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Aqueous amine solutions loaded with CO2 were degraded in stainless steel sealed 

containers in forced convection ovens.   Amine loss and degradation products were 

measured as a function of time by cation chromatography (IC), HPLC, and IC/mass 

spectrometry.  A full kinetic model was developed for 15-40 wt% MEA 

(monoethanolamine) with 0.2 – 0.5 mol CO2/mol MEA at 100
o
C to 150

o
C.  Experiments 

using amines blended with MEA demonstrate that oxazolidone formation is the rate-

limiting step in the carbamate polymerization pathway.  With 30 wt% MEA at 0.4 mol 

CO2/mol MEA and 120
o
C for 16 weeks there is a 29% loss of MEA with 13% as 

hydroxyethylimidazolidone (HEIA), 9% as hydroxyethylethylenediamine (HEEDA), 4% 

as the cyclic urea of the MEA trimer, 1-[2-[(2-hydroxyethyl)amino]ethyl]-2-

imidazolidone, 3% as the MEA trimer, 1-(2-hydroxyethyl)diethylenetriamine, and less 



 ix 

than 1% as larger polymeric products.  In the isothermal experiments, thermal 

degradation was slightly more than first order with amine concentration and first order 

with CO2 concentration with an activation energy of 33 kcal/mol.  In a modeled isobaric 

system, the amount of thermal degradation increased with stripper pressure, but 

decreased with an increase in amine concentration and CO2 concentration due to a 

reduction in reboiler temperature from the changing partial pressure of CO2.  Three-

fourths of thermal degradation in the stripper occurred in the reboiler due to the elevated 

temperature and long residence time which offset the decrease in CO2 concentration 

compared to the packing.  The amount of degradation for other amines tested starting 

with the least degraded include; cyclic amines with no side chains < long chain 

alkanolamines < alkanolamines with steric hindrance < tertiary amines < MEA < straight 

chain di- and triamines.  Piperazine and morpholine had no measurable thermal 

degradation under the conditions of this experiment and were the most resistant to 

thermal degradation.  Diethyelenetriamine and HEEDA had the largest amount of 

degradation with over 90% loss at 135
o
C for 8 weeks.           
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Chapter 1:  Introduction 

This chapter will be used to explain the role of carbon dioxide (CO2) on climate 

change and to identify emission sources and sinks for CO2.  Methods for CO2 removal 

will be explored with a focus on amine absorption/stripping and the specific motivation 

for this work. 

 

1.1  CARBON DIOXIDE AND THE ENVIRONMENT 

 
The amount of energy that reaches the surface of the Earth from solar radiation is 

approximately 240 watts per square meter (IPCC 2007), and in order to achieve a proper 
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energy balance, the Earth must emit an equivalent amount of energy back into space.  In 

order to achieve this energy balance by blackbody radiation, the average surface 

temperature of the Earth would have to be -19
o
C, making life as we know it 

unsustainable.  The actual average surface temperature of the Earth is 14
o
C and the 33

o
C 

temperature difference is due to the naturally occurring greenhouse effect.  Greenhouse 

gasses, the most abundant of which are water and CO2, allow ultraviolet and visible 

wavelengths to reach the surface of the earth, but absorb the infrared radiation coming 

from the surface of the earth.  They reemit that energy in all directions thereby reflecting 

some of the outbound energy and increasing the average surface temperature.  Over the 

past 100 years however, the average global surface temperature has increased by 0.74 + 

0.18
o
C and according to the International Panel on Climate Change (IPCC) this increase 

is very likely due to increases in anthropogenic greenhouse gas concentrations rather than 

natural variations (IPCC 2007).  Climate models from the same report predict a further 

increase of 1.1 to 6.4
o
C over the twenty-first century.  This increase in temperature can 

have drastic effects including rising ocean levels, polar ice cap recession, increased insect 

and pest populations, and increased frequency/intensity of droughts and floods. 
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Figure 1.1  Monthly Mean CO2 Concentrations from Mauna Loa Observatory in Hawaii 

(NOAA 2009) 

 

Carbon dioxide concentrations in the atmosphere have been steadily increasing 

since measurements began at Mauna Loa observatory in 1958 and have increased by 19% 

ending in 2003 (Keeling and Whorf 2004).  Figure 1.1 above shows the most recent 

measurements from the National Oceanic and Atmospheric Administration.  The average 

atmospheric concentration of CO2 at Mauna Loa was 316 ppm on a dry weight basis in 

1958 and for 2008 the average was 386 ppm, a difference of 22% (NOAA 2009).     

 

http://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2_trend_mlo.pdf


 

 4 

1.2  CARBON DIOXIDE SINKS AND SOURCES 

 
There are three primary sinks in the global carbon cycle: atmospheric, oceanic 

and terrestrial systems (Grace 2004).  Almost all anthropogenic CO2 is emitted to 

atmosphere, but only 40% of the CO2 remains there.  Half the remaining carbon dioxide 

is dissolved into oceans, while the other half ends up being sequestered in biological 

ecosystems.  Ocean water is slightly basic and absorbs carbon dioxide which converts to 

carbonic acid, bicarbonate and carbonate and reduces the pH of the ocean.  Between 1751 

and 1994 the ocean pH has dropped from 8.179 to 8.104 a difference of 0.075 pH units 

(Orr 2005) or an 18% increase in the abundance of hydrogen ion.  Besides the threat of 

global warming, ocean acidification through the absorption of CO2 is a serious 

environmental risk that is responsible for the depletion of coral reefs and could have 

devastating effects to ocean wildlife such as shellfish and species that have calcified 

shells as these dissolve at lower pH.   

Both natural and anthropogenic sources contribute to the overall emissions of 

greenhouse gasses.  Natural sources of CO2 such as volcanoes, forest fires, biomass 

decomposition and wildlife respiration remain relatively constant year-to-year, but man-

made sources such as automobiles, manufacturing, and power plants have increased 

steadily since the inception of the industrial revolution.  In the United States, CO2 

accounts for almost 85% of the anthropogenic greenhouse gasses on an equivalent CO2 

radiative forcing basis (EPA 2008).  The major sources of anthropogenic CO2 emissions 

in the U.S. are listed in Table 1.1. 
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Table 1.1 Annual CO2 Emissions in the U.S. in TgCO2 Equivalents 

Source 2003 2004 2005 2006 

Electricity Generation 2283 2315 2380 2328 

Transportation 1808 1856 1870 1856 

Industrial Combustion 856 858 847 862 

Residential Combustion 383 368 359 327 

Commercial Combustion 237 231 222 210 

Iron and Steel Production 55 53 47 49 

Cement Production 43 46 46 46 

Other 288 311 303 305 

Total 5953 6038 6074 5983 

 

Electricity generation is the largest source for CO2 emissions in the U.S. 

comprising 39% of total emissions.  Coal-fired power plants account for roughly 70% of 

electricity generation from fossil fuel combustion and 50% of overall electricity 

generation, yet produce 83% of the emissions from power generation and have the 

highest concentration of CO2 in their flue-gas.  Coal fired power plants produce 

approximately 0.96 kg CO2/kW-hr electricity produced compared with petroleum plants 

which average 0.80 kg CO2/kW-hr and natural gas plants which average only 0.45 kg 

CO2/kW-hr (IEA 2001).  Since coal-fired power plants are the largest producer of carbon 

dioxide, have a high concentration of CO2 in their flue-gas, and emit from a few large 
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point sources, it is the obvious place to start when attempting to capture and store large 

amounts of carbon dioxide.  

 

1.3  CARBON DIOXIDE CAPTURE AND SEQUESTRATION 

 
When considering where to capture CO2 from a power plant there are two 

alternatives, pre and post-combustion.  Precombustion capture involves combusting fuel 

with a pure oxygen stream to form a syn-gas of carbon monoxide and hydrogen gas.  The 

CO can then be further oxidized through a water shift reaction to form CO2 and another 

mole of H2 gas.  There is an added capital and operating cost related to the air separation 

unit for the oxygen generation, but the CO2 can easily be removed from the stream prior 

to power production at high pressure and the hydrogen can then be used in the boiler to 

produce electricity with a CO2 free effluent.  This is commonly used with a coal gasified 

power plant or an integrated gasification combined cycle (IGCC) power plant.  Post-

combustion capture involves removing CO2 after the boilers and other environmental 

controls such as fly ash removal and flue gas desulphurization.  The main drawback to 

this option is the flue gas is at low pressure which means relatively low partial pressures 

of CO2 and large volumes of gas to treat.  The gas will also need to be cooled prior to the 

separation unit of choice.  This type of removal can be retrofitted to existing units which 

is a big advantage when considering what to do with the current fleet of electricity 

production plants.  This technology would be applicable to pulverized coal and natural 

gas combined cycle power plants.        
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There are several processes for the removal of acid gasses from post-combustion 

flue gas including absorption by chemical solvents, membranes, cryogenics, and 

adsorption.  Membranes require high pressure streams with minimal fouling in order to 

produce a high purity stream.  In flue-gas applications, the pressure of the effluent after 

environmental controls for removal of particulates to avoid fouling would be too low to 

achieve a desired separation.  Cryogenics would produce a high purity liquid CO2 stream, 

but the cost of refrigeration and dehydration would be too high when compared with 

other alternatives.  Tests done with solid sorbents show a low capacity and poor 

selectivity for CO2.  Even if the selectivity were improved, the size of these units would 

require a very large upfront capital cost.   

Absorption with chemical solvents provides the most economical response to date 

for CO2 capture from bulk gas streams.  It is a well established technology that has been 

applied in numerous commercial processes including gas treating and ammonia 

production (Kirk-Othmer, 2004).  Amine solvents have been used and researched for over 

50 years and require the least amount of significant advancements in order to be used 

today.  There are a variety of amines that are currently used in commercial applications.  

The largest group of amines used is alkanolamines due to their high solubility in water 

and lowered vapor pressure.  Of the alkanolamines, monoethanolamine (MEA) is the 

most common amine and is often used as a base case to compare other potential amine 

solvents.  It is fully soluble in water, has a fast rate of reaction with CO2, is cheap to 

produce, and is made from the readily available feed stocks ethylene oxide and ammonia. 
    Once the CO2 has been removed from the flue gas stream it has to be stored in 

order to prevent future release to the environment.  Geological storage is currently the 
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most attractive method for sequestration and would include storage in depleted oil and 

gas reservoirs, deep saline reservoirs, and unminable coal seams (Davison et al. 2001).  

Injecting CO2 into depleted oil and gas reservoirs, also known as enhanced oil recovery 

(EOR) can enhance the recovery of fossil fuels from these reservoirs.  Injecting CO2 into 

unminable coal seams recovers methane that is adsorbed to the coal.  Both of these 

methods increase fossil fuel recovery which would offset the cost of CO2 capture, 

however, they would only require a fraction of the total CO2 captured if carbon capture 

were to go into effect.  Deep saline aquifers contain salt water that is unusable as drinking 

water and are capped by a solid rock layer with low CO2 permeability.  These aquifers 

provide a large volume for CO2 storage with current testing ongoing including tests at the 

Frio Brine Test Facility in east Texas.   

 

1.4  CO2 CAPTURE BY AMINE ABSORPTION/STRIPPING 

 
Amine absorption/stripping with MEA is the state of the art technology for the 

removal of CO2 from flue gas.  It is the only technology that is developed enough for 

commercialization today and has the fewest hurdles for full scale implementation.  Figure 

1.2 below shows a flow diagram for an MEA absorption/stripping system.    
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Figure 1.2  Process flow diagram for a CO2 removal system with an amine 

absorption/stripping unit 

Flue gas containing approximately 10% CO2 on a dry basis enters at the bottom of 

the absorber after it has been treated for fly ash and sulfur removal and cooled to around 

40
o
C.  It is counter-currently contacted with a cool, CO2 lean (0.2-0.4 moles CO2 per 

mole MEA) solution with 15-40 wt% MEA in water entering at the top of the absorber.  

The purified flue gas, with a base case of 90% CO2 removal, exits at the top of the 

absorber and is treated with a water wash to reduce the amount of amine exiting in the 

vapor phase.  The CO2 rich (0.4-0.5 moles CO2 per mole MEA) amine solution exits the 

bottom of the column and is preheated in the counter-current heat exchanger by the CO2 

lean amine exiting the stripper.  The CO2 is liberated from the amine solution in the 

stripper by temperature swing to around 120
o
C through the addition of heat by steam in 

the reboiler.  The gas stream exiting at the top of the stripper contains CO2 and water and 
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is dehydrated and compressed before transport and sequestration.  The hot lean amine 

exiting the bottom of the stripper is recycled to the cross-exchanger and back to the 

absorber for further CO2 removal with a slip stream being sent to a recovery unit for the 

removal of impurities. 

The absorption of CO2 is highly exothermic and results in a large heat duty 

associated with solvent regeneration in the stripper.  The steam needed for regeneration is 

roughly one third of the steam generated from the plant and results in an 8-13% 

efficiency loss to the power plant (IEA 2003).  It is the largest economic factor in the 

capture of CO2.  The overall cost of CO2 capture has been estimated to be between $35-

50/mton CO2. 

 

1.5  SOLVENT MANAGEMENT 

 

There are three ways MEA is depleted in the system; oxidative degradation in the 

absorber, volatility losses in the effluent and thermal degradation in the cross exchanger, 

stripper, and thermal reclaiming unit.  Oxidative degradation results in oxidation and 

fragmentation of the amine molecule which will form heat-stable salts and is not 

normally present in current applications of amine absorption/stripping such as natural gas 

treating and hydrogen production since oxygen is not present.  Volatility losses in the 

absorber and stripper can be countered with engineering controls such as water washes.  

Thermal degradation in these systems will occur by carbamate polymerization resulting 

in higher molecular weight products being formed.    

In order to remove the degradation products of oxidative and thermal degradation, 

a reclaiming program will need to be utilized.  Although ion exchange and electrodialysis 
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have been used for the removal of heat stable salts, they will not remove the 

polymerization products formed from thermal degradation.  In order to remove these 

products, thermal reclaiming by distillation is used.  Figure 1.3 below shows a design for 

a typical thermal reclaiming unit. 

 

 

Figure 1.3  Semi-batch thermal reclaiming unit for amine absorption/stripping unit 

(Wonder 1959) 

 

A slip stream from the stripper bottoms is fed to a distillation vessel and 

concentrated until the concentration of MEA in the vapor phase is equivalent to the 

amount in the feed stream.  The pressure of the unit is matched to the stripper pressure 

and the overheads are returned to the stripper.  The bottoms are concentrated in 
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degradation products until the temperature reaches approximately 150
o
C, where the 

degradation products start to codistill with the MEA and water.  The feed to the unit is 

halted and caustic solution and water are then added to the still to break the heat stable 

salts in solution.  The bottoms are then batch distilled to recover as much MEA as 

possible.  The remaining tar is drummed off as hazardous waste.  Blake (1962) estimates 

from industrial experience that half of the thermal degradation products from a typical 

unit are created during the reclaiming process due to the elevated temperatures.    

 

1.6  PREVIOUS WORK 

 

Work by Polderman (1955) postulated the reaction pathway for thermal 

degradation by carbamate polymerization for MEA.  Several of the key degradation 

products were identified, but it did not have any quantified data of MEA loss or a 

proposed kinetic mechanism.  Later work on MEA did nothing to rectify this 

shortcoming, but did help to identify additional degradation products.  Some industrial 

publications from gas treating gave guidelines for engineering controls to minimize 

thermal degradation meaning it was a known problem among amine units in CO2 removal 

service. 

The most comprehensive work in the literature on thermal degradation of amines 

focuses on diethanolamine (DEA).  Polderman again postulated the reaction pathway for 

thermal degradation of this amine and identified some of the products.  Extensive work 

was completed by Meissen (1980, 1985) to establish a set of reaction pathways for 

thermal degradation and kinetic data for DEA over a range of amine concentrations, CO2 

partial pressures and temperatures.  First order rate constants were estimated and the 
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whole of the data can be used to estimate DEA loss under various conditions.  Kim 

(1984) also completed a study on DEA and provided a simplified kinetic model which 

works quite well at describing the data obtained over a range of conditions.   

The work done on DEA can be considered sufficient to accurately describe what 

will happen to DEA in CO2 removal services.  The main problem is that DEA degrades 

much faster thermally than MEA and other amines that have been studied and would not 

be a likely candidate for use in flue gas treating applications.  MEA is considered the 

base case amine for this application, and as such, a kinetic model for MEA is needed that 

exceeds the amine concentrations, CO2 concentrations and temperatures that are currently 

used in gas treating applications.     

 

1.7  RESEARCH OBJECTIVES AND SCOPE 

 
The cost of amine degradation will be important to the operator as part of their 

overall operating costs.  Rao and Rubin (2002) estimate that 10% of the cost of CO2 

capture will be related to solvent degradation; therefore it will be important to have a full 

understanding of amine degradation prior to installation of a unit.  When the amine 

degrades, the capacity of the solution to absorb CO2 is decreased and more amine will 

need to be added to the system.  The impurities removed from the system will be 

considered hazardous waste so it will be important to get an estimate of the type and 

quantity of degradation products an operator can expect given a certain set of operating 

conditions. 
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Oyenekan (2006) established that energy requirements for the stripper can be 

reduced by increasing solution capacity and operating the stripper at elevated pressures.  

The main problem with these solutions is that both of these will increase thermal 

degradation.  Industry operating ranges of amine concentration, CO2 loading, and stripper 

pressure are limited as an engineering control to limit corrosion of the unit and minimize 

solution degradation.     In order to perform an optimization between energy requirements 

and degradation, an accurate model of thermal degradation needs to be developed outside 

of the conditions that are currently used in industry. 

The specific goals of this research are listed below. 

 Develop thermal degradation model for MEA 

o Identify and quantify the thermal degradation products associated 

with MEA 

o Develop a kinetic model for MEA thermal degradation as a 

function of temperature, amine concentration and CO2 

concentration that exceeds current operating standards for an 

amine unit. 

 Industrial implications 

o Use ASPEN model to optimize balance between energy usage and 

thermal degradation. 

o Determine where in the process thermal degradation will occur and 

recommend engineering controls to limit their formation 
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o Estimate losses under typical thermal reclaimer conditions as 

outlined in the literature and suggest alternatives 

 Screen other amines for thermal degradation 

o Study the effects of chain length and steric hindrance on 

degradation with molecules similar to MEA 

o Study the effects of blended amine systems with MEA 

o Screen a variety of industrially relevant amines for thermal 

degradation  

 Develop analytical techniques to identify and quantify the degradation products 

produced in these experiments 
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Chapter 2:  Literature Review 

This chapter will be used as a literature review for thermal degradation of amines 

and amine absorption/stripping systems.  While there is little literature on MEA thermal 

degradation, other amines will be included and an assortment of papers detailing 

industrial experience with amine degradation will also be discussed.  

 

2.1  MONOETHANOLAMINE 

Monoethanolamine (MEA) is an organic base with a pKa of 9.5 (Christensen 

1969) giving it the ability to react with weak acids such as CO2 at ambient temperatures 

to form an amine carbamate.  This process is reversed by applying heat in the stripper and 
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the process can begin anew.  At elevated temperature and CO2 concentration, this 

alkanolamine can go through an irreversible degradation process termed carbamate 

polymerization which causes a loss of acid gas absorption capacity, increased solution 

viscosity, increased corrosion and potential process upsets such as foaming.    

2.1.1  Polderman 

 
The main mechanism for thermal degradation of primary and secondary amines in 

an absorber/stripper system in CO2 removal service is carbamate polymerization.  The 

mechanism for carbamate polymerization of MEA was first proposed by Polderman 

(1955).  Polderman analyzed used aqueous MEA solutions and isolated and identified 

several degradation products.  In this mechanism, MEA initially reacts with CO2 to form 

MEA carbamate (Reaction 1) which is the normal route for CO2 capture in the absorber.  

  

 

This process is normally reversed in the stripper, but it was proposed that this 

carbamate can go through a condensation reaction to form 2-oxazolidone as in Reaction 

2.   

 

NHO

O
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MMEEAA  CCaarrbbaammaattee  

NH
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NH2
OH

NH
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++      CCOO22    
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According to Polderman, this can react with another molecule of MEA to form 

the first of the two isolated degradation products, 1-(2-hydroxyethyl)imidazolidone 

(HEIA) as in Reaction 3.   

 

HEIA is a cyclic urea and as such, loses all of its capacity to absorb CO2 thereby 

reducing the overall capacity of the solution.  This imidazolidone can then hydrolyze to 

form the second degradation product, N-(2-hydroxyethyl)ethylenediamine (HEEDA) as 

in Reaction 4. 

 

The ethylenediamine restores the solution capacity to absorb carbon dioxide, but 

since it is a stronger base than MEA, it is more difficult to regenerate under normal 

stripper conditions.  It was noted that the cyclic urea and the diamine were in equilibrium 

with each other and the quantity of each was a strong function of solution temperature 

and partial pressure of CO2.  The cyclic urea HEIA and the diamine HEEDA were 

isolated and identified as the two main degradation products of MEA carbamate 

NH
OH NH2
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polymerization.  These products were formed in the lab by heating MEA carbamate at 

normal stripper conditions.   

These two products could effectively be removed from the solution by distillation 

of a slipstream to remove these higher boiling components.  Corrosion tests with MEA 

and a combination of MEA and the diamine showed a significant increase in the liquid 

phase penetration in corrosion tests in the presence of the diamine.  In a separate 

corrosion test (Gillis 1963), HEEDA was shown to play a large factor in the corrosion of 

carbon steel equipment in an amine treating unit with one test showing over 300 times 

more iron in a solution of HEEDA and MEA compared to a comparable MEA solution.   

2.1.2  Yazvikova 

 
Yazvikova (1975) found that in lab studies of dehydrated samples of oxazolidone 

and MEA at elevated temperatures, 150-200
o
C, the oxazolidone was completely 

consumed initially to form an equimolar amount of N,N‟-di(hydroxyethyl)urea (DHU).  

Upon further heating of the DHU, HEIA and HEEDA began to form with the sum of 

their concentrations equal to the amount of DHU disappearance.  The molecular formula 

for DHU is shown below. 

OH
NH NH

OH

O

 

N,N‟-di(hydroxyethyl)urea 
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2.1.3  Talzi 

 
Talzi (2002 and 2004) focused on thermal degradation of MEA by way of COS 

and CS2 as well as CO2.  These papers were both NMR studies from a gas treatment plant 

in Russia and mainly focused on impurity identification.  The basic degradation 

mechanisms for CO2 were the same as those described in Polderman and Yazvikova 

except the path to the urea and HEIA were proposed to be in parallel instead of in series.  

HEIA and HEEDA concentrations were noted to be very high prior to regeneration of the 

solvent.  Several exotic mechanisms were also proposed for some of the high molecular 

weight species that were identified.  

2.1.4  Strazisar 

 
Strazisar (2003) focused on identification of degradation products found in a flue 

gas treating unit.  A variety of GC methods were used for unknown identification and a 

large number of degradation products were identified that seem to be a mixture of 

oxidative and thermal degradation.  Most of these products were found in the thermal 

reclaimer bottoms however, which are subjected to very high amine concentrations, heat 

and metal content which would not be representative of the degradation occurring at 

normal stripper conditions.  They also noted that no HEEDA was found in the thermal 

reclaimer bottoms, which is contrary to all of the other papers on the subject.   
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2.1.5  Laurance Reid Proceedings 

 
The remainder of the literature on MEA thermal degradation is relegated to 

industrial experience relayed in the Laurance Reid Conference Proceedings for natural 

gas treating.  These proceedings offer a variety of engineering controls for the reduction 

of corrosion and thermal degradation to manageable levels in natural gas treating 

conditions.   

In order to reduce degradation and corrosion Dingman et al. (1966) suggest 

keeping the amine solution strength to 15wt% or less, maintaining the rich CO2 loading 

below 0.35 moles CO2 per mole amine, the lean loading around 0.1, and keeping the 

stripper pressure as low as possible to keep the temperature down.  While all of these 

measures will decrease the amount of thermal degradation, they also increase the energy 

consumption of the process.  

Blake (1962 and 1963) offer advice for how to design and run thermal reclaiming 

units including matching the pressure of the unit to the stripper still pressure so the 

distillate can be used as part of the standard boilup and to match the distillate to the 

desired amine/water ratio to solve potential water balance issues.  These reclaiming units 

are semi-batch and are run until the reclaimer bottoms reach 150
o
C at which point some 

of the contaminating species begin to codistill at appreciable quantities.  These systems 

are the standard reclaiming method in the industry due to simplicity of design and 

operation.   
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Wonder et al. (1959) provide a set of analytical methods for the determination of 

MEA solution composition.  A set of titrations are used to determine how much free 

amine is present in solution and along with Kjeldahl total nitrogen analysis provides the 

amount of amine tied up in nonbasic form.  The main test involves separation of all of the 

species by distillation.  Analysis using this method showed an example solution 

composition of 11.8wt% MEA, 1.1% HEEDA, 1.9% HEIA and 0.4% higher boiling 

conversion products.  This analysis suggests that this solution is highly degraded as more 

than 20% of the original amine solution has been converted to other products.  The main 

drawback to this method would be the time involved in the analysis and the accuracy 

would be highly subject to the skill of the technician.  Advances in analytical chemistry 

would suggest that other methods, such as chromatography, would provide more accurate 

results in a fraction of the time.  This work will offer alternatives for solution analysis.   

2.2  DIETHANOLAMINE 

 
Diethanolamine is a secondary alkanolamine that has a similar degradation 

mechanism to MEA.  DEA gained popularity after MEA and has more literature data on 

thermal degradation. 

2.2.1  Polderman and Steel 

 
Polderman and Steel proposed a similar thermal degradation mechanism for 

diethanolamine, DEA (Polderman 1956).  They found that DEA carbamate went through 
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a condensation reaction to form an oxazolidone structure, 3-(2-hydroxyethyl) 

oxazolidone (HEO).  

 

HOH 2C

NH

HOH 2C                      

O

O N
OH

                        

 

 

Kennard and Meissen (1980) showed that the oxazolidone intermediate is 

attacked by another DEA molecule to form an ethylenediamine intermediate, N,N,N‟-

tris(2-hydroxyethyl)ethylene-diamine (THEED), analogous to HEEDA formation in the 

MEA degradation mechanism shown below. 

 

             

HOH 2C

N

HOH 2C

NH CH2OH

 

 

The THEED molecule then goes through a condensation reaction to form N,N-

bis(2-hydroxyethyl) piperazine (HEP) which Polderman and Steele originally defined as 

the final end product of DEA degradation. 

 

                                                                    
N N CH2OHHOH 2C

        

 

              k1 

           +     CO2                          +     H2O    (Rxn 5) 

            k-1 
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      k2 
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              k3 
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Polderman and Steele started with 25 wt% DEA solutions saturated with CO2 at 

25
o
C and sealed the solutions in a stainless steel pressurized autoclave.  After heating at 

the desired temperature for 8 hours, the solutions were analyzed for DEA content and 

higher boiling nitrogenous compounds.  Table 2.1 below shows the results of these 

experiments. 

 

Table 2.1.  Conversion of 25 wt % DEA in the presence of CO2 for 8 hours (Polderman 

and Steele, 1956) 

Temperature (
o
C) CO2 Partial Pressure (psig) DEA Converted (wt%) 

100 180 0 

110 195 5 

120 250 22 

135 325 56 

150 520 92 

175 600 97 

  

They only proposed the formation of the oxazolidone structure and measured the 

formation of HEP in their reactions, but did not have a complete mass balance for their 

degradation products.  In their studies they noticed very little loss in acid gas absorbing 

capacity as the HEP that formed was found to be competitive with DEA in absorbing 

CO2.   
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2.2.2  Meisen 

 
Kennard and Meisen (1980) used 30 wt% DEA solutions at a partial pressure of 

600 psia and heated in a pressure vessel ranging from 175
o
C to 205

o
C.  The elevated 

temperature and pressure were used to accelerate thermal degradation so an experiment 

could be completed in a matter of hours rather than weeks.  Gas chromatography was 

used to measure the appearance of degradation products.  They reported THEED as a 

new degradation product along with the previously discovered HEO and HEP, but did not 

report a reaction mechanism for its formation.  They noted that DEA degradation was not 

first order over the entire temperature range, particularly above 185
o
C.  At higher 

temperatures the degradation rate slowed significantly after 5 hours and the resulting 

Arrhenius plot over the complete temperature range was not a straight line indicating that 

DEA thermal degradation is not a first order reaction.  The initial DEA concentration was 

then varied and it was shown that DEA degradation increased with increasing solution 

strength. 

Kennard and Meisen (1985) developed another mechanism for DEA degradation 

over a wider range of temperatures (90 – 250
o
C), DEA concentrations (1-100 wt%) and 

total pressures (1500-6900 kPa).  The main degradation products were found to be the 

same as their earlier work in 1980, but the pathway was determined to follow two sets of 

reactions.  The oxazolidone reaction was found to be the same as previously mentioned, 

but the formation of THEED and the eventual formation of HEP proceeded directly from 

DEA and CO2 without the oxazolidone intermediate.   
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At a constant CO2 partial pressure of 4137 kPa, the Arrhenius plot for varying 

DEA concentrations is shown below in Figure 2.1. 

 

Figure 2.1  Arrhenius plot for various DEA concentrations at 4137kPa CO2 (Kennard 

and Meisen 1985) 

 
At low DEA concentrations (0-10 wt%) the value of first order rate constant for DEA 

disappearance is constant.  From 10-30 wt% the rate constant increased rapidly and from 

30-100 wt% the rate constant reached a maximum and slightly decreased as it approached 

100 wt%.  The activation energy of the curves at low temperature is about 23 kcal/mol. 
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The CO2 partial pressure was varied over a 30 wt% DEA solution from 1500 – 

6900 kPa at a temperature of 195
o
C.  Figure 2.2 below shows the DEA concentration as a 

function of time and CO2 partial pressure. 

