exposure (𝐴𝑖𝑡) 0.51 0.84 0.00 0.00 0.00 1.00 2.00 

   Expected ad exposure (∑ 𝐴𝑠
𝑏𝑃̂𝑖𝑠𝑠∈𝑆𝑡 ) 0.51 0.77 0.00 0.01 0.15 0.82 2.00 

   Proposed IV (𝐼𝑉̂𝑖𝑡) -0.004 0.39 -0.61 -0.11 -0.01 0.00 0.75 

Notes. Summary statistics are based on 41,407,672 household-show-level and 23,985,341 household-day-level observations in 

which households watched any portion of a targeted show. 

 

Conceptually, our estimate of expected treatment, 𝐴𝑠
𝑏𝑃̂𝑖𝑠, resembles a propensity score. However, 

unlike traditional propensity score estimation, which typically involves calibrating a predictive model 

 
16 Our identification strategy may lead to a downward bias in the estimated ad effects if households that consistently 

watch entire shows are also more responsive to TV ads. 
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using the realized treatment status (in our case, 𝐴𝑖𝑠) as the dependent variable, we obtain 𝐴𝑠
𝑏𝑃̂𝑖𝑠 

nonparametrically and without reference to 𝐴𝑖𝑠. This fundamentally different approach to expected 

treatment or propensity score estimation underscores that achieving equality between the means of 𝐴𝑖𝑠 

and 𝐴𝑠
𝑏𝑃̂𝑖𝑠 is nontrivial and not mechanically guaranteed.  

Moreover, 𝑐𝑜𝑟𝑟(𝐴𝑖𝑠, 𝐴𝑠
𝑏𝑃̂𝑖𝑠) = 0.89, indicating that our expected treatment estimate is highly 

correlated with the realized treatment, as expected. Most notably, 𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑠, 𝐴𝑖𝑠) = 0.42, 

𝑐𝑜𝑟𝑟(𝑖,𝑠)(𝐼𝑉̂𝑖𝑠, 𝐴𝑠
𝑏) = −0.001, 𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑠, 𝑃̂𝑖𝑠) = −0.001, and 𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑠, 𝐴𝑠

𝑏𝑃̂𝑖𝑠) = −0.009. These results 

indicate that our instrument simultaneously satisfies two key conditions: (a) it is strongly correlated with 

the realized treatment, thereby meeting the relevance condition consistent with Proposition 1, and (b) it 

exhibits near-zero correlation with the show-targeting decision (𝐴𝑠
𝑏), the estimated probability of focal 

brand ad exposure within a targeted show (𝑃̂𝑖𝑠), and the expected treatment estimate (𝐴𝑠
𝑏𝑃̂𝑖𝑠), thereby 

passing the falsification checks on exogeneity consistent with Proposition 2. 

Statistically, achieving both (a) and (b) is nontrivial: it requires that two highly correlated 

variables—𝐴𝑖𝑠 and 𝐴𝑠
𝑏𝑃̂𝑖𝑠—yield a difference, 𝐼𝑉̂𝑖𝑠 = 𝐴𝑖𝑠 − 𝐴𝑠

𝑏𝑃̂𝑖𝑠, that is highly correlated with one (𝐴𝑖𝑠) 

but uncorrelated with the other (𝐴𝑠
𝑏𝑃̂𝑖𝑠). In Online Appendix E.3, we further compare the correlations in 

focal brand ad exposures with the correlations in network-induced shifters across targeted shows, 

providing additional support for the validity of the proposed IV. 

At the household–day level, we observe a similar pattern: 𝑐𝑜𝑟𝑟(𝐴𝑖𝑡 , ∑ 𝐴𝑠
𝑏𝑃̂𝑖𝑠𝑠∈𝑆𝑡 ) = 0.92, 

𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑡 , 𝐴𝑖𝑡) = 0.36, 𝑐𝑜𝑟𝑟(𝑖,𝑡)(𝐼𝑉̂𝑖𝑡 , ∑ 𝐴𝑠
𝑏

𝑠∈𝑆𝑡 ) = −0.006, 𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑡 , ∑ 𝑃̂𝑖𝑠𝑠∈𝑆𝑡
) = −0.007, and 

𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑡 , ∑ 𝐴𝑠
𝑏𝑃̂𝑖𝑠𝑠∈𝑆𝑡 ) = −0.009. These results confirm that our household-day-level instrument 𝐼𝑉̂𝑖𝑡 

likewise satisfies the relevance condition and passes the falsification checks on exogeneity.  

4.4. Control Function Approach 

Because each household’s daily purchase decision is modeled as a discrete choice (Equations 9 and 10), 

we incorporate the proposed instrument into the ad response model using the control function approach 

(Petrin and Train 2010, Wooldridge 2015, Ebbes et al. 2016).  
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In the first stage, we regress each household’s daily focal brand ad exposures 𝐴𝑖𝑡 on its 

instrument 𝐼𝑉̂𝑖𝑡 and other variables that enter the utility function:  

𝐴𝑖𝑡 = 𝛼𝑖𝑡
𝑓
+ 𝛾𝑓𝑋𝑖𝑡 + 𝜑

𝑓𝐼𝑉̂𝑖𝑡 + 𝜀𝑖𝑡
𝑓

 (16) 

𝛼𝑖𝑡
𝑓
= 𝛼0

𝑓
+ 𝛼1

𝑓
𝑍𝑖 + 𝐼(𝐹𝑟𝑒𝑞𝑖𝑡 ≥ 1) × 𝑓(𝐹𝑟𝑒𝑞𝑖𝑡 , 𝑅𝑒𝑐𝑖𝑡 , 𝛼2

𝑓
) + 𝜔𝑖

𝑓
 (17) 

where 𝛼𝑖𝑡
𝑓

 (with superscript “f” denoting “first-stage”) is a household-specific, time-varying intercept 

specified analogously to 𝛼𝑖𝑡 in Equation (12), and 𝜔𝑖
𝑓
~𝑁(0, 𝜎3

2).  

We retain the residual from the first-stage regression, denoted by 𝜀𝑖̂𝑡
𝑓

, and include it in the second 

stage to correct for potential endogeneity bias in the ad response model. To align with the ad stock 

formulation of household daily focal brand ad exposures (i.e., 𝐴𝑆𝑖𝑡 = ∑ (𝜆𝐴)
𝑙𝐴𝑖,𝑡−𝑙

𝑡−1
𝑙=0 ), we construct a 

corresponding “control function stock,” denoted by 𝐶𝐹𝑆𝑖𝑡: 

𝐶𝐹𝑆𝑖𝑡 = ∑ (𝜆𝐶𝐹)
𝑙𝜀𝑖̂,𝑡−𝑙
𝑓𝑡−1

𝑙=0  (18) 

where 𝜆𝐶𝐹 ∈ (0,1) is a decay parameter determined empirically.  

Taken together, in the second stage of the control function approach, we estimate a probit model 

in which 𝐶𝐹𝑆𝑖𝑡 enters the utility function as an additional control: 

𝑈𝑖𝑡 = 𝛼𝑖𝑡 + 𝛽𝑖𝑡𝐴𝑆𝑖𝑡 + 𝛾𝑋𝑖𝑡 + 𝛿𝐶𝐹𝑆𝑖𝑡 + 𝜀𝑖𝑡
𝑠  (19) 

where 𝜀𝑖𝑡
𝑠  (with superscript “s” denoting “second-stage”) is i.i.d. standard normal and uncorrelated with 

𝐴𝑆𝑖𝑡, since 𝐶𝐹𝑆𝑖𝑡 conditions out the variation in the demand shock 𝑢𝑖𝑡 (from Equation 9) that is correlated 

with 𝐴𝑆𝑖𝑡. This specification yields an endogeneity-corrected estimate of 𝛽𝑖𝑡. A test of the null hypothesis 

𝛿 = 0 serves as a formal test of exogeneity for 𝐴𝑆𝑖𝑡 (Wooldridge 2015, Ebbes et al. 2016). 

5. Results 

5.1. Evidence of Bias Correction by the Proposed Identification Strategy 

The first-stage regression results (Equations 16 and 17), reported in Table 3, confirm that 𝐼𝑉̂𝑖𝑡 has the 

expected positive and statistically significant effect on focal brand ad exposure (𝜑𝑓 = 0.970, p < 0.01). 

The instrument is also highly relevant, as evidenced by a univariate F-statistic of 1,902,996 (p < 0.001). 
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Variables related to purchase history, such as frequency, recency, and the first-month post-conversion 

promotion indicator, are uncorrelated with focal brand ad exposure once we condition on 𝐼𝑉̂𝑖𝑡. Although 

competitors’ ad spend is positively associated with focal ad exposure, the effect size is negligible: a one 

standard deviation increase corresponds to only 0.008 additional focal brand ad exposures.  

Table 3. Parameter Estimates from the First-Stage Model 

Model Component Parameter Estimate SE 

Intercept 𝛼0
𝑓
 0.060*** 0.001 

𝐼𝑉̂𝑖𝑡  𝜑𝑓 0.970*** 0.001 

Post Conversion 𝛼2,0
𝑓

 0.005 0.004 

Frequency (log) 𝛼2,1
𝑓

 0.0003 0.003 

Frequency (log) sq. 𝛼2,2
𝑓

 -0.0003 0.002 

Recency (log) 𝛼2,3
𝑓

 -0.002 0.003 

Recency (log) sq. 𝛼2,4
𝑓

 0.0001 0.001 

First Month Post-Conversion Promotion 𝛾1
𝑓
 -0.001 0.002 

Competitor Ad Spend 𝛾2
𝑓
 0.008*** 0.0004 

Month FE - Yes 

Day-of-Week FE - Yes 

Holiday FE - Yes 

Household Characteristics 𝛼1
𝑓
 Yes 

Std. Dev. of Random Intercept 𝜎3 0.012*** 0.001 

Notes. The DV is daily household focal brand ad exposures 𝐴𝑖𝑡. 
***p < 0.01; **p < 0.05; *p < 0.1. 

