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Leveraging Large-Scale Granular Single-Source Data for TV Advertising

Abstract

This study introduces a novel instrumental variable (IV) for estimating the causal effects of linear TV
advertising using large-scale panel data that link household second-by-second show viewership and ad
exposure with daily purchase behavior. We exploit an institutional feature of linear TV: while advertisers
choose which shows to target, networks quasi-randomly determine within-show ad airing times. This
creates exogenous variation in focal brand ad exposure among partial show viewers, which we
nonparametrically extract to construct a household-show-level IV. We establish the IV’s validity in the
presence of endogeneity arising from advertisers’ show targeting decisions and households’ TV viewing
behavior. Our IV offers a generalizable and flexible solution for household-level linear TV ad effect
measurement using modern single-source data. Applying this method to data from a major food delivery
platform, we estimate an ad response model in which both baseline purchase propensity and ad
responsiveness vary with purchase history. Naive estimates overstate ad elasticities by 55% compared to
IV-corrected estimates. We also find that ad responsiveness is nonmonotonic with respect to purchase
frequency and recency. These findings underscore the importance of addressing endogeneity in
observational household TV ad exposure data and highlight the potential of behaviorally targeted TV
advertising.

Keywords: TV Advertising, Causal Inference, Instrumental Variable, Ad Response Model, Single-Source
Data



1. Introduction

Linear television remains one of the few media capable of reaching mass audiences in real time,
particularly through live programming such as sports and major cultural events. This distinctive capacity
has sustained tens of billions of dollars in annual advertiser spending despite the proliferation of digital
channels. Yet the continued relevance of linear TV as an advertising medium depends on rigorous
measurement of both its short- and long-term causal impact.

Unlike digital advertising, randomized controlled trials (RCTs) are largely infeasible in the linear
TV context because of the broadcast nature of programming and the limited infrastructure for household-
level randomization. Consequently, practitioners and academics primarily rely on observational data,
where two sources of endogeneity complicate inference: targeting bias and activity bias (Lewis et al.
2011, Lewis and Rao 2014, Zhang et al. 2017, Gordon et al. 2019). Targeting bias arises when advertisers
buy placements in shows whose audiences differ in baseline purchase propensities. Activity bias occurs
when household TV viewing patterns at specific times correlate with baseline purchase propensities.

Recent comparisons of observational estimates with RCT benchmarks in digital advertising show
that these biases are difficult to eliminate. Neither extensive controls nor algorithmic flexibility
adequately address the endogeneity inherent in the data-generating process (DGP) (e.g., Gordon et al.
2019, 2023). Most existing identification strategies for TV advertising instead rely on nonexperimental,
exogenous variation in ad exposure at the market level (e.g., Hartmann and Klapper 2017, Stephens-
Davidowitz et al. 2017, Shapiro 2018, Thomas 2020). While informative, these approaches cannot capture
heterogeneity across households within a market or dynamic variation within households over time.

Against this backdrop, we introduce a method to quantify the causal effects of linear TV
advertising using household-level observational data that link ad exposures with purchases over extended
periods. This approach is especially timely, as advertisers increasingly gain access to modern single-

source data that merge second-by-second TV viewership from millions of households with first-party



purchase histories.'

Our method offers two key advantages that facilitate practical adoption: generalizability and
flexibility. It is generalizable because causal identification does not depend on advertiser- or campaign-
specific exogenous shocks. It is flexible because it scales to millions of households, accommodates
repeated ad exposures, and leverages longitudinal purchase data. Together, these features allow
estimation of cross-sectional heterogeneity in TV ad effects and separation of short-term responses from
long-term dynamics such as carryover and state dependence. By providing a more accurate and nuanced
assessment of television advertising effectiveness, the method informs strategic refinement and reinforces
linear TV’s continued role as a viable mass medium.

The core of our identification strategy leverages an institutional feature of U.S. linear TV: while
advertisers decide which shows to target, networks determine the precise timing of ad airings within those
shows. To ensure fairness, networks generally implement an equitable rotation of advertisers’ ads across
the available slots within a show—a practice often referred to as “quasi-random ordering” (Wilbur et al.
2013, Gordon et al. 2021, McGranaghan et al. 2022). This practice generates exogenous variation in focal
brand ad exposure when a household watches only part of a targeted show, as exposure depends on
whether the focal brand ad happens to air during the segment(s) the household viewed.

Building on this insight, we propose a household-show-level instrumental variable (IV) to
identify the causal effects of linear TV ad exposures. Intuitively, when a household watches only part of a
show targeted by the focal brand, the network’s quasi-random allocation of within-show ad slots across
advertisers functions as a natural experiment, introducing a degree of randomness in realized focal brand
ad exposure that is orthogonal to its endogenous determinants.

We isolate this network-induced exogenous shock by first constructing an expected focal brand

' With the advent of automatic content recognition (ACR) technology and the widespread adoption of ACR-enabled
smart TVs and set-top boxes (STBs), providers such as Comscore, iSpot, and LG Ad Solutions now collect second-
by-second TV viewership data from tens of millions of households (NBCUniversal 2022). When such granular TV
viewing data from large-scale panels are merged with advertisers’ first-party response data (e.g., via meshed IP-
address matching), they produce what we term modern single-source data.



ad exposure measure for each household during each targeted show. Conceptually, this measure captures
the likelihood that a household would be exposed to the focal brand ad, given the portion of the show it
watched and the network’s typical within-show ad insertion pattern. Empirically, it is derived from two
inputs: (a) the household’s second-by-second viewership of the targeted show and (b) the empirical
distribution of the network’s within-show ad airing times.

Our household-show-level 1V is then defined as the difference between this expected exposure
and the household’s realized treatment status. In this way, the IV captures variation in focal brand ad
exposure arising not from household show viewing behavior or the focal brand’s show targeting
decisions, but from the network’s quasi-random ordering of within-show ad placements.

To illustrate, suppose a household watched only the middle third of a targeted show. Based on the
network’s typical within-show ad insertion pattern, 40% of ad slots would be expected to fall in the
middle third, yielding an expected focal brand ad exposure of 0.4 for the household, given its viewing
window and the network’s quasi-random allocation of ad slots across advertisers. If the focal brand ad did
air in the middle third, the household’s realized treatment status would be 1, producing an IV of 0.6 (=1 —
0.4). If it did not, the realized treatment status would be 0, producing an IV of —0.4 (=0 — 0.4).

The validity of our decompositional approach to IV construction, i.e., subtracting expected from
realized treatment, rests on the expected component capturing all endogenous determinants of the latter,
leaving only exogenous variation in the residual. In other words, our identification strategy hinges on
estimating expected focal brand ad exposure in a way that fully accounts for all pathways through which
unobserved confounders could affect realized exposure (e.g., via the focal brand’s show targeting
decisions or the household’s show viewing behavior).

Two identifying assumptions are required for our proposed IV to be valid. First, we assume that
networks assign within-show ad slots quasi-randomly across advertisers, irrespective of the identity of the
focal brand or household. This “quasi-random ordering” assumption ensures a degree of exogenous
variation in the precise timing of focal brand ad airing within a targeted show.

Second, we assume that a household’s viewership of a targeted show is independent of the timing



of the focal brand ad within that show. In other words, households are assumed to watch or skip the focal
brand ad in the same manner as ads from other brands, without selectively adjusting their viewing
behavior based on whether the focal brand ad is shown. This “non-strategic viewership” assumption
allows us to estimate a household’s probability of within-show focal brand ad exposure directly from its
observed viewership of the targeted show. In our empirical application, both identifying assumptions are
supported by their respective diagnostic checks.

As we demonstrate through formal proofs in a general setting and a stylized numerical example
with a known DGP, our proposed IV is valid and satisfies three key properties under the identifying
assumptions: (a) zero mean, (b) positive correlation with realized treatment, and (c) no correlation with
confounders. Although instrument exogeneity in real-world applications is inherently untestable, our
construction of the IV from observables enables falsification checks that can be implemented
empirically—an approach we validate through both the formal proofs and the numerical example.

We apply our method to a panel dataset that combines second-by-second TV viewing data from
LG Ad Solutions (LGADS) with first-party purchase data from a major food delivery platform, the focal
brand in our study.” Our data cover 1.4 million U.S. households over a 4.5-month period (November 15,
2020—March 28, 2021), linking linear TV ad exposures to daily household purchase behavior over time.

Our empirical application focuses on two primary goals. First, we demonstrate the use of the
proposed IV to estimate the causal impact of linear TV advertising. We empirically verify that, across
networks, the within-show timing distributions of focal brand ads are statistically indistinguishable from
those of non-focal brands, consistent with the quasi-random ordering practice in linear TV. We further
show that our IV passes the falsification checks, exhibiting zero mean and no correlation with the
expected treatment, thereby supporting its validity in our empirical setting.

Second, we leverage repeated ad exposures and purchases over time to examine how ad effects

2 LGADS collects TV viewing data through Automatic Content Recognition (ACR) technology from over 35
million opt-in smart TVs in the U.S., spanning TV brands such as LG, Seiki, Skyworth, RCA, and Askey. Retrieved
on August 19, 2024 from https://lgads.tv/tv-data/.
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vary with households’ purchase histories. This is important because it allows advertisers to target TV
ads—much like digital ads—not only by demographic characteristics such as age and gender, but also by
past purchase behavior. As the availability of addressable TV ad inventory expands, targeting based on
behavioral history is becoming increasingly relevant (Malthouse et al. 2018, eMarketer 2022).

To achieve the goals of our empirical application, we specify a household daily ad response
model in which baseline purchase propensity and ad responsiveness vary with purchase frequency (i.e.,
number of past purchases) and recency (i.e., days since the last purchase). To correct for endogeneity, we
incorporate the proposed IV via a control function term in the latent utility of a probit purchase model.

Two key findings emerge. First, failing to correct for endogeneity results in a 55% overstatement
of TV ad effectiveness: average same-day (30-day) ad elasticity declines from 0.072 (0.222) to 0.045
(0.143) after IV correction. Second, both baseline purchase propensity and ad responsiveness vary
systematically with purchase history, consistent with state dependence. For baseline purchase propensity,
we observe a “habit formation” effect, whereby a prior purchase increases the likelihood of a subsequent
one, and a “recency trap” effect, whereby the likelihood of a new purchase declines as more time passes
since the last purchase. For ad responsiveness, we find an inverted U-shaped relationship with purchase
frequency and a U-shaped relationship with purchase recency.

Together, these findings underscore (a) the debiasing power of the proposed IV and (b) the value
of targeting TV ads based on household purchase history. Whereas causal inferences from aggregate data
obscure cross- and within-household variation in ad exposures and responses, estimates derived from
modern single-source data yield a more accurate and nuanced understanding of TV ad effects. This, in
turn, enables advertisers to better determine which consumers to target and when. Our methodological
advance thus provides a powerful tool for enhancing the return on investment (ROI) of TV advertising.
2. Related Literature and Intended Contributions
Our research contributes to a growing body of work developing identification strategies to estimate the
causal impact of TV advertising using observational data. Table Al in Online Appendix A summarizes

selected studies focused on causal identification in this area. Notably, most existing strategies are



designed for market-level rather than household-level data. For instance, Hartmann and Klapper (2017)
and Stephens-Davidowitz et al. (2017) exploit regional shocks in exposure to national Super Bowl ads to
identify their effects. Shapiro (2018) leverages variation in TV ad exposures across DMA border areas,
while Thomas (2020) exploits spillovers of mass media advertising into smaller local markets.

Li et al. (2024) develop an IV based on preference externalities, wherein an individual’s treatment
depends on the preferences of others in the group. Sinkinson and Starc (2019) and Moshary et al. (2021)
identify the causal effect of TV advertising by exploiting shocks in demand for political ads during
election cycles. Joo et al. (2014), Liaukonyte et al. (2015), and Du et al. (2019) leverage the precise
timing of TV ad insertions and use narrow temporal windows (e.g., one hour before and after) to identify
immediate effects on aggregate consumer responses at the brand level. McGranaghan et al. (2022) apply a
similar approach to individual-level data, focusing on the immediate effect of ad exposure on TV viewing
behavior (i.e., tuning, presence, and attention), and treat ad exposures as exogenous under the quasi-
random ordering of ads within a show.?

We advance the literature on causal identification in TV advertising by introducing a novel,
generalizable IV using household-level observational data. While prior studies have leveraged the quasi-
random ordering of ads within a show (e.g., Liaukonyte et al. 2015, McGranaghan et al. 2022), our
contribution lies in how this variation is exploited: we construct an instrument as the residual between a
household’s realized treatment and its expected treatment conditional on the household’s second-by-
second show viewership and the network’s empirical distribution of ad placements across show durations.

Our research also contributes to the literature on the effects of TV advertising on household
purchase dynamics using single-source data. Table A2 in Online Appendix A highlights the features that
set our work apart from earlier studies. Unlike traditional scanner panel-based single-source data, the

modern single-source data employed in our study provide substantially greater scale and granularity. For

3 Most prior studies using household-level data have not explicitly addressed the endogeneity of TV ad exposure.
Notable exceptions include Lodish et al. (1995) and Hu et al. (2007), who employ split-cable field experiments, and
Tuchman et al. (2018), who use a simultaneous equation model to account for endogenous ad-skipping behavior.



example, our panel of 1.4 million households is at least two orders of magnitude larger than the single-
source panels used in prior studies (e.g., 1,775 households in Ackerberg 2001, 2003). This scale provides
the statistical power necessary to implement our identification strategy and to capture dynamic ad effects
such as state dependence.