 

 

Figure 2.2  DEA concentration as a function of time and CO2 partial pressure from a 

30wt% DEA held at 195
o
C (Kennard and Meisen 1985) 

The degradation of DEA increased as the CO2 concentration increased from 1500 

to 4100 kPa which corresponds to a loading of 0.5 moles CO2 per mole DEA.  Above 

4100 kPa the degradation rate did not increase with increasing CO2 concentrations. 

A kinetic model was given in which DEA and CO2 formed either HEO or THEED 

and THEED then proceeded to form HEP.  The experimental data given can then be used 

to calculate k values for the various reactions and predict the DEA concentration and the 

concentrations of the three degradation products mentioned for a given time, temperature 

and CO2 partial pressure.   
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Chakma and Meisen (1987) tested thermal degradation of DEA in heat transfer 

equipment.  They altered the experimental design away from a stirred reactor to a section 

of tubing submersed in a constant temperature bath.  Using the kinetic model developed 

by Kennard and Meisen (1985) along with the tubing diameter and flow rate to get the 

residence time, the total degradation in each segment could then be calculated.  The log-

mean temperature difference was used for the temperature in the rate calculations for 

each unit.  As expected, the degradation rate increased with temperature, DEA 

concentration, CO2 partial pressure and residence time. 

2.2.3  Kim  

 
Kim and Sartori (1984) used 3.2M DEA solutions loaded with varying amounts of 

CO2 and ran the experiments at industrially significant temperatures of 100
o
C and 120

o
C.  

The results of a typical run can be seen in Figure 2.3 below. 
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Figure 2.3  DEA degradation product formation at 120
o
C with concentration in wt% on 

the y-axis and time in days on the x-axis (Kim 1984) 

  From the figure it can be seen that HEO is the initial product of DEA degradation 

with its concentration quickly approaching steady state with the DEA concentration.  

THEED appears next after an induction period indicating that it is formed from HEO and 

eventually starts to decline with DEA concentration.  Finally, HEP forms after a long 

induction period and never reaches a steady state concentration over the time frame of 

this experiment.  From this graphic, it can be concluded that DEA converts to HEO, 

THEED, and finally HEP.  The disappearance of DEA in this work was expressed in 

terms of the first two reactions as follows.  
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where, 

k1 and k-1 = forward  and reverse rate constant of DEA and CO2 reaction to form HEO 

k2 = rate constant for DEA and HEO reaction to form THEED 

[CO2]s = steady-state CO2 concentration at reaction conditions 

 

The proposed mechanism did an adequate job of describing the data obtained in this 

study and can be used to estimate the loss of DEA over time as well as the formation of 

initial products. 

Hsu and Kim (1985) performed another study on DEA degradation with emphasis 

on further degradation products than the THEED and HEP.  Two unknowns were 

identified by GC and using a silylation technique to identify the number of hydroxyl 

groups, along with GC/MS it was determined that the two new products were the 

oxazolidone of THEED (3-(2-(bis(2-hydroxyethyl)amino)ethyl)-2-oxazolidone) and the 

DEA trimer (tetrakis(2-hydroxyethyl)diethylenetriamine.)  A more complete reaction 

pathway was set forth than the earlier work by Kim and Sartori and a simple set of 

condensation and displacement reactions that form a set of long chain tertiary amines.  

Since the amine functions are converting from secondary to tertiary amines, a decrease in 

the overall absorption rate of CO2 is expected.  DEA is a secondary amine, the dimer 

THEED has one amine group that is secondary and one tertiary, and the DEA trimer has 

one secondary amine and two tertiary amines.  When THEED and the DEA trimer go 
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through their respective condensation reactions to form a piperazine ring, all of the 

nitrogen groups are tertiary. 

 

2.3  OTHER AMINES 

 
Many other amines have been studied with an emphasis on MDEA and DIPA as 

two other industrially relevant amines.  Some screening experiments are also covered. 

2.3.1  Blake 

 
Blake (1967) reported on the differences in several industrially relevant amines at 

the time namely; MEA, DEA, and diisopropanolamine (DIPA).  Degradation rates of 

DEA and DIPA were considered comparable but the main degradation products of DEA 

still had some acid absorbing capacity whereas the degradation products of DIPA did not.  

MEA had the lowest degradation of the three amines discussed and was also the only 

amine that was readily reclaimable by distillation.  The vapor pressure of DEA is low 

compared to MEA and is more difficult to obtain as an overhead product of distillation 

which is necessary to separate it from its higher boiling counterparts.  This means a 

higher reclaimer temperature will be needed that will exacerbate thermal degradation in 

the reclaimer.  DIPA does not reclaim well because the main degradation product of 

DIPA degradation has a very similar boiling point to DIPA itself making simple 

distillation very difficult. 
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2.3.2  Kim 

 
Kim (1988) performed a study on thermal degradation of diisopropanolamine 

(DIPA) using the same experimental methods from the DEA study by Kim and Sartori 

presented earlier.  The oxazolidone of DIPA (2-(2-hydroxypropyl)-5-methyl-2-

oxazolidone, HMPO) was found to be more stable than that of MEA or DEA and did not 

form additional degradation products.  The structure of DIPA and HMPO are shown 

below. 

NCH3

CH2OH

CH2OH

CH3

CH3                     

NO

O

CH3

OH

CH3  

                              DIPA                                                  HPMO 

 

At 120
o
C the concentration of HMPO was roughly equal to DIPA after 5-10 days.  

The conversion of HPMO to DIPA is reversible, but is very slow and is considered a loss 

of amine in the system.  The rate constants for oxazolidone formation and reversal at 

120
o
C are given in Table 2.2. 
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Table 2.2   Kinetic constants for amine-oxazolidone interconversion at 120
o
C  

Molecule k1 (10
7
 M

-1
s

-1
) k2 (10

7
 s

-1
) K (M

-1
) 

DEA 5.3 21.2 0.25 

DIPA 11.8 3.2 3.7 

 

The conversion of DIPA to the oxazolidone analog is much faster than that of 

DEA.  However, the fact that DIPA does not continue to degrade to other products makes 

it easier to predict the operating concentration of DIPA as opposed to DEA where the 

concentration would constantly be decreasing. 

2.3.3  Meisen 

 
Chakma and Meisen (1988) also did work on methyl diethanolamine (MDEA) 

degradation using the same experimental design and analytical techniques developed in 

their DEA degradation studies.  MDEA has slow reaction kinetics with CO2 but can be 

used in high pressure conditions where the partial pressure of CO2 is elevated.  It is a 

tertiary amine that cannot form a carbamate like primary and secondary amines and 

because of this, it should not be able to undergo carbamate polymerization reactions 

making it stable to thermal degradation under normal stripper conditions.  However, it 

was found that MDEA did degrade at elevated temperatures and CO2 partial pressures.  

No mechanism was given for MDEA thermal degradation, however fourteen products 

were identified.  Three of the products found correspond to those found in DEA 

degradation, namely the DEA oxazolidone, HEO, and the DEA dimer, THEED and the 
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internal cyclization of the dimer by dehydrolysis, BHEP.  Other products identified 

include methanol, ethylene oxide, trimethylamine, dimethylethanamine, ethylene glycol, 

1-(dimethylamino)ethanol, 4-methylmorpholine, 1,4-dimethlypiperazine, 1-(2-

hydroxyethyl)-4-methyl piperazine and triethanolamine. 

2.3.4  Bedell 

 
Bedell (2008) postulates several pathways for MDEA degradation under aerobic 

conditions including elimination reactions, hydrolysis, hemolytic cleavage and 

disproportionation.  No data was available for elimination reactions occurring at standard 

stripper conditions.  Hydrolysis of amino acids at elevated temperatures and extrapolated 

to stripper conditions show potential to be a reasonable pathway for degradation yet other 

studies have suggested that these reactions would be thermodynamically unfavorable for 

amines.  The most likely pathway for MDEA degradation under normal stripper 

conditions would involve an initial disproportionation reaction or transethoxylation 

sometimes referred to as alkanolamine “scrambling.”  In this free radical mechanism an 

ethanol group from one MDEA molecule can replace a methyl group from another 

molecule forming one molecule of triethanolamine and one molecule of 

dimethylethanolamine.  This process could also be used to show the formation of DEA 

by the removal of the methyl group replaced with a hydrogen.  Once the amine forms 

DEA or another secondary amine, the reaction could then proceed along the degradation 

pathway for that amine by carbamate polymerization.   



 

 35 

2.3.5  IFP 

Lepaumier et. al. (2008) performed a far ranging study on amine degradation 

based on the chemical structure of the amine and tried to make generalizations on the 

potential pathway based on side groups.  They studied 17 different molecules that were 

alkanolamines, diamines, or triamines without an alcohol function.  Each experiment was 

conducted in a 100 mL stainless steel reactor with 4M amine, 2 MPa of CO2 and a 

temperature of 140
o
C for 15 days.  After 15 days the liquid phase was sampled and 

analyzed by gas chromatography, mass spectrometry, ionic chromatography, and nuclear 

magnetic resonance.  Of the 17 amines studied dimethylpiperazine (DMP) had the lowest 

degradation with only 3.7% loss after 15 days.  HEEDA, the dimer of MEA had the 

highest loss of amine with 99% loss over the same time period.  Figure 2.4 below shows 

the total degradation of the different species in order of overall degradation after 15 days 

under similar conditions. 

 

Figure 2.4  Percent loss of all amines screened after 15 days at 140
o
C and 2MPa CO2 

(Lepaumier 2008) 
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The alkanolamines were grouped into 5 categories, tertiary amines and hindered 

amines had the lowest measurable losses, followed by primary amines, secondary amines, 

and diamines.  The hindered amine AMP was found to mainly convert to an oxazolidone 

species.  The tertiary amines had demethyl/dealkylation reactions, addition reactions and 

a host of unknown products.  MEA, the primary amine, had imidazolidone and addition 

reactions.  The secondary amines mainly had ring closures and addition reactions.  

HEEDA mainly converted to imidazolidone.  Figure 2.5 shows the proposed mechanism 

for alkanolamine degradation. 

 

 

Figure 2.5  Proposed reaction pathway for alkanolamines based on amine functional 

groups (Lepaumier 2008) 

 
MEA would have hydrogen for a R1 group and according to this model would 

preferentially form the imidazolidone structure E.  MDEA would be considered an 

Amine III and would have to go through demethylation/dealkylation before proceeding 
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along the thermal degradation pathway for MEA or DEA.  DEA would follow the path 

towards C and D since its R1 group is an alkyl group. 

The polyamines studied were divided into 4 categories; dimethylpiperazine 

(DMP), ethylenediamines, propylenediamines and tetramethylbutylenediamine 

(TMBDA).  All of these species had some sort of demethylation/dealkylation products.  

The ethylenediamines all had imidazolidone and ring closure reactions.  The 

propylenediamines had addition and reactions specific to the individual species and the 

TMBDA was almost completely ring closure reactions.  Figure 2.6 below shows the 

proposed degradation pathway for the polyamine species. 

    

 

Figure 2.6  Proposed degradation pathway for derivatives of ethylene diamine 

(Lepaumier 2008) 
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The pathways proposed for the polyamines is very similar to the pathway proposed for 

the alkanolamines with the one obvious exception being the additional demethylation 

step from a diamine III – II to a diamine II – II to form an imidazolidone like product J. 

This paper had the broadest range of screening and unknown product 

identification of any previous study.  No kinetic models can be developed from this work 

due to the lack of variation in the amine concentration, temperature and CO2 loading, but 

it does give insight into the various types of products that can be formed for a wide 

variety of amines and their relative rates under the given conditions.  

2.4  BLENDED AMINE SYSTEMS 

 

Using a blended amine system, the strengths of one amine can be utilized to make 

up for the shortcomings of another.  Many times a faster amine such as MEA can be used 

to increase the CO2 reaction kinetics of a MDEA system and MDEA can be used to 

increase the capacity of an MEA system or to selectively remove other acid gas 

components such as H2S. 

2.4.1  Meisen 

Dawodu and Meisen (1996) focused on degradation of MDEA and MDEA 

blended systems, specifically MDEA + MEA and MDEA + DEA at a constant CO2 

partial pressure of 2.58 MPa and temperatures ranging from 120-180
o
C.  An assortment 

of degradation products were identified using GC and GC/MS techniques developed in 

earlier works by Meisen.  DEA degraded the fastest followed by MEA and finally MDEA 

in the blended systems.  MDEA was found to degrade at a rate over an order of 

magnitude slower than MEA and DEA.  This was to be expected considering it is a 
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tertiary amine and cannot form a carbamate like the secondary amine DEA or the primary 

amine MEA thereby eliminating the possibility to form an oxazolidone intermediate.  The 

rate constant for DEA disappearance was over twice as large as the one for MEA.  Table 

2.3 shows the first order rate constant for the initial degradation of the various amines at 

temperatures from 100-135
o
C. 

 

Table 2.3  Initial degradation rate constants for a 3.4M MDEA/0.8M MEA or DEA 

system at 2.58MPa CO2. 

Amine k100 

(hr
-1

) 

k120 

(hr
-1

) 

k135 

(hr
-1

) 

Activation Energy 

(kcal/mol) 

MEA 2.8E-4 1.1E-3 2.9E-3 20.4 

DEA 2.1E-3 5.5E-3 1.1E-2 13.9 

MDEA 2.2E-5 1.1E-4 3.1E-4 23.0 

 

The activation energy of each amine is then calculated on the right side of the 

table to show the effect of temperature on the degradation rates in the blended systems.  

DEA has the lowest activation energy of the amines studied followed by MEA and 

MDEA.  This means that adjusting the temperature of the system would have the greatest 

effect on MDEA of the three amines studied.  Also the activation energy of DEA in the 

blended system is much less than what was seen in the DEA only system where the 

activation energy was estimated at 23 kcal/mol.  
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2.4.2  Reza 

 
Reza and Trejo (2006) performed a set of degradation experiments on blends of 

MDEA, DEA, and 2-amino-2-methyl-1-propanol (AMP).  The experiments were carried 

out in a similar manner as the Meissen experiments in a stirred tank reactor at an elevated 

temperature of 200
o
C.    Eight solutions were tested with 10 wt% DEA, 35 wt% MDEA 

and varying concentrations of AMP, CO2 and H2S.  The first experiment was devoid of 

AMP, CO2 and H2S and had the lowest overall degradation rate of any of the experiments 

as expected.  The experiment with only H2S had the second lowest degradation rate and 

the system with CO2 only had the third lowest rate.  The remainder of the experiments 

had both CO2 and H2S with a varying amount of AMP.  In these experiments the DEA 

and MDEA degradation rate was not a function of AMP concentration and the total AMP 

degradation was first order with respect to AMP.  This implies that AMP degradation was 

independent of the degradation pathway of the other amines.  These experiments were 

operated at temperatures well above normal operating conditions of a stripper and the 

DEA was 90% consumed only 20 hrs into the 100 hrs experiment and completely gone 

by 40 hrs.  The AMP was 80% consumed within the first 50 hrs as well.  The MDEA was 

60% consumed by the end of the experiments.  The authors concluded that this system 

was thermally stable which seems to contradict their data. 
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2.4.3  Huntsman 

 

Holub, Critchfield, and Su (1998) describe degradation of alkanolamine solutions 

in CO2 service.  They specifically focus on blends of DEA and MMEA with MDEA and 

then compare their proprietary JEFFTREAT solvent to these systems.  In their 

mechanism, the oxazolidone converted directly to the substituted ethylenediamine 

compound that would be comparable to HEEDA in MEA degradation.  This diamine can 

then be converted to a substituted piperazine ring such as HEP in DEA degradation or to 

higher molecular weight products.   

In laboratory tests with MMEA/MDEA and DEA/MDEA blends, the amount of 

MMEA degradation was comparable to DEA degradation.  This would suggest that 

MMEA would also degrade much faster than MEA since DEA has a higher degradation 

rate than MEA under laboratory conditions.  In the DEA/MDEA blends, there was a 

pretty even distribution between ethylenediamines, oxazolidone and piperazine 

degradation products at about 20% of the parent compound each by the end of the 

experiment.  In the MMEA/MDEA almost half of the MMEA was converted to 

ethylenediamine products, about ten percent to oxazolidone products and only a few 

percent to piperazine products.  They also go on to talk about increased corrosion in the 

presence of diamine products like THEED in the DEA degradation pathway.  Diamines 

act as chelating agents and can chelate with not only iron but also stainless steel metals.  

Gillis (1963) previously showed that HEEDA, the diamine in the MEA degradation 

pathway, increased the corrosion rate of carbon steel in MEA systems.  The Huntsman 

proprietary amine avoided the formation of these diamine side products. 
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2.5  CONCLUSIONS 

 

Reaction mechanisms for a variety of alkanolamines have been proposed, but 

actual kinetic data for modeling industrial systems is limited to the DEA work by Kim 

and also by Meisen.  Due to the fast rate of degradation of DEA in CO2 services, this 

amine is not a good candidate for flue gas treating.  Degradation data for other amine 

systems is limited in the literature.  The only data on blended amine systems always 

involves MDEA and due to the drastic differences in the kinetics with the other amine 

used, the two amines are handled separately for the purposes of thermal degradation.  

While some of these degradation products retain some of their alkalinity and their ability 

to absorb acid gasses, the ethylenediamine products have been shown to increase 

corrosion in both carbon steel and stainless steel systems. 

Since aqueous absorption/stripping with MEA is often used as the base case for 

comparing flue gas CO2 removal systems and there is no kinetic data available in the 

literature, a full kinetic model detailing the thermal degradation of this system is needed.  

Testing should also be conducted on blended systems that do not involve MDEA to get a 

better idea of how the amines in these systems will interact.  Screening experiments 

should then be conducted on amines structurally similar to MEA to learn how 

incremental changes effect thermal degradation and finally a wide ranging screening of 

industrially relevant amines can provide insight into what amines might be able to be 

used outside of current normal operating conditions.    
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Chapter 3:  Analytical Methods and Experimental Apparatus 

This chapter will be used to describe the experimental apparatus used for 

thermally degrading amines and the analytical methods used for the detection and 

identification of degradation products as well as the loss of the original amine.  Details of 

the equipment, analysis method and accuracy of measurements will be given. 

 

3.1  EXPERIMENTAL APPARATUS 

 
Previous thermal degradation experiments used a pressurized stirred-tank reactor 

to degrade amines.  This system is robust and allows the user to take liquid and gas-phase 

samples, measure the temperature and pressure and adjust the concentration of CO2.  
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Thermal degradation experiments at industrially relevant temperatures occur on the order 

of weeks and months, and with this experimental design, a large number of expensive 

reactors needed to be used yielding only a limited amount of data.  In order to speed up 

this process, elevated temperatures were used with the assumption this did not affect the 

mixture of degradation products or introduce new reaction mechanisms.  Even at these 

elevated temperatures, these experiments lasted on the order of weeks and only a single 

solution with a given amine concentration, CO2 concentration and temperature could be 

tested at a time.  If the seal failed on the system, the experiment would have to be 

restarted and a large amount of amine could be released into the lab. 

In order to increase the throughput of the experiment, yet keep the experiments at 

industrially relevant conditions, a new experimental apparatus was developed.  Three 

things were noted about the original experiments.  First, the reactions all occur in the 

liquid phase and as such mixing of the gas and liquid phase was not necessary.  Second, 

the rates measured showed that these reactions were very slow even at elevated 

temperatures and as such were not mass transfer controlled.  Third, the pressure 

measurement is not needed.  The total pressure is not a convenient way to measure the 

CO2 in solution as there is little accurate equilibrium data available at elevated 

temperatures.  All of these solutions point to simplifying the experimental design such 

that you can eliminate mixing and the pressure measurements.  This means the 

experiment needs to control the temperature and maintain the concentration of the amine 

and carbon dioxide in solution. 
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Half-inch 316L stainless steel tubing was cut into 10cm segments and fitted on 

each end with Swagelok
®
 endcaps.  Initially the endcaps were tightened to 1¼ turns past 

hand tight and ¼ turns past hand tight for resealing per factory instructions.  These 

fittings can withstand high pressures and with a minimal headspace would maintain the 

concentration of amine and carbon dioxide in solution.  A set of four Imperial V forced 

convection ovens with programmable temperature control were purchased.  These ovens 

maintained a constant temperature to within 0.2
o
C across the entire oven and alarmed if 

the temperature dropped below the desired setting.  Amine solutions were created and the 

same solution was loaded into a set of sample containers and placed in an oven.  

Individual sample containers were removed at specified time intervals and cooled to 

room temperature before opening and analytical testing.  Sample containers that leaked 

were not used in the analysis and were noted by the visible residue from the leakage site 

and loss of volume upon transfer to a glass vial.   

In this manner, a large number of amines at varying concentrations of amine and 

CO2 could be run at four separate temperatures at once.  The experiments lasted from 2 

weeks to 4 months, but since the experimental design was scalable several hundred 

individual containers can be degrading simultaneously yielding a large amount of data.  

In order to run the MEA experiments completed in this work in a single stirred-tank 

reactor, it would have taken over 8 years.  If the experiments were repeated with the lab 

set-up today, they could all be completed within four months, although this work took 

considerably longer.  
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3.2  SOLUTION PREPARATION AND DILUTIONS 

 

All solutions were prepared gravimetrically on a molality basis as this lends itself 

to the greatest ease when dealing with solutions with varying concentrations of CO2.  The 

amine of choice was blended with deionized water and then transferred to a glass tube on 

a scale for CO2 addition.  A glass tube with a glass frit was placed in the solution and 

pressurized CO2 was bubbled through the solution until the desired amount was added to 

the solution by weight.  The addition of CO2 was done in a manner that the CO2 bubbles 

rarely broke the surface of the solution to avoid water loss.  The addition of CO2 is an 

exothermic reaction and as such, the rate of CO2 addition was controlled to maintain the 

surface of the solution below 40
o
C in an additional effort to avoid water loss upon 

loading.  A detailed method is given in Hilliard (2008).   

In order to verify the correct loading of CO2 in solution, initial solutions were 

tested by a total inorganic carbon (TIC) method.  Samples were diluted and injected into 

a 30 wt% phosphoric acid solution sparged with nitrogen.  Any carbon dioxide in 

solution is released in this low pH environment and carried by the nitrogen to a Horiba 

infrared detector where a response is converted to a voltage and measured over time.  The 

area under the response curve is compared to a set of standards run during each set of 

experiments and a concentration can be calculated.  Once again, a detailed method is 

given in Hilliard (2008). 

In order to verify the concentration of total amine in solution, the solution is 

titrated with a Metrohm 835 Titrando titrator with an 801 magnetic stir plate.  The sample 

is diluted into a volume of 100mL and titrated with 0.2N H2SO4.  The system measures 

the pH change until the pH is reduced to 2.  Two inflection points are noted, the first 

indicates the evolution of CO2 in the form of bicarbonate and amine carbamate.  The 
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second inflection point indicates the point where the amine itself is fully protonated and 

the solution pH drops precipitously.  This second inflection point is used to calculate the 

concentration of amine in solution.   

For amine systems with both a monoamine and a di- or triamine, such as a 

MEA/Piperazine system, a back titration can be used in conjunction with the acid titration 

to measure the concentration of each species.  The examples used here will be for the 

MEA/Piperazine system.  Once an acid titration has been completed, the solution is 

gently heated and stirred to evolve any residual CO2 out of solution.  The sample is 

returned to the titrator with a different titration head for 0.1N NaOH addition.  The pH is 

measured and adjusted until the pH returns to a value of 10.  There are still two inflection 

points in the blended system.  Since there is no CO2, however, these correspond to the 

different protonation points of the diamine.  The initial deprotonation will occur on the 

first nitrogen of the diamine and the monoamine at very similar points, but the second 

nitrogen will protonate at a higher pH. The difference between the first and second 

inflection points can be used to calculate the concentration of the diamine and with the 

results from the acid titration, can be used to calculate the concentration of the 

monoamine.  A detailed set of programming values for the titration method is given in 

Hilliard (2008).        

Dilutions for analytical testing were also done gravimetrically with a Mettler-

Toledo scale with precision to three decimal places.  Intermediate dilutions for samples 

that required series dilutions were vortexed to ensure proper mixing.  Final samples were 

also vortexed.    
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3.3  CATION CHROMATOGRAPHY 

 

Cation chromatography is the workhorse analytical method used in this work.  A 

Dionex ICS-2000 system with an AS40 autosampler, GP50 gradient pump, LC25 

chromatography oven and a CD25 conductivity detector is used to separate cationic 

products which will include the parent amine and most of the thermal degradation 

products.  An IonPac CG17 Guard Column (4 x 50 mm) and an IonPac CS17 Analytical 

Column (4 x 250 mm) packed with a divinylbenzene/ethylbenzene resin that separates 

cationic species based on their affinity for the resin is used for the separation.  The 

system also has a 4-mm CSRS (Cationic Self-Regenerating Suppressor).  The suppressor 

is used after the column and electrolytically separates water into hydroxide and 

hydronium ions and acts as an ion exchanger removing the eluent of choice that couples 

with the cations, usually sulfuric acid or methanesulfonic acid, and replaces it with 

hydroxide ions reducing the overall conductivity of the solution and giving a greater 

signal to noise ratio in the conductivity detector. 

A sample is diluted gravimetrically 5000:1 with water from a Millipore Direct Q 

water purification system and inserted into the 5mL sample vials used in the AS40 

autosampler.  Once the method starts a portion of the diluted sample is used to flush the 

line and sample loop and a small portion (20uL) was used for injection onto the column.  

A dilute methanesulfonic acid (5mM) in water was used as the eluent and would elute 

cations from the column.  The eluent from the column was sent to the suppressor where 

the methanesulfonic groups were replaced with hydroxide ions before going to the 

conductivity detector.  The outlet of the conductivity detector was sent back to the 

suppressor to flush the removed MSA to waste.   
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The method used was titled „JasonAuto3‟ and is given in detail in Appendix D.  

The most important part of the method is the gradient of MSA.  Figure 3.1 shows the 

gradient profile for MSA in this program. 

 

 

Figure 3.1  Gradient profile of methanesulfonic acid used in the JasonAuto3 program for 

cation IC 

The total program lasted for 20 minutes and was able to separate a large number 

of amines and almost all of the amines studied in this work.  In the first 7 minutes before 

the step change, all of the amines with only one functional amine are eluted from the 

column.  Diamines elute in the 10-13 minute range and polyamines elute in the final 

solvent ramp and hold. 

Table 3.1 shows the retention times of the MEA products studied in this work 

using the JasonAuto3 program and how many active amine groups are on the molecule of 

interest. 
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Table 3.1  Retention times of amines studied in this work using cation IC and the 

JasonAuto3 program 

Compound Active Amine Groups Retention Time 

MEA 1 4.0 

MEA Trimer Cyclic Urea 1 6.8 

HEEDA 2 12.8 

MEA Quatramer Cyclic Urea 2 15.5 

MEA Trimer 3 18.0 

MEA Quatramer 4 18.7 

 

All of the monoamines elute first, followed by the secondary amines and then 

polyamines.   

The error in the measurements will come from two sources, dilution errors and 

errors in the repeatability of the IC measurement due to changes in the column and 

detector conditions such as temperature, conductivity of the eluent and suppressor 

effectiveness.  The error introduced from the dilutions will be a function of the accuracy 

of the scale used, with accuracy to 0.0005g, and the amount of sample used in each 

dilution.  In this case the dilution was done in series with a 1:100 followed by a 1:50.  

0.1g of sample was added to 9.9g of water and then 0.05g of this solution was added to 

9.95g water.  The relative error in this measurement would be +0.5% for the first dilution 

and +1% for the second dilution using the error of the small amount of sample addition as 

the total error and assuming the error in the water addition would be negligible.  This 

leads to a total relative error in the sample dilutions of +1.1%.   The error in the IC will 

come in the form of drift and repeatability.  For repeatability, the standard curve samples 

were run three times each.  The average relative standard deviation in the repeatability of 
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the measurements was 3.0% across all concentrations.  All of the data points were then 

used to construct an overall calibration curve for MEA and HEEDA on a molar basis 

which used a polynomial fit and had an R
2
=0.9998.  The overall relative error from the 

dilutions and the IC would then be +3.2%. 

The other source of error in the reported data will come in the form of converting 

the concentration data by weight to molality or molarity measurements.  In both of these 

cases, the concentration of CO2, which will affect the density of solution, will play a role 

in the total error in the measurement.  In some of the studies, the CO2 concentration was 

measured upon removal from the oven and the total CO2, including CO2 incorporated into 

degradation products, was conserved.  With additional sample handling, this 

concentration could change and could increase the variance in the concentration data 

presented.  The density of solution was never verified after degradation and was assumed 

to be constant.      

  

3.4  HPLC WITH EVAPORATIVE LIGHT SCATTERING   

 

Nonionic species produced from the thermal degradation of amines are quantified 

using a Dionex ICS-3000 Dual RFIC High Pressure Liquid Chromatography System.  

The system includes a DP-1 dual pump module with an AS autosampler and a Polymer 

Laboratories PL-ELS 2100 evaporative light scattering detector.  An Atlantis T3 3um 

4.6x150mm C18 column made by Waters was used for the separation with a gradient 

elution using acetonitrile and water.  The gradient profile for the method used, HEIA2, is 

shown in Figure 3.2 and a detailed copy of the programming used is given in Appendix 

D. 
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Figure 3.2  Gradient profile of acetonitrile used in the HEIA2 program for HPLC 

 

In this program all of the unretained species such as ionic degradation products 

and the parent amine elute at 2.0 minutes.  MEA urea elutes at 3.1 minutes and HEIA 

elutes at 5.2 minutes.  The remainder of the program is in place to flush the column and is 

useful for other degradation systems that have products that are well retained.  When only 

testing for MEA this method can be reduced in length and could be run isocratically. 