The second-stage household-daily ad response model is specified as a random-coefficient probit 

estimated using simulated maximum likelihood (SML) with Halton draws (Train 1999). To assess how 

key parameter estimates vary across specifications, we also estimate several simplified versions for 

comparison. The results are reported in Table 4.  

Columns 1 and 2. Column 1 reports the simplest specification, which assumes no ad carryover 

(𝜆𝐴 = 0), no control function (𝛿 = 0 and 𝜆𝐶𝐹 = 0), no moderation of ad responsiveness by time-invariant 

household characteristics (𝛽1 = 0) or purchase history (𝛽2 = 0), and no unobserved heterogeneity in 

baseline purchase propensity or ad responsiveness (𝜎1 = 0, 𝜎2 = 0, and 𝜌 = 0). Column 2 extends this 

baseline by introducing a control function term, allowing 𝛿 to be estimated while fixing the decay 

parameter 𝜆𝐶𝐹 = 0, such that 𝐶𝐹𝑆𝑖𝑡 = 𝜀𝑖̂𝑡
𝑓

.  

The ad effect estimate (𝛽0) declines from 0.023 (p < 0.01) in Column 1 to 0.010 (p < 0.1) in 
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Column 2, highlighting the debiasing effect of the control function term 𝜀𝑖̂𝑡
𝑓

. The positive and significant 

coefficient for 𝐶𝐹𝑆𝑖𝑡 (𝛿 = 0.015, p < 0.05) further confirms that households’ daily ad exposures are 

endogenous, exhibiting positive spurious correlation with households’ daily purchase decisions. 

Columns 3 and 4. Columns 3 and 4 extend Columns 1 and 2, respectively, by allowing the daily 

decay parameters in 𝐴𝑆𝑖𝑡 and 𝐶𝐹𝑆𝑖𝑡 (i.e., 𝜆𝐴 and 𝜆𝐶𝐹) to be empirically determined via a grid search 

(Danaher et al. 2020, Shapiro et al. 2021, Tsai and Honka 2021). Rather than imposing equality between 

𝜆𝐴 and 𝜆𝐶𝐹, we vary them independently from 0 to 0.99 in increments of 0.05 and select the combination 

that maximizes out-of-sample fit, yielding 𝜆𝐴 = 0.7 and 𝜆𝐶𝐹 = 0.95.17 This pair is then held fixed when 

comparing models with or without the control function term and with or without random effects. 

The control function term remains positive and significant (𝛿 = 0.003, p < 0.01).18 Comparing 

the 𝛽0 estimates in Columns 3 and 4, we observe that including 𝐶𝐹𝑆𝑖𝑡 reduces the estimated ad effect by 

more than 50%, from 𝛽0 = 0.016 (p < 0.01) to 𝛽0 = 0.007 (p < 0.05). The continued significance of the 

𝐶𝐹𝑆𝑖𝑡 coefficient (𝛿 = 0.003, p < 0.01) reinforces the presence of endogeneity, consistent with the 

pattern observed in the comparison between Columns 1 and 2. 

Columns 5 and 6. Columns 5 and 6 further extend Columns 3 and 4 by allowing ad 

responsiveness to vary with household characteristics (𝛽1 ≠ 0) and purchase history (𝛽2 ≠ 0), as well as 

by incorporating unobserved heterogeneity in both baseline purchase propensity and ad responsiveness 

(𝜎1 ≠ 0, 𝜎2 ≠ 0, and 𝜌 ≠ 0). Once again, inclusion of the control function term corrects for substantial 

upward bias in the naïve ad effect estimate, as evidenced by the decline in 𝛽0 from 0.018 (p < 0.01) in 

Column 5 to 0.012 (p < 0.01) in Column 6.19  

 
17 For each decay parameter combination, we estimate the ad response model using data from the first 120 days of 

the study period and evaluate the model’s log-likelihood on data from the remaining 13 days.  
18 The correlation between 𝐴𝑆𝑖𝑡 and 𝐶𝐹𝑆𝑖𝑡 is 0.72. To assess potential multicollinearity, we calculate the variance 

inflation factors (VIFs) for 𝐴𝑆𝑖𝑡 and 𝐶𝐹𝑆𝑖𝑡 in the second-stage model, which are 2.42 and 2.27, respectively—well 

below the conventional threshold of 10. 
19 As a robustness check of the identified positive effect of linear TV advertising, we conduct a placebo test by 

replacing the focal brand’s ad exposures with those from a major automobile manufacturer and re-estimating the 

proposed model. The null effect of auto ads on household purchases of the focal brand suggests that the identified 

positive effect of focal brand ads is unlikely to be coincidental (see Online Appendix E.4 for details). 
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For an average unconverted household, the baseline daily conversion rate is 0.012%. The naïve 

ad effect estimate suggests that a single focal-brand ad exposure lifts this rate by approximately 7.5%, 

whereas the endogeneity-corrected estimate from our proposed model yields a smaller but still significant 

lift of 4.6%. For the remainder of the paper, we focus on the endogeneity-corrected estimates from the full 

model (Column 6 of Table 4).  

To situate our estimates within the literature, we compute short- (same-day) and long-term (30-

day) ad elasticities for the average panel household. Elasticities are defined as the percentage change in 

purchase incidence over the same day (30 days) in response to a 1% change in ad stock. After correcting 

for endogeneity, the short- and long-term elasticities are 0.045 and 0.143, respectively, compared with 

0.072 and 0.222 without correction—an overstatement of 55%. These naïve elasticities closely align with 

the mean short- and long-term elasticities of 0.12 and 0.24 reported by Sethuraman et al. (2011), 

highlighting the risk of substantially inflated estimates when endogeneity is not properly addressed.20 

 
20 Our endogeneity-corrected long-term elasticity of 0.143 remains notably higher than the 0.023 reported by 

Shapiro et al. (2021), likely reflecting differences in brand maturity. Shapiro et al. (2021) primarily examine mature 

brands, for which prior research consistently documents lower ad elasticities (Sethuraman et al. 2011). 



 

 

Table 4. Second-Stage Estimation Results for the Ad Response Model 

  

No Carryover or 

Moderation Effects 

w/o CF (1) 

No Carryover or 

Moderation Effects 

w/ CF (2) 

No Moderation 

Effects 

w/o CF (3) 

No Moderation 

Effects 

w/ CF (4) 

Full Model  

w/o CF (5) 

Full Model  

w/ CF (6) 

 Parameter Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE 

Intercept 𝛼0 -3.338*** 0.005 -3.368*** 0.005 -3.370*** 0.005 -3.368*** 0.006 -3.430*** 0.006 -3.429*** 0.006 

Ad Stock (𝐴𝑆𝑖𝑡) 𝛽0 0.023*** 0.003 0.010* 0.005 0.016*** 0.002 0.007** 0.003 0.018*** 0.003 0.012*** 0.003 

Control Function (𝐶𝐹𝑆𝑖𝑡) 𝛿 - - 0.015** 0.007 - - 0.003*** 0.001 - - 0.003*** 0.001 

Post Conversion 𝛼2,0 1.611*** 0.010 1.611*** 0.010 1.611*** 0.010 1.611*** 0.009 1.499*** 0.012 1.498*** 0.013 

Frequency (log) 𝛼2,1 0.516*** 0.007 0.516*** 0.007 0.516*** 0.007 0.516*** 0.007 0.459*** 0.008 0.459*** 0.008 

Frequency (log) sq. 𝛼2,2 -0.045*** 0.003 -0.045*** 0.003 -0.045*** 0.003 -0.045*** 0.003 -0.061*** 0.003 -0.061*** 0.003 

Recency (log) 𝛼2,3 -0.120*** 0.006 -0.120*** 0.006 -0.120*** 0.006 -0.120*** 0.006 -0.103*** 0.008 -0.103*** 0.008 

Recency (log) sq. 𝛼2,4 -0.027*** 0.001 -0.027*** 0.001 -0.027*** 0.001 -0.027*** 0.001 -0.028*** 0.002 -0.028*** 0.002 

Adstock × Post 

Conversion 
𝛽2,0 - - - - - - - - 0.001 0.013 0.004 0.013 

Ad Stock × Freq (log) 𝛽2,1 - - - - - - - - 0.017* 0.009 0.019* 0.009 

Ad Stock × Freq (log) sq. 𝛽2,2 - - - - - - - - -0.010* 0.005 -0.010* 0.005 

Ad Stock × Rec (log) 𝛽2,3 - - - - - - - - -0.011 0.011 -0.011 0.011 

Ad Stock × Rec (log) sq. 𝛽2,4 - - - - - - - - 0.004** 0.002 0.004** 0.002 

First Month Post-

Conversion Promotion 
𝛾1 0.200*** 0.005 0.200*** 0.006 0.200*** 0.005 0.200*** 0.005 0.189*** 0.006 0.189*** 0.006 

Competitor Ad Spend 𝛾2 0.014*** 0.005 0.014*** 0.004 0.014*** 0.005 0.014*** 0.006 0.014** 0.005 0.014*** 0.005 

Month FE - Yes Yes Yes Yes Yes Yes 

Day-of-Week FE - Yes Yes Yes Yes Yes Yes 

Holiday FE - Yes Yes Yes Yes Yes Yes 

Carryover 𝜆𝐴/𝜆𝐶𝐹 0/0 0/0 0.7/0 0.7/0.95 0.7/0 0.7/0.95 

Household Characteristics 𝛼1 Yes Yes Yes Yes Yes Yes 

HH Char. × Adstock 𝛽1 - - - - Yes Yes 

Std. Dev. (Intercept) 𝜎1 - - - - 0.197*** 0.004 0.198*** 0.005 

Std. Dev. (Adstock) 𝜎2 - - - - 0.003 0.015 0.015 0.012 

Rho 𝜌 - - - - -0.553 0.446 -0.538 0.351 

Notes. Columns (1) and (2) assume no carryover of ad effects, no evolution of ad responsiveness, and no unobserved heterogeneity. Columns (3) and (4) assume 

no evolution of ad responsiveness and no unobserved heterogeneity. Columns (5) and (6) incorporate all model components. Estimates in Columns (2), (4), and 

(6) are obtained using the control function approach, with standard errors derived from 50 bootstrapped samples. ***p < 0.01; **p < 0.05; *p < 0.1. 