Another distinctive aspect of this research is our approach to capturing how the impact of TV
advertising evolves with households’ past purchases. Accounting for these dynamics is essential because,
for example, the effectiveness of TV advertising may be overstated if intertemporal substitution is ignored
(Lambrecht et al. 2023) or understated if accelerated habit formation is not considered. Our identification
strategy and ad response model enable advertisers to assess the relative efficacy of targeting TV ads not
only by broad demographic characteristics such as age and gender but also by purchase frequency and
recency. This perspective is particularly relevant to the ongoing debate about the cost-effectiveness of TV
advertising and the search for strategies to improve its ROI (Shapiro et al. 2021).

Finally, whereas much prior research using traditional single-source data has examined consumer
packaged goods (CPGs) tracked through scanner panels (e.g., Bronnenberg et al. 2008, Deng and Mela
2018), our study extends the empirical context by linking TV viewing data to first-party purchase data
from a digital platform. A key contextual difference is that, for CPGs, consumers typically respond to TV
ads during subsequent shopping trips, creating a longer lag between ad exposure and purchase. By
contrast, for digital platforms such as our focal brand, consumers can respond more quickly via mobile or
desktop devices, resulting in a shorter response window and potentially different carryover patterns.* In
this way, our study complements prior CPG-focused research and demonstrates how modern single-
source data can broaden understanding of TV advertising effectiveness across diverse industry contexts.

3. Identification Strategy

3.1. Sources of Endogeneity and Exogeneity

4 This pattern is evident in our empirical setting. Our model estimates indicate a daily carryover of approximately
0.7, which is substantially lower than the weekly carryover of 0.9 (equivalent to a daily carryover of 0.985) reported
in prior studies of CPGs (Shapiro et al. 2021).
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In the context of linear TV, a household’s exposure to a focal brand ad within a show results from the
intersection of three decisions made by distinct entities. First, the focal brand must purchase an ad slot
within the show (the show-targeting decision). Second, the household must watch at least part of the show
(the show-viewing decision). Third, the network broadcasting the show must air the focal brand ad during
the portion of the show that the household watches (the within-show ad airing time decision).

Endogeneity in the focal brand’s show-targeting decision arises when the brand strategically
places its linear TV ad buys. For example, households that frequently order food delivery may also tend
to watch more live sports. Anticipating this pattern, the focal brand might increase ad placements during
sports programming, generating a spurious correlation between ad exposures and purchases. Similarly,
during holidays—when households are more likely to cook at home or dine out and thus less likely to
order food delivery—the brand may reduce ad buys, introducing another source of spurious correlation.
More generally, the focal brand may act on information about shows or time periods that correlates with
households’ baseline purchase propensities, even if such information is unobservable to analysts. We
refer to this focal brand-induced source of endogeneity as “targeting bias.”

Even if the focal brand allocated its linear TV ad buys randomly—placing ads across shows or
days without strategic targeting—endogeneity could still arise from households’ show-viewing behavior.
For instance, all else equal, a household that watches more TV is a priori more likely to be exposed to
focal brand ads. If factors influencing TV consumption—such as time spent at home or overall busyness,
which may be unobservable to analysts—also affect baseline demand for food delivery, this can generate
a spurious correlation between ad exposures and purchases. We refer to this household-induced source of
endogeneity as “activity bias.”

A common approach to mitigating targeting and activity biases is to include control variables in

the ad response model.” However, control variables cannot account for all the “unknown unknowns,”

5> Observed household characteristics, together with random or fixed household effects, can be included as controls
when both a household’s preference for targeted shows and its baseline demand for the focal brand are correlated
with these characteristics. Likewise, observed temporal factors, along with random or fixed time effects, can be
included to account for time-varying unobservables that influence all households in a similar manner.
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particularly time-varying confounders at the household level. For example, if someone unexpectedly
works an extra hour on a given day, they are both (a) less likely to watch TV—and thus less likely to view
a targeted show, or only a smaller portion of it—reducing their chance of exposure to a focal brand ad,
and (b) more likely to order food delivery because they have less time to cook. Household- and time-
specific unobservables of this kind affect both ad exposures and purchases, creating an endogeneity threat
that control variables alone cannot fully address.

Fortunately, in linear TV, a household’s exposure to a focal brand ad during a targeted show is
not solely determined by the brand’s show-targeting decision and the household’s show-viewing
behavior. For households that watch only part of a targeted show, exposure also depends on whether the
viewed segment(s) overlap, at least partially, with the time slot of the focal brand ad. In other words, the
network’s within-show ad airing time decision introduces an exogenous shock to a household’s treatment
status when a targeted show is watched partially. As we will show, this shock can be extracted
nonparametrically to construct an IV that is valid under two identifying assumptions.

3.2. Data-Generating Process

We begin by formalizing the DGP to clarify the sources of endogeneity and exogeneity in observed
household focal brand linear TV ad exposures and to establish the foundation for our identification
strategy. Let A;; € {0,1} indicate whether household i receives a focal brand ad exposure during linear
TV show s. Define A;; as the total number of focal brand ad exposures household i receives on day #:

At = Yses, Ais» Where S; denotes the set of available shows on day .

Household Purchase Decision (Y;;). Setting aside long-term effects for ease of exposition, the
focal brand purchase decision of household i on day ¢, Y;; € {0,1}, can be expressed as a function of
same-day focal brand ad exposure A;;:

Yie = fla+ BAi + vXie + wie) (1)
where f(*) is a generic link function (e.g., probit or logit), 8 captures the causal effect of same-day ad

exposures, X;; includes observed characteristics of household i on day ¢, and u;; denotes an unobserved
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(to the analyst) demand shock, with E (u;;) = 0.

Endogeneity arises when A;; in Equation (1) is correlated with u;;. Our goal is to obtain an
unbiased estimate of 5. Since A;; is aggregated from A, it is sufficient to describe the DGP of A4;;.

Focal Brand Show Targeting Decision (A2). For each linear TV show s, the focal brand b
decides whether to make an ad buy, denoted by A2 € {0,1}. Without loss of generality, A2 can be
expressed as an indicator function that depends on observed show characteristics X and unobserved (to
the analyst) show characteristics ug, with E (ug) = 0:

AL = f, (Xoyu) ®

We remain agnostic about the exact form of f;, (). It suffices to assume that for all s € S, ug
comprises a vector of {u;s}, where u;s denotes an expanded set of confounders, one of which may be the
demand shock u;; in Equation (1). Consequently, Equation (2) accommodates targeting bias, since u;;
can introduce a spurious correlation between Y;; and A;; by influencing both the household’s focal brand
purchase decision and the brand’s show targeting decision A2.

Household Show Viewing Decision (View;¢). With 0 and 1 denoting the start and end of show
s, household i decides whether to watch the show and, if so, which segment(s), denoted by View;; €
[0, 1]. For example, View;; = {[0,0.1],[0.5,1]} if household i watches the first 10% and the last 50% of
show s. We assume View, is a function of observed household characteristics X;; and unobserved
characteristics u;s:

View;s = f,(Xis, is) 3)
where f,(*) maps {X;, u;s} to viewing segment(s) View;s < [0, 1], with two extreme cases: View;s = @ if
the household does not watch the show, and View;; = [0, 1] if the household watches the entire show.

As with f;(+) in Equation (2), we remain agonistic about the exact form of £, (-) in Equation (3).
It suffices to assume that View;; may be influenced by u;,, the expanded set of confounders that may
include the demand shock u;;. Thus, the DGP for View;; accommodates activity bias, since u;; can create

a spurious correlation between Y;; and A;; by affecting both the household’s focal brand purchase



13

decision and its show viewing behavior View;, and thereby its likelihood of focal brand ad exposure.

Network Within-Show Ad Airing Time Decision (T?). We assume that, conditional on focal
brand b purchasing an ad slot in show s, the network determines the within-show focal brand ad airing
time as follows:

TP ~ 1,(x), withx € [0,1] 4)
where [4(+) denotes a probability density function (PDF) that is nonzero only on the interval [0, 1], and
the within-show ad airing time T is drawn from the distribution defined by I;(-).° The value of st is
observed only when focal brand b targets show s (i.e., when A2 = 1).

Household Ad Exposure A4;;. Given the DGPs for the focal brand’s show targeting decision A2,
the household’s show viewing behavior View;, and the network’s within-show ad airing time decision
TP, household i’s focal brand ad exposure status in show s, 4;5, can be expressed as:

Ais = A2 X I(T? € View;) (5)

Equation (5) implies that A;; = 1 if and only if: (a) A2 = 1, meaning that the focal brand targets
show s; and (b) I (st € Viewis) = 1, meaning that the network broadcasting show s airs the focal brand
ad during the portion of the show viewed by the household. Here, I(-) denotes the indicator function.

Identifying Assumptions. Two identifying assumptions are implicit in the DGP described above.

First, the Quasi-Random Ordering Assumption (T? ~ 1,(x)). Because l;(*) is indexed by neither
brand nor household, the implicit assumption is that the network broadcasting show s determines the
within-show ad airing time T? according to the same process across brands and households. In other
words, although we remain agnostic about the exact form of [(-), we assume the network does not tailor
its within-show ad-slot assignment to the focal brand or to any particular household.

If this assumption holds, analysts can infer [;(+) from the observed distribution of within-show ad

airing times. The assumption would be violated if, for example, the focal brand systematically secured a

¢ For ease of exposition, we treat T as a point rather than an interval.
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specific slot in advance (e.g., the first position in a commercial pod), or if the network adjusted the focal
brand’s ad airing time based on household characteristics (e.g., through addressable TV). In the context of
linear TV, however, this quasi-random ordering assumption generally holds and can be empirically
assessed by comparing the distributions of within-show ad airing times for focal versus non-focal brands.
Significant differences across distributions would warrant caution in relying on this assumption.

Second, the Non-Strategic Viewership Assumption (View;s L TL). As specified in Equation (3),
View, is not a function of whether the focal brand ad happens to air during the household’s viewing
segment(s). The implicit assumption is that the household’s show viewership would remain the same
regardless of whether the focal brand’s ad airing time T? falls within its viewing window.

This assumption would be violated if a household alters its viewing specifically in response to a
focal brand ad—for instance, by switching channels or turning off the TV—in a manner different from its
response to other brands’ ads. Importantly, simply skipping the focal brand’s ad does not constitute a
violation if such behavior is consistent with the household’s general ad-skipping patterns. Empirically,
this assumption can be evaluated by comparing ad-skipping rates for focal versus non-focal brands.

In Section 4.3, we present evidence that both the quasi-random ordering and non-strategic
viewership assumptions pass their respective diagnostic checks in our empirical application.

3.3. Proposed Instrumental Variable
We now formalize our proposed instrument based on the DGP and the identifying assumptions outlined in
Section 3.2. To facilitate exposition, we begin by introducing the notation for a key construct, P;,.

Let P;; € [0,1] denote the probability that a focal brand ad, if aired within show s, occurs at a

time T that falls within household i’s viewing window View;;. Mathematically,

Pi; = Pr(TY € View;s | View;s) 1,(x) dx (6)

= fViewiS
where [(+) is the PDF governing the within-show ad airing time assignment.
Equation (6) implies that P;; = 0 when household i does not watch any part of show s (i.e.,

View;s = @), and P;; = 1 when the household watches the entire show (i.e., View;s = [0,1]). When the
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household watches only part of the show (i.e., View;; < [0,1]), we have 0 < P, < 1.

Equation (6) also offers an alternative interpretation of P : it can be viewed as an “area under the
curve” (AUC) measure representing the proportion of within-show ad placements that typically fall
within the normalized viewing segment(s) View;s € [0, 1]. The AUC is obtained by integrating the
density function [;(-) over View;s. Empirically, [;(+) can be operationalized using the normalized
histogram of within-show ad placements observed for the network broadcasting show s. When [ (+)
follows a uniform distribution over [0,1], P;; simplifies to the normalized viewing duration of household i
for show s, denoted by V;; € [0, 1]. More generally, P;; is expected to be positively correlated with V.

Finally, for a show targeted by the focal brand, the realized value of (T € View;,), as defined
in Equation (5), is effectively a Bernoulli draw with expected value E (I (T € Viewl-s)) = Pj; that is,
(T € View;s) ~ Bernoulli(P;s).

Identification Strategy. Our approach to causal inference hinges on decomposing the observed
household focal brand ad exposure 4;5 into two components: an endogenous part potentially correlated
with the confounder u;¢, and an exogenous part that is not. To achieve this, we leverage P;, as defined in
Equation (6), and re-express 4;; from Equation (5) as follows:

A = A X I(TY € View;s) = A2 x (P + I(T? € Viewyg) — Py)

= APP; +  AL(1(TY € Viewys) — Pis) (7)
N———
expected treatment proposed instrument

In Equation (7), the term A% P;; combines two endogenous determinants of A;,: the focal brand’s
show targeting decision A2 and the household’s show viewing behavior View;,, which—through
Equation (6)—determines P;;, the household’s probability of focal brand ad exposure within show s if the
show is targeted. A2 P;, thus represents the expected treatment of household i during show s, conditional
on A2, View,,, and I;(*), the within-show ad airing time assignment process. The realized treatment A;
deviates from A2 P;; depending on the realized T?, the actual within-show focal brand ad airing time.