One of the main benefits of this system is the use of the evaporative light 

scattering detector.  Amines are not easily detected using standard HPLC detectors such 

as UV/Vis as they are not optically active in a unique range.  In order to detect amines 

and their degradation products, some type of pre- or post-column derivatization needs to 

be performed.  Using evaporative light scattering, the amines can be detected without this 
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additional step.  The eluent coming off the column is sent to the ELS detector where it is 

heated in the line.  It exits through a nebulizer which breaks the solution into small 

droplets using a large flow of nitrogen around the exiting liquid.  This nitrogen flow, 

along with the elevated temperature in the detector compartment, evaporates the volatile 

solvent and leaves a portion of the less volatile analyte.  The analyte passes through a 

beam of visible light and the amount of absorbance is measured and converted to an 

electrical signal.  This detector allows the user to tune the temperature and nitrogen flow 

rate to the volatility of the analyte of choice.  In this case, unloaded amines are more 

volatile than amine carbamates, and as such the system can be tuned to reduce the large 

parent amine peak in the detector so that only the less volatile degradation products such 

as the MEA urea and HEIA can be seen without overlap from the amine carbamates.  

This additional control however, also causes additional noise in the signal and lower 

reproducibility than what is seen in other detectors. 

The error associated with the HPLC method is mainly due to repeatability of the 

evaporative light scattering detector since there are several variables that can have a large 

effect on the response of each analyte.  The error in making the dilutions is much smaller 

than in cation IC since a 1:100 dilution is used.  In this case, the error associated with the 

dilutions will only be +0.5%.  When a 5 point standard curve for HEIA was run in 

triplicate, the average standard deviation across all concentrations was +12.1%.  This 

gives the overall error in the HPLC measurements of +12.1% which is much larger than 

the error associated with the IC measurements. 
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3.5  IC/MS AND MS BY SYRINGE PUMP 

 

A Thermo TSQ mass spectrometer coupled with a Dionex-2500 IC was used for 

mass determination of unknown ionic products.  The programming method used for both 

the Dionex-2500 and the Thermo TSQ is given in Appendix D.  The Thermo TSQ uses 

electrospray ionization (ESI) to introduce the sample and has a triple quadrapole for 

detection although only a single quadrapole was used in this work as a reliable mass 

library is not currently available for amine fragmentation.  This system allows for the 

separation of ions by IC and mass determination of the peak of interest by MS.  Samples 

can also be introduced directly to the MS by syringe pump injection to the ESI unit.  This 

will not give any separation other than by mass and can be used to qualitatively 

determine if species of interest are in solution.  Using this instrument with the same 

columns and eluents as the other IC systems allows for peak identification on this system 

and then using the less complicated IC only system for quantification. 

Amines were injected onto an IonPac CG17 Guard Column (4 x 50 mm) and an 

IonPac CS17 Analytical Column (4 x 250 mm) packed with a 

divinylbenzene/ethylbenzene resin via a Dionex AS-25 autosampler and eluted with a 

gradient of methanesulfonic acid from the solvent generation cartridge.  After the 

column, the eluent is treated with a 4-mm CSRS (Cationic Self-Regenerating Suppressor) 

which uses electrolytic suppression to remove the methanesulfonic ions and replace it 

with hydroxide ions to reduce the background noise and improve the signal to noise ratio 

of the analyte in the conductivity detector.  Normally in a cationic system the eluent 

would regenerate the suppressor, but in this system the eluent is sent to the MS, so the 

suppressor is regenerated using a pressurized bottle with DI water to continuously flush 

the waste from the suppressor.   
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The mass spectrometer can only handle a much smaller flow than what was used 

in the cationic IC system.  The flowrate had to be reduced from 1.2 mL/min to 0.5 

mL/min.  In this case the solvent gradient of MSA was stretched in the same ratio as the 

reduced flowrate so that the total Jason3Auto method is stretched from 20 minutes to 50 

minutes.  In this system, unlike the cationic IC system, a gradient generation cartridge is 

used.  Millipore water is fed to the cartridge and the proper amount of MSA is blended 

with the water eliminating the need for solvent makeup. 

The eluent is sent through a grounded line to the Thermo TSQ where it is 

vaporized with heat and nitrogen flow and charged with a high voltage across the outlet 

of the spray cone on the ESI unit.  The eluent will be in the form of small droplets with a 

high positive charge on the surface of the droplet.  As the droplet evaporates, the charge 

will transfer to the analyte and protonate it.  The spray is discharged perpendicular to the 

small bore ion transfer tube which pulls in a portion of the spray via the vacuum the 

internals of the MS is under.  When the positively charged analyte is introduced to the 

first quadrapole, the ion will gravitate towards the negatively charged pole and the flight 

of the analyte will be shifted.  The lighter the mass, the more the flight path of the 

charged particle will bend.  The detector will measure how many molecules of each mass 

collide with it based on how far the flight path has changed and give a relative abundance 

of each mass.  All uncharged molecules will pass through the quadrapole in a straight line 

and will not be detected.   
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3.6  OTHER ANALYTICAL METHODS USED 

 

Several other analytical methods were used sparingly in this work.  The original 

analytical method pursued was gas chromatography.  A HP-5890 system was used with 

an autosampler, split-flow injection and flame ionization detection.  A C8 column was 

used for nonpolar species and a wax column was used for the separation of polar 

compounds.  Both columns exhibited significant peak tailing and had poor repeatability.  

The inlet liner needed to be changed out every 20 samples and the column needed to be 

cleaned with a high temperature burn after each set of samples.  The main downfall was 

inaccuracy from some systematic errors.  In the tests for piperazine degradation, the GC 

results showed that a significant amount of piperazine was lost after only a few weeks at 

135
o
C but no degradation products were detected.  The same solution was then tested 

with the titration method with both the forward titration with acid and the back titration 

with caustic to determine how much piperazine was still in solution and these results 

showed no loss of piperazine.  The newly developed cationic IC method also showed no 

measurable losses of piperazine or formation of other cationic species.  Finally, a sample 

held at 150
o
C for 4 weeks along with a fresh sample of piperazine solution were 

submitted for C13 NMR analysis showing no difference between the peaks.  The GC 

method was then tested with the addition of metals to fresh piperazine to see if it was an 

artifact of metals leaching from the sample containers and the heat from the GC system, 

but no change was detected.  This problem was never resolved and the GC method was 

abandoned in favor of the more reliable IC method. 

Atomic absorption was used to determine the metals concentration in degraded 

amine solutions.  A Perkin-Elmer flame AA was used with calibration standards for iron, 

nickel and chromium.  The chromium method had too much interference from the other 
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metals present, but the data for iron and nickel are shown later in the testing of MEA 

thermal degradation. 
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Chapter 4:  Monoethanolamine Thermal Degradation 

This chapter will be used to outline a mechanism for MEA thermal degradation 

and will identify and quantify various thermal degradation products.  Rate measurements 

will also be given based on varying MEA concentration, CO2 concentration, and 

temperature. 

 

4.1  MONOETHANOLAMINE DEGRADATION MECHANISM 

Thermal degradation of MEA below 200
o
C occurs by reaction with CO2 in a 

process termed carbamate polymerization.  Equation 4.1 shows the reaction of MEA with 

CO2 to form MEA carbamate and protonated MEA.  
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NH2
OH   +    CO2                    

NH
OH CO2-   +   

NH3

+

OH      (Eq 4.1) 

       MEA                                              MEA carbamate        Protonated MEA 

 

This reaction normally takes place in the absorber and is reversed in the stripper, 

however, MEA carbamate can cyclize internally through a dehydrolysis step and form 

oxazolidone as shown in Equation 4.2. 

NH
OH CO2-  +   MEAH

+  
                      

NHO

O

    +  MEA +  H2O      (Eq 4.2) 

                                                                              Oxazolidone 

 

Another molecule of MEA can attack the oxazolidone at the ketone group to form MEA 

urea as shown in Equation 4.3. 

 

NH2
OH   +  

NHO

O

               
OH

NHNH
OH

O

    (Eq 4.3) 

                                                                          Monoethanolamine Urea 

 

Any other amine can also attack the oxazolidone to form a urea such as polymeric 

products formed later in the reaction.  The MEA molecule can also attack the 

oxazolidone from the other side to form N-(2-hydroxyethyl)-ethylenediamine(HEEDA) 

as shown in Equation 4.4. 
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NHO

O

                                    
OH

NH
NH2   +   CO2       (Eq 4.4) 

                                                             HEEDA 

 

HEEDA can react with CO2 and form a HEEDA carbamate similar to MEA and can go 

through a ring closing to form hydroxyethyl-imidazolidone(HEIA) as shown in Equation 

4.5 or can react with a molecule of oxazolidone and form a MEA/HEEDA urea as shown 

in Equation 4.6. 

OH
NH

NH2   +   CO2                 

NNH

O

OH

    +    H2O     (Eq 4.5) 

              HEIA 

 

HEIA is the largest degradation product found in solution and is sometimes referred to as 

the cyclic urea of MEA.  Polderman originally proposed that HEEDA was formed from 

HEIA, but this work will show that HEEDA is the initial product and HEIA is formed 

afterward. 

HEEDA can then attack the oxazolidone in the same way that MEA attacked the 

oxazolidone to form a urea or continue the polymerization reaction to form the trimer of 

MEA (N-(2-hydroxyethyl)-diethylenetriamine) as shown in Equation 4.6 below. 

 

OH
NH

NH2   +   

NHO

O

                  OH
NH

NH
NH2

 + CO2 (Eq 4.6)
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The MEA trimer can then react with a molecule of CO2 and form the cyclic urea of MEA 

trimer, 1-[2-[(2-hydroxyethyl)amino]ethyl]-2-imidazolidone, as shown in Equation 4.7 

below. 

 

OH
NH

NH
NH2

   +  CO2                      

NNH

O

NH
OH

  + H2O  (Eq 4.7) 

                                                                            Cyclic Urea of MEA Trimer 

 

This polymerization reaction can continue indefinitely with evidence in these 

experiments through the quatramer of MEA, N-(2-hydroxyethyl)triethylenetetramine, and 

the corresponding cyclic urea, 1-[2-[[2-[(2-hydroxyethyl)amino]ethyl]amino)ethyl]-2-

imidazolidone.  Figure 4.1 shows the entire reaction pathway with possible branch points 

for MEA thermal degradation. 
  



 

 62 

NH2
OH  

       MEA 

  

 

    

NHO

O

               
OH

NHNH
OH

O

 

Oxazolidone                                       MEA/MEA Urea (shown) or 

                                                                 MEA/Other Amine Urea 

 

      
OH

NH
NH2                            

NNH

O

OH

 

                 HEEDA                                                HEIA 

 

 

OH
NH

NH
NH2

                

NNH

O

NH
OH

 

                         MEA Trimer                                Cyclic Urea of Trimer 

 

 

             

 Further Polymeric Products 

Figure 4.1  MEA thermal degradation reaction pathway. 
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4.2  HPLC UNKNOWN IDENTIFICATION 

 

HPLC was used to identify and quantify nonionic degradation products that were 

formed during the MEA degradation process.  Two of the main degradation products 

were identified by this method.  Figure 4.2 shows a HPLC chromatogram of a degraded 

MEA sample. 

 

 

Figure 4.2  HPLC chromatogram of a degraded 7m MEA sample at 150
o
C for 2 days 

using HEIA2 program 

The first peak is MEA along with any other unretained species, the second smaller 

peak at 3.1 minutes was found to be MEA urea and the large peak at 5.2 minutes was 

verified to be hydroxyethylimidazolidone.   

A 75 wt% solution of HEIA was obtained from Aldrich and run using the HPLC 

method.  It had the same retention time as the large peak in the degraded MEA samples 

of 5.2 minutes.  A standard curve of HEIA is shown in Figure 4.3. 
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Figure 4.3  HEIA standard curve by HPLC using HEIA2 program 

The standard curve is very nonlinear over the range found in the degradation 

experiments, 0 - 4 wt% in solution, so the sample dilutions must fall within the standard 

curve concentration range and the standard curve must have enough points to get an 

accurate representation of its behavior over the range of interest.  

Initially the second small peak was assumed to be oxazolidone due to the small 

size of the peak and its early appearance in the degradation experiments.  Upon spiking 

with large quantities of oxazolidone however, the peak size for oxazolidone was barely 

above the noise level in the method.  Due to the low response factor in the HPLC method, 

the unknown peak could not be oxazolidone.  In order to determine what this peak might 

be, experiments with 3.5m MEA with 5 wt% oxazolidone and 5 wt% HEIA at a variety 

of temperatures were conducted over several days.  The chromatogram for the 1 hour 

sample at 135
o
C is shown in Figure 4.4.       
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Figure 4.4  30wt% MEA/5wt% oxazolidone/5wt% HEIA after 1hr at 135
o
C using HEIA 

2 program 

It can be seen that the combination of starting materials is forming a product in 

very large quantities whose retention time is the same as our unknown peak at 3.1 

minutes.  It was hypothesized that this was the MEA urea mentioned by Yazvikova 

(1975).  He identified N,N‟-bis(2-hydroxyethyl) urea as a degradation product in samples 

that were thermally degraded in the absence of water.  The urea is not mentioned 

anywhere else in the literature.  A standard of MEA urea was obtained from Life 

Chemicals, but judging by the sample obtained, the urea is very hydroscopic and had 

absorbed water during the handling of the sample prior to receipt making it impossible to 

get an accurate standard curve.  It was adequate for spiking and identification purposes.  

Figure 4.5 shows the chromatogram of a sample spiked with MEA urea.   

 

 

Figure 4.5  HPLC chromatogram of MEA spiked with N,N‟-bis(2-hydroxyethyl) urea 

using HEIA2 program 
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The MEA urea has the same retention time as the unknown peak in the degraded MEA 

sample and the product peak in the MEA/Oxazolidone/HEIA experiment. 

In order to further verify the identity of the unknown peak, mass spectroscopy 

was used on the sample of MEA and oxazolidone held at 135
o
C for 1 hour.  The mass 

spectrum for the sample is shown in Figure 4.6. 

 

 

Figure 4.6  Mass spectrum for MEA and oxazolidone at 135
o
C for 1 hour 

The mass of MEA urea is 148 and from the mass spectrum it can be seen that the 

main peak present is a species with a m/z ratio of 149 which corresponds to the MEA 

urea with a charge of 1.  Oxazolidone is the peak with a m/z ratio of 88 which 

corresponds to a MW of 87.  In the initial sample of MEA and oxazolidone, MEA urea is 

not present, but it is clearly present after only 1 hour at 135
o
C.  This species does not 

work in the reaction scheme when converting oxazolidone to HEEDA, but the data 

obtained from these experiments show the urea is in equilibrium with the oxazolidone 

suggesting it is a side reaction of oxazolidone with MEA.      
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4.3  CATIONIC UNKNOWN IDENTIFICATION 

 

Only two of the cationic products were available commercially, MEA and 

HEEDA, and both were used for identification by known addition.  The remainder of the 

polymeric products in the reaction pathway should all be separable by cation IC, but they 

did not have commercially available sources so they had to be identified by methods 

other than spiking.  Figure 4.7 below shows an IC chromatogram of a degraded sample of 

MEA. 

 

 

Figure 4.7  IC chromatogram of degraded 7m MEA at 150
o
C for 2 weeks using 

Jason3Auto program 

MEA is the largest peak at a retention time of 4.0 minutes and HEEDA elutes at 

12.8 minutes.  The remainder of the peaks still needed to be identified, so mass 

spectroscopy coupled with cation chromatography was used.  An ICS-2000 from Dionex 

was coupled with a Thermo TSQ-MS with electrospray ionization and a triple quadrapole 

detector.  The method had to be extended since the mass spec can only handle a flow rate 

of 0.5 ml/min and the original IC method called for 1.2 ml/min, however the elution order 

of the products should remain the same.  Figure 4.8 below shows an IC and Total Ion 

Count chromatogram from the IC/MS system.      

 

MEA 
HEEDA 
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Figure 4.8  IC/MS chromatograms of a degraded 7m MEA sample at 150
o
C for 2 weeks 

using Jason3AutoSlow program 

The first large peak with a retention time of 13.5 minutes is MEA and HEEDA is 

the peak at 32.3 minutes.  The peaks at 25.8 and 31.3 minutes are peaks that are present 

in blank injections with just water and do not correspond to degradation products.  The 

second large peak at 20.7 minutes has a mass to charge ratio (m/z) of 174 which 

corresponds to a mass of 173.  The elution time suggests that it has one active amine 

group since it elutes close to MEA, and it appears in the degradation scheme after the 

formation of HEEDA and HEIA suggesting it is a polymeric product.  All of these details 

point to the imidazolidone of the MEA trimer shown below.   

 

NNH

O

NH
OH

 

 



 

 69 

Two of the active amine groups would be tied up in the cyclic urea function leaving one 

active amine group to behave like a monoamine cation.   

The first peak after HEEDA on the chromatogram with a retention time of 35.3 

minutes has a m/z ratio of 217 corresponding to a mass of 216.  The elution time would 

suggest that it has 2-3 active amine groups and it does not form in the MEA degradation 

scheme until the sample is heavily degraded.  These data suggest the cyclic urea of the 

MEA quatramer shown below. 

 

NNH

O

NH
NH

OH

 

 

Just like the cyclic urea of the MEA trimer, two of the amine groups are tied up in the 

cyclic urea group leaving them inactive to the binding groups of the cation column 

meaning the molecule will behave like a diamine in IC.     

The peak at 36.2 minutes had a m/z of 170 giving a mass of 169 which does not 

fit in the reaction scheme provided.  This peak remains an unknown other than the mass 

and the elution time which suggests the functionality of a di- or triamine.  The peak at 

36.7 minutes had multiple m/z ratios at 170, 148, and 260.  It is unclear which of these 

masses are correct so this peak is also considered an unknown. 

 The peak at 37.9 minutes had an m/z of 148 giving a mass of 147.  The elution 

time suggests a tri- or quatramine and the formation closely follows the formation of 

HEEDA in the MEA degradation scheme.  For these reasons, this peak has been 

identified as the MEA trimer shown below. 
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OH
NH

NH
NH2

 

 

The MEA trimer would retain all of its amine functionality since none of the groups are 

tied up in a urea group.    

The peak at 39.2 minutes has a m/z ratio of 191 yielding a mass of 190.  The 

elution time suggests a tri- or quatamine and the formation does not occur except in 

severely degraded samples.  This peak has been identified as the MEA quatramer shown 

below. 

 

OH
NH

NH
NH

NH2 

The rest of the peaks are at such low concentrations that identification was impossible 

using the current method. 

 

4.4   MASS SPECTROSCOPY IDENTIFICATION USING SYRINGE PUMP INJECTION 

 

Since some species are not ionic and would not show up on the IC/MS method, a 

degraded MEA sample was injected on the mass spec by syringe pump.  This method 

loses the ability to separate products by anything but their mass.  It is important to note 

that all of these products will have widely varying response factors so this method cannot 

be used to infer quantitative data, only qualitative.  Figure 4.9 below shows the average 

mass spectrum of a syringe pump injection with scans every second for four minutes 

(average of ~240 scans). 
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Figure 4.9  Average mass spectrum for degraded MEA sample by syringe pump injection 

Several of the products already identified can be seen on this spectrum including 

MEA (m/z = 62), HEEDA (m/z = 105), HEIA (m/z = 131), MEA trimer (m/z = 148), 

MEA urea (m/z = 149), MEA trimer cyclic urea (m/z = 174), MEA quatramer (m/z 191), 

and MEA quatramer cyclic urea (m/z = 217).  Note the low relative abundance of MEA 

even though it is by far the largest species in solution.  Three species that are readily 

identifiable that were not captured in the IC/MS method are the MEA urea with a m/z of 

149, the MEA/HEEDA urea with a m/z of 192 and the HEEDA/HEEDA or MEA/MEA 

trimer urea with a m/z of 235.  The MEA/HEEDA urea does have one active amine group 

and should elute by IC, but after reviewing the IC/MS data it elutes underneath the MEA 

peak and does not give a clean separation.  All three of these species are going to have a 

low abundance in solution if studies of the MEA urea with HPLC can be extrapolated to 

the stability of the other ureas, meaning they all have very strong response factors by 

mass spec compared to the other products formed.  The largest peak with a m/z of 123 

cannot be explained by the current reaction mechanism and does not appear as a 

significant peak in the HPLC method or IC method detailed here.  The overall mass 
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balance closure in this work would suggest that this species along with the various urea 

species are insignificant to the total mass balance. 

 

4.5  MEA THERMAL DEGRADATION PRODUCTS SUMMARY 

 

The thermal degradation products of MEA have been identified and quantified by 

various techniques.  Table 4.1 lists the various physical properties of these compounds 

and their corresponding CAS#. 

 

Table 4.1  Physical properties of thermal degradation products 

Compound MW CAS # Purity Company 

MEA 61.08 141-43-5 99+ % Acros 

Oxazolidone 87.04 497-25-6 98% Acros 

MEA Urea 148.07 15438-70-7 N/A Life Chem 

MEA Dimer (HEEDA)  104.06 111-41-1 99+ % Acros 

Cyclic Urea of MEA Dimer (HEIA) 130.07 3699-54-5 75% Aldrich 

MEA/HEEDA Urea 191.10 N/A N/A N/A 

MEA Trimer 147.09 1965-29-3 N/A N/A 

Cyclic Urea of MEA Trimer 173.10 N/A N/A N/A 

MEA Quatramer 190.12 38361-85-2 N/A N/A 

Cyclic Urea of MEA Quatramer 216.13 N/A N/A N/A 
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Table 4.2 shows the list of thermal degradation products and the analytical 

techniques used for quantifying and qualifying each including whether the compound of 

interest was verified by spiking with known addition.  The table will also include a 

ranking of products based on their concentration at the end of the most degraded sample. 

 

Table 4.2  Analytical methods used for each thermal degradation product and the relative 

concentration ranking in the final sample 

Product Quantification Qualification Rank 

MEA Cation IC / Titration IC-MS / Spike 1 

Oxazolidone None MS / Spike N/A 

MEA Urea HPLC MS / Spike 8 

HEEDA Cation IC IC-MS / Spike 4 

HEIA HPLC MS / Spike 2 

MEA/HEEDA Urea None MS N/A 

MEA Trimer Cation IC IC-MS 5 

Cyclic Urea of Trimer Cation IC IC-MS 3 

MEA/Trimer Urea None MS N/A 

MEA Quatramer Cation IC IC-MS 7 

Cyclic Urea of Quatramer Cation IC IC-MS 6 

 

4.6  MEA DISAPPEARANCE IN THERMAL DEGRADATION EXPERIMENTS  

 

Aqueous solutions of 15-40 wt% MEA (3.5m – 11m) were placed in a set of 316L 

stainless steel sample containers made of tubing and Swagelok endcaps.  The CO2 
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concentration was varied from a loading of 0.2 – 0.5 moles of CO2 per mole of MEA and 

the temperature was varied from 100 – 150
o
C.  Individual sample containers were 

removed at specified times and the solution was analyzed for MEA loss and degradation 

product formation by the analytical methods previously described.  Figure 4.10 below 

shows the effect of MEA concentration on the loss rate of MEA at 135
o
C and a loading 

of 0.4. 

 

 

Figure 4.10  MEA loss as a function of initial amine concentration at 135
o
C and a 

loading of 0.4 moles CO2 per mole amine 

MEA loss is slightly more than first order in amine concentration, but it is closer to first 

order than second order.  If the loss rate was first order in amine concentration then the 
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curves would all fall on the same line since this data is presented as a percent loss of the 

initial solution.   

Figure 4.11 below shows the effect of CO2 concentration on the overall 

degradation rate in a 7m MEA solution at a temperature of 135
o
C. 

 

 

Figure 4.11  MEA loss as a function of CO2 concentration for 7m MEA solutions at 

135
o
C 

The total amine loss is roughly first order in CO2 concentration as doubling the 

concentration of CO2 from 0.2 to 0.4 roughly doubles the initial degradation rate.  Once 

the solution becomes more highly degraded, a compound effect of MEA loss starts to 
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become important skewing the results and slows the overall loss which can be seen at the 

end for the final data points in the 0.4 and 0.5 loaded solutions. 

Figure 4.12 below shows the effect of temperature on the overall degradation of a 

7m MEA solution with a loading of 0.4 moles CO2 per mole MEA.   

 

 

Figure 4.12  MEA loss as a function of temperature for 7m MEA solutions with a 

loading of 0.4 moles CO2 per mole amine 

As expected, temperature has the largest effect on the degradation rate.  An increase in 

15
o
C roughly quadruples the loss of MEA over the course of the experiment.  The kinetic 

model that is developed later in this section will give more detail as to the activation 
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energy of the various rate constants which will further develop the dependence of the loss 

rate on temperature. 

  

4.7  DEGRADATION PRODUCTS 

 

Standard curves were constructed for MEA, HEEDA, and HEIA since they were 

commercially available.  The rest of the species were not commercially available.  Figure 

4.13 below shows the calibration curve for MEA and HEEDA on a molar basis. 

 

 

Figure 4.13  IC calibration curve for MEA and HEEDA on a molar basis using 

Jason3Auto program (triangles = MEA, squares = HEEDA) 
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This figure shows that MEA and HEEDA have the same calibration curve on a molar 

basis.  It would be convenient if this same standard curve could be used for the MEA 

trimer and quatramer as well.  In order to determine if this were the case longer chain 

amines, the family of ethylene diamine (EDA) was tested.  Figure 4.14 shows the 

structures of the amines included in this test. 

 

 

NH2
NH2   

NH2
NH

NH

NH2 

          EDA      DETA 

 

      
NH2

NH
NH2

     
NH2

NH
NH

NH
NH2

 

             TETA         TEPA 

Figure 4.14  Structures of ethylene diamine (EDA) polymerization family 

 

These amines have similar molecular weights to the MEA polymerization family and 

each increase in chain length adds 43 to the MW of the species.  EDA has a molecular 

weight of 60 compared to MEA at 61, diethylene triamine has a MW of 103 compared to 

HEEDA at 104, triethylene tetramine has a MW of 146 compared to the MEA trimer at 

147 and tetraethylene pentamine has a MW of 189 compared to the MEA quatramer at 

190.  Figure 4.15 below shows the standard curve for the EDA family on a molar basis. 
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Figure 4.15  IC standard curve for all four members of the EDA polymerization family 

using Jason3Auto program 

This figure shows that all of the species in the polymerization of EDA have roughly the 

same response factor by IC on a molar basis.  By extension, we will use the standard 

curve for MEA and HEEDA to estimate the concentrations of the MEA trimer, MEA 

quatramer and the cyclic urea of the trimer since it has one active nitrogen group that 

should have a pKa similar to MEA. 

Figure 4.16 below shows the concentration of all the measured thermal 

degradation products for a 7m MEA solution at 135
o
C and a loading of 0.4 moles CO2 

per mole of MEA. 
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Figure 4.16  Products in a degraded 7m MEA solution at 135
o
C and a CO2 loading of 0.4 

(x = HEIA, Square = HEEDA, Diamond = Cyclic urea of Trimer, Circle = 

Trimer, Triangle = Cyclic urea of Quatramer, + = Quatramer) 

This figure shows that at the end of this experiment HEIA and the imidazolidone 

of the MEA trimer are the largest degradation products by concentrations.  The polymeric 

species HEEDA and the MEA trimer are the next largest species. 

 

4.7.1  Imidazolidones of MEA 

 

HEIA is by far the largest degradation product at the end of the experiment.  The 

imidazolidone of the trimer is the next largest product at the end of the reactions.  This is 
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because the imidazolidone species are relatively stable and do not react to form further 

polymeric products.  They are in equilibrium with their associated polymeric amine and 

their concentration should correlate directly with the CO2 concentration in solution.  

Figure 4.17 shows the effect of CO2 concentration on the various imidazolidone species 

(cyclic ureas). 

 

 

Figure 4.17  Imidazolidone concentrations at various loadings for a 7m system at 135
o
C  

(squares = HEIA, triangles = Trimer imidazolidone, black = 0.5 ldg, dark 

gray = 0.4 ldg and light gray = 0.2 ldg) 

The base case for this graphic is the 7m MEA system with a loading of 0.4 moles 

CO2 per mole of MEA as denoted by the dark gray squares and triangles with trend lines.  

The black square at 2 weeks is the concentration of HEIA in the solution with a loading 
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of 0.5 and the black triangle is the concentration of trimer HEIA with the same loading.  

The increase in loading by 25% causes the HEIA concentration to roughly double and the 

trimer HEIA increases slightly as well.  This is due to the shift in the equilibrium between 

the polymeric products and the imidazolidones as well as the increased overall 

degradation of the solution due to the increase in the concentration of CO2.  The two light 

gray points at 4 weeks represent the 7m MEA system with a loading of 0.2 moles of CO2 

per mole of MEA.  As expected, the HEIA and trimer HEIA are greatly reduced in 

concentration with the reduction of CO2 for the same reasons the 0.5 loading system was 

increased.   