 

 

5.2. Baseline Purchase Propensity and Purchase History 

The 𝛼2 estimates in Column 6 of Table 4 capture how a household’s baseline purchase propensity evolves 

with its purchase history. Following the first purchase, baseline propensity rises sharply (𝛼2,0 = 1.498, p < 

0.01), corresponding to an increase in daily purchase probability from 0.012% for an unconverted 

household to 1.5% for a newly converted household.  

One likely explanation for this increase is the initial setup cost associated with using the focal 

brand’s platform. Before placing their first order, households must download the app (or access the 

website), create an account, and enter a payment method. Because these steps are not required for 

subsequent purchases, the reduction in transaction friction naturally leads to a higher baseline purchase 

propensity after the first purchase. 

Among converted households, prior purchase frequency has a positive but diminishing effect on 

baseline purchase propensity (𝛼2,1 = 0.459, p < 0.01; 𝛼2,2 = −0.061, p < 0.01), consistent with self-

reinforcing habit formation, particularly during the early stages of repeat purchasing. In contrast, baseline 

purchase propensity declines with increasing recency (𝛼2,3 = −0.103, p < 0.01; 𝛼2,4 = −0.028, p < 0.01), 

indicating that households become less likely to repurchase the longer they wait, a pattern consistent with 

the recency-trap effect documented in other contexts (Neslin et al. 2013).  

Taken together, these results show that baseline purchase propensity continues to evolve with 

purchase frequency and recency beyond the initial post-conversion increase. For example, a household 

with one prior purchase has a 1.5% daily probability of making a purchase, which rises to 4.0% after three 

purchases and to 5.5% after five. Conversely, a household that purchased yesterday has a 1.5% 

probability of buying again today, which declines to 0.9% after one week and to 0.3% after four weeks. 

5.3. Ad Responsiveness and Purchase History 

We next examine how a household’s responsiveness to the focal brand’s TV ads varies with its purchase 

history, as captured by the 𝛽2 estimates in Column 6 of Table 4. Since 𝛽2,0 is statistically insignificant (p 

> 0.1), there is no evidence that a household becomes either more or less responsive to the focal brand’s 
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TV ads immediately following its trial purchase. To better interpret how ad responsiveness evolves with 

prior purchases, Figure 4 visualizes the nonlinear patterns implied by the 𝛽2 estimates. 

The left panel of Figure 4 shows an inverted U-shaped relationship between ad responsiveness 

and purchase frequency. Households are most responsive to the focal brand’s TV ads after two to four 

prior purchases—that is, during the early stages of repeat purchasing. Beyond this point, ad 

responsiveness declines as households become more frequent purchasers, reflecting a reduced impact of 

TV advertising on habitual buyers. In contrast, the right panel of Figure 4 depicts a U-shaped relationship 

between ad responsiveness and purchase recency. Households are least responsive to the focal brand’s TV 

ads approximately three to five days after a purchase. 

Figure 4. Ad Responsiveness by Purchase Frequency and Recency 

 

Notes. The moderating effects of purchase frequency and recency on ad responsiveness (𝛽𝑖𝑡) reveal an inverted U-shaped 

relationship with frequency and a U-shaped relationship with recency.  

 

These patterns are also reflected in the short-term ad elasticity estimates. For an average 

household with one prior purchase, same-day ad elasticity increases from 0.040 to 0.056 following the 

second purchase but declines to 0.046 after the fifth. Likewise, for a typical household with one prior 

purchase, same-day ad elasticity decreases from 0.040 to 0.027 one week after the last purchase but then 

rises to 0.078 four weeks later. 

While these results suggest that the focal brand’s TV ad effectiveness varies nonmonotonically 

with prior purchase frequency and recency, the underlying mechanisms remain unclear. Future research is 
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needed to better understand the drivers of these dynamics. One plausible explanation is that, with each 

additional purchase, the effectiveness of TV ads may shift due to changes in their informational versus 

emotional roles (Tellis 1988, Deighton et al. 1994, Ackerberg 2001, 2003).  

Regardless of the specific mechanisms, the complex dynamics of baseline purchase propensity 

and ad responsiveness with respect to purchase frequency and recency yield important managerial 

implications for behaviorally targeted TV advertising. First, to capture the full impact of TV ads, 

advertisers must account for state-dependence effects, such as habit formation acceleration and recency 

trap avoidance, in addition to same-day and carryover effects. Second, when formulating targeting 

strategies, advertisers should incorporate prior purchase frequency and recency as segmentation criteria 

(e.g., prospective vs. existing customers, early repeat vs. habitual purchasers, and recent vs. lapsed 

purchasers). For instance, the focal brand may benefit from targeting lapsed households, those who have 

not purchased in an extended period, given their substantially higher ad responsiveness. However, 

because baseline purchase propensity declines sharply with increasing recency, timely intervention is 

crucial to prevent households from falling into a self-reinforcing recency trap. Effective behavioral 

targeting should therefore balance these opposing forces by accounting for both the decline in baseline 

purchase propensity and the rise in ad responsiveness as recency increases. 

5.4. Household Heterogeneity and Other Control Variables 

Table 5 presents parameter estimates capturing observed household heterogeneity in baseline purchase 

propensity and ad responsiveness. Households that watch more TV generally exhibit lower baseline 

purchase propensities, likely because heavy TV viewers tend to be older and less engaged with food 

delivery services. In contrast, households with higher sports viewership display higher baseline purchase 

propensities, consistent with sports audiences skewing younger—a demographic more inclined to adopt 

food delivery. Conversely, heavy news viewers, who also skew older, appear more reliant on traditional 

meal preparation and therefore show a lower likelihood of using digital food ordering services. 

We also find that households with greater sports viewership are more responsive to the focal 

brand’s TV ads. In contrast, heavy TV viewers exhibit lower ad responsiveness, possibly due to ad 
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saturation: greater exposure to a wide range of advertisers may lead to ad fatigue and reduced attention to 

any single advertiser, including the focal brand.  

These observed heterogeneities are economically meaningful. For instance, a one standard 

deviation increase in a typical household’s sports viewership raises short-term ad elasticity from 0.045 to 

0.061, while a one standard deviation increase in overall TV viewing reduces it from 0.045 to 0.030.  

Table 5. Parameter Estimates for Observed Household Heterogeneity 

  Baseline Purchase Propensity (𝜶𝟏) Ad Responsiveness (𝜷𝟏) 

 Estimate SE Estimate SE 

Avg. TV Viewing -0.019*** 0.002 -0.004** 0.002 

Sports Viewing 0.014*** 0.002 0.004* 0.002 

Reality Viewing -0.003* 0.002 0.003 0.002 

News Viewing -0.012*** 0.002 0.002 0.002 

Daytime Viewing -0.006** 0.002 -0.001 0.003 

Prime Time Viewing -0.011*** 0.002 0.001 0.003 

Weekend Viewing -0.005** 0.002 -0.0004 0.003 

Ad Completion 0.001 0.001 -0.004 0.003 

Show Completion 0.003** 0.001 0.003 0.002 

Notes. The standard errors are derived from 50 bootstrapped samples. ***p < 0.01; **p < 0.05; *p < 0.1. 

Beyond observed heterogeneities, Column 6 of Table 4 also reveals substantial unobserved 

heterogeneity in baseline purchase propensity (𝜎1 = 0.156, p < 0.01). However, unobserved heterogeneity 

in ad responsiveness is not statistically significant, nor is there evidence of a significant correlation 

between unobserved baseline purchase propensity and ad responsiveness. 

Lastly, we examine the effects of two key control variables. The first-month post-conversion 

promotion, available exclusively to new customers, has a positive and significant effect (𝛾1 = 0.189, p < 

0.01), corresponding to a 58% increase in daily purchase probability. Competitor ad spend likewise exerts 

a positive and significant influence on focal brand purchase propensity (𝛾2 = 0.014, p < 0.01). The 

implied same-day competitor ad elasticity is 0.016 for unconverted households, approximately 36% of the 

focal brand’s own same-day ad elasticity.  

This finding aligns with prior research documenting positive spillover effects from competitor TV 

advertising. For example, Anderson and Simester (2013) and Sahni (2016) report such spillovers in field 

experiments, while Du et al. (2019) find that immediate TV ad elasticity of brand search ranges from 0.02 
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to 0.22 for own-brand ads and from 0.003 to 0.05 for competitor ads. Consistent with these studies, our 

results suggest that competitor TV ads can indirectly benefit the focal brand, potentially because the 

category expansion effect outweighs the share-stealing effect in a relatively young industry. 