As we will elaborate, provided the identifying assumptions hold, the deviation between realized
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and expected treatment, i.e., A;; — A2 P;q, is correlated with A;; but orthogonal to the confounder u;,, and
therefore can serve as a valid instrument for A;,.

To further simplify notation, let A;; = I(T? € View;s) — P;s. Recalling the definition of P;g in
Equation (6), our proposed instrument in Equation (7) can be rewritten as:

0,if AL =0,0r A2 = 1 and View;, € {@,[0,1]}

= A.. — APP. = APA. =
Wi = Ais = AsPis = A5 Ais {I(st € Viewy) l;(x) dx # 0, otherwise ()

- fViewiS

Before formally presenting the proposition that establishes the validity of IV;s, we highlight the
core intuition behind our identification strategy. For targeted shows, A;c—the deviation between realized
and expected within-show focal brand ad exposure—arises from the quasi-random ordering mechanism
through which linear TV networks allocate ad slots across advertisers within a show. This stochasticity in
within-show ad insertion timing effectively constitutes a series of natural experiments conducted by
networks during show broadcasts. We therefore refer to A;; as the “network-induced within-show ad
exposure shifter,” or simply the “network-induced shifter.” As we will demonstrate, this shifter represents
an exogenous shock orthogonal to the demand shock.

Properties of the Proposed IV. Two properties implied by Equation (8) are worth emphasizing.

First, Nonzero 1V under Partial Targeted Show Viewership Only. Note that IV;; = 0 when a
household watches a show not targeted by the focal brand (A2 = 0), or when it watches either 0% of a
targeted show (A2 = 1 and View;; = @, hence A;;= 0 — 0 = 0) or 100% of it (A2 = 1 and View;s =
[0,1], hence A;y= 1 — 1 = 0). This implies that IV;; # 0 only when a household watches a targeted show
partially (A2 = 1 and View;, < [0,1]), allowing the network’s within-show ad placement process to
introduce a nonzero shifter between realized and expected focal brand ad exposure (i.e., A;s# 0).

In turn, this property implies that for IV to serve as an effective instrument, there must be a
sufficient number of incidences where A2 = 1 and View; © [0,1] to ensure adequate statistical power for
identification. Moreover, because [V;; # 0 only under partial viewing, the generalizability of the

identified ad effects relies on the assumption that households engaging in partial viewing (at least
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occasionally) exhibit ad responsiveness comparable to those who do not.
Second, Mean Zero for Nonzero IV. When A? = 1 and View;, c [0,1], we have IV;; = A;s# 0,

1 — Pi;, with probability P,

—P;,, with probability 1 — P’ This

where A is effectively drawn from a two-point distribution: A;~ {

follows directly from Ay = I(T2 € View;s) — Py, and I(TL € View;s) ~ Bernoulli(P).

The distributional property of nonzero A;; implies that nonzero [V;; has a mean of zero, because:
E(IVis|1Vig # 0) = E(Ai|AL = 1,View;s < [0,1]) = (1 — P)P;s — Pis(1 — Pys) = 0. Consequently,
the overall mean of IV;;—combining both zero and nonzero values—is also zero. This mean-zero
property of IV;;, which holds under our identifying assumptions, provides a basis for falsification testing
in empirical applications. A statistically significant deviation of the mean from zero would call into
question the validity of the constructed IV.

Validity of the Proposed IV. Formally, Proposition 1 and Corollary 1 establish that [V;; can
serve as a valid household-show-level instrument for A;g, and IV;; = Yes, IVis can serve as a valid
household-day-level instrument for A;; = Yses, A5, provided the identifying assumptions hold. Proofs of
all propositions and the corollary are presented in Online Appendix B for expositional brevity.

Proposition 1: Under the assumption that the DGP of A;s follows Equations (1)—(5), it holds that
corr(IVi, Ais) > 0 and corr(1Vs, u;s) = 0, thereby satisfying the relevance condition and the exclusion
restriction, respectively, for 1V to be a valid instrument for A;s.

Corollary 1: Under the assumption that the DGP of A;s follows Equations (1)—(5), it holds that
corr(IV;;, A;) > 0 and corr(IV;, u;;) = 0, thereby satisfying the relevance condition and the exclusion
restriction, respectively, for [V to be a valid instrument for A;;.

Because u; is unobservable to analysts, the exogeneity condition corr(IVi, u;s) = 0 cannot be
tested directly in empirical applications. However, falsification checks can be derived from observable

quantities: corr(IV;s, ALP;), corr; 5)(IV;5, A2), and corr(IVis, Pi5), where P is an estimate of Py, and
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-~

Vs = A — A3P

Conceptually, if Vi, is truly orthogonal to the confounder u;—as claimed in Proposition 1—it
should be uncorrelated with any endogenous components of the DGP. These include: (1) the focal brand’s
show targeting decision A2; (2) household i’s probability of within-show focal brand ad exposure, P;q,
which is a function of its show viewing behavior View;; and (3) household i’s expected treatment, A2 P,
which incorporates endogenous variation from both (1) and (2). Significant correlations between IV;s and
any of these endogenous components would challenge the exogeneity of the instrument and warrant
careful re-evaluation of its validity.

Proposition 2: Under the assumption that the DGP of A;s follows Equations (1)—(5), it holds that
corr (.5 (IVis, A2) = 0, corr(IV;s, P;) = 0, and corr(IVy5, A2P;s) = 0.

For both Propositions 1 and 2 to hold, the core requirement is that, for targeted shows (A2 = 1)
and partial household viewing (0 < P;; < 1), the network-induced ad exposure shifter A;; follows a two-
point distribution with an expected value of zero: Pr[A;; = 1 — P;g] = P;, and Pr[A;; = —P;s] = 1 — Pyq.
As long as this distributional property of A;¢ holds, IV satisfies the exogeneity condition and is
uncorrelated with the endogenous determinants of A;, including A2, P, and their product A2 P;.

In summary, unlike conventional IVs that are directly observable, our household-show-level IV is
constructed indirectly from observables by subtracting a household’s expected treatment, A2 P;¢, from its
realized treatment, A;s: IV;; = A;s — ALP,. In empirical applications, P;  is estimated nonparametrically
by integrating the density function I4(+) over the observed View;; € [0, 1], where [4(*) is approximated
using the empirical within-show ad airing time distribution observed for the network broadcasting show s.

To illustrate this novel IV construction, Online Appendix C presents a stylized numerical
example in which the DGP is known and satisfies the identifying assumptions. This proof-of-concept

exercise further clarifies the underlying intuition and reinforces confidence in our identification strategy.

7 In Section 4.3, we demonstrate how P;; can be obtained nonparametrically and present descriptive statistics of the
proposed instruments in our empirical setting, along with supporting evidence of their validity.
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4. Empirical Application

We implement the proposed identification strategy in a household-day-level response model using data
from a leading U.S. food delivery platform. Sections 4.1 describes the dataset, Section 4.2 outlines the ad
response model, and Sections 4.3—4.4 detail the construction, validation, and implementation of the IV.
4.1. Data and Model-Free Evidence

Our data come from two sources: TV viewing data provided by LGADS and customer purchase data from
the focal brand, a major U.S. food delivery platform with a dominant market position at the time of the
study. Customers can place orders through the focal brand’s mobile app or website, and purchases from
both channels are included in our dataset.® Each customer in the purchase data and each household in the
TV viewing data is identified by a unique, privacy-compliant meshed IP address, which is used to merge
the two data sources. The resulting panel dataset tracks 1,401,902 households over 133 days, from
November 15, 2020, to March 28, 2021.

LGADS collects TV viewing data through Automatic Content Recognition (ACR) technology
from a large, opt-in panel of U.S. smart TV households. These ACR data capture second-by-second
exposure to both shows and ads during each household’s viewing sessions. Notably, all focal brand ad
airings during the study period occurred on linear TV. Accordingly, our analysis focuses exclusively on
linear TV advertising, which is targeted at the show level rather than the household level.

During the study period, the focal brand aired approximately 700 linear TV ads per week, with
fewer airings during holidays such as Thanksgiving, Christmas, and New Year’s. Most ads were placed in
sitcoms (12.9%), comedies (7.1%), animated sitcoms (5.6%), reality shows (5.5%), and reality comedies
(5.1%), targeting audiences inclined toward these genres. All ads were national placements and featured
various creatives emphasizing the quality of the delivery experience, humorous interactions with
celebrities, or collaborations with restaurant partners.

Table 1 summarizes household TV viewing and purchase behavior in our data. On average, a

$ Although each order is linked to a device ID, the data do not distinguish between mobile app and web browser
transactions. According to the data provider, however, the majority of orders were placed through mobile apps.
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panel household watched 4.4 hours of TV per day and was exposed to 0.14 focal brand ads per day. For
each purchase (i.e., a food delivery order via the focal brand’s platform), we observe the customer ID,
meshed [P address, purchase time, and a binary indicator denoting whether it was the household’s first-
ever transaction with the focal brand. At the start of the study period, none of the households in our
sample were existing customers. Over the course of the study, 53,618 households (3.8%) made their first
purchase (i.e., converted). Converted households made a total of 126,077 purchases, averaging 2.4
purchases per household with an average interpurchase time of 11.3 days. Among households that
received at least one focal brand ad exposure during the study period, over 90% of those that converted
made their first purchase after their first exposure to a focal brand ad.

Table 1. Descriptive Statistics

Mean Std.Dev. 5% 25% 50% 75% 95%

TV Viewing per Household per Day (Hours) 4.35 5.66 0.00 0.00 179 7.04 17.38
Targeted Show Viewing per Household per Day 011 0.49 000 000 000 000 066

(Hours)

Number of Focal Brand Ad Exposures per 0.14 056 000 000 000 000 1.00
Household per Day

Purchase Frequency per Converted Household 2.35 3.43 1.00 1.00 1.00 2.00 8.00

Interpurchase Time per Converted Household (Days) 11.26 15.22 1.00 2.00 6.00 14.00 43.00

Notes. TV viewing and purchase behavior for 1,401,902 households, November 15, 2020, through March 28, 2021.

Figure 1 plots the relationships between daily purchase probability and past purchase frequency,
recency, and same-day focal brand ad exposures. Figure 1(a) shows that a household’s daily purchase
probability increases with the number of prior purchases. Figure 1(b) illustrates that daily purchase
probability decreases with recency (i.e., number of days since the last purchase). Additionally, regular
spikes in daily purchase probability occur when recency values correspond to multiples of seven (e.g., 7
and 14), indicating that households tend to reorder on the same day of the week as their previous order.
Figure 1(c) depicts a modest positive association between same-day TV ad exposures and purchase
probability, suggesting a potential positive treatment effect. Collectively, these model-free patterns

motivate our modeling choices described in the next section.’

% Online Appendix D presents additional hour-of-the-week distributions of purchases and ad exposures.
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Figure 1. Relationships Between Daily Purchase Probability and Past Purchase Frequency,
Recency, and Same-Day Ad Exposures
(a) Daily Purchase Probability and (b) Daily Purchase Probability and (c) Daily Purchase Probability and
Purchase Frequency Purchase Recency Same-Day Ad Exposures
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Notes. The Y-axis represents the average daily purchase probability with 95% confidence intervals, conditional on a household’s
prior purchase frequency, recency, or same-day ad exposures.

4.2. Ad Response Model
Building on the data described earlier, we specify a household-daily ad response model to quantify the
effect of linear TV advertising on focal brand purchases. Let Y;; denote whether household i makes a
purchase on day ¢ (Y;; = 1) or not (Y;; = 0). The purchase probability is determined by the utility U;; that
household 7 derives from purchasing from the focal brand on day ¢:

Ui = air + it ASie + vXir + uye )

Yie = 1(Uy > 0) (10)
where AS;; is the ad stock that incorporates household i’s same-day exposure and discounted past
exposures to focal brand ads. X;; denotes a set of control variables, including fixed effects for month, day
of the week, and holidays (covering both the day before and the day of Thanksgiving, Christmas, and
New Year’s); an indicator for the first-month post-conversion promotion; major competitors’ TV ad
spend;'® and a set of dummies based on the remainder of purchase recency divided by seven, capturing
the weekly spikes in daily purchase probability shown in Figure 1(b). Finally, u;; represents an
unobserved (to the analyst) demand shock that may be correlated with AS;;.

The ad stock AS;; is specified as:

10 We account for the top two competitors’ TV advertising by acquiring DMA-day-level TV ad spend data from
Kantar. Specifically, we calculate competitive ad spend per capita for each DMA-day and include it as a control
variable in the ad response model.
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ASie = Zf;(}(AA)lAi,t—l (11)
where A;; is the number of focal brand TV ad exposures household i receives on day ¢, and 14 € (0,1) is
a daily decay parameter that captures advertising carryover effects over time.