The imidazolidone of the MEA quatramer was detected by MS and quantified in 

the most degraded samples.  After an initial lag period to account for MEA quatramer 

formation, the concentration of this species increases throughout the remainder of the 

experiment.  The maximum concentration found in all of the 7m MEA experiments was 

0.03m in solution in the most degraded samples at 135 and 150
o
C with the average across 

all samples being 0.006m.  If the solutions were degraded more, this species would 

probably be a significant part of the overall mass balance, but in practice, the solution 

would have to be reclaimed to remove impurities and restore the overall solution capacity 

before it would get to that point.  

Figure 4.18 below shows the effect of temperature on HEIA formation in a 7m 

MEA system with a loading of 0.4 moles of CO2 per mole of MEA.  The fraction of 

MEA loss tied up in HEIA is plotted against total MEA loss.  The HEIA concentration is 

multiplied by two since it takes two MEA molecules to form one HEIA molecule. 
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Figure 4.18  Fraction of MEA loss tied up in HEIA in a 7m MEA system with a CO2 

loading of 0.4 at varying temperatures 

When the data is normalized by MEA loss the amount of HEIA present is only a 

function of CO2 loading and not of temperature.  After the initial lag period in which the 

precursor for HEIA, HEEDA, is formed, the fraction of the total MEA loss tied up in 

HEIA increases rapidly.  When approximately 45% of the total MEA loss is tied up in the 

HEIA molecule, the system reaches a pseudo-steady state where for every additional 

mole of MEA that is lost, 0.45 moles of MEA go into the formation of HEIA under the 

specified conditions.  At a loading of 0.5 about 60% of the total MEA loss is tied up in 

HEIA across all temperature ranges and at a loading of 0.2 only 38% of the total MEA 

loss is tied up in HEIA. 
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4.7.2  Imidazolidones and Polymeric Species of MEA 

 

In the degradation pathway originally proposed by Polderman, the imidazolidone 

HEIA was the initial irreversible product formed which led to the formation of the amine 

dimer, HEEDA.  In this set of experiments however, the HEIA seems to form after an 

initial lag period in which the HEEDA concentration outpaces the HEIA.  HEEDA then 

reaches a pseudo-steady state with MEA behaving like an intermediate more than a final 

product.  HEIA continues to increase in concentration throughout the experiment 

behaving like a relatively stable final product.  This same behavior is seen in the trimer 

analogs with the MEA trimer appearing first followed by an ever increasing 

concentration of the triHEIA.  In order to verify that the HEEDA is the precursor to 

HEIA formation, a set of sample containers were filled with aqueous solutions of 

HEEDA with CO2, HEIA, MEA and HEEDA with CO2 and MEA and HEIA with CO2.  

Table 4.3 shows the concentration over time for the samples held at 135
o
C. 

  

Table 4.3  Concentration of HEEDA and HEIA after 4 weeks at 135
o
C in aqueous 

systems of HEEDA, MEA+HEEDA, HEIA, and MEA+HEIA with a  loading 

of 0.5 moles CO2/mol alkalinity 

System HEEDA 

(m) 

HEIA 

(m) 

3.5m HEEDA 0.18 3.1 

3.5m MEA/3.5m HEEDA 0.14 2.7 

3.5m HEIA 0.05 3.2 

3.5m MEA/HEIA 0.23 2.4 



 

 85 

HEEDA converts to the imidazolidone, HEIA rapidly in stoichiometric quantities 

with relation to the concentration of CO2 in the system.  HEIA does convert to HEEDA, 

but at a much slower rate and much too slow to explain the HEEDA formation in the 

MEA system.  In the systems with MEA, the results are the same.  Therefore, HEEDA is 

the precursor to HEIA and not the other way around with the equilibrium between the 

two favoring the formation of HEIA in the presence of CO2.  

 

4.7.3 Polymeric Species of MEA 

The polymeric species of MEA are all quantified using cation IC.  Figure 4.19 

below shows the concentration of the various polymeric species at various loadings. 

 

Figure 4.19  MEA polymeric species concentrations in a 7m MEA system at 135
o
C with 

varying concentrations of CO2 (Black =0.5, Dark Gray =0.4, Light Gray 

=0.2)
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The trend lines represent the concentration profile of the dimer, HEEDA, trimer 

and quatramer of MEA at a CO2 loading of 0.4 moles of CO2 per mole of MEA.  HEEDA 

is the initial irreversible degradation product in the carbamate polymerization degradation 

pathway.  It accumulates at a very fast rate initially until it reaches a pseudo-steady state 

with the concentration of MEA.  In heavily degraded samples the actual concentration of 

HEEDA decreases due to the overall loss of MEA as can be seen in the trend from the 4 

to 9 week data points.  Increasing the CO2 loading from 0.4 to 0.5 actually decreases the 

concentration of HEEDA in solution.  This is expected since the increase in CO2 

concentration will shift the equilibrium towards the formation of the cyclic urea, HEIA, 

and will also increase the rate at which HEEDA reacts with MEA oxazolidone to form 

the MEA trimer.  Decreasing the CO2 loading from 0.4 to 0.2 increases the concentration 

of HEEDA.  Less HEEDA is made overall in this scenario, but less is converted to HEIA 

due to the shift in equilibrium and less is converted on to the trimer.   

The trimer behaves in a very similar manner to HEEDA with the exception of an 

initial lag period.  This lag period proves that it is produced later in the degradation 

pathway than HEEDA.  The steady state concentration of the trimer is also considerably 

lower than HEEDA, where once established it is approximately one third of the 

concentration of HEEDA.  The longest chain identified in this work is the quatramer of 

MEA which is present in quantities below 0.02m.  The concentration of the quatramer in 

the most degraded samples is about one third that of the trimer.  The identification of 

longer chain amines is not being pursued since they should play a minimal role in the 

overall mass balance of solution and are difficult to detect.   

Varying the loading up or down had very little effect on the concentrations of the 

trimer and quatramer.  Most of these effects were probably dampened in the formation 
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and conversion of HEEDA since it is at a much higher concentration and is the main 

precursor to the formation of both of these products.     

Figure 4.20 below shows the effect of temperature on the formation of HEEDA in 

a 7m MEA solution at a loading of 0.4 moles of CO2 per mole of MEA.  

 

 

Figure 4.20  HEEDA concentration as a function of MEA loss in a 7m MEA system with 
a loading of 0.4 moles of CO2 per mole of MEA at varying temperatures 
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When the HEEDA concentration is normalized for MEA loss instead of time, 

there is not a significant effect of temperature on the concentration of HEEDA.  This 

figure along with the previous figure on imidazolidone concentration versus MEA loss 

show that the product mixture over the temperature range of 100-150
o
C does not change 

with temperature, only with conversion of MEA to degradation products. 

If the concentration of HEEDA were doubled to account for the fact that it takes 

two moles of MEA to form one mole of HEEDA, it would show that at the maximum, 

HEEDA accounts for roughly half a mole of MEA lost in the system.  This maximum 

occurs when just under 2 of the 7 moles of MEA have been converted to degradation 

products.  After this point the amount of MEA loss that is tied up in HEEDA decreases as 

it is converted to imidazolidone and larger polymeric products. 

In order to get a better idea of what the equilibrium constants for the 

HEEDA/HEIA equilibrium and the Trimer/TriHEIA equilibrium are, Figure 4.21 below 

shows the ratio of HEIA to HEEDA and TriHEIA to MEA Trimer for a 7m MEA system 

with a loading of 0.4 moles of CO2 per mole of MEA over a temperature range of 100 to 

150
o
C. 
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Figure 4.21  Ratio of HEIA:HEEDA and TriHEIA:Trimer versus MEA loss for a 7m 
MEA system with a loading of 0.4 moles of CO2/mole of MEA and 

temperatures varying from 100 to 150
o
C. 

From this data it is difficult to tell what the final equilibrium constant will be for 

either set of species since not enough of the imidazolidone species has been created to see 

where the ratio will level off.  The equilibrium constant will be evaluated later when this 

data is regressed for the kinetic model.  One thing to note is the ratio of HEIA to HEEDA 

and TriHEIA to MEA trimer track each other very well over the course of these 

experiments over all temperatures when normalized for total MEA loss.  This could mean 

the equilibrium constant for the two sets of species are similar.     
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4.8  MEA SPIKED WITH VARIOUS METALS 

 

Various metals have been shown to enhance the oxidative degradation rate of 

various amines (Sexton, 2008).  In order to test if the thermal degradation rate is 

catalyzed by metals, 7m MEA samples with a loading of 0.4 were spiked with 100mM 

quantities of Fe, Ni, Cr, Cu, or V.  Iron, nickel and chromium would be found in most 

industrial settings as metals leached from stainless steel equipment.  Copper and 

vanadium are sometimes used as corrosion inhibitors in amine systems.  The sample 

containers were placed in a forced convection oven at 150
o
C for 4 days.  Figure 4.22 

shows the final concentration of MEA for all samples including one that was not spiked 

with any metals. 

 

 

Figure 4.22  Final MEA concentration for 7m MEA samples with a loading of 0.4 spiked 

with various metals and held at 150
o
C for 4 days 
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Every metal sample was run in triplicate and then analyzed separately.  The 

individual samples are not labeled because there is no discernable difference between any 

of the samples including the ones not spiked with metals.  The average MEA 

concentration was 5.1m with a 1.5% relative standard deviation and the average 

concentration of HEEDA was 0.28m with a 4.0% relative standard deviation.  The 

standard deviation of the MEA concentration is well within the error in the analytical 

method.  Thermal degradation of MEA is not catalyzed by any of the metals tested in this 

work. 

Amines will leach metals from carbon and stainless steel equipment.  Figure 4.23 

shows the metals concentrations measured by atomic absorption for a set of 7m MEA 

degradation samples with a loading of 0.4 mol CO2/mol MEA held at 135
o
C.   

 

 

Figure 4.23  Iron and Nickel concentration in a 7m MEA solution with a loading of 0.4 

mol CO2/mol MEA held at a temperature of 135
o
C 
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In this analysis, the metals increase in solution as the solution degrades as 

expected.  The total concentration is much less than the amounts used in the spiking 

experiments.  For the same solution held at 150
o
C for two weeks, the concentration of 

nickel was 7 mM and the concentration of iron was 12 mM which is still much lower 

than the 100 mM amount used in the spiking tests.    

 

4.9  MASS BALANCE CLOSURE 

 

The balance of nitrogen will be used for mass balance purposes since it is more 

stable in solution.  Carbon and oxygen can be transferred to the atmosphere during 

sample handling by evolution of CO2 or water loss, but all of the nitrogen containing 

species have relatively low vapor pressures and should remain in solution.  Figure 4.24 

below shows a parity plot of the moles of nitrogen loss from MEA for the full set of 7m 

MEA runs versus the total moles of nitrogen found in the degradation products. 
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Figure 4.24  Nitrogen mass balance for all 7m MEA thermal degradation experiments 

The total deviation between MEA loss and degradation products is 8.3% across 

all samples.  The overall mass balance closes very well until about half of the original 

MEA has been converted to other products.  At this point, larger polymeric products 

which were not taken into account in this work would play a larger role in the overall 

mass balance.  The disappearance of MEA would then outpace the appearance of 

degradation products.  It would be straightforward to account for these products, but in an 

industrial setting, the amine would have to be reclaimed well before the appearance of 

these products in order to maintain the proper CO2 solution capacity. 

To account for the moles of nitrogen in each species of degradation product, 

Table 4.4 below was used. 
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Table 4.4  Degradation product stoichiometry 

Degradation Product Carbons Nitrogens Oxygens Hydrogens 

MEA 2 1 1 7 

HEEDA 4 2 1 12 

HEIA 5 2 2 10 

Trimer 6 3 1 17 

TriHEIA 7 3 2 15 

Quatramer 8 4 1 22 

QuatHEIA 9 4 2 20 

MW 169 Unknown - 3 - - 

MW 147/260 Unknown - 3 - - 

 

The concentration of each species was found using the calibration curves 

discussed earlier in this chapter and then multiplied by the number of nitrogen atoms in 

the given molecule.  The two unknown species with MW of 169 and 147/260 eluted close 

to the MEA trimer by cation IC so were assumed to contain three nitrogen groups.  The 

molecular weights were found using MS. With the 147/260 unknown having two distinct 

peaks at these molecular weights meaning it is probably a blend of two species.  These 

two unknowns make up a small portion of the total mass balance and can probably be 

excluded from this data set.  

Figure 4.25 shows the breakdown of the four largest species within a set of 

degraded 7m MEA samples held at 135
o
C with a loading of 0.4 moles of CO2 per mole 

MEA.  The results are normalized based on the number of nitrogen molecules in each 

species. 
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Figure 4.25  Breakdown of species normalized for nitrogen content in a degraded sample 

of 7m MEA with a loading of 0.4 moles CO2 per mole MEA at 135
o
C  

In this figure, the black dots represent the total measured MEA loss and the other 

compounds category is just the MEA loss subtracted from the total of the other four 

products.  The quatramer and quatHEIA have such low concentrations over the course of 

this experiment that they were just lumped into the other category.  Also note that the x-

axis is not a linear scale but is just an even spacing of the data points used.  From this 

figure it can be seen that the combination of the HEEDA, HEIA, MEA trimer and 

triHEIA account for the vast majority of the MEA degradation in this experiment.  Larger 

polymeric products do not play a large role until a significant amount of degradation has 

already occurred and even then the four products mentioned earlier still account for over 

75% of the total nitrogen mass balance.   
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4.10  KINETIC MODEL DEVELOPMENT 

 

Using the data obtained from the MEA degradation experiments, a kinetic model 

was developed to explain the loss of MEA as well as the formation of degradation 

products in solution as a function of amine concentration, CO2 concentration and 

temperature.  Using the proposed reaction pathway given at the start of this chapter, the 

following set of differential equations was used in the model. 

 

       (Eq 4.8) 

 

   

 (Eq 4.9) 

 

  

 (Eq 4.10) 

 

                                                                            (Eq 4.11)  

 

                                                    (Eq 4.12) 

 

                                          (Eq 4.13) 

 

      

          (Eq 4.14) 
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Where, 

[Amine] = total amine in solution (mol*L
-1

) 

k1 = rate constant for conversion of MEA and Oxazolidone to HEEDA  (L*hr
-1

*mol
-1

) 

k2 = rate constant for conversion of HEEDA and Oxazolidone to MEA Trimer         

(L*hr
-1

*mol
-1

) 

k3 = rate constant for conversion of MEA Trimer and Oxazolidone to polymeric products 

(L*hr
-1

*mol
-1

) 

k4 = rate constant for conversion of HEEDA carbamate to HEIA (L*hr
-1

*mol
-1

) 

k-4 = rate constant for conversion of HEIA to HEEDA carbamate (hr
-1

) 

k5 = rate constant for conversion of MEA Trimer carbamate to TriHEIA (L*hr
-1

*mol
-1

)  

k-5 = rate constant for conversion of TriHEIA to MEA Trimer carbamate (hr
-1

) 

 

Equations 4.8 through 4.14 define the formation of the polymeric products of 

MEA where MEA or one of the polymeric species reacts with oxazolidone to form the 

next largest species.  In the reaction pathway at the beginning of the chapter, MEA reacts 

with oxazolidone to form HEEDA and HEEDA reacts with oxazolidone to form the 

MEA trimer and so on.  There is not reliable data on the concentration of the oxazolidone 

species however, and even if the analytical method were improved, some of the 

oxazolidone would probably convert back to MEA carbamate upon return to room 

temperature and during sample handling.  MEA oxazolidone should be in equilibrium 

with MEA carbamate and the concentration of MEA carbamate is directly related to the 

CO2 concentration since the vast majority of CO2 takes on the carbamate form at CO2 

loadings below 0.5.  For these reasons, the concentration of CO2 in combination with the 

rate constant for each reaction was used as a surrogate for oxazolidone concentration at 

temperature.   
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Due to the sparse data for the quatramer and larger polymeric products, they were 

lumped together as defined in Equation 4.10.4.  Equations 4.10.5 and 4.10.6 are used to 

define the rate of change of the imidazolidone species and have forward and reverse 

reactions since they are in equilibrium with their polymeric counterpart.  Equation 4.10.7 

is used to define the change in CO2 since during the polymerization reaction it is used and 

then released, but during the formation of imidazolidone species it is bound and does not 

participate in further polymerization.   

The overall set of reactions does not have any simplifying conditions lending 

itself to simple integration due to the role of MEA in most reactions and the lack of a 

truly stable end product.  Instead, a simple numerical integration using Euler‟s method 

was used.  All of the equations were written into Microsoft Excel and short time steps 

were taken yielding a new concentration of each species.  These new concentrations were 

used to calculate the rate for the next step and so on until model data could be obtained at 

the timing of the experimental data.  The sum of the squares for the differences in 

concentration of each species was calculated and then the values of the rate constants 

were modified until a minimum was reached.  Figure 4.26 shows the model data and 

experimental data for the 7m MEA system with a loading of 0.4 at 135
o
C. 
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Figure 4.26  Kinetic model of 7m MEA with a loading of 0.4 mol CO2/mol MEA 

degradation product concentrations (lines) compared to experimental data 

(points) at 135
o
C. 

In Figure 4.26, the concentration of all of the degradation products are shown on 

the primary axis and the concentration profile of MEA is shown on the secondary axis.  

All of the values are given in molarity as opposed to the previous data which was given 

in molality as this definition of concentration fit the data more cleanly at elevated 

concentrations.  The model data fits the experimental data very well for all of the 

products shown and is an accurate representation of this particular system.  This process 

was repeated for the data at 120
o
C and 150

o
C as shown in Figure 4.27 and Figure 4.28 

below. 
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Figure 4.27  Kinetic model of 7m MEA with a loading of 0.4 mol CO2/mol MEA 

degradation product concentrations (lines) compared to experimental data 

(points) at 120
o
C. 

 

 

Figure 4.28  Kinetic model of 7m MEA with a loading of 0.4 mol CO2/mol MEA 

degradation product concentrations (lines) compared to experimental data 

(points) at 150
o
C. 

0

1

2

3

4

5

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

[M
EA

] 
(M

)

[P
ro

d
u

ct
s]

 (
M

)

Time (days)

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

0 5 10 15

[M
EA

](
M

)

[P
ro

d
u

ct
s]

 (
M

)

Time (days)

MEA 

MEA 

HEIA 

HEIA 

HEEDA 

HEEDA 

Trimer 

Trimer 

TriHEIA 

TriHEIA 



 

 101 

Once the rate constants were determined for all three temperatures, an Arrhenius plot of 

each rate constant was constructed and a temperature dependent rate constant was 

formed.  The rate constants were given the temperature dependent form below. 

 

 

Where, 

ki = rate constant for reaction i 

A = Preexponential factor 

EA = Activation energy 

R = Gas constant  

T = Absolute temperature  

Figure 4.29 below shows the Arrhenius plots for all of the rate constants. 

 

 

Figure 4.29  Arrhenius plot of all six rate constants used in the kinetic model for MEA 

thermal degradation from 100 to 150
o
C 
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The temperature dependence of each of these reactions is very similar as can be 

seen from the figure.  The slope of each line was taken from the figure and the activation 

energy of each rate constant was determined.  Table 4.5 below shows the preexponential 

factor and activation energy for each rate constant. 

 

Table 4.5  Temperature dependent constants for each kinetic rate constant used in the 

model for MEA thermal degradation. 

Rate Constant Pre Exponential Constant 

 

Activation Energy 

(kcal/mol) 

k1 1.05 E16    (L day
-1 

mol
-1

) 34.4 

k2 2.15 E16    (L day
-1 

mol
-1

) 33.3 

k3 3.28 E15    (L day
-1 

mol
-1

) 31.5 

k4 3.58 E16    (L day
-1 

mol
-1

) 33.0 

k-4 4.47 E15    (day
-1

) 32.6 

k5 3.65 E15    (L day
-1 

mol
-1

) 31.3 

 

The average activation energy of the six rate constants is 32.7 kcal/mol and the 

standard deviation is only 1.2 kcal/mol meaning all of the rate constants have essentially 

the same temperature dependence.  This means the rate constant for each reaction will 

double approximately every 16.7
o
C.  The preexponential factors vary by about one order 

of magnitude.  Since all of the reactions have the same temperature dependence, the mix 

of products will not be a function of temperature.  This would explain the data obtained 

in Figures 4.18 and 4.20 in which the concentrations of HEIA and HEEDA were 

independent of temperature when normalized by MEA loss.   
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The ratio of k4/k-4 is the equilibrium constant for HEEDA and HEIA discussed 

earlier in the chapter in which the raw data could not provide a good estimate graphically.  

The model data shows that when normalizing the two parameters for CO2 concentration 

at a loading of 0.4 for the 7m (4.9M) MEA system the value of the equilibrium constant 

is 15.7.  At this ratio of concentrations and a loading of CO2 of 0.4 the forward and 

reverse reactions should be equal to each other.  For a loading of 0.5 this ratio is 7.8 and 

at a loading of 0.2 it equals 19.6.   

From Figure 4.21 the equilibrium constant for the Trimer/TriHEIA pair was 

similar to the HEEDA/HEIA pair.  The experimental data did not have enough triHEIA 

in solution for the reverse reaction to be significant in the regression analysis.  For this 

reason we will assume the rate constant for the conversion of TriHEIA back to the MEA 

Trimer has a preexponential factor of 4.56 E14 and an activation energy of 31.3 kcal/mol. 

 

4.11  KINETIC MODEL PERFORMANCE 

 

The best set of data available on MEA degradation was for the 7m MEA solutions 

at a CO2 loading of 0.4 and temperatures ranging from 100 to 150
o
C.  These data sets 

were run in triplicate and analyzed in triplicate in order to obtain significant statistical 

data.  Most of this data was used in the model development with the exception of the 

100
o
C data since it had very little total degradation.  The model will now be tested for 

varying temperature, CO2 concentration and amine concentration with the remainder of 

the data that was collected.  In order to test the effect of temperature, the 100oC data 

from the triplicate runs was used.  Figure 4.30 below shows the predicted values for the 
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MEA concentration and degradation product formation over time (lines) versus the 

experimental data. 

 

 

Figure 4.30  Kinetic model (lines) compared to 100
o
C experimental data (points) for 7m 

MEA system at a CO2 loading of 0.4     

The model does an excellent job of predicting the MEA concentration which is 

the most important parameter for the model to fit and also does a good job on the 

TriHEIA formation.  It under predicts HEEDA and MEA trimer concentration over the 

course of the experiment.  The concentrations of HEIA were immeasurable for these 

experiments using the HPLC method due to its high limit of detection compared to the 

cation IC so there is no data to compare with the model.  If the model over predicts the 
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concentration of HEIA, that would explain the low predictions for both HEEDA and the 

MEA trimer.  Since the concentrations of the degradation products are so low in these 

experiments, errors in the analytical methods could also play a large part in the difference 

between the predicted and measured values.  Overall the model does an adequate job of 

explaining the data. 

Table 4.6 below compares the model to experimental data at varying CO2 

concentrations across all temperatures. 

 

Table 4.6  Kinetic model comparison of MEA and various product concentrations (M) to 

experimental data at varying CO2 loadings across a variety of temperatures.  

System 

(ldg, Temp (oC), Time (days)) 

MEA 

(Model) 

MEA  

(Exp) 

HEEDA 

(Model) 

HEEDA 

(Exp) 

HEIA 

(Model) 

HEIA 

(Exp) 

0.2, 100, 107 4.83 4.50 0.03 0.03 0.00 N/A 

0.5, 100, 107 4.71 4.48 0.07 0.08 0.02 N/A 

0.2, 120, 107 4.12 3.95 0.14 0.17 0.14 0.14 

0.5, 120, 61.2 3.79 3.50 0.14 0.12 0.24 0.36 

0.2, 135, 28 3.91 3.81 0.16 0.19 0.19 0.20 

0.5, 135, 14.2 3.64 3.34 0.15 0.14 0.28 0.45 

0.2, 150, 9 3.56 3.73 0.18 0.23 0.26 0.25 

0.5, 150, 4 3.33 3.15 0.15 0.16 0.36 0.50 

 

The MEA concentration in this table is off by an average of 5.9% compared to the 

experimental data with the larger deviations occurring at a loading of 0.2.  HEEDA 

concentration is off by an average of 12% with the largest deviations again occurring at 
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the loading of 0.2.  HEIA concentration is off by an average of 18% but this time the 

larger deviations occurred at a loading of 0.5.  The HEIA concentration for the samples at 

a loading of 0.2 was actually predicted very well for the three data points given.  This 

could mean that the conversion of HEEDA to HEIA might behave differently as the 

loading approaches 0.5 as a sharp increase was noted in the experimental values for 

HEIA compared to the predicted values.  These deviations are obviously much larger 

than the ones seen at a loading of 0.4 where the regression was done, but the model still 

does an adequate job of describing the data across the full range of loading and 

temperature. 

Table 4.7 compares predicted and experimental data for varying MEA with a 

loading of 0.4 at 4 weeks. 

 

Table 4.7  Predicted and experimental values for varying concentrations of MEA at 4 

weeks and a loading of 0.4 

System 

([MEA]o, temp) 

MEA  

(Model) 

MEA 

(Exp) 

HEEDA 

(Model) 

HEEDA 

(Exp) 

2.9M MEA, 120
o
C 2.7 2.6 0.05 N/A 

2.9M MEA, 135
o
C 2.2 2.1 0.09 0.08 

4.9M MEA, 120
o
C 4.5 4.4 0.11 0.11 

4.9M MEA, 135
o
C 3.1 3.1 0.15 0.16 

6.6M MEA, 120
o
C 5.8 6.1 0.17 0.18 

6.6M MEA, 135
o
C 3.6 4.1 0.18 0.19 
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Once again the model does a very good job of predicting the values for which it 

was regressed, 4.9M data at 120 and 135
o
C, and has a larger error for other 

concentrations specifically the 6.6M data.  The average error for the MEA data was 4.6% 

and the average error for the HEEDA data was 5.8%.  This could be due to experimental 

error since the 2.9M and 6.6M data was not done in triplicate whereas the 4.9M data was.   

The model was then tested for MEA loss only on all of the MEA data available 

since some of the older data did not have quantification for degradation products.  A set 

of old 100
o
C data was not used since the total degradation of all samples was less than 

5% which would have skewed the results.  Figure 4.31 shows a parity plot of predicted 

versus measured MEA loss. 

 

 

Figure 4.31  Predicted MEA loss versus experimental data across all amine 

concentrations, loadings and temperatures 
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The dashed lines represent a 15% deviation from agreement between the 

experimental and predicted data points.  All but 3 of the 159 data points fall within this 

range and all of those were from older samples that were not run in triplicate.  The 

average deviation is 4.9% for this data set.  Figure 4.32 below shows the accuracy of the 

model using only the new data points that were run in triplicate from the 7m MEA runs 

across all temperatures and loadings. 

 

 

 Figure 4.32  Comparison of model and experimental data points using only the new 7m 

MEA data run in triplicate 

The dashed lines once again represent a 15% deviation between the experimental 

and predicted MEA concentrations.  In this case, all of the data points fall within 10% of 

the predicted value and all of the 0.4 loading samples fall within 4% of the predicted 

value.  The average deviation is only 2.8% for this data set. 
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Overall the kinetic model does an adequate job of predicting not only the loss of 

MEA, but also the formation of degradation products.  A large part of the error when 

comparing the model to real data can be explained by experimental error in the analysis 

of older samples that did not have replicates.  The deviation in this older set is much 

larger than what is seen for the more recent data set which was done at varying 

temperatures and loadings for 7m MEA. 

 

4.12  MODELING MEA LOSS AT STRIPPER CONDITIONS 

 

Earlier work from Oyenekan (2006) established that the energy requirements in 

the stripper could be minimized by increasing the pressure in the stripper in order to take 

advantage of thermal compression and a reduced water/CO2 ratio in the vapor phase.  The 

latent heat and pumping requirements can also be reduced by running at higher capacities 

which can be achieved by increasing the concentration of amine or the CO2 concentration 

in solution.  In order to balance the energy savings against the increase in thermal 

degradation that will occur when making these changes, the previously established MEA 

model was used.  David VanWagener, a member of the Rochelle group, used an ASPEN 

model of a MEA stripper he developed to provide temperature, pressure, and 

concentration profile data using the Hilliard (2008) VLE model.  The pressure of the 

stripper and the amine concentration were modified and the equivalent work, including 

the work of compression to 150 atm of the product CO2, was tabulated using Equation 

4.15. 
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          (Eq 4.15) 

 

Where, 

Weq = equivalent work per mole CO2 captured (kJ/mol) 

Q = Heat duty 

Treb = Temperature of the reboiler (
o
K) 

Wpump = Work of pump calculated from ASPEN simulation 

Wcompression = Work of compression from ASPEN simulation 

The column packing was divided into twenty distinct one meter segments and the 

reboiler was considered a separate segment for a total of twenty-one segments.  Each 

segment was considered well-mixed with a 10% by volume liquid hold-up.  The reboiler 

volume was estimated to equal one column-volume of liquid.  The rich MEA stream 

entering the column had a CO2 loading of 0.52 moles of CO2 per mole of MEA 

corresponding to an equilibrium partial pressure of 5000 Pa of CO2 at the anticipated 

absorber temperature of 40
o
C.  The lean loading was optimized for minimal energy 

consumption for each pressure modeled in the first set of data ranging from 0.39 at 8 atm 

to 0.435 at atmospheric pressure.  The lean loading exiting the stripper was set at a 

loading of 0.2 to reflect typical industrial conditions on the second set of 7m data and on 

the final set of data the lean loading was again optimized, but used an elevated amine 

concentration.  Table 4.8 summarizes the assumptions used for this analysis. 
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Table 4.8  Assumptions used in model of thermal degradation of MEA at stripper 

conditions 

Parameter Assumption 

Liquid hold-up in packing 10% by volume 

Liquid hold-up in reboiler Equals total liquid hold-up in packing 

Feet of packing 20 m 

Segment mixing Well-mixed 

Column Diameter Sized for 80% of flood 

Rich Loading 0.52 mole CO2/mole MEA 

Final CO2 Compression 150 atm 

MEA Cost $2.42 / kg 

Energy Cost $50 / MWh 

Reclaimer Ability Complete removal of degradation products 

Inlet MEA Concentration Constant by adding fresh MEA to account for losses 

  

The thermal degradation model used the concentration of MEA and CO2 as well 

as the temperature profile from the ASPEN model as the initial conditions for each stage.  