6. Concluding Remarks 

The widespread adoption of ACR-enabled smart TVs and STBs has made second-by-second TV viewing 

data available to networks and advertisers at unprecedented scales. This high-granularity, large-scale 

audience measurement data is emerging as a viable contender for TV ad currency. When merged with 

first-party CRM data, modern single-source data have the potential to transform the landscape of TV 

advertising—not only by enabling improved targeting and attribution in practice but also by fostering 

methodological innovation in marketing science. 

This research contributes to such methodological advancement by developing a novel IV for 

estimating the causal effect of linear TV advertising using household-level observational data. Our 

method addresses a central challenge in ad effectiveness research based on such data: the lack of a 

generalizable causal identification strategy that is robust to both targeting and activity biases. The key 

insight underlying our approach is that, in linear TV—where ad buys are primarily targeted at the show 

level—networks typically assign within-show ad slots across advertisers in a quasi-random manner. This 

practice introduces stochastic variation in realized ad exposure among households that watch only part of 

a targeted show. 

Through formal proofs, a stylized numerical example, and an empirical application, we show that, 

under the identifying assumptions, there exists exogenous, network-induced variation in household-show-

level linear TV ad exposures that can be leveraged for causal identification. The core innovation of our 

method lies in showing how this exogenous variation can be extracted nonparametrically—as the residual 

between a household’s realized ad exposure and its expected treatment—and used as an instrument at 

either the household-show or household-day level. A notable feature of this approach is that the expected 

treatment is estimated without fitting a predictive model using the realized treatment as the dependent 

variable, distinguishing it from traditional propensity score-based methods. 
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For IV-based identification, instrument exogeneity is inherently untestable in real-world 

applications. Nevertheless, a key advantage of our IV construction approach is that it enables multiple 

empirical checks to assess the credibility of both the identifying assumptions and the instrument itself:  

• Quasi-random ordering assumption: Examine whether the empirical distribution of within-show ad 

airing times for the focal brand is statistically indistinguishable from that of non-focal brands. Passing 

this check increases confidence that networks assign within-show ad slots for the focal brand through 

a quasi-random process similar to that used for other advertisers. 

• Non-strategic viewership assumption: Examine whether ad-skipping rates for the focal brand are 

comparable to those for non-focal brands. Passing this check—particularly when ad-skipping rates are 

low (e.g., below 4.5%, as in our data)—increases confidence that viewers do not avoid focal brand 

ads in a systematically different manner than they do ads of other brands. 

• Instrument validity: Examine whether the constructed IV (a) has a mean close to zero, ensuring the 

expected treatment estimate is unbiased, (b) is strongly and positively correlated with realized 

treatment, satisfying the relevance condition; and (c) is uncorrelated with the expected treatment 

estimate, thereby passing the falsification check for exogeneity. 

With respect to practical effectiveness, our empirical results show that omitting the proposed IV 

correction for endogeneity leads to naïve ad elasticity estimates overstated by 55%, even after controlling 

for a rich set of covariates and incorporating random effects for both baseline purchase propensity and ad 

responsiveness. This substantial bias correction underscores the value of our method for achieving 

credible causal inference in observational TV advertising research.  

Substantively, in the context of food delivery services, we find that baseline purchase propensity 

rises sharply after the initial purchase and continues to increase with each subsequent purchase, albeit at a 

diminishing rate—a pattern of positive reinforcement consistent with habit formation. We also observe a 

recency trap effect: baseline purchase propensity declines steadily with each additional day without a 

purchase. Moreover, ad responsiveness varies systematically with past purchase behavior. Early repeat 

purchasers (those with two to four prior purchases) exhibit the highest responsiveness to the focal brand’s 
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TV ads. With respect to purchase recency, ad responsiveness initially declines immediately following a 

purchase but subsequently rebounds as more time elapses without another purchase. 

As modern single-source data, such as those employed in this study, become increasingly 

available, our identification approach offers a portable solution for marketing researchers, advertisers, and 

policymakers seeking to measure TV ad effectiveness using household-level observational data. While 

RCTs are often costly, logistically challenging, or infeasible in the linear TV context, our method 

provides a practical and cost-efficient alternative, enabling robust causal inference at scale by leveraging 

the quasi-random ordering of within-show ad placements inherent to linear TV advertising. 

Several boundary conditions of our identification strategy warrant future extension. First, the 

quasi-random ordering assumption may not hold in contexts where advertisers pre-negotiate specific ad 

positions or where networks employ addressable technologies that adjust ad timing based on viewer 

characteristics. Second, the assumption of non-strategic viewership may be violated if the focal advertiser 

elicits systematically different viewing behaviors (e.g., viewers are uniquely inclined to attend to or skip 

its ads). Third, although our identification strategy addresses the two primary sources of endogeneity—

targeting and activity biases—other sources may persist (e.g., advertisers strategically tailor ad copy or 

campaign objectives based on show audience characteristics). Future research could extend our 

framework to accommodate these complexities. 

All in all, we hope our study encourages further exploration of the full potential of large-scale, 

high-granularity single-source data. As the history of marketing science demonstrates, each wave of 

audience measurement innovation has spurred advances in empirical methods and scientific discovery 

(Du et al. 2021). We view our work as part of this ongoing evolution, providing a methodological 

foundation for future research on the causal effects and effectiveness of TV advertising. 
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Online Appendix A: Comparison Tables with Prior Studies 

Table A1. Selected Prior Studies on Causal Identification Strategies in TV Advertising 

  Unit of Analysis 
Temporal 

Granularity 

Dependent 

Variable 

(Industry) 

Identification Strategy Ad Elasticity 

Joo et al. (2014) Nation Hourly 

Online search 

(financial 

services) 

Exogeneity in precise ad 

insertion timing 
0.17 

Hartmann and Klapper 

(2018) 
DMA Weekly Sales (beverage) 

Exogeneity in local 

Superbowl viewership  
0.03-0.1 

Shapiro (2018) County Monthly 
Sales 

(pharmaceuticals) 

DMA border 

discontinuity 
0.01-0.037 

Sinkinson and Starc (2019) DMA Monthly 
Revenue 

(pharmaceuticals) 

Political advertising as 

IV 
0.076 

Thomas (2020) Store Weekly 
Sales 

(pharmaceuticals) 

Spillover from  

mass advertising as IV 
0.042 

Li et al. (2024) County Yearly 

Vote share 

(presidential 

elections) 

Preference externality 

caused by others as IV 
- 

Current Study Household Daily 

Purchase 

(food delivery 

services) 

Quasi-random within-

show ad airing timing 

0.045  

(same-day)  

0.143  

(30-day) 

 

Table A2. Selected Prior Studies on the Impact of TV Advertising Using Single-Source Data 

 Data Model 

 Number of 

Households 

Temporal 

Granularity 

Trial 

Purchase 

Observed 

TV Viewing 

Data  

State 

Dependence in 

Baseline 

Propensity 

State Dependence 

in Ad 

Responsiveness 

Treatment of 

Endogeneity  

Tellis (1988) 251 Weekly No Ad Exposure Frequency Frequency No 

Pedrick & Zufryden 

(1991) 
584 Daily No Ad Exposure 

Frequency & 

Recency 
No No 

Deighton et al. (1994) 167 Weekly No Ad Exposure Frequency Frequency No 

Lodish et al. (1995) 389 Weekly No 
Test 

Conditions 
No No 

Split Cable 

Tests 

Tellis & Weiss (1995) 162 Daily No Ad Exposure Frequency No No 

Ackerberg (2001) 1,775 Weekly Yes Ad Exposure Frequency Frequency No 

Ackerberg (2003) 1,775 Weekly Yes Ad Exposure Frequency Frequency No 

Hu et al. (2007) 3,000 Weekly No 
Test 

Conditions 
No No 

Split Cable 

Tests 

Deng & Mela (2018) 834 
Second-by-

Second 
No 

Ad & Show 

Exposure 
Frequency No No 

Tuchman et al. (2018) 6,437 
Second-by-

Second 
No Ad Exposure Frequency Frequency 

Simultaneous 

Equation 

Current Study 1.4 Million 
Second-by-

Second 
Yes 

Ad & Show 

Exposure 

Frequency & 

Recency 

Frequency & 

Recency 

IV with 

Control 

Function 

 

Additional References 

Pedrick JH, Zufryden FS (1991) Evaluating the impact of advertising media plans: A model of consumer 

purchase dynamics using single-source data. Mktg. Sci. 10(2):111-130. 

Tellis GJ, Weiss DL (1995) Does TV advertising really affect sales? The role of measures, models, and 

data aggregation, J. Advertising 24(3), 1-12.  
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Online Appendix B: Proofs of Propositions and Corollary 

Proposition 1: Under the assumption that the DGP of 𝐴𝑖𝑠 follows Equations (1)–(5), it holds that 

𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝐴𝑖𝑠) > 0 and 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝑢𝑖𝑠) = 0, thereby satisfying the relevance condition and the exclusion 

restriction, respectively, for 𝐼𝑉𝑖𝑠 to be a valid instrument for 𝐴𝑖𝑠. 

Proof: The relevance condition, 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝐴𝑖𝑠) > 0, holds because, recalling from Equation (8) that 

𝐼𝑉𝑖𝑠 = 𝐴𝑠
𝑏Δ𝑖𝑠, and 𝐴𝑖𝑠 = 𝐴𝑠

𝑏𝑃𝑖𝑠 + 𝐴𝑠
𝑏Δ𝑖𝑠. This implies that when 𝐴𝑠

𝑏 = 1, the nonzero values of Δ𝑖𝑠, which 

appears in both 𝐼𝑉𝑖𝑠 and 𝐴𝑖𝑠, induce a positive correlation between them.  