In Equation (9), a;; and f5;; are household-specific and time-varying, capturing household i’s
baseline purchase propensity and ad responsiveness on day . We model them as:

i = ag + a1 Z; + [(Freqi; = 1) X f(Freqy, Reci, a3) + wff (12)
Bie = Bo + B1Zi + I(Freqic = 1) X f (Freqy, Reciy, B) + wf (13)
f(Freqi, Recit, az) = g + aa1log(Freqy) + az,(log(Freqr))? + az3 log(Rec;) +
az4(log(Rec;))? (14)
f(Freqy, Recit, B2) = B0 + Ba1log(Freqy,) + B2 (log(Freq;;))? + Ba3log(Rec;) +

524(108(Recit))2 (15)

We allow a;; and S;; to vary by Z;, a vector of observed, time-invariant household

characteristics. Z; includes average TV viewing time, focal brand ad and targeted show completion rates,
and the allocation of TV viewing time across show genres (e.g., sports, reality, news) and dayparts (e.g.,
daytime, prime time, weekends).'' All elements of Z; are calibrated using data from the month preceding
the study period and are standardized to have a mean of zero and a standard deviation of one.'?

To capture unobserved, time-invariant heterogeneity in baseline purchase propensity and ad

B

i

() (5, 7o)
w; 0 (poio, o3

In Equations (12) and (13), Freq;; denotes purchase frequency (i.e., number of past purchases)

responsiveness, w{ and w; are assumed to follow a bivariate normal distribution with correlation p:

! The ad completion rate is defined as the total duration of the focal brand’s ads watched by a household divided by
the total length of all focal brand ads encountered by that household (with at least one second of exposure). The
targeted show completion rate is defined as the total duration of targeted shows watched by a household divided by
the total length of all targeted shows it encountered (with at least one minute of exposure).

12 We do not have access to demographic variables such as age and gender due to the data provider’s data-sharing
policy. Instead, we use households’ show-viewing behavior from the month preceding the study period as a proxy
for time-invariant household characteristics.
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and Rec;; denotes purchase recency (i.e., number of days since last purchase).13 The indicator function
I(Freq;; = 1) equals one if household i has made at least one prior purchase before day ¢, allowing both
baseline purchase propensity and ad responsiveness to differ between prospective and existing customers.
For converted households (i.e., Freq;; = 1), we allow a;; and f§;; to evolve as functions of purchase
frequency and recency, represented by f(Freq;;, Rec;;, a,) and f(Freq;:, Rec;j;, B2), respectively. The
inclusion of log- and squared-log terms in f(-) allows both baseline purchase propensity and ad
responsiveness to vary nonlinearly with purchase frequency and recency.'*

4.3. Operationalization and Validation of the Proposed IV

4.3.1. Diagnostic Checks on Identifying Assumptions

The validity of our proposed instrument depends on two identifying assumptions outlined in Section 3.2.
The first is that the exact time at which a focal brand ad airs within a targeted show is quasi-randomly
assigned by the network broadcasting the show. This assumption aligns with prevailing industry
practices: in the U.S., networks typically sell linear TV ad slots based on the show and airing date,
schedule these slots approximately 7 to 10 days in advance (Bollapragada and Garbiras 2004), and
implement an equitable rotation of advertisers’ ads across slots within a show to ensure fairness (Wilbur
et al. 2013, McGranaghan et al. 2022).

In our empirical application, we assess the quasi-random ordering assumption by comparing
within-show ad airing times for the focal brand versus non-focal brands across targeted networks. As an
illustration, Figure 2 presents the distributions of focal and non-focal brand ad airing times across shows
on MTV, a major network targeted by the focal brand.

The within-show airing times for focal and non-focal brand ads exhibit nearly identical

distributions in both the PDFs and cumulative density functions (CDFs). MTV appears to schedule both

13 In the CRM literature, in addition to recency (R) and frequency (F), total monetary value (M) is often found to be
a strong predictor of an existing customer’s future purchase behavior. However, because frequency and total
monetary value are highly correlated in our data, we focus exclusively on recency and frequency in this study.

14 We compare four specifications in Online Appendix E.1: (1) linear, (2) linear + squared, (3) log, and (4) log +
squared-log. The log + squared-log specification outperforms the other three based on log-likelihood, AIC, and BIC.
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focal and non-focal brand ads according to a tri-modal distribution. The Kolmogorov-Smirnov test
confirms that the two distributions are statistically indistinguishable (p = 0.545), indicating that MTV
scheduled focal brand ads in a manner comparable to other advertisers. Extending this analysis to all
major networks (see Online Appendix E.2) yields similar results, with no significant differences in timing
distributions between focal and non-focal brand ads. These findings suggest that potential violations of
the quasi-random ordering assumption are minimal in our setting.

Figure 2. PDFs and CDFs of Within-Show Ad Airing Time Distributions on MTV
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Notes. Within-show ad airing times are normalized by show duration, where 0 denotes the start and 1 denotes the end.

The second identifying assumption, non-strategic viewership, requires that a household’s
viewership of a targeted show be independent of the within-show airing time of the focal brand ad. This
assumption implies that households do not watch or skip the focal brand ad in a systematically different
manner than they do ads of other brands.

At first glance, this may appear to be a relatively strong assumption, as households could, in
principle, adjust their viewing behavior—watching or skipping—based on when the focal brand ad airs,
implying that treatment might influence which segments of the show are viewed. However, in our

empirical setting, 95.5% of focal brand ad exposures were watched in their entirety by treated

households.'® This completion rate is statistically indistinguishable from that of non-focal brand ads

15 In our empirical implementation, a household is considered treated if it is exposed to any part of a focal brand ad,
regardless of the duration of the exposure.
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(95.7%, p = 0.12). Moreover, focal brand ad completion rates are highly consistent across household
types: 95.5% for converted households and 95.6% for unconverted households (p = 0.20).

These uniformly high completion rates indicate that the risk of focal-brand-specific strategic ad-
skipping behavior is minimal in our context. Taken together, the evidence supports the plausibility of both
identifying assumptions and provides empirical justification for estimating a household’s probability of
focal brand ad exposure within a targeted show based on its observed show viewership.

4.3.2. Operationalizing the Proposed IV

With both identifying assumptions passing their respective diagnostic checks, we now operationalize the
proposed IV. Recall from Equation (8) that our household-show-level instrument is defined as IV;; =
Ajs — AP, While A;; (i.e., whether household i is exposed to a focal brand ad within show s) and A2
(i.e., whether show s is targeted by the focal brand) are directly observable in our data, constructing [V
requires estimating P;—the probability that household i is exposed to a focal brand ad during show s in
the event the show is targeted.

Recall from Equation (6) that P, = |.

Views l4(x) dx. Because View;, is directly observable from
household TV viewing data, operationalizing P;s requires specifying L;(-), which denotes the density
function used by the network broadcasting show s to draw the within-show airing time of the focal brand
ad. Under the quasi-random ordering assumption, the same density function governs the timing of all
within-show ad placements, regardless of advertiser identity.

Accordingly, we operationalize () as the normalized histogram of within-show ad placements
observed for the network broadcasting show s; the left panel of Figure 2 shows a representative example.
Under this operationalization, the estimate P;; has an intuitive interpretation: it is the proportion of
within-show ad placements that fall within household i’s viewing segment(s), View;s < [0, 1].

With this setup, we next describe the implementation procedure in detail. Specifically, we

nonparametrically estimate P;;—household i’s probability of exposure to the focal brand’s ad within

show s, conditional on the focal brand targeting the show—in three steps.
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Step 1: Constructing the network-specific ad airing time distribution. We discretize within-
show time at the second level and normalize each show’s duration to an interval from 0 (beginning) to 1
(end), defining an ad’s airing time as the proportion of the show that has elapsed before the ad appears.
For instance, an ad inserted at the 15th minute of a 30-minute show corresponds to a normalized ad airing

time of 0.5.

Using all ad airings of all brands, we construct the empirical PDF of within-show ad airing times
for each targeted network. These empirical PDFs provide estimates of [ (x), which governs the within-
show ad airing time distribution for show s broadcast by network kg, where x € [0,1] represents the
normalized time within the show.

The left panel of Figure 3 visualizes our estimate of [;_(x) for MTV, a representative targeted
network in our data. The focal brand’s ad airing times follow a tri-modal distribution, with concentrations
just after the first and second quarters of a show and immediately before the end of the show.

Figure 3. Within-Show Ad Airing Time Distribution and Focal Brand Ad Exposure Probability
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Notes. X-axis represents normalized show duration from 0 (beginning) to 1 (end), and Y-axis represents the
probability density of an ad airing. In the right panel, the shaded area denotes the portion of the show that was
viewed (View;s = {[0,0.5]}), and the red bars illustrate the calculation of estimated within-show focal brand ad

exposure probability (P;).

Step 2: Identifying household show viewing patterns. Next, we map each household’s actual

viewership of each targeted show onto the normalized show duration, based on second-by-second TV
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viewing data provided by LGADS. For example, if household i watched the first 15 minutes of a 30-
minute show s, then View;; = {[0,0.5]}. This is illustrated in the right panel of Figure 3, where the shaded
area represents the portion of the show that was viewed.

Step 3: Computing the within-show probability of focal brand ad exposure. Conditional on
the observed household show viewership View;,, and the estimated targeted network’s ad airing time

PDF st (x), our estimate of P, denoted by P, can be expressed as: P;; = [ st (x) dx.

View;s

The red bars in the right panel of Figure 3 visualize the calculation of P;: the red area under the
curve (AUC) represents our nonparametric estimate of P;; for a household that watched the first half of a
targeted show on MTV. In this example, the red AUC accounts for 40% of the total AUC, indicating a
40% probability that the household could be exposed to the focal brand’s ad, given View; and st (x).

For each household i and show s, given P;;, we compute the household-show-level IV as IV, =
A;s — AD P, In the illustrative example shown in Figure 3, IV;; = 1 — 0.4 = 0.6 when household i is
actually exposed to the focal brand ad, and IV;; = 0 — 0.4 = —0.4 when the household is unexposed. The
expected value of this IV is therefore E(IV;;) = 0.4 X 0.6 + 0.6 X (—0.4) = 0.

Because focal brand purchases are observed at the daily level, we aggregate the household-show-
level IV across all shows broadcast on day # to obtain the household-day-level IV: TV, = ¥c St V.

As noted in Section 3.3, a key property of our household-show-level IV is that it is nonzero only
when a household partially watches a targeted show. This implies that our identification strategy relies on
variation in ad exposure status among observations where households watch targeted shows without
completing them in full. In our data, among households that watched at least one targeted show during the
study period, only 1.8% completed all the targeted shows they watched (i.e., “always completers”), while
the remaining 98.2% watched at least one targeted show partially.

Moreover, at the household-show level, only 7.6% of observations correspond to fully completed
shows, whereas 51.1% lasted less than 10% of the show’s duration, 33% lasted between 10% and 90%,

and the remaining 8.3% lasted between 91% and 99%.
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Taken together, the small share of always completers (1.8%) and the large portion of partially
completed household-show observations (92.4%) suggest that our identification strategy benefits from
ample nonzero, network-induced exogenous shocks. This ensures sufficient statistical power to estimate
the average treatment effect for the general population of smart TV households.'®
4.3.3. Summary Statistics of Operationalized I'V and Falsification Checks
Table 2 presents summary statistics for the realized treatment A;,, expected treatment A P;., and the
instrument IV;; = A;; — A2 P, across all household-show observations in which a household watched any
portion of a targeted show (i.e., A2 = 1 and View;; # @). Table 2 also reports summary statistics for the
corresponding household-day-level aggregates, i.e., Ay = Yes, Ais» Lses, APP;, . and IV, = Yses; V.

At the household-show level, the mean of A;; = 0.29 closely aligns with the mean of A2P;q,
indicating that our estimate of expected treatment is unbiased. This, in turn, yields a household-show-
level IV; with a mean close to zero (-0.002). A similar pattern emerges at the household-day level, where
the mean of 4;; = 0.51, the mean of A2P,; = 0.51, and the mean of IV;, = —0.004. These results
indicate that both IV, and 1V;, pass the mean-zero falsification check discussed in Section 3.3.

Table 2. Summary Statistics of Realized Ad Exposure, Expected Ad Exposure, and IV

Mean  Std. Dev. 5% 25% 50% 75% 95%

Household-show-level

Realized ad exposure (4;5) 0.29 0.45 0.00 0.00 0.00 1.00 1.00

Expected ad exposure (A2 P;;) 0.29 0.38 0.001 0.01 0.06 0.56 1.00

Proposed IV (IV;,) -0.002 0.25 -0.38 -0.04  -0.004 0.00 0.49
Household-day-level

Realized ad exposure (4;;) 0.51 0.84 0.00 0.00 0.00 1.00 2.00

Expected ad exposure (Xses, AbP)  0.51 0.77 0.00 0.01 0.15 0.82 2.00

Proposed IV (IV;,) -0.004 0.39 -0.61 -0.11 -0.01 0.00 0.75

Notes. Summary statistics are based on 41,407,672 household-show-level and 23,985,341 household-day-level observations in
which households watched any portion of a targeted show.

Conceptually, our estimate of expected treatment, A2 P;,, resembles a propensity score. However,

unlike traditional propensity score estimation, which typically involves calibrating a predictive model

16 Our identification strategy may lead to a downward bias in the estimated ad effects if households that consistently
watch entire shows are also more responsive to TV ads.
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using the realized treatment status (in our case, A;;) as the dependent variable, we obtain A2 P;
nonparametrically and without reference to A;s. This fundamentally different approach to expected
treatment or propensity score estimation underscores that achieving equality between the means of A
and A2 P;, is nontrivial and not mechanically guaranteed.