The volume of liquid in each segment was calculated using the diameter from the ASPEN 

model that gave an 80% approach to flooding with a 10% liquid hold-up and this volume 

was then divided by the liquid flow rate to give the residence time.  The time intervals for 

the thermal degradation model were calculated by dividing the residence time into ten 

equal segments.  The temperature from the ASPEN model was used to calculate the 

temperature dependent rate constants for each reaction in that segment.  A numerical 

integration was performed for the formation of each of the degradation products as well 

as the disappearance of MEA, and the concentrations of all of the degradation products at 
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the outlet of this segment were used as the initial concentrations for the next stage.  The 

MEA concentration, CO2 concentration and temperature for the next stage were taken 

from the ASPEN model and the process repeated for all 21 segments.   

 

4.12.1  Stripper Modeling of a 7m MEA System with Optimized Lean Loading 

 

A 7m MEA system was modeled in ASPEN using a rich loading of 0.52 moles 

CO2/mole MEA at the inlet.  The outlet lean loading was modified in order to find a 

minimum in the energy requirement of the stripper including compression of the product 

CO2 to a final pressure of 150 atm.  Table 4.9 shows the temperature, MEA 

concentration, CO2 concentration, and MEA loss for each segment.  

 

Table 4.9  Column segment liquid profile for 7m MEA run at 8 atm with a rich loading 

of 0.52 and a lean loading of 0.39 and 0.9M total degradation product 

concentration 

Segment 

(1 = top of column) 

Temperature 

(
o
C) 

[MEA] 

(M) 

[CO2] 

(M) 

MEA Loss 

(g MEA/mton CO2) 

1 127.0 4.93 2.28 4.01 

5 127.0 4.93 2.28 4.01 

10 127.1 4.93 2.28 4.02 

15 127.1 4.93 2.28 4.02 

20 127.8 4.92 2.27 4.30 

Reboiler 138.5 4.93 1.93 224.2 
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The loss rate has been normalized by the amount of CO2 removed throughout the 

operation.  This provides a convenient basis since the energy requirements are also 

normalized for CO2 removal.  The total amine loss per metric ton of CO2 captured is the 

sum of the losses in each segment which in the case of Table 4.8 is 305 g MEA per 

metric ton of CO2 captured.  The reboiler has the highest liquid temperature (138.5
o
C) 

and residence time (8 min) and the lowest CO2 concentration.  The increase in 

temperature, however, far outweighs the reduction in CO2 concentration ensuring this 

stage has the highest degradation rate, which combined with the longest residence time 

gives a large total degradation.  In this case, 73% of the total degradation occurs in the 

reboiler and only 27% occurs in the other 20 segments combined.  Something also to 

note, is that the MEA concentration does not change very much in any of the stages and 

the temperature and CO2 concentrations only change in the stages close to the reboiler.  

This column has been oversized in packing height to ensure proper separation in the 

model, but in practice could be shortened which would reduce the residence time and 

thereby the thermal degradation.   

Table 4.10 shows the equivalent work per mole of CO2 and the amount of MEA 

degraded per ton of CO2 for a 7m MEA system at 5 pressures with varying optimized 

lean loadings. 
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Table 4.10  MEA loss and energy requirements for a clean 7m MEA stripper system with 

varying optimized lean loadings and compression to 150atm 

Stripper 

Pressure 

(atm) 

Lean Loading 

(mol CO2 / mol 

MEA) 

Reboiler 

Temperature   

(
o
C) 

Equivalent Work 

(kJ/mol) 

MEA loss              

(g MEA/mton 

CO2) 

1 0.435 95.1 40.8 3.8 

1.7 0.43 105.1 38.7 11 

2.8 0.415 116.5 36.8 34 

4.8 0.405 127.2 35.4 92 

8 0.39 138.5 34.2 250 

 

As the pressure increases, the equivalent work decreases, as predicted by 

Oyenekan and the MEA loss rate increases, as predicted in this work.  The energy 

requirement takes on the form of an exponential decay and the MEA loss rate increases 

exponentially with the pressure.  Using this data and the assumptions of $2.42/kg MEA 

and $50/MWh an optimization can be performed between the thermal degradation rate 

and the energy savings achieved by increasing the pressure of the stripper.  Figure 4.33 

shows the cost of the energy requirement, the cost of MEA assuming the only cost is 

associated with the replacement of fresh MEA, and the sum of the two components as a 

function of stripper pressure.  The minimum in the sum curve will represent the optimum 

operating condition using this set of assumptions.  
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Figure 4.33  Energy cost, MEA replacement cost, and total cost as a function of stripper 

pressure for a 7m MEA system with an optimized lean loading for each 

stripper pressure. 

 

The MEA cost is a small fraction of the total cost for this data set and is shown on 

the secondary axis.  The energy cost makes up more than 90% of the total cost for all 

pressures and is set on the primary axis along with the total cost combining the two.  The 

optimum operating pressure for the stripper in this case is 7.1 atm which corresponds to a 

reboiler temperature of 135
o
C with a combined cost of $11.20 per metric ton of CO2.  

Figure 4.34 shows the same data sets for a system in which the MEA cost assumes the 

total amount of thermal degradation is doubled when the reclaimer is taken into account 
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and the cost of disposal is equal to the purchase price of MEA effectively increasing the 

cost of MEA by a factor of 4. 

 

 

Figure 4.34  Energy cost, MEA cost for stripper and reclaimer losses as well as disposal, 

and total cost as a function of stripper pressure for a 7m MEA system with 

an optimized lean loading for each stripper pressure. 

Once again the energy and total costs are on the primary axis and the MEA cost is 

on the secondary axis.  The additional MEA cost when accounting for reclaiming and 

disposal costs significantly shifts the balance between thermal degradation and energy 

requirements.  The optimum operating pressure for the stripper in this case is 3.5 atm 
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which corresponds to a reboiler temperature of approximately 122
o
C and a total cost of 

$12.06/mton CO2.   

In performing a sensitivity analysis on the cost of energy and the cost of MEA it 

was found that the two had an indirect relationship as expected.  Doubling the cost of 

energy and holding the MEA constant pushed the optimum operating pressure to 5 atm 

from 3.5 atm.  Holding the energy cost constant and cutting the MEA cost in half had the 

same effect and also had an optimum operating pressure of 5 atm.  This relationship was 

also true when moving in the opposite direction.  Table 4.11 shows the effects of varying 

these conditions. 

 

Table 4.11  Sensitivity analysis on the effect of MEA cost including reclaiming and 

disposal and energy cost on the optimum stripper pressure     

Energy Cost ($/MWh) MEA Cost ($/kg MEA) Optimum Pressure (atm) 

100 2.42 5.0 

50 2.42 3.5 

25 2.42 2.4 

50 4.84 2.4 

50 1.21 5 

 

The indirect relationship between energy cost and amine cost is obvious, but the 

fact that they have equal effects on the optimum operating pressure is interesting.  In 

order for this to occur, the shape of the MEA loss curve as a function of pressure and the 

energy optimization curve as a function of pressure would have to be mirror images of 

each other.  This can be seen in Figure 4.33 and Figure 4.34 since they include the MEA 
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cost and energy cost curves which will just be the MEA loss curve and energy 

optimization curve multiplied by their respective cost factors.    

To achieve a steady-state concentration of degradation products between the 

outlet and inlet of the stripper, a fresh MEA stream must be introduced to make up for the 

loss of MEA and a reclaimer must be used to remove a portion of the degradation 

products.  It was assumed that the reclaimer will work ideally and remove all degradation 

products completely.  Under this assumption, at steady-state the reclaimer will remove 

the exact amount of degradation products formed per cycle.  In Excel, the steady-state 

amount of one of the degradation products was set, usually HEEDA, and the ratio of the 

production of HEEDA to this initial concentration was established.  A similar ratio of 

each of the other products was calculated and the initial concentration of each product 

was modified until this ratio was constant for all degradation products.  At this point the 

bleed rate to the reclaimer will be equal to this ratio since that is the fraction of 

degradation products that needs to be removed to achieve steady-state with the inlet 

concentration.  This was done for a variety of initial HEEDA concentrations.  Table 4.12 

shows the bleed rate to the reclaimer as a fraction of the total outlet flow from the stripper 

and the corresponding MEA loss and steady-state total concentration of degradation 

products. 
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Table 4.12  MEA loss and steady-state total degradation product concentration for 

varying bleed rates to the reclaimer in a 7m MEA stripper at 8 atm and a 

lean loading of 0.39 moles of CO2 per mole of MEA 

Reclaimer Flow Ratio MEA Loss                          

(g MEA/mton CO2) 

Total Degradation Product 

Concentration [M] 

4.0E-5 305 1.4 

2.6E-4 273 0.22 

2.5E-3 251 0.023 

1.1E-2 248 0.005 

 

This table shows that the degradation product concentration can be controlled in 

this scenario with a very small slip stream going to the reclaimer even though this is the 

stripper pressure with the highest degradation rate modeled.  Industrial experience from 

Wonder (1959) stated that 1-3% of the total solvent flow is normally chosen as the slip 

stream flow to the reclaimer.  In order to maintain a degradation rate within 5% of the 

minimum, a slipstream of only 0.026% needs to be used for this case, and for the case 

where the stipper pressure is atmospheric the slipstream would only be 0.0008%. 

This table shows that the presence of degradation products accelerates the loss of 

MEA which is expected since a larger concentration of amine is present when the 

polymeric products are included and the rate of reaction of the polymeric products is 

faster than the reaction rate of MEA.  Figure 4.35 shows the concentration of degradation 

products at the first three reclaimer flow ratios. 
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Figure 4.35  Steady-state degradation product concentration for 7 MEA with optimized 

lean loading in an 8 atm stripper based on reclaimer flow ratio (big triangle 

= HEEDA, little triangle = HEIA, big square = MEA trimer, little square = 

TriHEIA) 

 

The ratio of imidazolidones to polymeric products decreases as the reclaimer flow 

ratio is increased.  For the first case listed with the lowest reclaimer flow ratio, 70% of 

the degradation product concentration is in the form of the imidazolidone species which 

do not react with MEA to form larger products.  In the second case only 43% of the 

degradation product concentration is imidazolidone species meaning the total degradation 

product concentration has gone down by a factor of seven, but the amount of reactive 

species has only decreased by a factor of three.   
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4.12.2  Stripper Modeling of a 7m MEA System with a Lean Loading of 0.2 

 

The next set of simulations was performed to more closely mimic a current 

industrial system.  The rich loading remains at a 0.52 which is a bit higher than an 

industrial system, but the lean loading was reduced to 0.2 to maximize the capacity of the 

solvent per pass.  This reduction in the lean loading will reduce the CO2 concentration in 

the column, especially in the reboiler, and capture more CO2 per pass, but it will increase 

the temperature.  The net effect should be an increase in the thermal degradation of MEA 

per ton of CO2 captured.  Table 4.13 shows the MEA loss and energy requirements under 

the new conditions.     

Table 4.13  MEA loss and energy requirements for a 7m MEA stripper system with a 

lean loading of 0.2, a rich loading of 0.52, and final CO2 compression to 

150atm   

Stripper 

Pressure (atm) 

Reboiler 

Temperature   

(
o
C) 

Equivalent Work 

(kJ/mol) 

MEA loss                   

(g MEA/mton CO2) 

1 106.8 51.3 8.0 

1.7 118.7 42.2 19 

2.8 131.7 39.1 52 

4.8 145.1 37.7 156 

8 158.4 36.3 455 
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The trends for the temperature (direct), energy requirement (indirect) and MEA 

loss (direct) with pressure are the same as the 7m MEA system with the optimized lean 

loading.  When comparing this table to Table 4.10 for the optimized lean loading 

however, the reboiler temperature, energy requirement and MEA loss for every case 

increases.  The thermal degradation rate increases by an average of 78% over all 

pressures.  Optimizing the lean loading has a drastic effect on the energy requirement at 

low pressures (51.3 kJ/mol vs 40.8 kJ/mol for the optimized lean loading) and becomes 

less noticeable at elevated pressure (36.3 kJ/mol vs 34.2 kJ/mol for the optimized lean 

loading). 

Using the assumptions of $50/MWh for the cost of energy, $2.42/kg of MEA and 

assuming the loss rate doubles in the reclaimer and the cost of disposal is comparable to 

the cost of the initial MEA, the total cost of the system was plotted against pressure in 

Figure 4.36 to find the optimum stripper pressure for a lean loading of 0.2.   
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Figure 4.36  Energy cost, MEA cost for stripper and reclaimer losses as well as disposal, 

and total cost as a function of stripper pressure for a 7m MEA system with a 

lean loading of 0.2 moles of CO2 per mole of MEA. 

The overall cost for the 7m MEA system with a lean loading of 0.2 is higher than 

the optimized case.  For the optimized case the total cost ranged from $12 to $13/mton 

CO2 with a minimum at $12.06, but in the 0.2 lean loading case the overall cost ranges 

from $13 to $16/mton CO2 with a minimum of $12.85.  The optimum pressure for this 

case is around 3 atm which corresponds to a reboiler temperature of 132
o
C.  The energy 

requirement dominates the cost at low pressures but as the pressure is increased, the 

incremental savings from increasing the pressure is quickly offset by the cost of MEA 

losses.   
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Table 4.14 shows the bleed rate to the reclaimer as a fraction of the total outlet 

flow from the stripper and the corresponding MEA loss and steady-state total 

concentration of degradation products. 

 

Table 4.14  MEA loss and steady-state total degradation product concentration for 

varying bleed rates to the reclaimer in a 7m MEA stripper at 8 atm and a 

lean loading of 0.2 moles of CO2 per mole of MEA 

Reclaimer Flow Ratio MEA Loss                          

(g MEA/mton CO2) 

Total Degradation Product 

Concentration [M] 

2.8E-4 552 0.93 

1.1E-4 504 0.24 

3.8E-3 475 0.07 

1.2E-2 462 0.02 

 

In this case the total concentration of degradation products has decreased 

compared to the optimized lean loading case because the stable imidazolidones are not 

favored at lowered CO2 concentrations.  As a consequence, a larger fraction of the 

degradation product concentration is made up of reactive polymeric species such as 

HEEDA and the MEA trimer.  Once again, the increase in degradation products yields an 

increase in the overall MEA loss rate in the stripper.  To be within 5% of the minimum 

MEA degradation rate, a reclaimer flow ratio of 0.35% needs to be used for the 8 atm 

case and a flow ratio of 0.006% is required for an atmospheric stripper.  Both of these 

flow rates are about 15 times larger than the flow rates for the optimized cases at the 

same stripper pressures meaning much more reclaiming will be needed for these 

conditions compared to the optimized lean loading case. 



 

 125 

As a tradeoff in the operating cost, this system would require less pumping work, 

but that would only make-up a small amount of the energy difference shown.  There 

would also be some capital cost considerations with regard to the sizing of the absorber, 

cross exchanger and stripper.  The absorber and stripper diameter would only decrease 

slightly as the sizing of each would mainly be controlled by the vapor flow rate.  The 

cross exchanger would decrease in size due to the drastically decreased liquid flow rates, 

but the decrease would be slightly offset by the increased T between the hot and cold 

side of the exchanger. 

    

4.12.3  Stripper Modeling of an 11m MEA system with optimized lean loading 

 

In this case the concentration of MEA was increased from 7m (30wt%) to 11m 

(40wt%) to test the effects of concentration on thermal degradation in a simulated system.  

When the temperature and CO2 loadings are held constant, the rate of thermal 

degradation increases as the concentration increases.  The boiling point of an MEA/water 

system increases as the concentration increases at a given pressure which would mean the 

thermal degradation rate should increase as well.  Table 4.15 shows the effect of pressure 

on the reboiler temperature, thermal degradation rate and energy requirement. 

 

 

 

 

 



 

 126 

Table 4.15  MEA loss and energy requirements for an 11m MEA stripper with a rich 

loading of 0.485, optimized lean loading for each pressure and final CO2 

compression to 150atm   

Stripper 

Pressure 

(atm) 

Lean Loading 

(mol CO2 / mol 

MEA) 

Reboiler 

Temperature   

(
o
C) 

Equivalent Work 

(kJ/mol) 

MEA loss              

(g MEA/mton 

CO2) 

1 0.37 91.0 37.8 2.0 

1.7 0.365 98.7 35.9 4.5 

2.8 0.36 106.3 34.4 10 

4.8 0.355 114.2 33.3 22 

8 0.345 123.3 32.5 52 

 

The same general trends appear as for the 7m cases where the MEA loss increases 

with pressure and the energy requirement decreases.  The energy requirements went 

down as expected for the higher capacity solvent.  For the 8 atm pressure case and the 

atmospheric case the energy requirement dropped 1.7 kJ/mol and 3.0 kJ/mol respectively.  

The unexpected trend is the decrease in the thermal degradation rate when compared to 

the 7m MEA case at similar conditions.  The reason can be seen in the reboiler 

temperatures.  Table 4.16 shows the reboiler temperatures and MEA loss rates for the 7m 

MEA with optimized lean loading and the 11m MEA with optimized lean loading.  
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Table 4.16  MEA loss and reboiler temperature for 7m MEA with optimized lean loading 

and a rich loading of 0.52 and an 11m MEA with optimized lean loading 

and a rich loading of 0.485   

Stripper 

Pressure 

(atm) 

7m Reboiler 

Temperature   

(
o
C) 

11m Reboiler 

Temperature   

(
o
C) 

7m MEA loss              

(g MEA/mton 

CO2) 

11m MEA loss              

(g MEA/mton 

CO2) 

1 95.1 91.0 3.8 2.0 

1.7 105.1 98.7 11 4.5 

2.8 116.5 106.3 34 10 

4.8 127.2 114.2 92 22 

8 138.5 123.3 250 52 

 

At atmospheric pressure the temperature difference between the reboilers is only 

4
o
C, but at elevated pressures this difference begins to expand and a significant 

temperature difference occurs for the 8 atm pressure case.  This temperature difference 

has a noticeable effect on the MEA loss rate where it nearly decreases by a factor of two 

at atmospheric pressure and has a five-fold decrease in the highest pressure case.  The 

difference in the reboiler temperatures can be explained by the fact that at similar 

loadings, the higher the concentration of MEA, the higher the partial pressure of CO2.  

Since the reboiler temperature will be set by the pressure and the lean loading of CO2 

specified, the higher concentration MEA will require a lower temperature in order to 

achieve the same loading in solution due to the higher partial pressure of CO2.    
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Using the same assumption for MEA cost and energy costs from the 7m MEA 

cases, Figure 4.37 shows the optimized stripper pressure for the combination of energy 

and thermal degradation costs. 

 

 

Figure 4.37  Energy cost, MEA cost for stripper and reclaimer losses as well as disposal, 
and total cost as a function of stripper pressure for a 11m MEA system with 

optimized lean loadings of CO2 per mole of MEA. 

The optimum for this case was found at 7 atm which corresponds to a total cost of 

$10.70/mton CO2.  The optimum pressure is twice the optimum of 3.5 atm for the 7m 

MEA case using the same assumptions and $1.36 less per mton of CO2 which is an 11% 

cost decrease.  The decrease in the thermal degradation rate allows for a larger increase in 

stripper pressure before it begins to outweigh the energy savings.  One advantage of this 

scheme is that the optimization has a large sweet spot where modifying the pressure by 

several atmospheres does little to the overall cost.  This would provide the operator a 
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chance to optimize how the system was run depending on the cost of energy and amine 

costs.  If MEA were to increase in cost, the stripper pressure could be reduced, or if the 

energy cost were to increase the stripper pressure could be increased assuming the system 

was designed for this capability.   

Table 4.17 shows the bleed rate to the reclaimer as a fraction of the total outlet 

flow from the stripper and the corresponding MEA loss and steady-state total 

concentration of degradation products. 

 

Table 4.17  MEA loss and steady-state total degradation product concentration for 

varying bleed rates to the reclaimer in an 11m MEA stripper at 8 atm and a 

lean loading of 0.345 moles of CO2 per mole of MEA 

Reclaimer Flow Ratio MEA Loss                          

(g MEA/mton CO2) 

Total Degradation Product 

Concentration [M] 

1.9E-5 62 0.94 

4.2E-5 59 0.42 

9.6E-5 56 0.26 

1.7E-3 52 0.01 

 

To be within 5% of the minimum degradation rate, a reclaimer flow ratio of 2E-4 

or 0.02% of the total flow exiting the bottom of the stripper which is about 25% less than 

the 7m MEA case with optimized lean loading.  An atmospheric stripper would only 

require a reclaimer flow ratio of 7E-6 or 0.0007% of the total stripper liquid flow. 

Overall, the 11m MEA case with optimized lean loadings provided the best 

results as far as energy requirements, thermal degradation rates and reclaiming required.  

This combination also made it the most cost effective at $10.70 per mton of CO2 
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captured at an optimum pressure of 7atm as opposed to $12.06 for the 7m MEA system 

with optimized lean loadings and $12.85 for the 7m MEA system with a lean loading of 

0.2. 

  

4.13  RECLAIMER MODELING 

 

Modeling of the reclaimer is difficult since there is not a good set of vapor-liquid 

equilibrium data for a MEA/water/CO2 system at elevated temperature and concentration 

of MEA.  In order to get an estimate of how much degradation is occurring in the 

reclaimer, we will make some assumptions using some information from industrial 

experience in Wonder (1959).  For a typical run, a 1-3% slipstream coming off the 

stripper reboiler is sent to a semibatch distillation still.  The solution is heated and 

concentrated until the overhead concentration of MEA is equal to the inlet concentration 

of MEA.  At this point the slip stream from the stripper bottoms is continuously fed to the 

reclaiming unit with the recovered MEA returning to the stripper and the degradation 

products accumulating in the bottoms of the reclaiming unit.  As the degradation products 

accumulate, the temperature of the unit will increase.  In the case of a stripper operated at 

15 wt% MEA and 5 psig, the initial boiling point of solution is about 124
o
C and the 

process is stopped when the bottoms temperature reaches approximately 150
o
C at which 

point some of the degradation products start to coelute with the MEA in the overheads.  

The feed is shut off, caustic is added to break any heat stable salts and water is added to 

the system and as much of the remaining MEA is removed from the system as possible.  

The bottoms are drummed off to waste. 
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For our system we will assume that a continuous unit will be used to avoid the 

stopping and starting of the semi-batch unit and that the unit is sized for a 10 minute 

residence time.  The concentration of MEA in the liquid phase will be estimated based on 

MEA/water VLE curves by using the vapor phase that equals the inlet concentration of 

MEA from Wonder (1959) which are available at 5, 10, and 25psig.  The CO2 

concentration will be estimated at half of the inlet concentration which will correspond to 

a loading of approximately 0.1 for the 30wt% MEA optimized cases.  The temperature in 

the reclaimer will be set at 15
o
C above the initial boiling point of solution taken from the 

MEA/water VLE curves which for the 7m MEA case at 25 psig corresponds to 169
o
C, 10 

psig will correspond to 157
o
C and 5 psig will correspond to 150

o
C.  The thermal 

degradation model developed from the experimental data will be used even though the 

MEA concentrations and some the temperatures in the reclaimer will fall outside of range 

of conditions used in the model development.  No additional degradation pathways will 

be considered.  The degradation products will have no vapor pressure and as such will 

remain in the liquid phase at all times.  Losses in the bottom liquid phase will be assumed 

to be 1 mole of MEA for every mole of degradation product formed or removed.  Figure 

4.38 shows the increase in degradation rate in the reclaimer and stripper with increased 

reclaimer flow ratio for a 25 psig system. 
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Figure 4.38  MEA thermal degradation rate in reclaimer and stripper as a function of 

reclaimer slip stream flow ratio in a 7m MEA system at 25 psig.  

 The trend of MEA loss as a function of flow ratio in the reclaimer is a function of 

the increase in the system volume design since the residence time was assumed to be 

constant at all flow rates.  As the volume of the reclaimer increases, the loss of MEA per 

ton of CO2 captured will increase.  The reason the reclaimer loss rate does not go to zero 

at a zero slip stream ratio is due to the assumption that for every mole of degradation 

products made one mole of MEA would be lost in the reclaiming process.  For the 

thermal reclaimer this loss would be the amount of MEA that remained in the reclaimer 

bottoms drummed off to waste.  This assumption was still used at a zero slip stream ratio 

as a way of accounting for losses in a non-thermal reclaiming method since the removal 

of impurities will still be necessary and no matter the separation method will still involve 

some MEA losses.   
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Previously it was shown that the stripper loss rate decreases with increasing 

reclaimer flow ratio due to the reduction in more reactive degradation products.  The 

combination of these two effects is shown by the green triangles in Figure 4.37 and a 

minimum is found around a reclaimer flow ratio of 2x10
-5

 or 0.002% of the liquid exiting 

the bottom of the stripper which corresponds to a loss rate of 61g MEA/mton CO2 total 

where 38g of the MEA loss occurs in the stripper.  The steady state concentration of 

HEEDA would be 0.11M and the sum of all degradation products would be 0.31M.  

Wonder (1959) gave an analysis of a typical MEA solution and the HEEDA 

concentration was 1.1% by weight which would be approximately 0.11M in a CO2 free 

solution.  As the reclaimer flow ratio is increased, the incremental improvement in the 

stripper is overshadowed by the steady increase of the loss rate in the reclaimer.   

If a flow ratio of 1% were used as in the literature, a loss rate for the reclaimer 

would be 1532g MEA/mton CO2 which is much larger than the loss rate in the stripper of 

about 35g MEA/mton CO2.  Under typical industrial conditions where the concentration 

of MEA is held at 15wt%, instead of 30wt% used here, and at 5 psig, instead of 25 psig, 

with a  lean loading of 0.2, the loss rate for a 1% flow ratio would only be 27g 

MEA/mton CO2 and the loss rate in the stripper would be 16g MEA/mton CO2.  This is 

close to the estimate of equal losses of MEA in the stripper and reclaimer and at least 

partially validates the assumptions used in this model.         

Table 4.18 shows the optimum loss rate at each pressure and the contributions 

from the stripper and reclaimer. 
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Table 4.18  Minimum MEA losses in the stripper and reclaimer at the optimum reclaimer 

flow ratio for 5, 10 and 25psig 7m MEA systems 

Pressure 

(psig) 

Reclaimer 

Flow 

Ratio 

Stripper  loss 

(g MEA/mton CO2) 

Reclaimer Losses 

(g MEA/mton CO2) 

Total MEA Loss   

(g MEA/mton CO2) 

5 8E-6 4.1 2.3 6.3 

10 1E-5 12 6.7 19 

25 2E-5 38 23 61 

 

For all three pressures where we have MEA/water VLE data, the optimized 

balance between stripper and reclaimer losses as a function of reclaimer flow ratio 

showed that a very low flow ratio was needed.  Approximately two-thirds of the total 

losses occur in the stripper and not an even balance between the stripper and the 

reclaimer.  If a larger flow ratio were required to remove other impurities such as heat 

stable salts, then the amount of losses in the reclaimer could easily surpass the amount of 

MEA degradation in the stripper.   

If the data from this reclaimer modeling exercise are accurate, then the optimum 

pressure for each system discussed earlier would increase since the total cost from MEA 

degradation would be reduced by 20-30% compared to our earlier assumptions.  This 

would make the optimum stripper pressure for the 7m MEA system with optimized lean 

loading 4atm instead of 3.5atm and would make the optimum stripper pressure for the 

11m MEA case outside of the range of this modeling exercise to approximately 8.3atm 

instead of 7atm.   
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4.14  CONCLUSIONS 

 

A new reaction pathway for MEA thermal degradation has been proposed and 

validated via IC, HPLC, MS and IC/MS.  The presence of MEA urea and ureas of MEA 

and other polymeric products were identified but not quantified.  The dimer of MEA, 

HEEDA, precedes the formation of the imidazolidone species, HEIA, instead of the other 

way around as originally proposed by Polderman.  Degradation products were quantified 

using known addition where applicable and justification was given for the concentration 

determination of other products.  HEIA was the single largest degradation product across 

all experiments after the initial lag period in which the concentration of HEEDA was 

established.  The imidazolidone of the MEA trimer is the second largest product at high 

losses of MEA.  MEA thermal degradation is not catalyzed by stainless steel metals or 

copper and vanadium which are sometimes used as corrosion inhibitors.  The total 

nitrogen mass balance between MEA losses and measured degradation products closes to 

within 8.3% on average across all samples and only begins to deteriorate when the 

samples are over 50% degraded.  No industrial systems will be operated at this point, and 

as such a full mass balance closure beyond this point will not be pursued.   

The MEA and degradation product concentration data from a set of 7m MEA 

experiments was used to develop a kinetic model with a set of six temperature dependent 

rate constants.  This model uses numerical integration using Euler‟s method to predict not 

only the concentration of MEA, but also the concentration of the five largest degradation 

products.  The agreement between the model and experimental data for MEA 

concentration showed that only 3 out of 159 experiments were more than 15% apart and 
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the average deviation in MEA concentration was less than 5% across all temperatures, 

MEA concentrations and CO2 concentrations.  All of the rate constants have similar 

activation energies of about 33 kcal/mol which corresponds to a quadrupling in the rate of 

each reaction every 16.7
o
C.  Since all of the rate constants are similar, the product mix 

will not change as a function of temperature as was shown for the concentration of 

HEEDA, HEIA, MEA trimer and triHEIA when normalized by MEA loss.  