To satisfy the exclusion restriction, we must show that 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠 , 𝑢𝑖𝑠) = 𝑐𝑜𝑟𝑟(𝐴𝑠
𝑏Δ𝑖𝑠, 𝑢𝑖𝑠) = 0, 

which is equivalent to showing that 𝑐𝑜𝑣(𝐴𝑠
𝑏Δ𝑖𝑠, 𝑢𝑖𝑠) = 0.  

Since 𝑐𝑜𝑣(𝐴𝑠
𝑏Δ𝑖𝑠, 𝑢𝑖𝑠) = 𝐸(𝐴𝑠

𝑏Δ𝑖𝑠𝑢𝑖𝑠) − 𝐸(𝐴𝑠
𝑏Δ𝑖𝑠) × 𝐸(𝑢𝑖𝑠) and by definition 𝐸(𝑢𝑖𝑠) = 0, it 

suffices to show that 𝐸(𝐴𝑠
𝑏Δ𝑖𝑠𝑢𝑖𝑠) = 0.  

We apply the law of iterated expectations: 𝐸(𝐴𝑠
𝑏Δ𝑖𝑠𝑢𝑖𝑠) = 𝐸𝑢 (𝐸(𝐴𝑠

𝑏Δ𝑖𝑠𝑢𝑖𝑠|𝑢𝑖𝑠)) =

∫𝐸(𝐴𝑠
𝑏Δ𝑖𝑠|𝑢𝑖𝑠)𝑢𝑖𝑠ℎ(𝑢𝑖𝑠)𝑑𝑢𝑖𝑠, where ℎ(∙) is the PDF of 𝑢𝑖𝑠. Therefore, it suffices to show that 

𝐸(𝐴𝑠
𝑏Δ𝑖𝑠|𝑢𝑖𝑠) = 0 for all 𝑢𝑖𝑠. 

Since 𝐴𝑠
𝑏Δ𝑖𝑠 ≠ 0 only when 𝐴𝑠

𝑏 = 1 and Δ𝑖𝑠 ≠ 0, it suffices to show that 𝐸(Δ𝑖𝑠|𝐴𝑠
𝑏 = 1, 0 <

𝑃𝑖𝑠 < 1, 𝑢𝑖𝑠) = 0, i.e., the network-induced shifter has an expected value of zero when a household 

watches a targeted show partially. 

Given that Pr[Δ𝑖𝑠 = 1 − 𝑃𝑖𝑠] = 𝑃𝑖𝑠, and Pr[Δ𝑖𝑠 = −𝑃𝑖𝑠] = 1 − 𝑃𝑖𝑠, we have: 𝐸(Δ𝑖𝑠|𝐴𝑠
𝑏 = 1, 0 <

𝑃𝑖𝑠 < 1, 𝑢𝑖𝑠) = (1 − 𝑃𝑖𝑠)𝑃𝑖𝑠 + (−𝑃𝑖𝑠)(1 − 𝑃𝑖𝑠) = 0. Q.E.D. 

Intuitively, the core of the above proof lies in the fact that, as long as—for targeted shows (𝐴𝑠
𝑏 =

1) and partial household show-viewing (0 < 𝑃𝑖𝑠 < 1)—the network-induced within-show ad exposure 

shifter Δ𝑖𝑠 follows a two-point distribution with an expected value of zero, our proposed household-show-

level instrument 𝐼𝑉𝑖𝑠 = 𝐴𝑖𝑠 − 𝐴𝑠
𝑏𝑃𝑖𝑠 = 𝐴𝑠

𝑏Δ𝑖𝑠 satisfies the exclusion restriction. 

The above proof also indicates that, before using our proposed IV in an empirical application, one 

should check whether the mean of nonzero Δ̂𝑖𝑠 is close to zero. 

 

Corollary 1: Under the assumption that the DGP of 𝐴𝑖𝑠 follows Equations (1)–(5), it holds that 

𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑡 , 𝐴𝑖𝑡) > 0 and 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑡 , 𝑢𝑖𝑡) = 0, thereby satisfying the relevance condition and the exclusion 

restriction, respectively, for 𝐼𝑉𝑖𝑡 to be a valid instrument for 𝐴𝑖𝑡.
  

Proof: Recall that 𝐼𝑉𝑖𝑡 = ∑ 𝐼𝑉𝑖𝑠𝑠∈𝑆𝑡 = ∑ 𝐴𝑠
𝑏Δ𝑖𝑠𝑠∈𝑆𝑡 . The relevance condition 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑡 , 𝐴𝑖𝑡) > 0 clearly 

holds because 𝐴𝑖𝑡 = ∑ 𝐴𝑖𝑠𝑠∈𝑆𝑡 = ∑ (𝐴𝑠
𝑏𝑃𝑖𝑠 + 𝐼𝑉𝑖𝑠)𝑠∈𝑆𝑡 = ∑ 𝐴𝑠

𝑏𝑃𝑖𝑠𝑠∈𝑆𝑡 + ∑ 𝐴𝑠
𝑏Δ𝑖𝑠𝑠∈𝑆𝑡 .  

For the exclusion restriction, having 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑡 , 𝑢𝑖𝑡) = 𝑐𝑜𝑟𝑟(∑ 𝐴𝑠
𝑏Δ𝑖𝑠𝑠∈𝑆𝑡 , 𝑢𝑖𝑡) = 0 is equivalent 

to 𝑐𝑜𝑣(∑ 𝐴𝑠
𝑏Δ𝑖𝑠𝑠∈𝑆𝑡 , 𝑢𝑖𝑡) = 0. Given that 𝑐𝑜𝑣(𝐴𝑠

𝑏Δ𝑖𝑠, 𝑢𝑖𝑠) = 0 (as proven in Proposition 1) and 𝑢𝑖𝑠 

represents an expanded set of confounders that includes 𝑢𝑖𝑡 as an element, it directly follows that 

𝑐𝑜𝑣(𝐴𝑠
𝑏Δ𝑖𝑠, 𝑢𝑖𝑡) = 0. Applying the additive property of covariance, we have 𝑐𝑜𝑣(∑ 𝐴𝑠

𝑏Δ𝑖𝑠𝑠∈𝑆𝑡 , 𝑢𝑖𝑡) =

∑ 𝑐𝑜𝑣(𝐴𝑠
𝑏Δ𝑖𝑠, 𝑢𝑖𝑡) = 0𝑠∈𝑆𝑡 . Q.E.D. 
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Proposition 2: Under the assumption that the DGP of 𝐴𝑖𝑠 follows Equations (1)–(5), it holds that 

𝑐𝑜𝑟𝑟(𝑖,𝑠)(𝐼𝑉𝑖𝑠, 𝐴𝑠
𝑏) = 0, 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝑃𝑖𝑠) = 0, and 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝐴𝑠

𝑏𝑃𝑖𝑠) = 0. 

Proof: We first prove 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝐴𝑠
𝑏𝑃𝑖𝑠) = 0. Recall that 𝐼𝑉𝑖𝑠 = 𝐴𝑠

𝑏Δ𝑖𝑠. Showing 𝑐𝑜𝑟𝑟(𝐴𝑠
𝑏Δ𝑖𝑠, 𝐴𝑠

𝑏𝑃𝑖𝑠) = 0 

is equivalent to showing 𝑐𝑜𝑣(𝐴𝑠
𝑏Δ𝑖𝑠, 𝐴𝑠

𝑏𝑃𝑖𝑠) = 0. Note that 𝑐𝑜𝑣(𝐴𝑠
𝑏Δ𝑖𝑠, 𝐴𝑠

𝑏𝑃𝑖𝑠) = 𝐸 ((𝐴𝑠
𝑏)
2
Δ𝑖𝑠𝑃𝑖𝑠) −

𝐸(𝐴𝑠
𝑏Δ𝑖𝑠) × 𝐸(𝐴𝑠

𝑏𝑃𝑖𝑠).  

Since 𝐴𝑠
𝑏Δ𝑖𝑠 ≠ 0 only when 𝐴𝑠

𝑏 = 1 and Δ𝑖𝑠 ≠ 0, to show 𝐸(𝐴𝑠
𝑏Δ𝑖𝑠) = 0, it suffices to show 

𝐸(Δ𝑖𝑠|𝐴𝑠
𝑏 = 1, 0 < 𝑃𝑖𝑠 < 1) = 0, i.e., the network-induced shifter has an expected value of zero when a 

household watches a targeted show partially. 

Given that Pr[Δ𝑖𝑠 = 1 − 𝑃𝑖𝑠] = 𝑃𝑖𝑠, and Pr[Δ𝑖𝑠 = −𝑃𝑖𝑠] = 1 − 𝑃𝑖𝑠, we have: 𝐸(Δ𝑖𝑠|𝐴𝑠
𝑏 = 1, 0 <

𝑃𝑖𝑠 < 1) = (1 − 𝑃𝑖𝑠)𝑃𝑖𝑠 + (−𝑃𝑖𝑠)(1 − 𝑃𝑖𝑠) = 0, which implies 𝐸(𝐴𝑠
𝑏Δ𝑖𝑠) = 0. 

Similarly, since (𝐴𝑠
𝑏)
2
Δ𝑖𝑠𝑃𝑖𝑠 ≠ 0 only when 𝐴𝑠

𝑏 = 1 and Δ𝑖𝑠 ≠ 0, to show 𝐸 ((𝐴𝑠
𝑏)
2
Δ𝑖𝑠𝑃𝑖𝑠) = 0, 

it suffices to show 𝐸(Δ𝑖𝑠𝑃𝑖𝑠|𝐴𝑠
𝑏 = 1, 0 < 𝑃𝑖𝑠 < 1) = 0 for all 𝑃𝑖𝑠. 