Moreover, corr (A is) AL pis) = 0.89, indicating that our expected treatment estimate is highly
correlated with the realized treatment, as expected. Most notably, corr(TViS, Ais) = 0.42,
corr(;5)(IVis, AD) = —0.001, corr(IVs, P;s) = —0.001, and corr(IV;s, AL P;s) = —0.009. These results
indicate that our instrument simultaneously satisfies two key conditions: (a) it is strongly correlated with
the realized treatment, thereby meeting the relevance condition consistent with Proposition 1, and (b) it
exhibits near-zero correlation with the show-targeting decision (42), the estimated probability of focal
brand ad exposure within a targeted show (P;), and the expected treatment estimate (A2 P;;), thereby
passing the falsification checks on exogeneity consistent with Proposition 2.

Statistically, achieving both (a) and (b) is nontrivial: it requires that two highly correlated
variables—A;; and A P,.—yield a difference, IV; = A; — AL P;,, that is highly correlated with one (4;)
but uncorrelated with the other (A2P;,). In Online Appendix E.3, we further compare the correlations in
focal brand ad exposures with the correlations in network-induced shifters across targeted shows,
providing additional support for the validity of the proposed IV.

At the household—day level, we observe a similar pattern: corr(A;e, Yses, A2P;s) = 0.92,
corr(IVy, Ayr) = 0.36, corr( oy (IVig, Yses, AL) = —0.006, corr(IV;y, ¥ies, Pis) = —0.007, and
corr(TVit, Yses; Aé’ﬁis) = —0.009. These results confirm that our household-day-level instrument IV;,
likewise satisfies the relevance condition and passes the falsification checks on exogeneity.

4.4. Control Function Approach
Because each household’s daily purchase decision is modeled as a discrete choice (Equations 9 and 10),

we incorporate the proposed instrument into the ad response model using the control function approach

(Petrin and Train 2010, Wooldridge 2015, Ebbes et al. 2016).
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In the first stage, we regress each household’s daily focal brand ad exposures A;; on its

instrument IV;, and other variables that enter the utility function:
Aie = o, + ¥/ Xy + @/ TV;; + €, (16)
aift = a({ + a{Zl- + I(Freq;; = 1) % f(Freqit,Recit,ag) + wl.f (17)
where aift (with superscript “f” denoting “first-stage”) is a household-specific, time-varying intercept
specified analogously to a;; in Equation (12), and a)if ~N(0,0%).

We retain the residual from the first-stage regression, denoted by éi}::,

and include it in the second
stage to correct for potential endogeneity bias in the ad response model. To align with the ad stock
formulation of household daily focal brand ad exposures (i.e., AS;; = Yiza (AA)lAi‘t_l), we construct a
corresponding “control function stock,” denoted by CFS;;:

CFSie = £i26Qcr)'é],_, (18)
where Acp € (0,1) is a decay parameter determined empirically.

Taken together, in the second stage of the control function approach, we estimate a probit model
in which CFS;; enters the utility function as an additional control:

Uit = @it + BitASic + vXie + 6CF Sy + & (19)
where &/, (with superscript “s” denoting “second-stage”) is i.i.d. standard normal and uncorrelated with
AS;;, since CFS;; conditions out the variation in the demand shock u;; (from Equation 9) that is correlated
with AS;;. This specification yields an endogeneity-corrected estimate of f;;. A test of the null hypothesis
6 = 0 serves as a formal test of exogeneity for AS;; (Wooldridge 2015, Ebbes et al. 2016).

5. Results

5.1. Evidence of Bias Correction by the Proposed Identification Strategy

The first-stage regression results (Equations 16 and 17), reported in Table 3, confirm that IV, has the
expected positive and statistically significant effect on focal brand ad exposure (¢ =0.970, p <0.01).

The instrument is also highly relevant, as evidenced by a univariate F-statistic of 1,902,996 (p < 0.001).
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Variables related to purchase history, such as frequency, recency, and the first-month post-conversion
promotion indicator, are uncorrelated with focal brand ad exposure once we condition on IV;,. Although
competitors’ ad spend is positively associated with focal ad exposure, the effect size is negligible: a one
standard deviation increase corresponds to only 0.008 additional focal brand ad exposures.

Table 3. Parameter Estimates from the First-Stage Model

Model Component Parameter Estimate SE
Intercept a’g 0.060"*" 0.001
1V, of 0.970"" 0.001
Post Conversion 0(;, 0 0.005 0.004
Frequency (log) 055, 1 0.0003 0.003
Frequency (log) sq. 055, 2 -0.0003 0.002
Recency (log) al, -0.002 0.003
Recency (log) sq. al, 0.0001 0.001
First Month Post-Conversion Promotion v -0.001 0.002
Competitor Ad Spend v/ 0.008" 0.0004
Month FE - Yes
Day-of-Week FE - Yes

Holiday FE - Yes
Household Characteristics a{ Yes

Std. Dev. of Random Intercept g3 0.012" 0.001

Notes. The DV is daily household focal brand ad exposures 4;;. “**p < 0.01; “p <0.05; "p < 0.1.

The second-stage household-daily ad response model is specified as a random-coefficient probit
estimated using simulated maximum likelihood (SML) with Halton draws (Train 1999). To assess how
key parameter estimates vary across specifications, we also estimate several simplified versions for
comparison. The results are reported in Table 4.

Columns 1 and 2. Column 1 reports the simplest specification, which assumes no ad carryover
(14 = 0), no control function (§ = 0 and A = 0), no moderation of ad responsiveness by time-invariant
household characteristics (; = 0) or purchase history (, = 0), and no unobserved heterogeneity in
baseline purchase propensity or ad responsiveness (g; = 0, 0, = 0, and p = 0). Column 2 extends this
baseline by introducing a control function term, allowing § to be estimated while fixing the decay

of

parameter Acp = 0, such that CFS;; = &,.

The ad effect estimate (f,) declines from 0.023 (p <0.01) in Column 1 to 0.010 (p <0.1) in
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Column 2, highlighting the debiasing effect of the control function term élft The positive and significant
coefficient for CFS;; (§ = 0.015, p < 0.05) further confirms that households’ daily ad exposures are
endogenous, exhibiting positive spurious correlation with households’ daily purchase decisions.

Columns 3 and 4. Columns 3 and 4 extend Columns 1 and 2, respectively, by allowing the daily
decay parameters in AS;; and CFS;; (i.e., A4 and A-r) to be empirically determined via a grid search
(Danaher et al. 2020, Shapiro et al. 2021, Tsai and Honka 2021). Rather than imposing equality between
A4 and A-p, we vary them independently from 0 to 0.99 in increments of 0.05 and select the combination
that maximizes out-of-sample fit, yielding A, = 0.7 and Aoz = 0.95.'7 This pair is then held fixed when
comparing models with or without the control function term and with or without random effects.

The control function term remains positive and significant (§ = 0.003, p < 0.01).'® Comparing
the B, estimates in Columns 3 and 4, we observe that including CFS;; reduces the estimated ad effect by
more than 50%, from Sy, = 0.016 (p <0.01) to S5 = 0.007 (p < 0.05). The continued significance of the
CFS;; coefficient (6 = 0.003, p <0.01) reinforces the presence of endogeneity, consistent with the
pattern observed in the comparison between Columns 1 and 2.

Columns 5 and 6. Columns 5 and 6 further extend Columns 3 and 4 by allowing ad
responsiveness to vary with household characteristics (8; # 0) and purchase history (8, # 0), as well as
by incorporating unobserved heterogeneity in both baseline purchase propensity and ad responsiveness
(o1 # 0,0, # 0,and p # 0). Once again, inclusion of the control function term corrects for substantial
upward bias in the naive ad effect estimate, as evidenced by the decline in §; from 0.018 (p <0.01) in

Column 5 t0 0.012 (p < 0.01) in Column 6."

7 For each decay parameter combination, we estimate the ad response model using data from the first 120 days of
the study period and evaluate the model’s log-likelihood on data from the remaining 13 days.

18 The correlation between AS;; and CFS;, is 0.72. To assess potential multicollinearity, we calculate the variance
inflation factors (VIFs) for AS;; and CFS;; in the second-stage model, which are 2.42 and 2.27, respectively—well
below the conventional threshold of 10.

19 As a robustness check of the identified positive effect of linear TV advertising, we conduct a placebo test by
replacing the focal brand’s ad exposures with those from a major automobile manufacturer and re-estimating the
proposed model. The null effect of auto ads on household purchases of the focal brand suggests that the identified
positive effect of focal brand ads is unlikely to be coincidental (see Online Appendix E.4 for details).
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For an average unconverted household, the baseline daily conversion rate is 0.012%. The naive
ad effect estimate suggests that a single focal-brand ad exposure lifts this rate by approximately 7.5%,
whereas the endogeneity-corrected estimate from our proposed model yields a smaller but still significant
lift of 4.6%. For the remainder of the paper, we focus on the endogeneity-corrected estimates from the full
model (Column 6 of Table 4).

To situate our estimates within the literature, we compute short- (same-day) and long-term (30-
day) ad elasticities for the average panel household. Elasticities are defined as the percentage change in
purchase incidence over the same day (30 days) in response to a 1% change in ad stock. After correcting
for endogeneity, the short- and long-term elasticities are 0.045 and 0.143, respectively, compared with
0.072 and 0.222 without correction—an overstatement of 55%. These naive elasticities closely align with
the mean short- and long-term elasticities of 0.12 and 0.24 reported by Sethuraman et al. (2011),

highlighting the risk of substantially inflated estimates when endogeneity is not properly addressed.*

20 Our endogeneity-corrected long-term elasticity of 0.143 remains notably higher than the 0.023 reported by
Shapiro et al. (2021), likely reflecting differences in brand maturity. Shapiro et al. (2021) primarily examine mature
brands, for which prior research consistently documents lower ad elasticities (Sethuraman et al. 2011).



Table 4. Second-Stage Estimation Results for the Ad Response Model

No Carryover or

No Carryover or

No Moderation

No Moderation

Moderation Effects | Moderation Effects Effects Effects Full Model Full Model
wlo CF (1) w/ CF (2) w/o CF (3) w/ CF (4) wlo CF (3) w/ CF (6)
Parameter Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

Intercept a, -3.338""  0.005 | -3.368"  0.005 | -3.370""  0.005 | -3.368""  0.006 | -3.430""  0.006 | -3.429™"  0.006
Ad Stock (A4S;;) Bo 0.023™*  0.003 0.010" 0.005 | 0.016™  0.002 0.007"" 0.003 | 0.018™  0.003 | 0.012"*" 0.003
Control Function (CFS;;) é - - 0.015™ 0.007 - - 0.003™  0.001 - - 0.003"* 0.001
Post Conversion 2% 1.611™  0.010 | 1.611™ 0.010 | 1.611"  0.010 | 1.611™  0.009 | 1.499™*  0.012 | 1.498"" 0.013
Frequency (log) az, 0.516™  0.007 | 0.516™  0.007 | 0.516™"  0.007 | 0.516™  0.007 | 0.459™*  0.008 | 0.459"*" 0.008
Frequency (log) sq. ay; -0.045""  0.003 | -0.045"  0.003 | -0.045"" 0.003 | -0.045"" 0.003 | -0.061"" 0.003 | -0.061"""  0.003
Recency (log) a3 -0.120"*  0.006 | -0.120"*  0.006 | -0.120""  0.006 | -0.120"*  0.006 | -0.103""  0.008 | -0.103"*  0.008
Recency (log) sq. W2 -0.027**  0.001 | -0.027"**  0.001 | -0.027""* 0.001 | -0.027"** 0.001 | -0.028"" 0.002 | -0.028™"  0.002
égztv"ecr];:np"“ Bao ; ; ; - ; ; - ; 0.001 0013 | 0004 0013
Ad Stock X Freq (log) B2 - - - - - - - - 0.017*  0.009 | 0.019" 0.009
Ad Stock x Freq (log) sq. B2 - - - - - - - - -0.010°  0.005 | -0.010" 0.005
Ad Stock X Rec (log) B2 - - - - - - - - -0.011 0.011 -0.011 0.011
Ad Stock X Rec (log) sq. Baa - - - - - - - - 0.004™  0.002 | 0.004™ 0.002
E‘gitvgggf Il,)ﬁ)ﬁo on " 0.200"*  0.005 | 0200"*  0.006 | 0.200*  0.005 | 0.200"  0.005 | 0.189"*  0.006 | 0.189"*  0.006
Competitor Ad Spend Yy 0.014™  0.005 0.014™*  0.004 | 0.014™  0.005 | 0.014™  0.006 0.014" 0.005 | 0.014™ 0.005
Month FE _ Yes Yes Yes Yes Yes Yes
Day-of-Week FE - Yes Yes Yes Yes Yes Yes
Holiday FE _ Yes Yes Yes Yes Yes Yes
Carryover Aa/cr 0/0 0/0 0.7/0 0.7/0.95 0.7/0 0.7/0.95
Household Characteristics aq Yes Yes Yes Yes Yes Yes

HH Char. X Adstock B1 - - - - Yes Yes

Std. Dev. (Intercept) o0, - - - - 0.197"*  0.004 | 0.198"™" 0.005
Std. Dev. (Adstock) o, - - - - 0.003 0.015 0.015 0.012
Rho p - - - - -0.553 0.446 -0.538 0.351

Notes. Columns (1) and (2) assume no carryover of ad effects, no evolution of ad responsiveness, and no unobserved heterogeneity. Columns (3) and (4) assume
no evolution of ad responsiveness and no unobserved heterogeneity. Columns (5) and (6) incorporate all model components. Estimates in Columns (2), (4), and
(6) are obtained using the control function approach, with standard errors derived from 50 bootstrapped samples. **’p < 0.01; *p < 0.05; *p <0.1.