The MEA thermal degradation model was then used in conjunction with an 

ASPEN model of a MEA stripper by Van Wagener using the Hilliard (2008) VLE model 

in order to estimate amine losses under industrial conditions.  Roughly three-fourths of all 

degradation occurs in the stripper reboiler where the temperature is highest and CO2 

concentration is the lowest.  Even though the packing has the same liquid volume as the 

reboiler and an elevated CO2 concentration, the lower temperature outweighs the CO2 

effect and only 27% of thermal degradation in the stripper occurs here.  For a clean 7m 

MEA system with an optimized lean loading for minimal stripper energy requirements, 

the MEA loss rate in the stripper varied from 3.8g MEA/mton CO2 for an atmospheric 

stripper to 250g MEA/mton CO2 for a stripper operated at 8atm.  The optimum pressure 

when assuming an MEA cost of $2.42/kg and an energy cost of $50/MWh with 

provisions for reclaiming and disposal was 3.5atm with an estimated total cost of 

$12.06/mton CO2.  The lean loading was reduced to a constant value of 0.2 moles of CO2 

per mole of MEA, but the MEA loss rate in the stripper actually increased due to an 

increase in the reboiler temperature.  The losses increased from 3.8 to 8g MEA/mton CO2 

for the atmospheric case and from 250 to 455g MEA/mton CO2 for the 8atm case.  The 

optimum pressure decreased to 3atm and the estimated total cost increased to 

$12.85/mton CO2.  Increasing the MEA concentration to 11m MEA had the unexpected 

effect of decreasing the thermal degradation rate.  This was due to a decrease in the 
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reboiler temperature of the stripper at the optimum lean loading since the 11m MEA 

system has a higher partial pressure of CO2 at a given loading than the 7m MEA system.  

The loss rate ranged from 2-52g MEA/mton CO2 with an optimum pressure of 7 atm 

corresponding to a total cost of $10.70 which is substantially less than either of the 7m 

MEA cases.  In all cases, the MEA cost was less than 10% of the energy cost at the 

optimum pressure, however the MEA cost is still a significant operating cost if the 

optimum pressure is used.  Increasing the amine concentration can have an adverse effect 

on corrosion and would also increase the solution viscosity which would affect mass 

transfer, pumping characteristics and would reduce the thermal conductivity of the 

solution, but if it resulted in an 11% decrease in the operating cost of the stripper, it 

would definitely be worth looking into.  

The MEA loss rate increased with increasing temperature in the experiments and 

was shown to increase with increasing pressure in the stripper since this elevates the 

reboiler temperature.  Decreasing the CO2 concentration of the solution decreased the 

thermal degradation rate in the isothermal degradation experiments.  In a real isobaric 

system however in order to achieve a lower CO2 concentration, the reboiler had to be run 

at a higher temperature which outweighed the decrease in CO2 concentration and actually 

increased the thermal degradation rate.  Increasing the concentration of MEA increased 

the rate of thermal degradation in the experimental isothermal system.  In an isobaric 

system, increasing the concentration of amine and keeping the loading constant caused a 

decrease in the reboiler temperature due to the higher partial pressure of CO2 which 

outweighed the effect of concentration and actually decreased the amount of thermal 

degradation in the system.  Two of the three variables used in this set of experiments, 

CO2 loading and amine concentration, ended up having the opposite effect on thermal 

degradation in the system modeling than in the experiments themselves since the 
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experiment was run isothermally and the real system was isobaric.  The model of MEA 

thermal degradation has been useful in weighing the effects of temperature, amine 

concentration and CO2 loading.     

Using several rough assumptions for the reclaimer, it was determined that the 

model did a reasonable job of matching what is seen in industrial conditions where the 

losses of the reclaimer roughly matched the thermal degradation in the stripper when a 

1% slip stream from the reboiler of the stripper is sent to the reclaiming unit.  The 

optimum slip stream ratio for thermal degradation in three test cases at 5, 10 and 25psig 

was found to be much less than 1% on a purely MEA loss basis.  As the stripper pressure 

increases, the optimum slip stream ratio increases, but for the highest pressure system 

with VLE data available, 25psig or 1.7atm, the optimum slip stream ratio was still only 

0.002% of the total flow exiting the reboiler of the stripper.  At this slip stream ratio, the 

steady-state HEEDA concentration would be 0.11M and the sum of all thermal 

degradation products would be 0.31M.  At the optimum slip stream flow in all cases, 

about two-thirds of MEA loss occurs in the stripper.       
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Chapter 5:  MEA Structural Analogs 

This chapter will screen various structural analogs of MEA to test the effects of 

chain length and steric hindrance on thermal degradation.  Large degradation products 

will be identified and compared to the MEA degradation pathway.  Thermal degradation 

rates will be compared to MEA at a variety of temperatures, but the CO2 concentration 

and amine concentration will not be varied as small temperature variations were shown to 

outweigh large variations in acid gas and amine concentration for the MEA system. 

 

5.1  MEA ANALOGS STUDIED 

The first set of amines to be studied was straight chain alkanolamines with 

additional carbons in the chain length.  The focus of this study was to test if extending the 

chain length could change the stability of the initial oxazolidone species.  The 

oxazolidone of MEA is the five-member ring shown below. 

 

O

O NH

 

Oxazolidone 
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From Chapter 4 it was shown that MEA reacts with CO2 to form MEA carbamate 

and that carbamate could form oxazolidone through a dehydrolysis step.  Extending the 

number of carbons will increase the size of the oxazolidone ring and when the ring 

reaches a length of eight or nine atoms, it should be much less stable than the initial 

oxazolidone structure.  Figure 5.1 shows the structures of the amines to be studied. 

 

 

NH2
OH   NH2

OH
  

NH2OH  

          MEA   3-amino-1-propanol                    4-amino-1-butanol  

   

NH2
OH

  OH
NH2

 

     5-amino-1-pentanol           6-amino-1-hexanol 

Figure 5.1  Structure of MEA analogs with extended chain length studied 

 

3-Amino-1-propanol and 4-amino-1-butanol will form a 6 and 7 member 

oxazolidone ring that should be stable.  5-amino-1-pentanol and 6-amino-1-hexanol will 

form an 8 and 9 member oxazolidone ring that should be very unstable.  8-member and 

larger rings have a large transannular strain due to repulsive interactions between 

hydrogens (Odian 2004).  This strain is alleviated in rings with 5-7 members or more than 

13 members.   
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The next set of amines studied were MEA analogs with additional methyl groups 

attached to the primary and secondary carbon to provide slight steric hindrance.  Figure 

5.2 shows the structures of the molecules tested. 

 

 

OH
NH2

CH3

         

OH
NH2

CH3            

OH
NH2

CH3CH3

 

2-amino-1-propanol    1-amino-2-propanol             2-amino-2-methyl-1-propanol 

        (MIPA)           (AMP) 

Figure 5.2  Structure of MEA analogs tested with slight steric hindrance 

 

2-amino-1-propanol and 1-amino-2-propanol are only slightly sterically hindered 

and the effect of the single additional methyl group should be mild.  The reason both 

were tested was to see if there was a difference between additions on the primary or 

secondary carbon.  AMP is a sterically hindered amine that actually reduces the stability 

of the carbamate species which will reduce the likelihood of oxazolidone formation.  1-

amino-2-methyl-2-propanol, like AMP but with the two methyl groups on the secondary 

carbon, was not available commercially to be tested.  When synthesizing this molecule it 

is difficult to get a second methyl addition on the secondary carbon instead yielding a 

mixture of single methyl additions on each carbon.  Table 5.1 gives a list of the amines 

studied with CAS # and source for each. 
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Table 5.1  Properties of compounds used and their sources 

Compound MW CAS # Purity Company 

MEA 61.08 141-43-5 99+ % Acros 

3-amino-1-propanol 75.11 156-87-6 99% Acros 

4-amino-1-butanol 89.14 13325-10-5 98% Acros 

5-amino-1-pentanol 103.2 2508-29-4 95% Aldrich 

6-amino-1-hexanol 117.2 4048-33-3 97% Aldrich 

DL-2-amino-1-propanol 75.11 6168-72-5 98% Acros 

DL-1-amino-2-propanol 75.11 78-96-6 99+% Acros 

AMP 89.14 124-68-5 99% Acros 

              

7 m aqueous solutions of each of these compounds were loaded with CO2 to a 

loading of 0.4 moles CO2/mole of amine.  The solutions were loaded into 10 mL stainless 

steel sample containers and placed in ovens ranging from 100 to 150
o
C.  The sample 

containers were removed periodically and tested by IC and HPLC for amine 

disappearance and degradation product formation.  The amines were then tested by 

IC/MS and MS with electrospray ionization by syringe pump to determine the molecular 

weight of the products formed. 

 

5.2  RESULTS FOR LONG CHAIN MEA ANALOGS    

 

The long chain MEA analogs studied vary the ring size of the initial oxazolidone 

intermediate from a 5 member ring for MEA to a 9 member ring for 6-amino-1-hexanol.  

Table 5.2 shows the amount of amine loss for each at 135
o
C. 
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Table 5.2  Amine concentration for 7m long chain MEA analogs with a loading of 0.4 

moles of CO2 per mole amine at 135
o
C 

Compound 
Oxazolidone 

Ring Size 

Amine (m) 

2 week 4 week 8 week 

MEA 5 5.5 4.4 3.0 

3-amino-1-propanol 6 6.3 6.1 5.4 

4-amino-1-butanol 7 N/A 6.3 5.9 

5-amino-1-pentanol 8 6.5 N/A 6.5 

6-amino-1-hexanol 9 3.4 N/A 3.4 

  

All of the time points show that as the chain length increases the degradation 

decreases with the exception of the 6-amino-1-hexanol.  Assuming all of these molecules 

follow the same pathway as MEA, an indirect correlation between chain length and 

degradation rate is expected.  The reduction in stability of large unconjugated rings 

means the oxazolidone intermediate would not be able to form as readily and would 

prevent the carbamate polymerization pathway from starting.  The five member 

oxazolidone ring formed from MEA, has the fastest degradation, followed by the 6, 7, 

and 8 member ring.  The degradation of the 8 and 9 member ring species, 5-amino-1-

pentanol and 6-amino-1-hexanol; however, were complete after only 2 weeks at 135
o
C.  

The composition of their degradation products did shift after this time, but the 

disappearance of the parent amine ceased.  It is believed that an alternate degradation 

pathway occurs for these longer amines than what was proposed for MEA.  6-amino-1-
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hexanol also had solubility issues for the more degraded samples.  The fresh 7m solvent 

was soluble at room temperature, but the degraded samples had to be heated to over 70
o
C 

at which all but the most degraded sample were soluble.  In order to determine what each 

compound was converted to, IC/MS and MS with syringe pump injection were used to 

identify potential degradation products.     

 

5.2.1  Mass Spectrometry Identification of Long Chain MEA Products 

  

A Thermo Scientific TSQ was used to determine the mass/charge (m/z) of the 

degradation products.  The IC/MS chromatogram for the 3-amino-1-propanol is shown in 

Figure 5.3. 

 

 

Figure 5.3  IC/MS chromatogram for a degraded sample of 7m 3-amino-1-propanol at 

135
o
C for 8 weeks 

The peak at 14.0 min is 3-amino-1-propanol with a m/z of 76.1 which 

corresponds to a mass of 75.1.  The peak at 12.3 min is seen in every run of degraded 

amines but a mass cannot be assigned to it.  The two largest peaks by area besides the 

initial amine are at 16.5 min (m/z =103) and 28.1 min (m/z=152) and are not analogous 
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to anything in the MEA degradation pathway.  The dimer is found at 33 min and is the 

third largest product peak found by IC area.   

Figure 5.4 shows the mass spectrum for the same sample injected by syringe 

pump.   

 

 

Figure 5.4  MS spectrum for a 7m aqueous solution of 3-amino-1-propanol with a 

loading of 0.4 moles of CO2 per mole of amine held at 135
o
C for 8 weeks 

and injected by syringe pump 

 

The two largest peaks by relative abundance at m/z=159 and m/z=216 correspond 

to the cyclic urea of the dimer and trimer respectively.   

 

NNH OH

O

  

NNH

O

NH OH

 

Cyclic urea of 3-amino-1-propanol dimer Cyclic urea of 3-amino-1-propanol trimer 
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These cyclic ureas were also the largest degradation products in the MEA degradation 

pathway in the form of HEIA and triHEIA.  The cyclic urea of the dimer would not show 

up on IC as it does not have any active nitrogen groups, but the cyclic urea of the trimer 

will show up due to its one active nitrogen group.  The peak at m/z=133 corresponds to 

the dimer and the peak at m/z=190 corresponds to the trimer.  While there are some peaks 

in the IC chromatogram that cannot be explained, the carbamate polymerization pathway 

is a major degradation pathway for 3-amino-1-propanol. 

Figure 5.5 shows the IC/MS chromatogram for 4-amino-1-butanol. 

 

 

Figure 5.5  IC/MS chromatogram for a degraded sample of 7m 4-amino-1-butanol at 

135
o
C for 8 weeks 

 

The main peak at 14.8 is 4-amino-1-butanol.  The largest degradation product 

peak is found at 18.4 min with m/z=72.  This corresponds to a 4-amino-1-butanol less 

one molecule of water.  Due to the size of this ring, it is possible that the 4-amino-1-



 

 147 

butanol species goes through a dehydrolysis step in the absence of the carbamate that 

would form the 5 member ring pyrrolidine shown below. 

 

N
H

 

Pyrrolidine (MW=71) 

 

Since the pyrrolidine ring has an active nitrogen group it would be detected by 

cation IC and could react with acid gasses such as CO2.  It would also be able to 

participate in the rest of the degradation pathway.  The peak at 33.4 minutes corresponds 

to the dimer of 4-amino-1-butanol and the peak at 31.8 with m/z=126 is unidentified.  

Figure 5.6 shows the mass spectrum for the same sample injected by syringe pump.   

 

 

Figure 5.6  MS spectrum for a 7m aqueous solution of 4-amino-1-butanol with a loading 

of 0.4 moles of CO2 per mole of amine held at 135
o
C for 8 weeks and 

injected by syringe pump 
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   The largest product peak by relative abundance with m/z=205 corresponds to 

the urea of 4-amino-1-butanol.  The peak with m/z=187 corresponds to the imidazolidone 

of 4-amino-1-butanol as expected.  The two peaks identified by IC/MS are the next 

largest peaks at m/z=126 and m/z=72 and were discussed earlier.  The dimer is found at 

m/z=161.  Carbamate polymerization is still occurring in this sample which is expected 

since it only forms a 7 member oxazolidone ring; however, the rate of degradation has 

definitely slowed.  A secondary pathway is also starting to emerge as evidenced by the 

largest IC/MS product peak with a mass of 71 which could correspond to a pyrrolidine 

ring.   

Figure 5.7 shows the IC/MS chromatogram for 5-amino-1-pentanol. 

 

 

Figure 5.7  IC/MS chromatogram for a degraded sample of 7m 5-amino-1-pentanol at 

135
o
C for 8 weeks 

The peak at 15.6 min is 5-amino-1-pentanol and the peak at 33.5 min has a mass 

of 86 and is found in the original sample.  The peak at 34.4 min has a mass of 171 which 

does not correspond to any products in the carbamate polymerization pathway.  The 

dimer of 5-amino-1-pentanol would have a mass of 188 and should appear around 32-35 

minutes, but that mass was not seen by MS at any time.  The peak at 22 min has a mass 
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of 85 which would correspond to a dehydration of 5-amino-1-pentanol in the absence of 

the carbamate, similar to pyrrolidine for 4-amino-1-butanol.  The proposed structure 

would be piperidine shown below. 

 

NH

 

Piperidine 

The ratio of piperidine to 5-amino-1-pentanol seems to be much lower than the 

ratio of pyrrolidine to 4-amino-1-butanol.  The total degradation for the longer species is 

also much lower so the rate of formation of pyrrolidine from 4-amino-1-butanol must be 

faster than the formation of piperidine from 5-amino-1-pentanol.  None of the species 

identified by IC/MS were consistent with the carbamate polymerization pathway.  Figure 

5.8 shows the mass spectrum for the same sample injected by syringe pump.   

 

 

Figure 5.8  MS spectrum for a 7m aqueous solution of 5-amino-1-pentanol with a 

loading of 0.4 moles of CO2 per mole of amine held at 135
o
C for 8 weeks 

and injected by syringe pump 
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There are no significant peaks besides 5-amino-1-pentanol with m/z=104.  This is 

not surprising considering the low amount of total degradation.  No measurable quantities 

of imidazolidones or ureas are present in this sample.  As with the IC/MS chromatogram, 

there are no carbamate polymerization species are present.  The degradation route 

through oxazolidone seems to be completely shut down at this chain length.   

Some difficulty was experience with the handling of the 6-amino-1-hexanol 

samples as they solidified at higher temperatures and longer degradation times.  The only 

samples that were liquid at room temperature were the initial sample, the 100 and 120
o
C 

samples and the initial 1 week 135
o
C sample.  All of these would have the lowest 

possible amount of degradation products meaning the degradation products of 6-amino-1-

hexanol causes the whole solution to solidify.  The samples that had solidified were 

heated to 70
o
C and even at this temperature the most degraded samples did not fully melt.  

Once the solution was heated, 100uL was taken from each sample container and 

immediately diluted by a factor of 10.  The long time 150
o
C and 135

o
C samples formed 

precipitates upon returning to room temperature.  These precipitates could indicate that 

the degradation mechanism is some kind of polymerization.  Figure 5.9 shows the IC/MS 

chromatogram for 6-amino-1-hexanol. 
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Figure 5.9  IC/MS chromatogram for a degraded sample of 7m 6-amino-1-hexanol at 

135
o
C for 8 weeks 

 

The peak at 19.2 min is 6-amino-1-hexanol and the peak at 33.5 min has a mass of 

86 and is present in the original sample.  That is the same molecular weight as piperazine 

and close to the right retention time of 33.8 minutes.  The peak at 25.5 min displayed 

some unusual behavior in that it gave four distinct masses all 9 atomic units apart starting 

at 73 and ending with 100.  None of these masses corresponds to any carbamate 

polymerization products since they are always larger than their parent amine.  Figure 5.10 

shows the mass spectrum for the same sample injected by syringe pump.   
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Figure 5.10  MS spectrum for a 7m aqueous solution of 6-amino-1-hexanol with a 
loading of 0.4 moles of CO2 per mole of amine held at 135

o
C for 8 weeks 

and injected by syringe pump 

The only major peak is the 6-amino-1-hexanol peak with a mass of 117.  No 

carbamate polymerization products are detected meaning the route of degradation 

through the oxazolidone has effectively been stopped. 

 

5.2.2  Temperature Dependence of Long Chain MEA Analogs 

 

Since all of the amines were run at temperatures ranging from 100 to 150
o
C, the 

loss rate dependence on temperature can be established.  The full degradation mechanism 

for each amine is not known, but since the amine concentration and CO2 concentration is 

consistent for each set of experiments, a pseudo-first order rate constant can be 

established.  The rate will be determined by using the estimated time for a 5% loss in 
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amine concentration or a final concentration of 6.65m amine in solution.  Figure 5.11 

shows an Arrhenius plot for the long chain MEA analogs.   

 

 

Figure 5.11  Arrhenius plot for long chain MEA analogs using a pseudo-first order rate 

constant based on 5% amine loss.  

     

MEA has the fastest rate constant at all temperatures as expected from the 

previous table on losses of each amine.  It has an activation energy of 34 kcal/mol which 

is close to the average value of the rate constants found for MEA earlier of 33 kcal/mol.  

3-amino-1-butanol has the next highest rate constant at each temperature, but the lowest 

dependence on temperature with an activation energy of only 28 kcal/mol.  4-amino-1-

butanol has the slowest rate constant at each temperature but the highest activation 

energy of 37 kcal/mol.   
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The data for 5-amino-1-pentanol and 6-amino-1-hexanol did not do an adequate 

job of showing temperature dependence since at the time points taken most of the 

degradation had already occurred for the two temperatures with the greatest measurable 

losses, 135 and 150
o
C.  Using the shortest times at 135

o
C as a conservative estimate with 

the 120
o
C data point, both amines had a very large temperature dependence with 

activation energies well above those of the other three amines.  For the 5-amino-1-

pentanol, the activation energy was over 61 kcal/mol and for the 6-amino-1-hexanol it 

was over 81 kcal/mol.  There could be a large error involved with only using two points, 

but the data available does show a large temperature dependence.  Figure 5.12 shows the 

concentration of 5-amino-1-pentanol and 6-amino-1-hexanol at all four temperatures over 

time. 

 

   

Figure 5.12  Amine loss of 5-amino-1-pentanol (triangles) and 6-amino-1-hexanol 

(squares) at 150
o
C (black), 135

o
C (dark gray), 120

o
C (medium gray), and 

100
o
C (light gray)  
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From the single data point collected at 8 weeks for 100 and 120
o
C there is very 

little degradation, but at 135 and 150
o
C, there is measurable loss with little change 

between the 2, 6 and 8 week data points.  The amount of total degradation changes with 

temperature but does not seem to change with time.  It could be that by the time the first 

samples were taken at each temperature, all of the degradation had occurred and the 

measurements are just an equilibrium measurement for a given temperature at the 

specified concentrations of amine and CO2.  The primary degradation pathway for these 

two amines does not seem to be by carbamate polymerization and their behavior is vastly 

different than MEA.  

 

5.3  RESULTS FOR MEA ANALOGS WITH STERIC HINDRANCE 

 

The next set of experiments involved amines that had additional methyl groups on 

the primary and secondary carbon as a form of mild steric hindrance.  This steric 

hindrance could affect the formation of the oxazolidone intermediate or of the amine 

carbamate needed to form the oxazolidone.  Table 5.3 shows the losses for the three 

amines studied compared to MEA. 
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Table 5.3  Amine concentration for 7m aqueous solutions of sterically hindered MEA 

analogs with a loading of 0.4 moles of CO2 per mole of amine held at 135
o
C 

Compound 

Amine (m) 

2 week 4 week 8 week 

MEA 5.5 4.4 3.0 

2-amino-1-propanol (MIPA) N/A 4.7 3.7 

1-amino-2-propanol N/A 5.6 5.0 

2-amino-2-methyl-1-propanol (AMP) 6.7 6.4 6.1 

 

MEA degrades faster than the other three amines as expected.  2-amino-1-

propanol has the second highest degradation with a single methyl group on the primary 

carbon next to the nitrogen group.  It does reduce the degradation rate, but by less than 

20%.  1-amino-propanol has the third highest degradation rate of the four amines studied 

with a single methyl group on the secondary carbon to the amine group.  This single 

methyl addition roughly reduced the degradation rate by 50%.  The amine with the lowest 

degradation of all the amines studied other than the 5-amino-1-pentanol was AMP with 

two methyl groups on the primary carbon.  This amine has been classified as a hindered 

amine so that it does not readily form a carbamate which will impede the formation of 

oxazolidone.  It reduces the degradation rate by 75% when compared with MEA at 

135
o
C.  In order to determine what degradation products were formed for each 

compound, IC/MS and MS with syringe pump injection were used to identify potential 

degradation products.     
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5.3.1  Mass Spectrometry Identification of Sterically Hindered MEA Analog 

Products 

  

A Thermo Scientific TSQ was used to determine the mass/charge (m/z) of the 

degradation products.  The IC/MS chromatogram for the 2-amino-1-propanol is shown in 

Figure 5.13. 

 

 

 

Figure 5.13  IC/MS chromatogram for a degraded sample of 7m 2-amino-1-propanol at 

135
o
C for 8 weeks 

The large peak at 13.8 min is 2-amino-1-propanol.  The peaks at 12.2, 25.7 and 

31.4 are found in all chromatograms of amine samples and do not have a mass assigned 

to them.  The two largest products by area at 33 min and at 38 min are the dimer and 

trimer of 2-amino-1-propanol respectively.  These products follow the same pathway as 

the MEA carbamate polymerization scheme.  Figure 5.14 shows the mass spectrum for 

the same sample injected by syringe pump.   
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Figure 5.14  MS spectrum for a 7m aqueous solution of 2-amino-1-propanol with a 

loading of 0.4 moles of CO2 per mole of amine held at 135
o
C for 8 weeks 

and injected by syringe pump 

 

This chromatogram is very noisy compared to previous mass spectra via syringe 

pump.  The four largest peaks with m/z of 104, 152, 166 and 180 cannot be explained by 

a carbamate polymerization pathway.  2-amino-1-propanol has a m/z of 76 and is shown.  

The fifth largest peak at m/z=159 is the imidazolidone of the 2-amino-1-propanol dimer 

and the peak at m/z=216 is the imidazolidone of the trimer.  The dimer is at m/z=133 and 

the trimer is at m/z=190.  It is important to keep in mind that there is a very large 

difference in response factors and just because a peak is large, does not necessarily mean 

the concentration is large.  This is primarily a tool for qualification and not for 

quantification. 

Figure 5.15 shows the IC/MS for 1-amino-2-propanol under similar conditions. 
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Figure 5.15  IC/MS chromatogram for a degraded sample of 7m 1-amino-2-propanol at 

135
o
C for 8 weeks 

The only large peak besides the original 1-amino-1-propanol is the dimer found at 

33 min with a m/z of 133 and a mass of 132.  This sample was not as degraded as the 2-

amino-1-propanol so fewer peaks were expected.  Figure 5.16 shows the mass spectrum 

for the same sample injected by syringe pump.   

 

 

Figure 5.16  MS spectrum for a 7m aqueous solution of 1-amino-2-propanol with a 

loading of 0.4 moles of CO2 per mole of amine held at 135
o
C for 8 weeks 

and injected by syringe pump 
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This chromatogram is much cleaner than the one for 2-amino-1-propanol shown 

in Figure 5.12.  The peak at m/z=76 is the 1-amino-2-propanol and the peak at m/z=133 

corresponds to the dimer.  The large peak at m/z=159 corresponds to the imidazolidone 

of the 1-amino-2-propanol dimer.  The peak at m/z=177 corresponds to the 1-amino-2-

propanol urea.  The major products identified here follow the pathway of carbamate 

polymerization. 

Figure 5.17 shows the IC/MS for AMP under similar conditions. 

 

 

Figure 5.17  IC/MS chromatogram for a degraded sample of 7m AMP at 135
o
C for 8 

weeks 

  Once again the only large peak besides the original AMP is the dimer at 33.6 

min with a mass of 160.  This is expected as the sample only had slightly over 10% loss 

after 8 weeks which is much slower than the other amines studied.  Figure 5.18 shows the 

mass spectrum for the same sample injected by syringe pump.   
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Figure 5.18  MS spectrum for a 7m aqueous solution of AMP with a loading of 0.4 

moles of CO2 per mole of amine held at 135
o
C for 8 weeks and injected by 

syringe pump 

This spectrum is very similar to the one for 1-amino-2-propanol in that the only 

peaks are for the original amine, AMP at m/z=90, the dimer, m/z=161, the imidazolidone, 

m/z=187, and the amine urea, m/z=205.  These species all fall within the degradation 

pathway for carbamate polymerization.  From this data, AMP does form a carbamate 

species that can continue to react to form the initial polymerization products.  The 

evidence of the imidazolidone species is further proof of this.  There is no evidence of 

continued polymerization past the dimer as there are no additional peaks by IC and the 

syringe pump injection does not have any peak at the mass of the trimer, m/z=232.  

 

 



 

 162 

 

5.3.2  Temperature Dependence of Sterically Hindered MEA Analogs 

 

Since all of the amines were run at temperatures ranging from 100 to 150
o
C, the 

loss rate dependence on temperature can be established.  The full degradation mechanism 

for each amine is not known, but they all seem to follow a carbamate polymerization 

pathway like MEA.  Since the amine concentration and CO2 concentration is consistent 

for each set of experiments, a pseudo-first order rate constant can be established.  The 

rate will be determined by using the estimated time for a 5% loss in amine concentration 

or a final concentration of 6.65m amine in solution.  Figure 5.19 shows an Arrhenius plot 

for the sterically hindered MEA analogs.   

 

 

Figure 5.19  Arrhenius plot for sterically hindered MEA analogs using a pseudo-first 

order rate constant based on 5% amine loss.  
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MEA has the largest measured rate constant at all temperatures and has an 

activation energy of approximately 34 kcal/mol.  The rate constants for 2-amino-1-

propanol were the second highest with an activation energy of 29 kcal/mol.  It only had 

good data at 135
o
C and 150

o
C and as such the activation energy could have a large error.  

1-amino-2-propanol had the third largest rate constants across all temperatures and had an 

activation energy of 30 kcal/mol and finally AMP had the lowest set of rate constants 

with an activation energy of 31 kcal/mol.    Overall the temperature dependence between 

all of the mildly sterically hindered amines was constant at roughly 30 kcal/mol.  All of 

these amines seem to degrade via carbamate polymerization just at different rates than 

MEA. 

 

5.4  CONCLUSIONS 

 

Increasing the carbon chain length between the amine and alcohol group of 

straight chain alkanolamines of the monoethanolamine family were tested.  The original 

hypothesis proposed that by increasing the chain length, the stability of the oxazolidone 

ring would be reduced and this would effectively eliminate thermal degradation by 

carbamate polymerization.  As the chain length increased, the thermal degradation rate 

did slow down with the exception of the longest molecule used, 6-amino-1-hexanol, but 

this amine did not degrade by the same mechanism as MEA so the original hypothesis 

still holds true.  At 135
o
C, MEA degraded 2.5 times faster than 3-amino-1-propanol, 3.6 

times faster than 4-amino-1-butanol and 8 times faster than 5-amino-1-pentanol.   