Again, given that Pr[Δ𝑖𝑠 = 1 − 𝑃𝑖𝑠] = 𝑃𝑖𝑠, and Pr[Δ𝑖𝑠 = −𝑃𝑖𝑠] = 1 − 𝑃𝑖𝑠, we have: 

𝐸(Δ𝑖𝑠𝑃𝑖𝑠|𝐴𝑠
𝑏 = 1, 0 < 𝑃𝑖𝑠 < 1) = (1 − 𝑃𝑖𝑠)𝑃𝑖𝑠𝑃𝑖𝑠 + (−𝑃𝑖𝑠)𝑃𝑖𝑠(1 − 𝑃𝑖𝑠) = 0 for all 𝑃𝑖𝑠, which implies 

𝐸 ((𝐴𝑠
𝑏)
2
Δ𝑖𝑠𝑃𝑖𝑠) = 0, thereby concluding the proof of 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝐴𝑠

𝑏𝑃𝑖𝑠) = 0. 

As for showing 𝑐𝑜𝑟𝑟(𝑖,𝑠)(𝐴𝑠
𝑏Δ𝑖𝑠, 𝐴𝑠

𝑏) = 0, it is equivalent to showing 𝑐𝑜𝑣(𝑖,𝑠)(𝐴𝑠
𝑏Δ𝑖𝑠, 𝐴𝑠

𝑏) = 0. 

Note that 𝑐𝑜𝑣(𝑖,𝑠)(𝐴𝑠
𝑏Δ𝑖𝑠, 𝐴𝑠

𝑏) = 𝐸 ((𝐴𝑠
𝑏)
2
Δ𝑖𝑠) − 𝐸(𝐴𝑠

𝑏Δ𝑖𝑠) × 𝐸(𝐴𝑠
𝑏).  

Following the proof of 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝐴𝑠
𝑏𝑃𝑖𝑠), similar to showing 𝐸(𝐴𝑠

𝑏Δ𝑖𝑠) = 0, it is straightforward 

to show 𝐸 ((𝐴𝑠
𝑏)
2
Δ𝑖𝑠) = 0, thereby concluding the proof for 𝑐𝑜𝑟𝑟(𝑖,𝑠)(𝐼𝑉𝑖𝑠, 𝐴𝑠

𝑏) = 0. 

As for showing 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝑃𝑖𝑠) = 0, it is equivalent to showing 𝑐𝑜𝑣(𝐼𝑉𝑖𝑠, 𝑃𝑖𝑠) = 0. Note that 

𝑐𝑜𝑣(𝐴𝑠
𝑏Δ𝑖𝑠, 𝑃𝑖𝑠) = 𝐸(𝐴𝑠

𝑏Δ𝑖𝑠𝑃𝑖𝑠) − 𝐸(𝐴𝑠
𝑏Δ𝑖𝑠) × 𝐸(𝑃𝑖𝑠). 

Following the proof of 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝐴𝑠
𝑏𝑃𝑖𝑠), similar to showing 𝐸 ((𝐴𝑠

𝑏)
2
Δ𝑖𝑠𝑃𝑖𝑠) = 0, it is 

straightforward to show 𝐸(𝐴𝑠
𝑏Δ𝑖𝑠𝑃𝑖𝑠) = 0, thereby concluding the proof of 𝑐𝑜𝑟𝑟(𝐼𝑉𝑖𝑠, 𝑃𝑖𝑠) = 0. Q.E.D. 

Like Proposition 1, the core requirement for Proposition 2 to hold is also that, for targeted shows 

(𝐴𝑠
𝑏 = 1) and partial household show-viewing (0 < 𝑃𝑖𝑠 < 1), the network-induced within-show ad 

exposure shifter Δ𝑖𝑠 follows a two-point distribution with an expected value of zero. 

Finally, Proposition 2 and its proof also suggest that, before using our proposed IV in an 

empirical application, one should, in addition to checking whether the mean of nonzero Δ̂𝑖𝑠 is close to 

zero, conduct a falsification check to assess whether 𝑐𝑜𝑟𝑟(𝐴𝑠
𝑏Δ̂𝑖𝑠, 𝐴𝑠

𝑏𝑃̂𝑖𝑠) is close to zero. If that is the 

case, one would have greater confidence in the exogeneity of 𝐼𝑉𝑖𝑠 = 𝐴𝑠
𝑏Δ𝑖𝑠 given its empirical 

orthogonality to 𝐴𝑠
𝑏𝑃̂𝑖𝑠, the expected treatment estimate resulted from a combination of the endogenous 

determinants of the DGP. 
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Online Appendix C: Illustrating the Proposed IV with a Stylized Numerical Example 

Unlike conventional IVs that are directly observable, our household-show-level IV is constructed 

indirectly from observables by subtracting a household’s expected treatment 𝐴𝑠
𝑏𝑃𝑖𝑠 from its realized 

treatment 𝐴𝑖𝑠. In empirical applications, 𝑃𝑖𝑠 is estimated nonparametrically by integrating the density 

function 𝑙𝑠(∙) over the observed 𝑉𝑖𝑒𝑤𝑖𝑠 ⊆ [0, 1], where 𝑙𝑠(∙) is approximated using the empirical within-

show ad airing time distribution observed for the network broadcasting show 𝑠. 

Given our novel approach to IV construction, i.e., 𝐼𝑉̂𝑖𝑠 = 𝐴𝑖𝑠 − 𝐴𝑠
𝑏𝑃̂𝑖𝑠, we present a stylized 

numerical example in which the DGP is known and satisfies the identifying assumptions, for three 

reasons. First, it provides a concrete demonstration of how the IV can be constructed from observables. 

Second, because the identifying assumptions hold in our numerical example, we can verify whether the 

constructed IV satisfies both the relevance condition and the exclusion restriction. Third, knowing the 

ground truth about the ad effect allows us to assess the IV’s effectiveness in correcting for targeting and 

activity biases by comparing ad effect estimates with and without the IV. In short, the stylized numerical 

example serves as a pedagogical proof of concept, clarifying intuition and building confidence in the core 

of our identification strategy. 

C.1. Data-Generating Process of the Numerical Example 

Consider an inventory of M = 1,000 linear TV shows, each with N = 100 households in its potential 

audience, where 0 and 1 denote the start and end of the show, respectively. For ease of exposition, assume 

there is no overlap in potential audiences across shows; that is, each household belongs to the potential 

audience of one and only one show. The DGP for our numerical example is specified as follows. 

Observables. As analysts, we observe the following from the DGP: for each show s, focal brand 

b’s targeting decision 𝐴𝑠
𝑏; for each targeted show (𝐴𝑠

𝑏 = 1), the within-show focal brand ad airing time 

𝑇𝑠
𝑏 ∈ [0, 1], as well as the mechanism by which it is determined by the network; and for each household i, 

its show viewership duration 𝑉𝑖𝑠 ∈ [0, 1], the segment(s) of the show it watches 𝑉𝑖𝑒𝑤𝑖𝑠 ⊆ [0, 1], its focal 

brand ad exposure status 𝐴𝑖𝑠, and its purchase decision 𝑌𝑖𝑠.  

Purchase Decision (𝒀𝒊𝒔). The purchase decision 𝑌𝑖𝑠 is a function of ad exposure 𝐴𝑖𝑠, a demand 

shock 𝑢𝑖𝑠, and an idiosyncratic term 𝑒𝑖𝑠, specified as: 

𝑌𝑖𝑠 = 𝑓(𝛽𝐴𝑖𝑠 + 𝑢𝑖𝑠 + 𝑒𝑖𝑠) (C1) 

where 𝑓(∙) is the link function, and 𝑒𝑖𝑠 is drawn i.i.d. from the standard normal distribution.  

The link function takes one of two forms: 𝑓𝐿(𝑥) = 𝑥 (a linear model), or 𝑓𝑃(𝑥) = 𝐼(𝑥 > 0) (a 

probit model). The true causal effect of ad exposure on purchase is set at 𝛽 = 0.5.  

The demand shock 𝑢𝑖𝑠, unobserved to the analyst, is drawn i.i.d. from a uniform distribution: 

𝑢𝑖𝑠 ~ Uniform[−0.5 + 𝑢𝑠, 0.5 + 𝑢𝑠] (C2.1) 

𝑢𝑠 ~ Uniform[−0.5, 0.5] (C2.2) 

where 𝑢𝑠 represents the average demand shock at the show level, itself drawn from a uniform distribution. 

This implies that 𝑢𝑖𝑠 ∈ [−0.5 + 𝑢𝑠, 0.5 + 𝑢𝑠] ⊂ [−1,1]. 

Show Targeting Decision (𝑨𝒔
𝒃). The focal brand’s show-targeting decision 𝐴𝑠

𝑏 is drawn from a 

Bernoulli distribution defined as: 

Pr(𝐴𝑠
𝑏 = 1) =

1+𝑢𝑠

2
;  Pr(𝐴𝑠

𝑏 = 0) =
1−𝑢𝑠

2
 (C3) 
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This specification captures scenarios in which TV advertisers are more likely to place ad buys in 

shows whose audiences, on average, exhibit higher baseline demand, thereby introducing targeting bias.  