5.2. Baseline Purchase Propensity and Purchase History

The a, estimates in Column 6 of Table 4 capture how a household’s baseline purchase propensity evolves
with its purchase history. Following the first purchase, baseline propensity rises sharply (a, o, = 1.498, p <
0.01), corresponding to an increase in daily purchase probability from 0.012% for an unconverted
household to 1.5% for a newly converted household.

One likely explanation for this increase is the initial setup cost associated with using the focal
brand’s platform. Before placing their first order, households must download the app (or access the
website), create an account, and enter a payment method. Because these steps are not required for
subsequent purchases, the reduction in transaction friction naturally leads to a higher baseline purchase
propensity after the first purchase.

Among converted households, prior purchase frequency has a positive but diminishing effect on
baseline purchase propensity (a,; = 0.459, p <0.01; a, , =—0.061, p <0.01), consistent with self-
reinforcing habit formation, particularly during the early stages of repeat purchasing. In contrast, baseline
purchase propensity declines with increasing recency (a, 3 = —0.103, p <0.01; a, , = —0.028, p < 0.01),
indicating that households become less likely to repurchase the longer they wait, a pattern consistent with
the recency-trap effect documented in other contexts (Neslin et al. 2013).

Taken together, these results show that baseline purchase propensity continues to evolve with
purchase frequency and recency beyond the initial post-conversion increase. For example, a household
with one prior purchase has a 1.5% daily probability of making a purchase, which rises to 4.0% after three
purchases and to 5.5% after five. Conversely, a household that purchased yesterday has a 1.5%
probability of buying again today, which declines to 0.9% after one week and to 0.3% after four weeks.
5.3. Ad Responsiveness and Purchase History
We next examine how a household’s responsiveness to the focal brand’s TV ads varies with its purchase
history, as captured by the 3, estimates in Column 6 of Table 4. Since f3, , is statistically insignificant (p

> (0.1), there is no evidence that a household becomes either more or less responsive to the focal brand’s
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TV ads immediately following its trial purchase. To better interpret how ad responsiveness evolves with
prior purchases, Figure 4 visualizes the nonlinear patterns implied by the [, estimates.

The left panel of Figure 4 shows an inverted U-shaped relationship between ad responsiveness
and purchase frequency. Households are most responsive to the focal brand’s TV ads after two to four
prior purchases—that is, during the early stages of repeat purchasing. Beyond this point, ad
responsiveness declines as households become more frequent purchasers, reflecting a reduced impact of
TV advertising on habitual buyers. In contrast, the right panel of Figure 4 depicts a U-shaped relationship
between ad responsiveness and purchase recency. Households are least responsive to the focal brand’s TV
ads approximately three to five days after a purchase.

Figure 4. Ad Responsiveness by Purchase Frequency and Recency
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Notes. The moderating effects of purchase frequency and recency on ad responsiveness (f;;) reveal an inverted U-shaped
relationship with frequency and a U-shaped relationship with recency.

These patterns are also reflected in the short-term ad elasticity estimates. For an average
household with one prior purchase, same-day ad elasticity increases from 0.040 to 0.056 following the
second purchase but declines to 0.046 after the fifth. Likewise, for a typical household with one prior
purchase, same-day ad elasticity decreases from 0.040 to 0.027 one week after the last purchase but then
rises to 0.078 four weeks later.

While these results suggest that the focal brand’s TV ad effectiveness varies nonmonotonically

with prior purchase frequency and recency, the underlying mechanisms remain unclear. Future research is
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needed to better understand the drivers of these dynamics. One plausible explanation is that, with each
additional purchase, the effectiveness of TV ads may shift due to changes in their informational versus
emotional roles (Tellis 1988, Deighton et al. 1994, Ackerberg 2001, 2003).

Regardless of the specific mechanisms, the complex dynamics of baseline purchase propensity
and ad responsiveness with respect to purchase frequency and recency yield important managerial
implications for behaviorally targeted TV advertising. First, to capture the full impact of TV ads,
advertisers must account for state-dependence effects, such as habit formation acceleration and recency
trap avoidance, in addition to same-day and carryover effects. Second, when formulating targeting
strategies, advertisers should incorporate prior purchase frequency and recency as segmentation criteria
(e.g., prospective vs. existing customers, early repeat vs. habitual purchasers, and recent vs. lapsed
purchasers). For instance, the focal brand may benefit from targeting lapsed households, those who have
not purchased in an extended period, given their substantially higher ad responsiveness. However,
because baseline purchase propensity declines sharply with increasing recency, timely intervention is
crucial to prevent households from falling into a self-reinforcing recency trap. Effective behavioral
targeting should therefore balance these opposing forces by accounting for both the decline in baseline
purchase propensity and the rise in ad responsiveness as recency increases.

5.4. Household Heterogeneity and Other Control Variables

Table 5 presents parameter estimates capturing observed household heterogeneity in baseline purchase
propensity and ad responsiveness. Households that watch more TV generally exhibit lower baseline
purchase propensities, likely because heavy TV viewers tend to be older and less engaged with food
delivery services. In contrast, households with higher sports viewership display higher baseline purchase
propensities, consistent with sports audiences skewing younger—a demographic more inclined to adopt
food delivery. Conversely, heavy news viewers, who also skew older, appear more reliant on traditional
meal preparation and therefore show a lower likelihood of using digital food ordering services.

We also find that households with greater sports viewership are more responsive to the focal

brand’s TV ads. In contrast, heavy TV viewers exhibit lower ad responsiveness, possibly due to ad
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saturation: greater exposure to a wide range of advertisers may lead to ad fatigue and reduced attention to
any single advertiser, including the focal brand.

These observed heterogeneities are economically meaningful. For instance, a one standard
deviation increase in a typical household’s sports viewership raises short-term ad elasticity from 0.045 to
0.061, while a one standard deviation increase in overall TV viewing reduces it from 0.045 to 0.030.

Table S. Parameter Estimates for Observed Household Heterogeneity

Baseline Purchase Propensity (a4) Ad Responsiveness (1)

Estimate SE Estimate SE
Avg. TV Viewing -0.019™ 0.002 -0.004™ 0.002
Sports Viewing 0.014™ 0.002 0.004" 0.002
Reality Viewing -0.003" 0.002 0.003 0.002
News Viewing -0.012™" 0.002 0.002 0.002
Daytime Viewing -0.006™ 0.002 -0.001 0.003
Prime Time Viewing -0.011™" 0.002 0.001 0.003
Weekend Viewing -0.005™ 0.002 -0.0004 0.003
Ad Completion 0.001 0.001 -0.004 0.003
Show Completion 0.003™ 0.001 0.003 0.002

Notes. The standard errors are derived from 50 bootstrapped samples. ***p < 0.01; **p < 0.05; *p < 0.1.

Beyond observed heterogeneities, Column 6 of Table 4 also reveals substantial unobserved
heterogeneity in baseline purchase propensity (o, = 0.156, p < 0.01). However, unobserved heterogeneity
in ad responsiveness is not statistically significant, nor is there evidence of a significant correlation
between unobserved baseline purchase propensity and ad responsiveness.

Lastly, we examine the effects of two key control variables. The first-month post-conversion
promotion, available exclusively to new customers, has a positive and significant effect (y; = 0.189, p <
0.01), corresponding to a 58% increase in daily purchase probability. Competitor ad spend likewise exerts
a positive and significant influence on focal brand purchase propensity (y, = 0.014, p <0.01). The
implied same-day competitor ad elasticity is 0.016 for unconverted households, approximately 36% of the
focal brand’s own same-day ad elasticity.

This finding aligns with prior research documenting positive spillover effects from competitor TV
advertising. For example, Anderson and Simester (2013) and Sahni (2016) report such spillovers in field

experiments, while Du et al. (2019) find that immediate TV ad elasticity of brand search ranges from 0.02
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to 0.22 for own-brand ads and from 0.003 to 0.05 for competitor ads. Consistent with these studies, our
results suggest that competitor TV ads can indirectly benefit the focal brand, potentially because the
category expansion effect outweighs the share-stealing effect in a relatively young industry.

6. Concluding Remarks

The widespread adoption of ACR-enabled smart TVs and STBs has made second-by-second TV viewing
data available to networks and advertisers at unprecedented scales. This high-granularity, large-scale
audience measurement data is emerging as a viable contender for TV ad currency. When merged with
first-party CRM data, modern single-source data have the potential to transform the landscape of TV
advertising—not only by enabling improved targeting and attribution in practice but also by fostering
methodological innovation in marketing science.

This research contributes to such methodological advancement by developing a novel IV for
estimating the causal effect of linear TV advertising using household-level observational data. Our
method addresses a central challenge in ad effectiveness research based on such data: the lack of a
generalizable causal identification strategy that is robust to both targeting and activity biases. The key
insight underlying our approach is that, in linear TV—where ad buys are primarily targeted at the show
level—networks typically assign within-show ad slots across advertisers in a quasi-random manner. This
practice introduces stochastic variation in realized ad exposure among households that watch only part of
a targeted show.

Through formal proofs, a stylized numerical example, and an empirical application, we show that,
under the identifying assumptions, there exists exogenous, network-induced variation in household-show-
level linear TV ad exposures that can be leveraged for causal identification. The core innovation of our
method lies in showing how this exogenous variation can be extracted nonparametrically—as the residual
between a household’s realized ad exposure and its expected treatment—and used as an instrument at
either the household-show or household-day level. A notable feature of this approach is that the expected
treatment is estimated without fitting a predictive model using the realized treatment as the dependent

variable, distinguishing it from traditional propensity score-based methods.
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For I'V-based identification, instrument exogeneity is inherently untestable in real-world
applications. Nevertheless, a key advantage of our IV construction approach is that it enables multiple
empirical checks to assess the credibility of both the identifying assumptions and the instrument itself:

e Quasi-random ordering assumption: Examine whether the empirical distribution of within-show ad
airing times for the focal brand is statistically indistinguishable from that of non-focal brands. Passing
this check increases confidence that networks assign within-show ad slots for the focal brand through
a quasi-random process similar to that used for other advertisers.

e Non-strategic viewership assumption: Examine whether ad-skipping rates for the focal brand are
comparable to those for non-focal brands. Passing this check—particularly when ad-skipping rates are
low (e.g., below 4.5%, as in our data)—increases confidence that viewers do not avoid focal brand
ads in a systematically different manner than they do ads of other brands.

o Instrument validity: Examine whether the constructed I'V (a) has a mean close to zero, ensuring the
expected treatment estimate is unbiased, (b) is strongly and positively correlated with realized
treatment, satisfying the relevance condition; and (¢) is uncorrelated with the expected treatment
estimate, thereby passing the falsification check for exogeneity.

With respect to practical effectiveness, our empirical results show that omitting the proposed IV
correction for endogeneity leads to naive ad elasticity estimates overstated by 55%, even after controlling
for a rich set of covariates and incorporating random effects for both baseline purchase propensity and ad
responsiveness. This substantial bias correction underscores the value of our method for achieving
credible causal inference in observational TV advertising research.

Substantively, in the context of food delivery services, we find that baseline purchase propensity
rises sharply after the initial purchase and continues to increase with each subsequent purchase, albeit at a
diminishing rate—a pattern of positive reinforcement consistent with habit formation. We also observe a
recency trap effect: baseline purchase propensity declines steadily with each additional day without a
purchase. Moreover, ad responsiveness varies systematically with past purchase behavior. Early repeat

purchasers (those with two to four prior purchases) exhibit the highest responsiveness to the focal brand’s
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TV ads. With respect to purchase recency, ad responsiveness initially declines immediately following a
purchase but subsequently rebounds as more time elapses without another purchase.

As modern single-source data, such as those employed in this study, become increasingly
available, our identification approach offers a portable solution for marketing researchers, advertisers, and
policymakers seeking to measure TV ad effectiveness using household-level observational data. While
RCTs are often costly, logistically challenging, or infeasible in the linear TV context, our method
provides a practical and cost-efficient alternative, enabling robust causal inference at scale by leveraging
the quasi-random ordering of within-show ad placements inherent to linear TV advertising.

Several boundary conditions of our identification strategy warrant future extension. First, the
quasi-random ordering assumption may not hold in contexts where advertisers pre-negotiate specific ad
positions or where networks employ addressable technologies that adjust ad timing based on viewer
characteristics. Second, the assumption of non-strategic viewership may be violated if the focal advertiser
elicits systematically different viewing behaviors (e.g., viewers are uniquely inclined to attend to or skip
its ads). Third, although our identification strategy addresses the two primary sources of endogeneity—
targeting and activity biases—other sources may persist (e.g., advertisers strategically tailor ad copy or
campaign objectives based on show audience characteristics). Future research could extend our
framework to accommodate these complexities.