3-amino-1-pentanol and 4-amino-1-butanol followed a thermal degradation 

pathway consistent with carbamate polymerization.  4-amino-1-butanol also had a large 
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degradation product that had a mass consistent with pyrrolidine which would be formed 

by a dehydrolysis of the parent amine in the absence of CO2.  5-amino-1-pentanol and 6-

amino-1-hexanol would form an 8 and 9 member oxazolidone ring respectively, which 

were assumed to be unstable.  Even though they did degrade, they did not form any 

degradation products consistent with carbamate polymerization.  Piperidine was formed 

from 5-amino-1-pentanol in a similar manner to the formation of pyrrolidine from 4-

amino-1-butanol.  The measured degradation rate of 6-amino-1-hexanol was faster than 

all of the amines tested besides MEA, but this occurred through an alternate mechanism 

to carbamate polymerization.  6-amino-1-hexanol also had some sample handling issues 

since the degraded samples were not soluble at room temperature and had to be heated to 

over 70
o
C to extract them from the sample container.  

The activation energy of the reactions initially decreased with carbon chain length 

when going from MEA (34 kcal/mol) to 3-amino-1-propanol (28 kcal/mol), but then 

increased with each subsequent addition with 4-amino-1-butanol, 5-amino-1-pentanol 

and 6-amino-1-hexanol having activation energies of 37, 61, and 81 kcal/mol 

respectively.  The longer 5 and 6 carbon molecules had a much stronger temperature 

dependence than MEA, seemingly doubling the activation energy.  This is far too large a 

change to be explained by an increase in the rate of the same reactions, therefore, an 

alternate reaction pathway must exist for the long chain MEA analogs. 

Adding methyl groups to the primary and secondary carbons on the MEA 

molecule provide some steric hindrance.  The addition of a single methyl group to the 

primary carbon had the smallest effect, only decreasing the degradation rate compared to 

MEA by less than 20%.  Adding a methyl group to the secondary carbon had a larger 

effect reducing the degradation rate by about 50%.  Adding two methyl groups to the 

primary carbon, as in AMP, reduced the degradation rate by a factor of 4.  The 
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degradation products formed for all three of these molecules follows the carbamate 

polymerization pathway used for MEA thermal degradation.  The largest identifiable 

products are imidazolidones just like in the MEA degradation experiments.  The 

temperature dependence of the pseudo-first order rate constant gave an activation energy 

for all three compounds of roughly 30 kcal/mol which is slightly less than MEA at 34 

kcal/mol.  
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Chapter 6:  MEA Blends 

This chapter will be used to test thermal degradation in blended amine systems 

where one of the amines is MEA and the other amine is an amine that is resistant to 

thermal degradation.  Large degradation products will be identified and compared to the 

MEA degradation pathway.  All of the systems will consist of an aqueous solution of 7m 

MEA/2m Other Amine with a loading of 0.4 moles of CO2 per mole of alkalinity, defined 

as the number of active nitrogen groups per molecule multiplied by the number of moles.  

Each system will be tested at temperatures ranging from 100 to 150
o
C.   

6.1  BLENDED SYSTEMS STUDIED 

Sometimes a blend of several amines is used for acid gas removal.  One example 

is the use of a tertiary amine such as MDEA and a fast reacting amine such as piperazine 
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for the removal of H2S and CO2 in natural gas treating.  The blend can be optimized 

depending on the concentration of the two species where MDEA can selectively remove 

H2S to very low levels and piperazine can be used to adjust the removal of CO2.  In flue 

gas treating applications, blended amine systems are being evaluated to tell if the 

advantages of different amine classes can be combined into a single solvent system.  One 

drawback to such a system is that it would add a level of complexity to the degradation 

chemistry of such a system.  One amine that is resistant to thermal degradation because it 

does not form a certain intermediate could participate in a blended system if the other 

amine did form such an intermediate.  Figure 6.1 shows the structures of the amines to be 

blended with MEA in this study. 

 

    
NH2

OH          

NHNH

          

NHO

   

           MEA                              Piperazine (PZ)                    Morpholine 

 

OH
NH2

CH3CH3

    
NH2

O
OH

              

    2-amino-2-methyl-1-propanol (AMP)           diglycolamine (DGA
®
) 

Figure 6.1  Structure of amines blended with MEA 

All of the amines shown here were screened for thermal degradation and will be 

discussed individually in Chapter 7.  Piperazine is a cyclic diamine that has faster kinetics 
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with CO2 than MEA and is stable to over 150
o
C with no measurable degradation after 8 

weeks.  Morpholine is a cyclic secondary amine with fast reaction kinetics and is also 

thermally stable to 150
o
C.  AMP is a sterically hindered alkanolamine that has slower 

kinetics than MEA and was discussed in detail in the previous chapter with resistance to 

thermal degradation.  DGA
®

 is a glycol that has comparable reaction kinetics to MEA 

and is also resistant to thermal degradation relative to MEA.  Table 6.1 gives a list of the 

amines studied with CAS # and source for each. 

 

Table 6.1  Properties of compounds used and their sources 

Compound MW CAS # Purity Company 

MEA 61.08 141-43-5 99+ % Acros 

AMP 89.14 124-68-5 99% Acros 

DGA
®

 105.14 929-06-6 98% Acros 

Piperazine 86.13 110-85-0 99% Alfa Aesar 

Morpholine 87.12 110-91-8 99+ % Acros 

              

7m MEA/2m Other amine aqueous solutions of each of these compounds were 

loaded with CO2 to a loading of 0.4 moles of CO2 per mole of amine.  The solutions were 

loaded into 10mL stainless steel sample containers and placed in ovens ranging from 100 

to 150
o
C.  The sample containers were removed periodically and tested by IC and HPLC 

for amine disappearance and degradation product formation.  The amines were then 

tested by IC/MS and MS with electrospray ionization by syringe pump to determine the 

molecular weight of the products formed. 
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6.2  OVERALL AMINE DEGRADATION    

The amines blended with MEA were also degraded individually in a separate set 

of experiments and all showed a resistance to thermal degradation in an aqueous system 

in the presence of CO2.  Table 6.2 shows the percent loss of each amine after 8 weeks at 

135
o
C.  

 

Table 6.2  Amine losses in a blended 7m MEA/2m Other Amine system loaded to 0.4 

moles of CO2 per mole of alkalinity and held at 135
o
C for 8 weeks  

Other Amine MEA 

(%) 

Other Amine 

(%) 

Other Amine Only 

(%) 

k298 with CO2* 

(m
3
/kmole sec) 

Piperazine 62 77 0 54000 

Morpholine 67 69 0 20000 

DGA
®

 65 38 18 5100 

AMP 60 3 12 680 

*(Rochelle 2001) 

 

In an MEA only system under similar conditions, 58% of the MEA would have 

degraded.  In all of these cases, the amount of MEA degradation is slightly increased, but 

not drastically.  No measurable piperazine loss has been detected in an aqueous 3.5m PZ 

solution with a loading of 0.4 moles CO2/mole alkalinity held at 150
o
C for 8 weeks.  

When blended with MEA, both MEA and PZ degrade.  The same is true of morpholine.  

DGA
®

 has been shown to be resistant to thermal degradation.  When blended with MEA, 

the percent of DGA
®
 that was lost compared to an aqueous DGA

®
 system increased by a 
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factor of 2.  AMP is also resistant to thermal degradation.  When blended with MEA, the 

amount of AMP loss actually decreased indicating MEA actually protects AMP from 

thermal degradation.  All of these trends can be explained by the relative rate of the 

additional amine with CO2.  The first order rate constant of the amine with CO2 is shown 

at the far right and there is a direct correlation with this rate constant and the loss in the 

blended system.   

None of these amines would be able to form an oxazolidone intermediate of their 

own.  PZ and morpholine are already cyclic structures and do not have an alcohol group 

to participate in the dehydrolysis reaction.  DGA
®
 would form an eight member ring 

which has been shown to be unstable in Chapter 5 with 5-amino-1-pentanol.  AMP would 

have too much steric hindrance with the additional methyl groups to complete a ring 

closure.  MEA would form the oxazolidone intermediate, and since any amine should be 

able to attack the oxazolidone intermediate, there is no reason the alternate amine would 

not do this in a blended system especially if it is more reactive than MEA.  MEA has a 

first order rate constant of approximately 5800 m
3
/kmole

.
sec meaning piperazine and 

morpholine would react preferentially to MEA, DGA
®

 would react competitively with 

MEA and AMP would react much slower than MEA.  In the following sections each of 

the blended systems will be discussed individually. 

 

6.3  THERMAL DEGRADATION OF A MEA/PIPERAZINE BLENDED AMINE SYSTEM  

 

Since PZ is the most reactive species of the amines tested, it would preferentially 

attack the oxazolidone intermediate and form a MEA/PZ species similar to the dimer, 



 

 171 

HEEDA, in an MEA only system.  In this case the MEA/PZ species would be 1-(2-

aminoethyl)piperazine.  The proposed reaction mechanism is shown in Figure 6.2 

  

 

   

O

O NH

     +
     

NHNH

        

NNH
NH2

     +     H2O 

Oxazolidone         Piperazine  1-(2-aminoethyl)piperazine 

 

Figure 6.2  Proposed reaction of piperazine with MEA oxazolidone  

 

Aminoethyl-piperazine could also attack the oxazolidone species and further 

polymerize to larger degradation products.  It can also degrade on its own since this 

amine was screened in a separate study in the absence of MEA and thermally degraded in 

the presence of CO2.  In short, the addition of MEA to a PZ system gives a viable 

intermediate in the carbamate polymerization reaction mechanism for PZ to participate 

that it would not have on its own.  MEA would still react with the oxazolidone species, 

especially once piperazine is depleted in the system, forming all of the normal products in 

the MEA carbamate polymerization pathway.  Figure 6.3 shows an IC/MS chromatogram 

for the 7m MEA/2m PZ system. 
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Figure 6.3  IC/MS chromatogram of a 7m MEA/2m piperazine aqueous solution with a 

loading of 0.4 moles of CO2 per mole of alkalinity held at 135
o
C for 8 

weeks 

The peak at 13.1 min is MEA and the peak at 33.8 min is PZ.  The next largest 

peak at 36.9 minutes is the combination of MEA and PZ, 1-(2-aminoethyl)piperazine, 

discussed earlier with a mass of 129.  The next largest product peak is at 39.0 min with a 

molecular weight of 172 corresponds to either 1,4-piperazinediethanamine or 1-[2-[(2-

aminoethyl)amino]ethyl]piperazine shown if Figure 6.4. 

 

 

        

NN
NH2

NH2

      

NNH
NH

NH2

 

   1,4-piperazinediethanamine           1-[2-[(2-aminoethyl)amino]ethyl]piperazine 

 

Figure 6.4  Structures of products formed from 1-(2-aminoethyl)piperazine with 

oxazolidone 

Both of these structures have the same molecular weight and a viable pathway for 

formation through the proposed mechanism, but the first species is more likely to form 
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due to the higher reactivity of the secondary amine.  Piperazine urea (MW=198) is found 

at 38.0 minutes and larger degradation products are found after 40 minutes.   

The peak at 32.5 minutes is HEEDA, the dimer of MEA found in MEA only 

systems, and the peak at 20.7 minutes corresponds to triHEIA also from the MEA only 

system.  HPLC also showed the appearance of HEIA which is the largest degradation 

product found in the MEA only system.  A mixture of degradation products has been 

detected from the interaction of MEA and PZ as well as from the reactions seen in a 

MEA only system. 

Figure 6.5 shows the concentration of MEA over time at a variety of 

temperatures. 

 

 

Figure 6.5  MEA concentration over time in a 7m MEA/2m PZ aqueous solution with a  
loading of 0.4 moles CO2/mole of alkalinity at varying temperatures.  
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The amount of MEA loss behaves very similarly to an MEA only system with small 

losses at 100 and 120
o
C and substantial losses at 135 and 150

o
C.   

Figure 6.6 shows the loss of PZ for the same time points. 

 

 

Figure 6.6  PZ concentration over time in a 7m MEA/2m PZ aqueous solution with a  
loading of 0.4 moles CO2/mole of alkalinity at varying temperatures.  

diamond=100
o
C, triangle = 120

o
C, circle = 135
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C, and square = 150
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Piperazine shows more substantial losses as a percentage of the initial amine than MEA 

with measurable losses even at 100
o
C.  When concentration is taken into account, 

piperazine reacts with oxazolidone over 5 times faster than MEA.  This is expected from 

the comparison of the species rate constants with CO2.  In order to quantify the 

temperature dependence of these reactions, an Arrhenius plot was constructed in Figure 

6.7 with a pseudo-first order rate constant that represented the time it would take for a 5% 

loss of each amine. 
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Figure 6.7  Arrhenius plot for MEA and piperazine in a 7m MEA/2m PZ aqueous system 

with a loading of 0.4 moles CO2/mole alkalinity. 

 

The slope of the MEA line gives an activation energy of 25 kcal/mol which is 

much lower than the 32 kcal/mol found in the MEA only system.  The activation energy 

for piperazine was even lower at 22 kcal/mol.  Overall, the dependence of the rate on 

temperature was much lower than that found in the MEA only system.  Piperazine has a 

faster pseudo-first order rate constant than MEA which is expected due to the higher 

losses of piperazine at all temperatures on a percentage basis. 

Overall, piperazine depleted at a faster rate than MEA as a percentage of their 

initial concentrations.  Piperazine reacted over five times faster than MEA with 

oxazolidone and that is why on the IC/MS chromatogram there is a much larger 

concentration of MEA/PZ products than MEA only products.  This observation is slightly 

exaggerated since MEA/PZ products will not form an equilibrium concentration of 
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imidazolidones as they do not have an alcohol group for ring closing and as such will 

remain in polymeric form and are all detected by IC.  The temperature dependence of 

these reactions is much lower than that of the MEA only system. 

 

6.4  THERMAL DEGRADATION OF A MEA/MORPHOLINE BLENDED AMINE SYSTEM  

 

Morpholine is the second most reactive species with CO2 of the amines tested and 

had the second highest degradation rate.  The degradation mechanism should be the same 

as the one proposed for piperazine which in this case would form 1-(2-

aminoethyl)morpholine shown in Figure 6.8.  4-morpholineethanamine could then attack 

another molecule of oxazolidone to form 4-[2-[(2-aminoethyl)amino]ethyl]morpholine 

also shown in Figure 6.8. 

 

 

  

NO
NH2         

NO
NH

NH2

 

4-morpholineethanamine                 4-[2-[(2-aminoethyl)amino]ethyl]morpholine 

 

Figure 6.8  Structures of products formed from morpholine reacting with oxazolidone 

This reaction will continue in the same manner seen in piperazine with the exception that 

the aminoethyl groups will only add to one side of the ring structure since there is not 

another amine group as in piperazine.  Figure 6.9 shows an IC/MS chromatogram for the 

7m MEA/2m morpholine system. 
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Figure 6.9  IC/MS chromatogram of a 7m MEA/2m morpholine aqueous solution with a 
loading of 0.4 moles of CO2 per mole of alkalinity held at 135

o
C for 8 

weeks 

The peak at 13.3 minutes is MEA and the peak at 17.0 min is morpholine.  The 

largest degradation peak at 35 minutes has a mass of 130 and is the combination of MEA 

and morpholine, 4-morpholineethanamine, discussed previously.  The peak at 39.8 

minutes has a mass of 173 which is 4-[2-[(2-aminoethyl)amino]ethyl]morpholine, also 

discussed previously.   

The peak at 32.3 minutes is HEEDA and the peak at 20.6 minutes is triHEIA from 

the MEA only degradation pathway.  HEIA was found by HPLC.  Once again a mixture 

of degradation products was formed from the reaction of MEA with the blended amine as 

well as the reaction of MEA with itself.  

Figure 6.10 shows the loss of morpholine at varying temperatures. 
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Figure 6.10  Morpholine concentration over time in a 7m MEA/2m morpholine aqueous 
solution with a  loading of 0.4 moles CO2/mole of alkalinity at varying 

temperatures (diamond=100
o
C, triangle = 120

o
C, circle = 135

o
C, and square 

= 150
o
C) 

When concentration is taken into account, morpholine reacts with oxazolidone 2.5 times 

faster than MEA.  The total percentage of loss is comparable to MEA due to the fact that 

a mole of MEA is lost for every mole of morpholine that reacts with oxazolidone as well 

as the original MEA pathway.  Figure 6.11 shows an Arrhenius plot for both amines in 

order to determine the temperature dependence of the reactions. 
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Figure 6.11  Arrhenius plot for MEA and morpholine in a 7m MEA/2m morpholine 
aqueous system with a loading of 0.4 moles CO2/mole alkalinity. 

 

The slopes and values of both lines are almost identical and give an activation 

energy of 23 kcal/mol for both species.  Once again, this is a much smaller temperature 

dependence than the 32 kcal/mol found for the MEA only system.  The identical overall 

rate constants also illustrate the equal losses on a percentage basis of MEA and 

morpholine at a given temperature. 

Overall, the total percentage of morpholine loss is comparable to MEA loss since 

the involvement of MEA in each reaction is offset by the faster kinetics of the 

morpholine reaction with oxazolidone.  Morpholine reacts with oxazolidone 2.5 times 

faster than MEA.  The activation energy of both species is 23 kcal/mol, which is much 

smaller than the temperature dependence of the MEA carbamate polymerization pathway.  
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The degradation products show a mixture of MEA/morpholine products and MEA only 

products.  

 

6.5  THERMAL DEGRADATION OF A MEA/DGA
®

 BLENDED AMINE SYSTEM  

 

DGA
®

 has a comparable rate of reaction with CO2 to MEA.  In this case it would be 

expected that DGA
®
 would degrade at approximately one quarter the rate of MEA since 

all reactions would involve the oxazolidone of MEA reacting with either DGA
®
 or 

another molecule of MEA.  In this case the reaction of MEA with DGA
®
 would form 2-

[2-[(2-aminoethyl)amino]ethoxy]ethanol which could continue polymerizing to form 2-

[2-[2-[(2-aminoethyl)amino]amino]ethyl]ethoxy]ethanol shown in Figure 6.12. 

 

 

OH
O

NH
NH2

 

2-[2-[(2-aminoethyl)amino]ethoxy]ethanol 

 

OH
O

NH
NH

NH2 

2-[2-[2-[(2-aminoethyl)amino]amino]ethyl]ethoxy]ethanol 

 

Figure 6.12   Structures of products formed from DGA
®

 reacting with oxazolidone 

 

This series of reactions can continue as well as the normal reactions of MEA with 

oxazolidone. Figure 6.13 shows an IC/MS chromatogram for the 7m MEA/2m DGA
®

 

system. 
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Figure 6.13  IC/MS chromatogram of a 7m MEA/2m DGA
®
 aqueous solution with a 

loading of 0.4 moles of CO2 per mole of alkalinity held at 135
o
C for 8 

weeks 

The peak at 13.3 minutes is MEA and the peak at 14.7 min is DGA
®
.  The second 

largest product peak at 33.6 min has a mass of 148 which corresponds to the combination 

of MEA and DGA
®
 to form 2-[2-[(2-aminoethyl)amino]ethoxy]ethanol.  The peak at 38.5 

min has a mass of 191 and would correspond to the reaction of 2-[2-[(2-

aminoethyl)amino]ethoxy]ethanol with oxazolidone to form 2-[2-[2-[(2-

aminoethyl)amino]amino]ethyl]ethoxy]ethanol shown earlier. 

The peak at 32.4 minutes is HEEDA, the peak at 37.9 minutes is the MEA trimer 

and the peak at 20.6 minutes is triHEIA which are all formed in the MEA carbamate 

polymerization pathway.  HEIA was also found by HPLC.  This product mix shows a 

larger proportion of products are from the MEA only degradation pathway, but a 

significant amount of MEA/DGA
®
 combination products exist. 

The profile of MEA concentration versus time and temperature is similar to the 

MEA only system.  The concentration profile for DGA
®

 at varying temperatures is shown 

in Figure 6.14. 
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Figure 6.14  DGA
®
 concentration over time in a 7m MEA/2m DGA

®
 aqueous solution 

with a  loading of 0.4 moles CO2/mole of alkalinity at varying temperatures 

(diamond=100
o
C, triangle = 120

o
C, circle = 135

o
C, and square = 150

o
C) 

 

The amount of degradation increases with temperature and time as expected.  The 

overall behavior shows very little loss at 100 and 120
o
C and measurable losses at 135 and 

150
o
C over the timeframe of this experiment.  When the concentration difference is taken 

into account, MEA reacts with oxazolidone 1.25 times faster than DGA
®

.  In order to get 

an idea of the temperature dependence of each species, an Arrhenius plot was constructed 

for the loss of MEA and DGA
®
 in solution in Figure 6.15.  
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Figure 6.15  Arrhenius plot for MEA and DGA
®
 in a 7m MEA/2m DGA

®
 aqueous 

system with a loading of 0.4 moles CO2/mole alkalinity. 

 

The slope of the MEA line gives an activation energy of 32 kcal/mol which is 

comparable to the MEA only system.  The slope of the DGA
®
 line gives an activation 

energy of 31 kcal/mol which is also roughly equivalent to the MEA system.  The 

activation energy for both species is much higher than what was found for both the 

piperazine and morpholine systems.  The values of the rate constants show that MEA is 

more reactive than DGA
®
 but the difference is larger than their rate constants with CO2 

would indicate.  This is because the rate constant is for the overall loss of MEA which 

will include the losses in the form of oxazolidone reacting with DGA
®
 as well as the 

losses from the normal MEA pathway..   

Overall, DGA
®

 was slightly less reactive than MEA in this system as explained 

by the slight difference in their rate constants with CO2.  MEA was shown to react with 
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the oxazolidone species 1.25 times faster than DGA
®
 when concentration was taken into 

account.  This was also seen in the IC/MS chromatogram as the amount of MEA/DGA
®

 

species and MEA only species were on the same order of magnitude.  The activation 

energy for both amines was around 32 kcal/mol. 

 

6.6  THERMAL DEGRADATION OF A MEA/AMP BLENDED AMINE SYSTEM  

 

The rate constant for the reaction of AMP with CO2 is about one order of 

magnitude smaller than MEA.  In this case the amount of degradation of AMP would be 

expected to be much smaller than MEA.  MEA should be the dominant species to react 

with oxazolidone due to its faster rate constant and higher concentration.  The main 

degradation product involving AMP should mimic the other blended systems since AMP 

does not readily form an oxazolidone species but MEA does.  The degradation product 

formed from the reaction of AMP with oxazolidone would be 2-ethylenediamine-2-

methyl-1-propanol shown if Figure 6.16. 

 

 

OH
NH

NH2

CH3 CH3

 

2-ethylenediamine-2-methyl-1-propanol 

 

Figure 6.16  Structure of product formed from AMP reacting with oxazolidone 

Figure 6.17 shows an IC/MS chromatogram for the 7m MEA/2m AMP system. 
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Figure 6.17  IC/MS chromatogram of a 7m MEA/2m AMP aqueous solution with a 

loading of 0.4 moles of CO2 per mole of alkalinity held at 135
o
C for 8 

weeks 

The peak at 13.3 minutes is MEA and the peak at 14.1 is AMP.  The peak at 33.2 

minutes has a molecular weight of 132 which corresponds to the combination of AMP 

with oxazolidone to form 2-ethylenediamine-2-methyl-1-propanol.  The further 

polymerization of this product was not detected as it was already at relatively low 

concentrations compared to combination products found in other systems.   

The peak at 32.3 minutes is HEEDA, the peak at 37.9 minutes is the MEA trimer 

and the peak at 20.6 minutes is triHEIA which are all formed in the MEA carabamate 

polymerization pathway.  HEIA was also found by HPLC.  This product mix shows a 

large proportion of products are from the MEA only degradation pathway with a small 

contribution from the mixed MEA/AMP pathway.  

Figure 6.18 shows the concentration of AMP over time at varying temperatures. 
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Figure 6.18  AMP concentration over time in a 7m MEA/2m AMP aqueous solution with 

a  loading of 0.4 moles CO2/mole of alkalinity at varying temperatures 

(diamond=100
o
C, triangle = 120

o
C, circle = 135

o
C, and square = 150

o
C) 

The loss rate for AMP in these experiments is actually less than the loss rate for 

an aqueous AMP only system in the presence of CO2.  Very little AMP degradation 

occurs over the course of this experiment for the 100 and 120
o
C experiments.  The long 

time 135
o
C data points and all of the 150

o
C data points have measurable amine loss that 

can be quantified.  In all the cases where there was measurable AMP loss, the MEA 

degradation is so severe that the concentration of MEA has dipped below the 

concentration of AMP.  The MEA is preferentially degraded in the blended system and 

actually serves to protect the AMP from thermal degradation.  MEA reacted with 

oxazolidone approximately 33 times faster than AMP in the blended system.  In order to 

quantify the temperature dependence of each amine an Arrhenius plot was constructed in 

Figure 6.19. 
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Figure 6.19  Arrhenius plot for MEA and AMP in a 7m MEA/2m AMP aqueous system 
with a loading of 0.4 moles CO2/mole alkalinity. 

 

The slope of the MEA curve gives an activation energy of 30 kcal/mol which is 

comparable to an MEA only system.  Only the data from the final 135
o
C experiment and 

both 150
o
C experiments can be used for AMP, but the slope of the line gives an 

activation energy of 36 kcal/mol which is higher than any of the other amines studied.  

There is a large difference in the values of the rate constants for MEA and AMP which is 

expected due to the large difference in their rate constants for reaction with CO2. 

Overall, AMP had by far the lowest degradation of the amines studied.  MEA 

actually had a protective effect on AMP and decreased the loss of AMP compared to an 

AMP only system with the only measurable AMP degradation occurring when the MEA 

concentration was substantially depleted.  MEA has a much more stable carbamate than 
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AMP which will bond a large percentage of the total CO2, effectively stopping the 

thermal degradation pathway of an AMP only system.  MEA reacted with oxazolidone 

roughly 33 times faster than AMP.  Data from the IC/MS showed that AMP did react 

with oxazolidone to form degradation products, but the rate is slow compared to the 

formation of MEA only degradation products.  The temperature dependence of MEA 

degradation was comparable to an MEA only system.  The temperature dependence of 

AMP was higher than an MEA only system and the highest of all the amines studied, but 

a limited data set was available so this measurement could have a large error.   

  

6.7  CONCLUSIONS 

 

All of the amines studied formed similar degradation products.  They were 

formed by the reaction of the blended amine with the MEA degradation intermediate 

oxazolidone to form a new amine which added an aminoethyl group to the nitrogen on 

the amine.  This new amine could also react with oxazolidone to continue the 

polymerization.  These species were all identified by IC/MS and varied in concentration 

depending on how reactive the blended amine was with CO2.   

Piperazine was the most reactive, followed by morpholine, then DGA
®
, and 

finally AMP.  Even though PZ and morpholine have no thermal degradation on their 

own, they degraded the most in the blended systems.  DGA
®
 reacted with oxazolidone at 

a slightly slower rate than MEA, but still had a higher degradation rate than in a DGA
®

 

only system.  MEA actually protected AMP from thermal degradation since it had a 

lower degradation rate than in an AMP only system.  Piperazine reacted with oxazolidone 
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5 times faster than MEA, morpholine reacted 2.5 times faster than MEA, MEA degraded 

1.2 times faster than DGA
®
 and MEA degraded 33 times faster than AMP. 

The activation energies for the blended amines tracked the activation energy of 

the MEA in the system with the exception of AMP.  AMP had much lower rate constants 

at all temperatures which made it difficult to get an accurate representation of the 

activation energy of the system.  The activation energy had an indirect relationship to the 

reactivity of the amine with PZ having the lowest activation energy and AMP having the 

highest. 

The activation energy of MEA was lowered in the PZ and morpholine systems to 

25 and 23 kcal/mol respectively compared to 32 kcal/mol found in the MEA only system.  

The activation energy was unchanged for the DGA
®
 and AMP blended systems.  Table 

6.3 shows the rate constants for MEA for all four blended systems. 

 

Table 6.3  Pseudo-first order rate constants for MEA loss in 7m MEA/2m Other Amine 

blended systems with a loading of 0.4 moles CO2/mole alkalinity 

Amine System k100 

(weeks
-1

) 

k120 

(weeks
-1

) 

k135 

(weeks
-1

) 

k150 

(weeks
-1

) 

7m MEA / 2m PZ 0.016 0.029 0.076 0.28 

7m MEA / 2m Morpholine 0.014 0.033 0.086 0.28 

7m MEA / 2m DGA
®

 0.009 0.015 0.082 0.28 

7m MEA / 2m AMP  N/A 0.017 0.077 0.25 

7m MEA Only 0.002 0.021 0.092 0.38 
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The rate constant for MEA was constant for all four amines at 150
o
C and 135

o
C, 

but as the temperature decreased the rate constant for the PZ and morpholine was larger 

than the rate constants for DGA
®

 and AMP roughly doubling at 120
o
C.  Figure 6.20 

shows the concentration of MEA over time for all four systems at 135
o
C. 

 

 

 

Figure 6.20  MEA concentration over time for MEA/PZ (triangle), MEA/Morpholine 

(square), MEA/AMP (diamond) and MEA/DGA
®
(X‟s) systems at 135

o
C. 