Show Viewing Decision (𝑽𝒊𝒔 and 𝑽𝒊𝒆𝒘𝒊𝒔). Household 𝑖 in the potential audience of show s 

decides both the viewing duration 𝑉𝑖𝑠 ∈ [0, 1] and the segment(s) of the show to watch 𝑉𝑖𝑒𝑤𝑖𝑠 ⊆ [0, 1], if 
any. The viewing duration 𝑉𝑖𝑠 is determined as follows: 

𝑉𝑖𝑠 = {

0, 𝑖𝑓 𝑉𝑖𝑠
∗ ≤ 0 

𝑉𝑖𝑠
∗ , 𝑖𝑓 0 < 𝑉𝑖𝑠

∗ < 1

1, 𝑖𝑓 𝑉𝑖𝑠
∗ ≥ 1

 (C4.1) 

𝑉𝑖𝑠
∗  ~ Uniform[𝑢𝑖𝑠, 𝑢𝑖𝑠 + 1] (C4.2) 

where 𝑉𝑖𝑠
∗ ∈ [𝑢𝑖𝑠, 𝑢𝑖𝑠 + 1] ⊂ [−1, 2] denotes a latent variable positively correlated with the household 

demand shock 𝑢𝑖𝑠. This specification ensures that 𝑉𝑖𝑠 ∈ [0, 1], with point masses at 0 and 1 corresponding 

to households that do not watch the show at all and those that watch it in full, respectively. Because 𝑉𝑖𝑠
∗  is 

positively correlated with both 𝑢𝑖𝑠 and 𝑉𝑖𝑠, Equations (C4.1) and (C4.2) capture scenarios in which 

households with higher baseline demand also tend to watch more TV, thereby introducing activity bias.  

Given the realized viewing duration 𝑉𝑖𝑠, the specific viewing segment(s) 𝑉𝑖𝑒𝑤𝑖𝑠 are randomly 

drawn from the show’s duration, subject to the constraint that their total duration equals 𝑉𝑖𝑠. 

Within-Show Ad Airing Timing (𝑻𝒔
𝒃). For each targeted show, its network determines the focal 

brand’s ad airing time 𝑇𝑠
𝑏, which is drawn uniformly over the show’s duration: 𝑇𝑠

𝑏  ~ Uniform[0, 1]. 

Focal Brand Ad Exposure (𝑨𝒊𝒔). The focal brand ad exposure status of household i during show 

s is jointly determined by 𝐴𝑠
𝑏, 𝑉𝑖𝑒𝑤𝑖𝑠, and 𝑇𝑠

𝑏: 𝐴𝑖𝑠 = 𝐴𝑠
𝑏 × 𝐼(𝑇𝑠

𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠), as specified in Equation (5). 

Given the DGP outlined above, our numerical example comprises 100,000 households in total—

that is, 1,000 shows, each with 100 households in its potential audience. Key descriptive statistics of the 

data generated under the DGP are as follows.  

In the simulated data, 50.5% of shows are targeted by the focal brand (𝐴𝑠
𝑏 = 1). The correlation 

between a household’s demand shock 𝑢𝑖𝑠 and whether its show is targeted is 0.41, indicating strong 

targeting bias. On average, among the potential audience of a targeted show, 16.9% do not watch it at all 

(𝑉𝑖𝑠 = 0), 16.4% watch the show in full (𝑉𝑖𝑠 = 1), and the remaining 66.7% watch only part of it (0 <
𝑉𝑖𝑠 < 1). The correlation between a household’s demand shock 𝑢𝑖𝑠 and its show viewing duration 𝑉𝑖𝑠 is 

0.78, reflecting strong activity bias. Overall, 31.2% of households are exposed to a focal brand ad (𝐴𝑖𝑠 =
1). Among exposed households, 39.9% watch the targeted show in its entirety (𝑉𝑖𝑠 = 1|𝐴𝑖𝑠 = 1), while 

60.1% view only part of it. Among those exposed, 77.8% make a purchase in the probit model (𝑌𝑖𝑠 =
1|𝐴𝑖𝑠 = 1), compared to a purchase rate of 44.7% among unexposed households (𝑌𝑖𝑠 = 1|𝐴𝑖𝑠 = 0). 

Given the above, our objective is to recover the true causal effect of 𝐴𝑖𝑠 on 𝑌𝑖𝑠 (i.e., 𝛽 = 0.5 in 

Equation C1). We next illustrate how our proposed IV can be constructed from the observables.  

C.2. Constructing and Validating the Proposed IV in the Numerical Example 

Recall that 𝑃𝑖𝑠 ≡ Pr(𝑇𝑠
𝑏 ∈ 𝑉𝑖𝑒𝑤𝑖𝑠 | 𝑉𝑖𝑒𝑤𝑖𝑠) = ∫ 𝑙𝑠(𝑥) 𝑑𝑥𝑉𝑖𝑒𝑤𝑖𝑠

 denotes the probability that household i is 

exposed to a focal brand ad during show s in the event the show is targeted. It is straightforward to verify 

that when the PDF 𝑙𝑠(∙) is Uniform[0, 1], as in our numerical example, 𝑃𝑖𝑠 = 𝑉𝑖𝑠, the household’s 

viewing duration of show s. Based on Equation (8), we construct 𝐼𝑉𝑖𝑠 as follows: 

𝐼𝑉̂𝑖𝑠 = 𝐴𝑖𝑠 − 𝐴𝑠
𝑏𝑃̂𝑖𝑠 = 𝐴𝑖𝑠 − 𝐴𝑠

𝑏𝑉𝑖𝑠 (C5) 
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As discussed in Section 3.3, under the identifying assumptions, the distributional properties of 

𝐼𝑉𝑖𝑠 give rise to several falsification checks on its validity. Specifically, 𝐼𝑉̂𝑖𝑠 should exhibit zero mean and 

be uncorrelated with (a) the show targeting decision 𝐴𝑠
𝑏; (b) 𝑃𝑖𝑠, which equals the household’s show 

viewing duration 𝑉𝑖𝑠 when the within-show ad airing time distribution is Uniform[0, 1], as in our 

example; and (c) 𝐴𝑠
𝑏𝑃𝑖𝑠, which equals 𝐴𝑠

𝑏𝑉𝑖𝑠 in our example. 

Based on our data, the mean of 𝐼𝑉̂𝑖𝑠 is 0.001, 𝑐𝑜𝑟𝑟(𝑖,𝑠)(𝐼𝑉̂𝑖𝑠, 𝐴𝑠
𝑏) = 0.005, 𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑠, 𝑉𝑖𝑠) =

−0.003, and 𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑠, 𝐴𝑠
𝑏𝑉𝑖𝑠) = −0.0003, indicating that 𝐼𝑉̂𝑖𝑠 passes all the falsification checks, 

consistent with Proposition 2. Furthermore, because the demand shock 𝑢𝑖𝑠 is known in our example, we 

can directly verify whether 𝐼𝑉̂𝑖𝑠 satisfies both the relevance condition and the exclusion restriction. It 

does: 𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑠, 𝐴𝑖𝑠) = 0.53 and 𝑐𝑜𝑟𝑟(𝐼𝑉̂𝑖𝑠, 𝑢𝑖𝑠) = 0.001, consistent with Proposition 1. 

C.3. Estimating Ad Effect with the Proposed IV in the Numerical Example 

Equipped with 𝐼𝑉̂𝑖𝑠, we estimate the linear model (where 𝑓 = 𝑓𝐿 in Equation C1) using both the 2SLS 

and CF approaches. The probit model (where 𝑓 = 𝑓𝑃 in Equation C1) is estimated using only the CF 

approach, as 2SLS is not appropriate for discrete choice models. In the CF approach, 𝐴𝑖𝑠 is first regressed 

on 𝐼𝑉̂𝑖𝑠, and the resulting residual, denoted by 𝐶𝐹𝑖𝑠, is then included as a control variable in the second-

stage estimation of either the linear or probit model.  

The results in Table C1. indicate that, with 𝐼𝑉̂𝑖𝑠, the true causal effect of 𝐴𝑖𝑠 on 𝑌𝑖𝑠 can be 

recovered with high confidence for both the linear and probit models. In contrast, without the instrument, 

the estimated effects are substantially overstated due to the presence of strong targeting bias 

(𝑐𝑜𝑟𝑟(𝑖,𝑠)(𝐴𝑠
𝑏 , 𝑢𝑖𝑠) = 0.41) and activity bias (𝑐𝑜𝑟𝑟(𝑉𝑖𝑠, 𝑢𝑖𝑠) = 0.78). 

Table C1. Estimation Results from the Numerical Example 

 
True 

Value 

Linear Model Probit Model 

OLS 2SLS CF Probit Probit + CF 

Intercept 0 
-0.149*** 

(0.004) 

-0.007 

(0.006) 

-0.008 

(0.006) 

-0.134*** 

(0.005) 

-0.005 

(0.006) 

Ad Effect (𝛽) 0.5 
0.957*** 

(0.007) 

0.502*** 

(0.014) 

0.502*** 

(0.014) 

0.899*** 

(0.009) 

0.492*** 

(0.017) 

Control Function (CF)    
0.631*** 

(0.016) 
 

0.577*** 

(0.020) 

Notes. Standard errors are reported in parentheses. Standard errors for “Probit + CF” are derived from 1,000 

bootstrapped samples. ***p < 0.01; **p < 0.05; *p < 0.1. 

C.4. Robustness Checks 

We perform two additional robustness checks with the numerical example, examining the sensitivity of 

our results to the within-show ad airing time distribution and to the sample design of show–household 

observations. 

In Section C.1, we used the uniform distribution for 𝑙𝑠 primarily for the convenience of 𝑃𝑖𝑠 = 𝑉𝑖𝑠. 
In other words, under a uniformly distributed within-show ad airing process, it obviates the need to 

explicitly generate 𝑉𝑖𝑒𝑤𝑖𝑠, the portion of the show actually viewed by the household. 