All in all, we hope our study encourages further exploration of the full potential of large-scale,
high-granularity single-source data. As the history of marketing science demonstrates, each wave of
audience measurement innovation has spurred advances in empirical methods and scientific discovery
(Du et al. 2021). We view our work as part of this ongoing evolution, providing a methodological
foundation for future research on the causal effects and effectiveness of TV advertising.
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Table Al. Selected Prior Studies on Causal Identification Strategies in TV Advertising

Temporal Dependent
Unit of Analysis porz Variable Identification Strategy Ad Elasticity
Granularity (Industry)
Online search Exogeneity in precise ad
Joo etal. (2014) Nation Hourly (financial }ignse rti}:) N tilinin 0.17
services) g
Hartmann and Klapper Exogeneity in local
(2018) DMA Weekly Sales (beverage) Superbowl viewership 0.03-0.1
. Sales DMA border
Shapiro (2018) County Monthly (pharmaceuticals) discontinuity 0.01-0.037
Sinkinson and Starc (2019) DMA Monthly (phaﬁl?;/fgl?t?cals) Political a?\vfemsmg as 0.076
Sales Spillover from
Thomas (2020) Store Weekly (pharmaceuticals) mass advertising as [V 0.042
Vote share Preference externalit
Lietal. (2024) County Yearly (presidential caused by others as Ii// -
elections)
0.045
Purchase Quasi-random within- (same-day)
Current Study Household Daily (food delivery L Y
show ad airing timing 0.143
services) 3 0'_ day)

Table A2. Selected Prior Studies on the Impact of TV Advertising Using Single-Source Data

Data Model
. State
Number of Temporal Puq;cr:llila:se TV Viewing | Dependence in State ]i)neie:(l;dence Treatment of
Households Granularity Data Baseline . Endogeneity
Observed . Responsiveness
Propensity
Tellis (1988) 251 Weekly No Ad Exposure Frequency Frequency No
Pedrick & Zufryden . Frequency &
(1991) 584 Daily No Ad Exposure Recency No No
Deighton et al. (1994) 167 Weekly No Ad Exposure Frequency Frequency No
Lodish et al. (1995) 389 Weekly No ot No No Sp]%teft";b‘e
Tellis & Weiss (1995) 162 Daily No Ad Exposure Frequency No No
Ackerberg (2001) 1,775 Weekly Yes Ad Exposure Frequency Frequency No
Ackerberg (2003) 1,775 Weekly Yes Ad Exposure Frequency Frequency No
Hu et al. (2007) 3,000 Weekly No Cor;[;fiiitons No No Spl%tegt:ble
Second-by- Ad & Show
Deng & Mela (2018) 834 Second No Exposure Frequency No No
Second-by- Simultaneous
Tuchman et al. (2018) 6,437 Second No Ad Exposure Frequency Frequency Equation
IV with
Current Study 1.4 Million Second-by- Yes Ad & Show Frequency & Frequency & Control
Second Exposure Recency Recency Function

Additional References

Pedrick JH, Zufryden FS (1991) Evaluating the impact of advertising media plans: A model of consumer
purchase dynamics using single-source data. Mktg. Sci. 10(2):111-130.

Tellis GJ, Weiss DL (1995) Does TV advertising really affect sales? The role of measures, models, and
data aggregation, J. Advertising 24(3), 1-12.
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Online Appendix B: Proofs of Propositions and Corollary

Proposition 1: Under the assumption that the DGP of A;s follows Equations (1)—(5), it holds that
corr(IVi,, Ais) > 0 and corr(1Vis, u;s) = 0, thereby satisfying the relevance condition and the exclusion
restriction, respectively, for Vs to be a valid instrument for A;.

Proof: The relevance condition, corr(IV;s, A;s) > 0, holds because, recalling from Equation (8) that
Vs = APA,, and A;s = APP;; + AP A,. This implies that when A2 = 1, the nonzero values of A;g, which
appears in both [V and 4;,, induce a positive correlation between them.

To satisfy the exclusion restriction, we must show that corr(1V;g, u;s) = corr (A? Ajs, uis) =0,
which is equivalent to showing that cov(A2A, u;) = 0.

Since cov(ALAss, uss) = E(A2Asuys) — E(ARAi) X E(uys) and by definition E (u5) = 0, it
suffices to show that E(AA;su;s) = 0.

We apply the law of iterated expectations: E(A?Al-suis) =E, (E(A?Aisuiswis)) =
J E(ABAs|wis )uish(uis)dus, where h(-) is the PDF of ;5. Therefore, it suffices to show that
E(A%As|uig) = 0 for all uy.

Since A2A;5 # 0 only when A2 = 1 and Ai5 # 0, it suffices to show that E(A;|A2 = 1,0 <
Py <1, uis) = 0, i.e., the network-induced shifter has an expected value of zero when a household
watches a targeted show partially.

Given that Pr[A;; = 1 — Pig] = Py, and Pr[A;; = —P;] = 1 — Py, we have: E(A5|A2 = 1,0 <
Ps < 1,u;) = (1 = PP + (=Pi)(1 = Ps) = 0. Q.E.D.

Intuitively, the core of the above proof lies in the fact that, as long as—for targeted shows (42 =
1) and partial household show-viewing (0 < P;; < 1)—the network-induced within-show ad exposure
shifter A;; follows a two-point distribution with an expected value of zero, our proposed household-show-
level instrument IV;s = A;s — A2 P, = AP A, satisfies the exclusion restriction.

The above proof also indicates that, before using our proposed IV in an empirical application, one
should check whether the mean of nonzero A is close to zero.

Corollary 1: Under the assumption that the DGP of A;s follows Equations (1)—(5), it holds that
corr(IVi, Ai) > 0 and corr(IVy, ;) = 0, thereby satisfying the relevance condition and the exclusion
restriction, respectively, for IV to be a valid instrument for A;;.

Proof: Recall that IV, = Yses, [Vis = Xses, A5 A;s. The relevance condition corr(IV, Ay) > 0 clearly
holds because Ait = ZsEStAis = ZsESt(A?PL’s + IVis) = Zsest Als]Pis + ZsESt AISJAis-

For the exclusion restriction, having corr(IV;, u;;) = corr (Zse St AbA, uit) = 0 is equivalent
to COU(ZSEStA?AiS , uit) = 0. Given that cov(A?Al-s, uis) = 0 (as proven in Proposition 1) and u;,
represents an expanded set of confounders that includes u;; as an element, it directly follows that
cov(A?Ais, uit) = 0. Applying the additive property of covariance, we have cov(ZSESt AbA;, uit) =
Yses, cov(ABA;s, uy) = 0. Q.E.D.
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Proposition 2: Under the assumption that the DGP of A;s follows Equations (1)—(5), it holds that
corr(;5)(IVis, A2) = 0, corr(IV;, Pis) = 0, and corr(IV;5, A2P;5) = 0.
Proof: We first prove corr(IVs, A2P;s) = 0. Recall that IV;; = ADA;s. Showing corr(A2A;5, A2P;) =0
is equivalent to showing cov(AbA;s, ALP;g) = 0. Note that cov(A2A;;, A2P;s) = E ((A?)ZAisPiS) -
E(AbA;) x E(APy).

Since A2A;; # 0 only when A2 = 1 and A5 # 0, to show E(A?Ais) = 0, it suffices to show
E (Ai5|A? =1,0< P, < 1) = 0, i.e., the network-induced shifter has an expected value of zero when a
household watches a targeted show partially.

Given that Pr[A;; = 1 — P;s] = Py, and Pr[Ag = —P;] = 1 — P, we have: E(A;]A2 = 1,0 <
Py <1) = (1= Py)P;s + (—P;s)(1 — Ps) = 0, which implies E(454;5) = 0.

Similarly, since (42)°AsPys # 0 only when A2 = 1 and Ay # 0, to show E ((42)° APy, ) = 0,
it suffices to show E(AisPiS|A§’ =1,0< P, < 1) = 0 for all Pj;.

Again, given that Pr[A;; = 1 — P;s] = Pig, and Pr[A;g = —P;] = 1 — Py, we have:
E(AisPis|A2 = 1,0 < Py < 1) = (1 — Pig)PisPis + (—P;) Pis(1 — Pyg) = 0 for all Py, which implies
E ((A?)ZAL-SPL-S) = 0, thereby concluding the proof of corr(IV, ALP;s) = 0.

As for showing corr; g (A?Ais, AE) = 0, it is equivalent to showing cov; ) (A?Ais, A?) =0.
Note that covy ) (A2A;, A2) = E ((42)° Ay ) — E(A2A) x E(4D).

Following the proof of Corr(l Vs, AP Pis), similar to showing E (Aé’ Ais) = 0, it is straightforward
to show E ((A? )ZAl-S) = 0, thereby concluding the proof for corr; 5 (I Vs, AL ) =0.

As for showing corr(IV;,, P;s) = 0, it is equivalent to showing cov(IVjg, P;s) = 0. Note that
cov(A3Dis, Pis) = E(A3AisP;s) — E(AZD5) X E(Pys).

Following the proof of corr(IVl-s,A?Pl-s), similar to showing E ((Als’)zAisPis) =0, itis
straightforward to show E (A? AisPis) = 0, thereby concluding the proof of corr(1Vs, Pis) = 0. Q.E.D.

Like Proposition 1, the core requirement for Proposition 2 to hold is also that, for targeted shows
(A% = 1) and partial household show-viewing (0 < P;; < 1), the network-induced within-show ad
exposure shifter A;s follows a two-point distribution with an expected value of zero.

Finally, Proposition 2 and its proof also suggest that, before using our proposed IV in an
empirical application, one should, in addition to checking whether the mean of nonzero A is close to
zero, conduct a falsification check to assess whether corr(A? A, AD Pis) is close to zero. If that is the
case, one would have greater confidence in the exogeneity of IV;; = A2A; given its empirical

orthogonality to A% P;, the expected treatment estimate resulted from a combination of the endogenous
determinants of the DGP.
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Online Appendix C: Illustrating the Proposed IV with a Stylized Numerical Example

Unlike conventional IVs that are directly observable, our household-show-level 1V is constructed
indirectly from observables by subtracting a household’s expected treatment A2 P;¢ from its realized
treatment A;s. In empirical applications, P; is estimated nonparametrically by integrating the density
function ;(-) over the observed View;; € [0, 1], where [(-) is approximated using the empirical within-
show ad airing time distribution observed for the network broadcasting show s.

Given our novel approach to IV construction, i.e., IV;; = A; — A2 P;, we present a stylized
numerical example in which the DGP is known and satisfies the identifying assumptions, for three
reasons. First, it provides a concrete demonstration of how the IV can be constructed from observables.
Second, because the identifying assumptions hold in our numerical example, we can verify whether the
constructed IV satisfies both the relevance condition and the exclusion restriction. Third, knowing the
ground truth about the ad effect allows us to assess the IV’s effectiveness in correcting for targeting and
activity biases by comparing ad effect estimates with and without the IV. In short, the stylized numerical
example serves as a pedagogical proof of concept, clarifying intuition and building confidence in the core
of our identification strategy.

C.1. Data-Generating Process of the Numerical Example

Consider an inventory of M = 1,000 linear TV shows, each with N = 100 households in its potential
audience, where 0 and 1 denote the start and end of the show, respectively. For ease of exposition, assume
there is no overlap in potential audiences across shows; that is, each household belongs to the potential
audience of one and only one show. The DGP for our numerical example is specified as follows.

Observables. As analysts, we observe the following from the DGP: for each show s, focal brand
b’s targeting decision AZ; for each targeted show (A2 = 1), the within-show focal brand ad airing time
TY € [0, 1], as well as the mechanism by which it is determined by the network; and for each household 7,
its show viewership duration V;; € [0, 1], the segment(s) of the show it watches View;s < [0, 1], its focal
brand ad exposure status A;,, and its purchase decision Y.

Purchase Decision (Y ;). The purchase decision Y is a function of ad exposure 4;,, a demand
shock u;,, and an idiosyncratic term e;, specified as:

Yis = f(ﬁAis +us + eis) (Cl)
where f(+) is the link function, and e; is drawn i.i.d. from the standard normal distribution.

The link function takes one of two forms: fL(x) = x (a linear model), or fP(x) = I(x > 0) (a
probit model). The true causal effect of ad exposure on purchase is set at § = 0.5.

The demand shock u;,, unobserved to the analyst, is drawn i.i.d. from a uniform distribution:
u;s ~ Uniform[—0.5 + ug, 0.5 + ug] (C2.1)
ug ~ Uniform[—0.5, 0.5] (C2.2)

where u; represents the average demand shock at the show level, itself drawn from a uniform distribution.
This implies that u;; € [—0.5 + u,, 0.5 + u;] < [—1,1].

Show Targeting Decision (A2). The focal brand’s show-targeting decision A2 is drawn from a
Bernoulli distribution defined as:

1+ug
2 4

1-ug
2

Pr(Al =1) = Pr(42 =0) = (C3)
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This specification captures scenarios in which TV advertisers are more likely to place ad buys in
shows whose audiences, on average, exhibit higher baseline demand, thereby introducing targeting bias.