To assess robustness, we re-ran the simulation with non-uniform ad timing, 𝑙𝑠~𝐵𝑒𝑡𝑎(2,2). To 

obtain 𝑃𝑖𝑠, we do the following: 
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• By definition, 𝑃𝑖𝑠 = 0 if 𝑉𝑖𝑠 = 0 and 𝑃𝑖𝑠 = 1 if 𝑉𝑖𝑠 = 1; 

• For 𝑉𝑖𝑠 ∈ (0,1), draw 𝑉𝑖𝑒𝑤𝑠𝑡𝑎𝑟𝑡~Uniform[0,1 − 𝑉𝑖𝑠], where 𝑉𝑖𝑒𝑤𝑠𝑡𝑎𝑟𝑡 represents the starting 

time of watching a show; 

• Generate 𝑉𝑖𝑒𝑤𝑒𝑛𝑑 =  𝑉𝑖𝑒𝑤𝑠𝑡𝑎𝑟𝑡 + 𝑉𝑖𝑠 so that 𝑉𝑖𝑒𝑤𝑒𝑛𝑑, the ending time of watching a show, lies 

within (0,1]; 

• For simplicity, assume one continuous viewing window 𝑉𝑖𝑒𝑤𝑖𝑠 = [𝑉𝑖𝑒𝑤𝑠𝑡𝑎𝑟𝑡 , 𝑉𝑖𝑒𝑤𝑒𝑛𝑑]; 

• Given 𝑉𝑖𝑒𝑤𝑖𝑠 and 𝑙𝑠, we calculate 𝑃𝑖𝑠 as 𝑃𝑖𝑠 = ∫ 𝑙𝑠(𝑥)𝑑𝑥
𝑉𝑖𝑒𝑤𝑒𝑛𝑑
𝑉𝑖𝑒𝑤𝑠𝑡𝑎𝑟𝑡

. 

The results presented in Table C2 indicate that the proposed IV remains effective under this 

alternative within-show ad timing distribution, alleviating concerns that our IV depends on a particular ad 

airing time distribution.  

Table C2. Estimation Results under Alternative Ad Airing Time Distribution 

 
True 

Value 

Linear Model Probit Model 

OLS 2SLS CF Probit Probit + CF 

Intercept 0 
-0.128*** 

(0.004) 

0.008 

(0.005) 

0.008 

(0.005) 

-0.121*** 

(0.005) 

0.003 

(0.007) 

Ad Effect (𝛽) 0.5 
0.940*** 

(0.007) 

0.497*** 

(0.014) 

0.497*** 

(0.014) 

0.895*** 

(0.009) 

0.497*** 

(0.017) 

Control Function (CF)    
0.612*** 

(0.016) 
 

0.561*** 

(0.020) 

Notes. Standard errors are reported in parentheses. Standard errors for “Probit + CF” are derived from 1,000 

bootstrapped samples. ***p < 0.01; **p < 0.05; *p < 0.1. 

Our choice of 1,000 shows × 100 households reflects the empirical setting we seek to emulate: a 

large universe of shows, with each household watching only a small subset. To assess sensitivity, we 

conduct a robustness check with 100 shows × 1,000 households. As shown in Table C3, the results are 

qualitatively the same: the true ad effect can still be recovered using the proposed CF approach. 

Table C3. Estimation Results under Alternative Sample Design 

 
True 

Value 

Linear Model Probit Model 

OLS 2SLS CF Probit Probit + CF 

Intercept 0 
-0.166*** 

(0.004) 

-0.011* 

(0.006) 

-0.011* 

(0.006) 

-0.158*** 

(0.005) 

-0.012 

(0.008) 

Ad Effect (𝛽) 0.5 
0.966*** 

(0.007) 

0.514*** 

(0.016) 

0.514*** 

(0.015) 

0.920*** 

(0.009) 

0.500*** 

(0.019) 

Control Function (CF)    
0.573*** 

(0.017) 
 

0.541*** 

(0.021) 

Notes. Standard errors are reported in parentheses. Standard errors for “Probit + CF” are derived from 1,000 

bootstrapped samples. ***p < 0.01; **p < 0.05; *p < 0.1. 
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Online Appendix D: Additional Data Descriptions 

Figure D1 presents the distributions of focal brand purchases and TV ad exposures across the hours of the 

week. Purchases follow a bimodal daily pattern, peaking around lunch (11:00–13:00) and dinner (17:00–

19:00), with higher activity on Fridays and weekends. While the focal brand’s TV ad exposures are more 

evenly distributed throughout the day, their timing broadly aligns with peak purchase periods. 

Figure D1. Distribution of Focal Brand Purchases and TV Ad Exposures Across Hours of the Week 

 

Notes. The distributions of focal brand purchases (blue) and TV ad exposures (red) across the hours of the week. 
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Online Appendix E: Additional Results and Checks 

E.1. Model Fit Comparison 

We assess model fit across four specifications of the function f in Equations (12) and (13): (1) linear, (2) 

linear + squared, (3) log, and (4) log + squared log. The log-likelihood (LL), AIC, and BIC values 

presented in Table E1 favor the fourth specification—log + squared log—which is used in our proposed 

model. 

Table E1. Model Fit Comparison 

 Linear Linear + Squared Log 
Log + Squared Log 

(Proposed Specification) 

LL -759,322 -754,543 -753,716 -753,399 

AIC 1,518,741 1,509,190 1,507,527 1,506,901 

BIC 1,519,436 1,509,943 1,508,222 1,507,654 

 

E.2. Within-Show Ad Airing Time Distributions 

For each TV network that aired ads from the focal brand during our study period, we examine the 

empirical distribution of within-show focal brand ad airing times, normalized by show duration, where 

zero indicates the start and one indicates the end of a show. We conduct the same analysis for all non-

focal brand ad airings to enable a direct comparison of within-show ad scheduling patterns between focal 

and non-focal brands.  

Figure E1. CDFs of Within-Show Ad Airing Time Distributions of the Top 12 Networks 

 

Notes. Within-show ad airing times are normalized by show duration, with zero representing the start and one 

representing the end of a show. The analysis includes the twelve networks with the highest number of focal brand ad 

airings during the study period. 

In addition to the comparison of focal versus non-focal brand ad airing time distributions across 

shows on MTV in Figure 2, Figure E1 extends this analysis to all major networks targeted by the focal 

brand during our study period. Without exception, across all networks, the distributions of within-show 
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airing times are statistically indistinguishable between focal and non-focal brand ads, further supporting 

the notion that networks scheduled the focal brand’s ads in a quasi-random rotation alongside those of 

other brands. In other words, while the focal brand may have targeted specific shows, it did not target 

specific time slots within those shows. This suggests that within-show ad airing timing provides a source 

of exogenous variation in determining which partial viewers of a targeted show were exposed to the focal 

brand’s ads. 

 

E.3. Correlation in Focal Brand Ad Exposures vs. Correlation in Network-Induced Shifters Across 

Targeted Shows 

When household TV viewing is correlated across shows, targeting shows with similar audiences can 

result in positive correlations in 𝐴𝑖𝑠 (focal brand ad exposures) across these shows. For example, a 

household that watches targeted show A and is exposed to a focal brand ad is more likely to also watch 

targeted show B, thereby increasing the likelihood of being exposed to the focal brand ad during show B. 

In contrast, if Δ̂is, the network-induced shifter, is truly exogenous, the correlation in Δ̂is across targeted 

shows should be zero. This is empirically confirmed using the following procedure: 

1. Draw a sample of targeted shows with high correlation in household viewership. 

2. Calculate Δ̂𝑖𝑠. 
3. For each pair of sampled targeted shows, compare the between-show correlation in 𝐴𝑖𝑠 with between-

show correlation in Δ̂𝑖𝑠.  

Table E2. Pairwise Between-Show Correlations in Household Focal Brand Ad Exposure 

 Show 1 Show 2 Show 3 Show 4 

Show 1 - 0.074 0.047 0.050 

Show 2 0.074 - 0.048 0.066 

Show 3 0.047 0.048 - 0.099 

Show 4 0.050 0.066 0.099 - 

 

Table E3. Pairwise Between-Show Correlations in Network-Induced Shifter 

 Show 1 Show 2 Show 3 Show 4 

Show 1 - -0.019 0.007 -0.007 

Show 2 -0.019 - 0.006 -0.019 

Show 3 0.007 0.006 - -0.007 

Show 4 -0.007 -0.019 -0.007 - 

Table E2 presents pairwise correlations in 𝐴𝑖𝑠 across four targeted shows with high household 

viewership correlation. Table E3 reports the corresponding pairwise correlations in Δ̂𝑖𝑠. The between-

show correlations in 𝐴𝑖𝑠 are all positive and significant (p < 0.01), indicating that households exposed to a 

focal brand ad during one targeted show are more likely to be exposed to focal brand ads during other 

targeted shows as well. In contrast, the pairwise correlations in Δ̂𝑖𝑠 are much smaller and statistically 

insignificant, providing empirical support for the exogeneity of Δ̂𝑖𝑠. 

 

E.4. Placebo Test Using Exposures to TV Ads from Another Brand 

We conduct a placebo test by replacing the focal brand’s ad exposure stock in our ad response model with 

that of a major automobile manufacturer, adjusting the control function term accordingly. The results 
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show no statistically significant effect for the placebo ad exposure stock (𝛽0 = -0.0008, SE = 0.002) and 

no statistically significant effect for the corresponding control function term (𝛿 = 0.0002, SE = 0.0007), 

while the other model parameter estimates remain largely unchanged. These findings suggest that the 

positive and significant effect estimates for the focal brand’s ad exposure stock and the corresponding 

control function term in our proposed model are unlikely to be coincidental. 