Show Viewing Decision (V;; and View;,). Household i in the potential audience of show s
decides both the viewing duration V;s € [0, 1] and the segment(s) of the show to watch View;, < [0, 1], if
any. The viewing duration Vj; is determined as follows:

0, if V<0

Vis ={Vis, if 0< Vg <1 (C4.1)
1, if Vi >1

Vis ~ Uniform|[u;, u;s + 1] (C4.2)

where V;; € [u;s, u;s + 1] € [—1, 2] denotes a latent variable positively correlated with the household
demand shock u;. This specification ensures that V;; € [0, 1], with point masses at 0 and 1 corresponding
to households that do not watch the show at all and those that watch it in full, respectively. Because V; is
positively correlated with both u;s and V5, Equations (C4.1) and (C4.2) capture scenarios in which
households with higher baseline demand also tend to watch more TV, thereby introducing activity bias.

Given the realized viewing duration Vs, the specific viewing segment(s) View;, are randomly
drawn from the show’s duration, subject to the constraint that their total duration equals V.

Within-Show Ad Airing Timing (T?). For each targeted show, its network determines the focal
brand’s ad airing time T2, which is drawn uniformly over the show’s duration: T2 ~ Uniform[0, 1].

Focal Brand Ad Exposure (4;5). The focal brand ad exposure status of household i during show
s is jointly determined by A2, View;, and T2: A;s = A2 X I(T? € View), as specified in Equation (5).

Given the DGP outlined above, our numerical example comprises 100,000 households in total—
that is, 1,000 shows, each with 100 households in its potential audience. Key descriptive statistics of the
data generated under the DGP are as follows.

In the simulated data, 50.5% of shows are targeted by the focal brand (A2 = 1). The correlation
between a household’s demand shock u;s and whether its show is targeted is 0.41, indicating strong
targeting bias. On average, among the potential audience of a targeted show, 16.9% do not watch it at all
(Vis = 0), 16.4% watch the show in full (V;; = 1), and the remaining 66.7% watch only part of it (0 <
Vis < 1). The correlation between a household’s demand shock u;¢ and its show viewing duration Vg is
0.78, reflecting strong activity bias. Overall, 31.2% of households are exposed to a focal brand ad (4;; =
1). Among exposed households, 39.9% watch the targeted show in its entirety (V;; = 1|4;s = 1), while
60.1% view only part of it. Among those exposed, 77.8% make a purchase in the probit model (YV;5; =
1]A;s = 1), compared to a purchase rate of 44.7% among unexposed households (Y;; = 1|4;; = 0).

Given the above, our objective is to recover the true causal effect of A;; on Y (i.e., § = 0.5 in
Equation C1). We next illustrate how our proposed I'V can be constructed from the observables.

C.2. Constructing and Validating the Proposed IV in the Numerical Example

Recall that Py = Pr(T) € View;s | View;s) = [, 1s(x) dx denotes the probability that household i is

exposed to a focal brand ad during show s in the event the show is targeted. It is straightforward to verify
that when the PDF [;(+) is Uniform[0, 1], as in our numerical example, P;; = Vs, the household’s
viewing duration of show s. Based on Equation (8), we construct IV, as follows:

Wis = A — Agpis = A — AgVis (C5)
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As discussed in Section 3.3, under the identifying assumptions, the distributional properties of
1V, give rise to several falsification checks on its validity. Specifically, IV;; should exhibit zero mean and
be uncorrelated with (a) the show targeting decision A2; (b) P;s, which equals the household’s show
viewing duration V;; when the within-show ad airing time distribution is Uniform[0, 1], as in our
example; and (c) A2 P;,, which equals A2V in our example.

Based on our data, the mean of IV, is 0.001, COTT (i 5) (TViS,A?) = 0.005, corr(TViS, Vis) =
—0.003, and corr(TVis, Ab Vis) = —0.0003, indicating that TV passes all the falsification checks,
consistent with Proposition 2. Furthermore, because the demand shock u;, is known in our example, we
can directly verify whether IV satisfies both the relevance condition and the exclusion restriction. It
does: corr(TViS,AiS = 0.53 and corr(TVis, ul-s) = 0.001, consistent with Proposition 1.

C.3. Estimating Ad Effect with the Proposed IV in the Numerical Example

Equipped with IV;,, we estimate the linear model (where f = f in Equation C1) using both the 2SLS
and CF approaches. The probit model (where f = f¥ in Equation C1) is estimated using only the CF
approach, as 2SLS is not appropriate for discrete choice models. In the CF approach, 4;; is first regressed
on IV, and the resulting residual, denoted by CFjq, is then included as a control variable in the second-
stage estimation of either the linear or probit model.

The results in Table C1. indicate that, with IV;,, the true causal effect of A;5 on Y;s can be
recovered with high confidence for both the linear and probit models. In contrast, without the instrument,
the estimated effects are substantially overstated due to the presence of strong targeting bias

(corr(; 5)(A%, u;5) = 0.41) and activity bias (corr(Vis, u;s) = 0.78).

Table C1. Estimation Results from the Numerical Example

True Linear Model Probit Model
Value | g 2SLS CF Probit Probit + CF
Intercept 0 -0.149™"  -0.007 -0.008 -0.134™ -0.005
(0.004)  (0.006)  (0.006) (0.005) (0.006)
T T N A Y A ¥ e
Control Function (CF) (206(3) } *6*)* (2058;:)*

Notes. Standard errors are reported in parentheses. Standard errors for “Probit + CF” are derived from 1,000
bootstrapped samples. *“p < 0.01; “p <0.05; *p <0.1.

C.4. Robustness Checks

We perform two additional robustness checks with the numerical example, examining the sensitivity of
our results to the within-show ad airing time distribution and to the sample design of show—household

observations.

In Section C.1, we used the uniform distribution for I, primarily for the convenience of P;g = Vj,.
In other words, under a uniformly distributed within-show ad airing process, it obviates the need to
explicitly generate View;,, the portion of the show actually viewed by the household.

To assess robustness, we re-ran the simulation with non-uniform ad timing, [;~Beta(2,2). To
obtain P;;, we do the following:
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e By definition, P;; = 0if Vi = 0and P,y = 1if Vs = 1;

e ForV;, € (0,1), draw Viewg 4.+ ~Uniform[0,1 — V], where Viewg;,,+ represents the starting
time of watching a show;

o Generate View,,q = Viewgqrt + Vi so that View,,, 4, the ending time of watching a show, lies
within (0,1];

e For simplicity, assume one continuous viewing window View;; = [VieWsiqrt, VieWenal;

. . _ Viewend
e Given View; and L, we calculate P;g as P;g = fVieWstart ls(x)dx.

The results presented in Table C2 indicate that the proposed IV remains effective under this
alternative within-show ad timing distribution, alleviating concerns that our IV depends on a particular ad

airing time distribution.

Table C2. Estimation Results under Alternative Ad Airing Time Distribution

True Linear Model Probit Model
Value OLS 2SLS CF Probit Probit + CF
Intercept 0 -0.128™  0.008 0.008 -0.121™ 0.003
(0.004)  (0.005)  (0.005) (0.005) (0.007)
Ad Effect (B) 0-5 (269.387) ?6&3?4) ?b%gh) ?6?3(5)9) (()64?317)
Control Function (CF) (206(1)%*6*)* (205(6);:)*

Notes. Standard errors are reported in parentheses. Standard errors for “Probit + CF” are derived from 1,000
bootstrapped samples. *“p < 0.01; “p < 0.05; p <0.1.

Our choice of 1,000 shows % 100 households reflects the empirical setting we seek to emulate: a
large universe of shows, with each household watching only a small subset. To assess sensitivity, we
conduct a robustness check with 100 shows x 1,000 households. As shown in Table C3, the results are
qualitatively the same: the true ad effect can still be recovered using the proposed CF approach.

Table C3. Estimation Results under Alternative Sample Design

True Linear Model Probit Model
Value | g 2SLS CF Probit Probit + CF
Intercent 0 -0.166°"  -0.011" -0.011" -0.158™ -0.012
p (0.004) (0.006) (0.006) (0.005) (0.008)
0.966™  0.514™  0.514™" 0.920"" 0.500™"
Ad Effect (8) 0.5 (0.007) (0.016) (0.015) (0.009) (0.019)
Control Function (CF) (2653?7) (zbsgél)

Notes. Standard errors are reported in parentheses. Standard errors for “Probit + CF” are derived from 1,000
bootstrapped samples. ““p < 0.01; “p < 0.05; *p < 0.1.
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Online Appendix D: Additional Data Descriptions

Figure D1 presents the distributions of focal brand purchases and TV ad exposures across the hours of the
week. Purchases follow a bimodal daily pattern, peaking around lunch (11:00—13:00) and dinner (17:00—
19:00), with higher activity on Fridays and weekends. While the focal brand’s TV ad exposures are more
evenly distributed throughout the day, their timing broadly aligns with peak purchase periods.

Figure D1. Distribution of Focal Brand Purchases and TV Ad Exposures Across Hours of the Week
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Online Appendix E: Additional Results and Checks
E.1. Model Fit Comparison

We assess model fit across four specifications of the function fin Equations (12) and (13): (1) linear, (2)
linear + squared, (3) log, and (4) log + squared log. The log-likelihood (LL), AIC, and BIC values
presented in Table E1 favor the fourth specification—Ilog + squared log—which is used in our proposed
model.

Table E1. Model Fit Comparison

. . Log + Squared Lo
Linear Linear + Squared Log (Prop(g) sed gpeci fica ti%) n)
LL -759,322 -754,543 -753,716 -753,399
AIC 1,518,741 1,509,190 1,507,527 1,506,901
BIC 1,519,436 1,509,943 1,508,222 1,507,654

E.2. Within-Show Ad Airing Time Distributions

For each TV network that aired ads from the focal brand during our study period, we examine the
empirical distribution of within-show focal brand ad airing times, normalized by show duration, where
zero indicates the start and one indicates the end of a show. We conduct the same analysis for all non-
focal brand ad airings to enable a direct comparison of within-show ad scheduling patterns between focal
and non-focal brands.

Figure E1. CDFs of Within-Show Ad Airing Time Distributions of the Top 12 Networks
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Normalized Ad-Airing Schedule

Notes. Within-show ad airing times are normalized by show duration, with zero representing the start and one
representing the end of a show. The analysis includes the twelve networks with the highest number of focal brand ad
airings during the study period.

In addition to the comparison of focal versus non-focal brand ad airing time distributions across
shows on MTV in Figure 2, Figure E1 extends this analysis to all major networks targeted by the focal
brand during our study period. Without exception, across all networks, the distributions of within-show
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airing times are statistically indistinguishable between focal and non-focal brand ads, further supporting
the notion that networks scheduled the focal brand’s ads in a quasi-random rotation alongside those of
other brands. In other words, while the focal brand may have targeted specific shows, it did not target
specific time slots within those shows. This suggests that within-show ad airing timing provides a source
of exogenous variation in determining which partial viewers of a targeted show were exposed to the focal
brand’s ads.

E.3. Correlation in Focal Brand Ad Exposures vs. Correlation in Network-Induced Shifters Across
Targeted Shows

When household TV viewing is correlated across shows, targeting shows with similar audiences can
result in positive correlations in A;; (focal brand ad exposures) across these shows. For example, a
household that watches targeted show A and is exposed to a focal brand ad is more likely to also watch
targeted show B, thereby increasing the likelihood of being exposed to the focal brand ad during show B.
In contrast, if A, the network-induced shifter, is truly exogenous, the correlation in A; across targeted
shows should be zero. This is empirically confirmed using the following procedure:

1. Draw a sample of targeted shows with high correlation in household viewership.

2. Calculate A.

3. For each pair of sampled targeted shows, compare the between-show correlation in A;; with between-
show correlation in A.

Table E2. Pairwise Between-Show Correlations in Household Focal Brand Ad Exposure

Show 1 Show 2 Show 3 Show 4
Show 1 - 0.074 0.047 0.050
Show 2 0.074 - 0.048 0.066
Show 3 0.047 0.048 - 0.099
Show 4 0.050 0.066 0.099 -

Table E3. Pairwise Between-Show Correlations in Network-Induced Shifter

Show 1 Show 2 Show 3 Show 4
Show 1 - -0.019 0.007 -0.007
Show 2 -0.019 - 0.006 -0.019
Show 3 0.007 0.006 - -0.007
Show 4 -0.007 -0.019 -0.007 -

Table E2 presents pairwise correlations in A; across four targeted shows with high household
viewership correlation. Table E3 reports the corresponding pairwise correlations in A;;. The between-
show correlations in A; are all positive and significant (p < 0.01), indicating that households exposed to a
focal brand ad during one targeted show are more likely to be exposed to focal brand ads during other
targeted shows as well. In contrast, the pairwise correlations in A; are much smaller and statistically
insignificant, providing empirical support for the exogeneity of A;.

E.4. Placebo Test Using Exposures to TV Ads from Another Brand

We conduct a placebo test by replacing the focal brand’s ad exposure stock in our ad response model with
that of a major automobile manufacturer, adjusting the control function term accordingly. The results
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show no statistically significant effect for the placebo ad exposure stock (B, = -0.0008, SE = 0.002) and
no statistically significant effect for the corresponding control function term (6 = 0.0002, SE = 0.0007),
while the other model parameter estimates remain largely unchanged. These findings suggest that the
positive and significant effect estimates for the focal brand’s ad exposure stock and the corresponding
control function term in our proposed model are unlikely to be coincidental.