 

There is no difference in the trends of any of the systems.  This suggests that at 

the higher temperatures 135 and 150
o
C, the rate of the reaction of the amine attacking the 

oxazolidone is not rate limiting, but the rate of oxazolidone formation is rate limiting.  

Figure 6.21 shows the concentration of MEA over time for all four systems at 120
o
C. 
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Figure 6.21  MEA concentration over time for MEA/PZ (triangle), MEA/Morpholine 
(square), MEA/AMP (diamond) and MEA/DGA

®
(X‟s) systems at 120

o
C. 

 

There is an obvious difference between the systems with amines faster than MEA, 

MEA/PZ and MEA/morpholine, and the ones with MEA as the fastest amine, MEA/AMP 

and MEA/DGA
®
.  At lower temperatures in the MEA/DGA

®
 blend and MEA/AMP 

blend, the amine attacking the oxazolidone reaction is rate limiting as evidenced by the 

large difference between the fast and slow amine systems.  In the two slower systems, 

MEA is the fastest amine so it is expected that they would have the same rate in an attack 

rate limited mechanism.  Oxazolidone formation is still rate limiting for the fast amine 

systems since there is virtually no difference between the two.   
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Chapter 7:  Thermal Degradation Screening 

This chapter will be used to show relative rates of thermal degradation for a 

variety of amines that have been tested.  Most of these amines are considered industrially 

relevant or were potential candidates for novel amine systems.  Some of the degradation 

products will be identified, but no attempt will be made to postulate a full kinetic 

mechanism.  All amines will be tested with a loading of 0.4 mol CO2/mol alkalinity at a 

temperature of 135
o
C.  The concentration will usually be 7m amine in water, but some 

common industrial systems were run at different concentrations. 
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7.1  AMINES SYSTEMS STUDIED 

A variety of amines have been screened using the same experimental design used 

in the MEA degradation experiments.  Most of the amine systems have a concentration of 

7m alkalinity in water with a loading of 0.4 mol CO2/mol alkalinity at a temperature of 

135
o
C.  This means that for a monoamine like MEA, the concentration would be 7m in 

solution, but for a diamine like piperazine, the initial concentration would be 3.5m in 

solution.  Some experiments were run at varying temperatures and amine concentrations, 

but for consistency, all of the amines will be compared at the conditions stated above.  

Amines studied in previous chapters will be included in the overall ranking of amines for 

thermal degradation, but no further discussion will be included.  Eleven new amine 

systems were selected for screening purposes.  The motivation behind the selection of the 

amines was based on previous amines used in the Rochelle group or testing for an 

industrial sponsor.  Figure 7.1 shows the structures of the amines screened in this study. 

 

 

 

 

 

 

 

 

 



 

 194 

 

                 

NNH
NH2                           

NH2
NH

NH2

          

            

      1-(2-Aminoethyl)piperazine (AEP)           Diethylenetriamine (DETA)            

 

       
NH2

O
OH
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   Diglycolamine (DGA
®
)                  Ethylenediamine (EDA) 
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 N-(2-Hydroxyethyl)ethylenediamine (HEEDA)     1-(2-Hydroxyethyl)piperazine (HEP) 

 

             

NCH3
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NHO

              

           Methyldiethanolamine (MDEA)                Morpholine      

 

NHNH

                        

N
H

OH

 

Piperazine (PZ)                  2-Piperidine Methanol 

Figure 7.1  Structures of amines screened for thermal degradation 
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Four of these amines (PZ, morpholine, AMP, and DGA) were also tested in a 

blended system with MEA, but have not been discussed individually.  Table 7.1 gives a 

list of the new amines studied with CAS # and source for each. 

 

Table 7.1  Properties of compounds used and their sources 

Compound MW CAS # Purity Company 

AEP 129.20 140-31-8 99% Acros 

DETA 103.16 11-40-0 99 % Aldrich 

DGA
®

 105.14 929-06-6 98% Acros 

EDA 60.09 107-15-3 99% Strem 

HEEDA 104.15 111-41-1 99+ % Acros 

HEP 130.19 103-76-4 98.5% Acros 

MDEA 119.17 105-59-9 99+ % Acros 

Morpholine 87.12 110-91-8 99+ % Acros 

Piperazine 86.13 110-85-0 99% Alfa Aesar 

2-Piperidine Methanol 115.17 3433-37-2 99% TCI 

 

7.2  AMINE LOSSES IN SCREENING EXPERIMENTS 

 

Table 7.2 shows the amount of amine loss after 4 weeks at 135
o
C for all amines 

studied to date including amines discussed earlier.   

 



 

 196 

 

Table 7.2  Thermal degradation screening for loss of all amines after 4 weeks at 135
o
C 

with a loading of 0.4 mol CO2/mol alkalinity  

Amine Initial Concentration 

(m) 

Loss of Amine 

(%) 

Piperazine (PZ) 3.5 0 

Morpholine 7 0 

5-amino-1-pentanol 7 7 

2-amino-2-methyl-1-propanol (AMP) 7 9 

Diglycolamine (DGA
®

) 7 9 

4-amino-1-butanol 7 10 

3-amino-1-propanol 7 13 

Hydroxyethylpiperazine (HEP) 3.5 13 

1-amino-2-propanol 7 20 

Methyldiethanolamine (MDEA) 8.4  (50 wt%) 33 

2-amino-1-propanol 7 33 

Monoethanolamine (MEA) 7 37 

Aminoethylpiperazine (AEP) 2.33 37 

Ethylenediamine (EDA) 3.5 45 

6-amino-1-propanol 7 51 

2-piperidine methanol (2PD) 7 73 

Diethylenetriamine (DETA) 2.33 94 

Hydroxyethylethylenediamine (HEEDA) 3.5 98 
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The two cyclic amines with no side chains, PZ and morpholine, had no 

measurable degradation after 4 weeks at 135
o
C.  The long chain alkanolamines made up 

the majority of the next set of thermally resistant amines with 5-amino-1-propanol being 

the most resistant followed by 4-amino-1-butanol and 3-amino-1-propanol.  DGA® is 

one of the new amines studied in this chapter and can also be considered a long chain 

alkanolamine.  It would form an 8 member oxazolidone ring inhibiting carbamate 

polymerization by the same mechanism as the other long chain amines.  The amines with 

mild steric hindrance were the next most resistant with AMP, 1-amino-2-propanol and 2-

amino-1-propanol.  HEP is a new amine that has some resistance to thermal degradation 

compared to MEA, however, the addition of the ethanol group onto the piperazine ring 

allows for some thermal degradation to occur that did not occur with the piperazine ring 

only.  MDEA, AEP and EDA all had degradation rates comparable to MEA.  The 3 

amines with the worst performance were HEEDA, the dimer of MEA, with 98% loss 

after 4 weeks followed by DETA with 94% loss and 2-piperidine methanol with 73% 

loss. 

 

7.3  DEGRADATION PRODUCTS FOR EACH SYSTEM 

 

The degradation products will be discussed only for the ten new systems starting 

with the least degraded and moving to the most degraded system.  Piperazine and 

morpholine had no measurable degradation over the course of this experiment.  Both 

systems also had no measurable degradation after 8 weeks at 150
o
C so the degradation 

products of these systems are unknown.   
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7.3.1  Degradation Products of DGA
®

 Thermal Degradation 

The amine with the next lowest degradation rate of the new amines was DGA
®
.  

Figure 7.2 shows the IC/MS for DGA
®
. 

 

 

Figure 7.2  IC/MS chromatogram of a 7m DGA
®
 aqueous solution with a loading of 0.4 

moles of CO2 per mole of alkalinity held at 135
o
C for 4 weeks 

The only peaks of interest besides DGA
®
 at 14.7 min are at 17.1 min and 32.5 

min.  The peak at 17.0 minutes has a MW of 87 and is identified as morpholine.  

Morpholine can be used to synthesize DGA
®
, but the concentration of morpholine 

increases as the degradation progresses.  The peak at 32.5 minutes has a mass of 104 

which corresponds to the molecular weight and retention time of HEEDA.  It is unclear 

how DGA
®
 would form HEEDA in this experiment.  If HEEDA were an impurity in the 

original sample, it would have degraded by the time this sample was taken.  There are no 

peaks that correspond to a carbamate polymerization of DGA
®
 in this sample.  DGA

®
 

would have to form an eight member oxazolidone ring which was shown to be unstable 

in the study of long chain MEA analogs.  Figure 7.3 shows a mass spectrum for the same 

sample introduced by syringe pump instead of IC. 
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Figure 7.3  Mass spectrum of a 7m DGA
®
 aqueous solution with a loading of 0.4 moles 

of CO2 per mole of alkalinity held at 135
o
C for 4 weeks 

The peak with m/z of 211 is just a doubling of the DGA
®
 molecule.  It shows up 

in the mass spectra when a concentrated sample is injected.  At higher dilutions, this peak 

goes away, but small impurities like the one at m/z = 237 become difficult to detect.  This 

mass corresponds to DGA
®
 urea and is a known reversible degradation product that 

would not show up on the IC/MS chromatogram.  The total amount of degradation is low 

for this system, and none of the other peaks correspond to known degradation products of 

DGA
®

. 

  

7.3.2  Degradation Products of HEP Thermal Degradation 

 

The amine with next lowest amount of degradation was 1-(2-

hydroxyethyl)piperazine (HEP).  Figure 7.4 shows the IC/MS for HEP. 
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Figure 7.4  IC/MS chromatogram of a 3.5m 1-(2-hydroxyethyl)piperazine aqueous 

solution with a loading of 0.4 moles of CO2 per mole of alkalinity held at 

135
o
C for 4 weeks 

The peak at 34.1 minutes is HEP and the peak at 33.6 is piperazine which was 

found in the initial sample but not at these quantities.  HEP seems to go through a 

disproportionation reaction in which the ethanol group leaves the piperazine ring and can 

reassociate with other amine groups.  This reaction is sometimes referred to as “arm 

switching” and has been noted in other tertiary amine systems at elevated temperatures 

such as MDEA (Bedell 2008).  The ethanol group can reattach to another HEP molecule 

on the secondary amine group, but in this sample, no dihydroxyethylpiperazine was 

detected.  The only other major peak was found at 40.3 minutes with a mass of 242 which 

corresponds to the dimer of HEP shown below. 

 

NNH NN
OH

 

Dimer of HEP 

From the size of the peak and the response factors found in the MEA system, this 

peak accounts for the majority of HEP loss in the system.  Figure 7.3 shows a mass 

spectrum for the same sample introduced by syringe pump instead of IC. 
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Figure 7.5  Mass spectrum of a 3.5m HEP aqueous solution with a loading of 0.4 moles 

of CO2 per mole of alkalinity held at 135
o
C for 4 weeks 

The only new peak from the syringe pump compared to the IC has a m/z of 272 

corresponding to a MW of 271.  No further identification was pursued. 

 

7.3.3  Degradation Products of MDEA Thermal Degradation 

 

The amine with next lowest amount of degradation was MDEA.  Figure 7.6 

shows the IC/MS for MDEA. 
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Figure 7.6  IC/MS chromatogram of a 50 wt% MDEA aqueous solution on a  CO2 free 

basis with a loading of 0.4 moles of CO2 per mole of alkalinity held at 

135
o
C for 4 weeks 

The peak at 15.8 minutes is MDEA and is the only peak found in the original 

sample besides the one at 26.2 which is not a product peak and is found when running 

only water.  MDEA forms a large number of degradation products after 4 weeks at 

135oC.  The peak at 14 min with a mass of 105 corresponds to diethanolamine and the 

shoulder peak off of MDEA at 16 min is dimethylethanolamine which are both 

disproportionation products of MDEA that have been identified in previous work on 

MDEA by Chakma and Meissen(1988).  The peak at 16.1 has a MW of 133 and the peak 

at 19.1 has a mass of 103 but do not correspond to any products identified in previous 

work.  The peak at 33.9 minutes has a mass of 192 corresponding to the DEA dimer, 

THEED, from previous work.  The remaining peaks from 33 to 38 minutes have masses 

ranging from 128 to 206 and represent a large number of degradation products that have 

not been previously associated with MDEA degradation.  The mass spectra is not given 

as it has a large number of degradation products making it very difficult to glean any 

useful information. 
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7.3.4  Degradation Products of AEP Thermal Degradation 

 

The amine with next lowest amount of degradation was 1-(2-

aminoethyl)piperazine (AEP).  Figure 7.7 shows the IC/MS for AEP. 

 

 

Figure 7.7  IC/MS chromatogram of a 2.33m 1-(2-aminoethyl)piperazine aqueous 

solution with a loading of 0.4 moles of CO2 per mole of alkalinity held at 

135
o
C for 4 weeks 

The peak at 36.7 minutes corresponds to AEP with a mass of 129.  The peak at 

33.7 min has a mass of 86 and corresponds to piperazine which was also found in the 

original solution, but the amount of PZ has increased in the sample.  The peak at 39.1 min 

corresponds to the addition of an aminoethyl group onto AEP.  This could form one of 

the two possible structures shown below with the first structure being the most likely due 

to the higher pKa of the attacking nitrogen group. 

 

 

       

NN
NH2

NH2

      

NNH
NH

NH2

 

1,4-piperazinediethanamine    1-[2-[(2-aminoethyl)amino]ethyl]piperazine 
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These products are the same as the ones found in the blended MEA/PZ system 

which formed AEP as an intermediate.  The peak at 39.1 min and PZ correspond to a 

disproportionation reaction like the ones found in HEP and MDEA degradation due to the 

tertiary amine where the aminoethyl group dissociates from the AEP molecule and 

reattaches to another molecule.  The mass spectra of the syringe injection showed no new 

peaks compared to IC/MS and will not be shown here. 

 

7.3.5  Degradation Products of EDA Thermal Degradation 

 

The amine with next lowest amount of degradation was EDA.  Figure 7.8 shows 

the IC/MS for EDA. 

 

 

Figure 7.8  IC/MS chromatogram of a 3.5m ethylenediamine aqueous solution with a 

loading of 0.4 moles of CO2 per mole of alkalinity held at 135
o
C for 4 

weeks 

The peak at 30.4 min is EDA.  The peak at 33.8 has a mass of 146 which 

corresponds to the reversible urea of two EDA molecules.  Since each molecule has two 

active nitrogen groups, the urea will behave like a diamine in the IC.  The peak at 37.5 

minutes has a mass of 103 and which, along with the retention time, corresponds to 
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DETA indicating that some kind of polymerization is taking place.  DETA was shown to 

degrade very quickly and would not be present in a degraded sample if it was simply an 

impurity in the starting material.  The peak at 19.7 min has a mass of 129 which 

corresponds to the internal cyclic urea of DETA, 1-(2-aminoethyl)imidazole, which will 

be discussed in the DETA degradation pathway as the main degradation product of 

DETA.  The peaks from 11 to 20 minutes have masses ranging from 61 to 172 and are 

not identified in this work.   

Figure 7.9 shows a mass spectrum for the same sample introduced by syringe 

pump instead of IC. 

 

 

Figure 7.9  Mass spectrum of a 3.5m ethylenediamine aqueous solution with a loading of 

0.4 moles of CO2 per mole of alkalinity held at 135
o
C for 4 weeks 

EDA is the peak with m/z=61 and the urea of two EDA molecules is the main 

peak at m/z=147.  The peak at m/z=87 corresponds to imidazole which is the cyclic urea 

of a single EDA molecule.  The other peaks are unidentified in this work. 
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7.3.6  Degradation Products of 2-Piperidne Methanol Thermal Degradation 

 

The amine with next lowest amount of degradation was 2-piperidine methanol 

(2PD).  Figure 7.10 shows the IC/MS for 2PD. 

 

 

Figure 7.10  IC/MS chromatogram of a 7m 2-piperidine methanol aqueous solution with 

a loading of 0.4 moles of CO2 per mole of alkalinity held at 135
o
C for 4 

weeks 

The peak at 20.0 min with a mass of 115 is 2PD.  The peak at 38.8 minutes has a 

mass of 212 corresponding to the dimer of 2PD shown below. 

 

N
H

N

OH

 

Dimer of 2-piperidine methanol 

 

This peak at 40.3 min has a mass of 194 which would correspond to a dehydrolysis of the 

dimer forming the three ring structure shown below.   
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N

N
 

Ring closure of 2PD dimer 

 

No other large peaks were found by IC/MS.  Figure 7.11 shows a mass spectrum for the 

same sample introduced by syringe pump instead of IC. 

 

 

Figure 7.11  Mass spectrum of a 7m 2-piperidine methanol aqueous solution with a 

loading of 0.4 moles of CO2 per mole of alkalinity held at 135
o
C for 4 

weeks 

Two of the main species are the dimer and 3-ring structure shown earlier.  The 

peak with m/z = 142 corresponds to a mass of 141 which is the oxazolidone of 2PD 

shown below.   
O

N
O

 

Oxazolidone of 2-piperidine methanol 
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This species would lead to the attack from another 2PD molecule to form the 

dimer of 2PD mentioned earlier.  The m/z scan range was only set to a maximum of 300 

so if the trimer of 2PD were present, it would not have been detected since its m/z =310.  

The second largest peak with m/z = 257 was not accounted for in this work.    

 

7.3.7  Degradation Products of DETA Thermal Degradation 

 

The amine with the second highest amount of degradation was diethylenetriamine 

(DETA).  Figure 7.12 shows the IC/MS for DETA. 

 

 

Figure 7.12  IC/MS chromatogram of a 2.33m DETA aqueous solution with a loading of 

0.4 moles of CO2 per mole of alkalinity held at 135
o
C for 4 weeks 

 

The peak at 37.5 min with a mass of 103 is DETA.  The peak at 19.6 min has a 

mass of 129 which is 1-(2-aminoethyl)imidazole, the internal cyclic urea of a single 

DETA molecule, shown below. 
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NNH

O

NH2

 

1-(2-aminoethyl)imidazole 

 

This species is the single largest degradation product in this experiment and is 

analogous to HEIA in the HEEDA experiment.  The peak at 12.2 has a m/z=157 and is 

not accounted for in this work.  No large new peaks were present by syringe pump 

injection so it will not be shown here. 

 

7.3.8  Degradation Products of HEEDA Thermal Degradation 

 

The amine with the highest amount of degradation was N-(2-

hydroxyethyl)ethylenediamine (HEEDA) which is the dimer of MEA found in the 

original work.  Figure 7.13 shows the IC/MS for HEEDA. 

 

 

Figure 7.13  IC/MS chromatogram of a 3.5m HEEDA aqueous solution with a loading of 

0.4 moles of CO2 per mole of alkalinity held at 135
o
C for 4 weeks 
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HEEDA degrades very quickly in the presence of CO2 compared to all of the 

amines studied with the exception of DETA.  The peak at 31.9 minutes with a mass of 

104 is HEEDA.  The dimer of HEEDA, which is also the MEA quatramer, is found at 

39.1 minutes with a mass of 190.  The peaks at 35.2 and 36.2 minutes both have a mass 

of 216 which corresoponds to the imidazolidone of the HEEDA dimer shown below.   

 

                                  

NN

O

NH2

NH
OH

 

      Imidazolidone of HEEDA dimer 

 

Either one of the peaks could represent this imidazolidone as they both have similar 

elution times close to where a diamine would come off the column.  The other peaks have 

masses ranging from 130 to 191 but are not identified in this work.  HEIA was found in 

large quantities by HPLC and is by far the largest degradation product found in this 

experiment with the vast majority of HEEDA loss.  Other than that, no new large 

degradation products were seen by syringe pump injection so it is not shown here. 

 

7.4  CONCLUSIONS 

 

The amines studied in this work were ranked based on loss of amine via thermal 

degradation for amine systems with 7m alkalinity with 0.4 mol CO2/mol alkalinity held at 

135
o
C for 4 weeks.  The order of degradation by grouping is as follows; cyclic amines 

with no side chains < long chain alkanolamines < alkanolamines with steric hindrance < 
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tertiary amines < MEA < straight chain di- and triamines.  Ten new amine systems were 

screened that had not been discussed in previous work. 

Piperazine and morpholine, both 6 member rings with secondary amine groups, 

showed no thermal degradation over the course of these experiments.  No loss of amine 

was detected, nor were there any degradation products formed.  DGA
®
 was found to be 

resistant to thermal degradation compared to MEA and degraded at a rate similar to the 

long chain alkanolamines studied earlier.  The reason for the reduction in thermal 

degradation is believed to be due to increased ring size of the analogous oxazolidone 

species which would be unstable in solution.  Hydroxyethyl piperazine degraded at a rate 

similar to the MEA analogs with slight steric hindrance.  The addition of an ethanol 

group onto the piperazine ring provides a mechanism for thermal degradation that is not 

there otherwise.   

MDEA, AEP, and EDA degrade at a rate similar to MEA.  Industrial experience 

shows that MDEA has very little thermal degradation in practice, but in this system it was 

shown to have significant losses after just 4 weeks at 135
o
C.  In an industrial setting, the 

temperature of the stripper of an MDEA system would be lower than 135
o
C and the CO2 

loading would also be much lower than the 0.4 mol CO2/mol MDEA used in these 

experiments.  MDEA had the largest number of degradation products of any of the 

amines studied due to the disproportionation reaction to a variety of secondary amines 

that would further degrade to a host of other compounds.  Aminoethylpiperazine (AEP) is 

unique in that it has a primary, secondary and tertiary amine on one molecule.  It 

degraded via a disproportionation reaction similar to the one found in MDEA.  It had 

significant thermal degradation, although all of the products detected still had some acid 

gas absorbing capacity.  EDA degraded to a variety of ureas and polymeric products at a 

rate slightly faster than MEA. 
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Three amines degraded much faster than MEA; 2-piperidine methanol, DETA, 

and HEEDA.  2-Piperidine methanol degraded roughly twice as fast as MEA and was 

found to form polymeric products similar to the pathway for MEA.  Some interesting ring 

structures were shown as possible degradation products that matched the masses and 

expected retention times found by IC/MS.  DETA degraded very quickly with only 6% 

left after 4 weeks at 135
o
C.  The main degradation product was an internal urea between 

two of the nitrogen groups that essentially deactivates 2/3 of the active nitrogen groups 

available for reaction with CO2.  HEEDA degraded the fastest of all the amines studied.  

The main degradation product in a loaded system was the imidazolidone, HEIA.  This 

molecule would have no acid gas absorbing capacity.   
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Chapter 8:  Conclusions and Recommendations 

This chapter will be used to summarize the key findings from this research and 

estimate how they will affect industrial operations.  The findings from the 

monoethanolamine studies will be the main focus as it is the most well defined system.  

Results from the MEA analogs, blended amine systems and screening studies will be 

used to provide some insight into solvent selection.  Finally, recommendations for future 

work on thermal degradation of amines will be made. 
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8.1  SUMMARY OF WORK COMPLETED 

The thermal degradation rate of MEA and other amine systems were quantified 

using ion chromatography and high pressure liquid chromatography, and the products 

were identified using spiking by known addition and ion chromatography coupled with 

mass spectrometry.  Aqueous solutions of 2.3m to 7m amine with CO2 loadings from 0.2 

to 0.5 mol CO2/mol alkalinity were tested. Thermal reactors made of 316L stainless steel 

tubing and Swagelok endcaps containing the amines were placed in forced convections 

ovens ranging from 100
o
C (approximate temperature of an atmospheric stripper) to 

150
o
C (approximate temperature of a stripper at 10 atm).  The entire reactor was removed 

from the oven after a set period of time and cooled to room temperature, and analyzed for 

both amine loss and degradation product formation.  In the first part of this work, thermal 

degradation of monoethanolamine was studied as a baseline case.  In the second part of 

this work, other amines were tested for thermal degradation at similar temperatures and 

loadings to MEA.   

In order to properly balance the energy savings found by Oyenekan (2006) against 

the increase in amine losses, a kinetic model for thermal degradation of 

monoethanolamine was created at conditions outside the limits of normal industrial 

operating conditions of amine treaters.  The reaction mechanism was found to be slightly 

different than the original pathway proposed by Polderman.  Polymeric products of MEA 

were identified and quantified, but the largest degradation products were the cyclic ureas, 

or imidazolidones, of the polymeric products.  The rate of thermal degradation had a 

direct correlation with temperature, increasing CO2 concentrations, and with increasing 
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amine concentration as expected.  The rate had the strongest dependence on temperature 

with an activation energy of 33kcal/mol which corresponds to the rate doubling roughly 

every 7
o
C.  The increase with increasing CO2 concentration was roughly first order and 

slightly more than first order with amine concentration.  The kinetic model was not easily 

simplified to a simple integrated form, so a numerical integration of the seven differential 

equations was used with the temperature dependent rate constants to determine the 

concentration of not only MEA, but also CO2 and the four largest degradation products.  

The mixture of degradation products for a given MEA loss was similar across all 

temperatures for a given loading.  The temperature dependent rate constant of every 

reaction had roughly the same activation energy of 33 kcal/mol which validates the 

previous result.  The model predicted the concentration of MEA within 5% on average 

with only 3 of the 159 predicted MEA concentrations more than 15% off of the 

experimental value.    

After the detailed kinetic model for MEA thermal degradation was developed, it 

was combined with an ASPEN model developed by Van Wagener using the Hilliard 

(2008) VLE model of a MEA stripper to estimate MEA losses at industrial stripper 

conditions.  Using an optimized lean loading for each stripper pressure, the equivalent 

work of the system did decrease as predicted by Oyenekan with increasing amine 

concentration and stripper pressure.  For the 7m MEA case with an optimized lean 

loading, the optimum stripper pressure for the balance of energy savings and thermal 

degradation losses was 3.5 atm with a total equivalent work and MEA loss cost of 

$12.07/metric ton CO2 captured.  Operating with a lower lean loading of 0.2 mol 
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CO2/mol MEA increased the thermal degradation rate and reduced the optimum stripper 

pressure to 2.8 atm with a total cost of $12.85/mton CO2.  Increasing the MEA 

concentration from 7m to 11m decreased the thermal degradation rate and shifted the 

optimum operating pressure of the stripper to 7 atm with a total cost of $10.70/mton CO2.  

The difference between the model work and the experimental work is that the 

experiments were run isothermally and the actual system will be operated isobarically.  

Increasing the pressure in the system increased the thermal degradation rate significantly 

as expected due to the associated temperature increase.  Increasing the amine 

concentration and CO2 loading actually decreased the amount of thermal degradation.  In 

both of these cases the reboiler temperature was actually reduced due to the increased 

partial pressure of CO2 needed in order to achieve the designated lean loading which 

outweighed the effect of amine or CO2 concentration on thermal degradation. 

Amines similar to MEA were tested next for thermal degradation to test the 

effects of increasing the carbon chain length and adding mild steric hindrance.  Increasing 

the carbon chain length to a point decreased the thermal degradation rate more than the 

amines with mild steric hindrance.  Increasing the chain length inhibited oxazolidone 

formation and halted carbamate polymerization when the chain length made an 8 member 

or larger oxazolidone ring.  AMP was competitive with the long chain amines as far as 

thermal degradation rate, but the single methyl addition molecules were not as effective.  

Adding a methyl group to the secondary carbon from the amine group was 2.5 times as 

effective at slowing thermal degradation (50% reduction) as adding a methyl group to the 

primary carbon (20% reduction).    
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When MEA was blended with other amines that were thermally resistant to 

thermal degradation, the MEA degradation rate was largely unchanged, but the rate of 

participation of the other amine was a function of its first order rate constant of reaction 

with CO2 indicating that stronger amines react with the MEA oxazolidone faster than 

slower amines.  The amines piperazine and morpholine, both very fast amines, have no 

measurable degradation in aqueous systems with no MEA present, but in the blended 

system both degraded at rates faster than MEA.  The blend of MEA with AMP was 

actually protective of AMP reducing the loss rate by a factor of 3 compared to an aqueous 

AMP only system.   

Screening experiments were conducted for a variety of amines.  The cyclic 

amines with no side chains, piperazine and morpholine, had the greatest resistance to 

thermal degradation with no measurable degradation up to 150
o
C for 8 weeks.  The long 

chain MEA analogs were next followed by the MEA analogs with mild steric hindrance.  

Tertiary amines had degradation rates slightly less than MEA and straight chain di- and 

triamines had the greatest thermal degradation rate of all the amines studied with 

HEEDA, the dimer of MEA, being the fastest.     

 

8.2  MONOETHANOLAMINE THERMAL DEGRADATION MECHANISM AND KINETIC 

MODEL DEVELOPMENT 

A new reaction pathway for MEA thermal degradation was proposed and 

validated via IC, HPLC, MS and IC/MS.  The degradation pathway is shown in Figure 

8.1. 
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Figure 8.1  MEA thermal degradation reaction pathway. 

Imidazolidones were the largest degradation products detected in the MEA system 

with polymeric MEA species being the second most abundant.  The presence of MEA 
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urea and ureas of MEA and other polymeric products were identified but not quantified 

but did not increase with time and were insignificant compared to other products.  The 

dimer of MEA, HEEDA, precedes the formation of the imidazolidone species, HEIA, 

instead of the other way around as originally proposed by Polderman.  HEIA was the 

single largest degradation product across all experiments after the initial lag period in 

which the concentration of HEEDA was established.  At its maximum, HEIA represents 

over 25% of the nitrogen mass balance in the system whereas HEEDA only accounted for 

5-9% of the nitrogen mass balance depending on loading.  The imidazolidone of the 

MEA trimer was the second largest product at high losses of MEA accounting for over 

14% of the nitrogen mass balance at its maximum with the MEA trimer itself accounting 

for 3% at its maximum.  The total nitrogen mass balance between MEA losses and 

measured degradation products closes to within 8.3% on average across all samples and 

only begins to deteriorate when the samples are over 50% degraded.  No industrial 

systems will be operated at this point, and as such a full mass balance closure beyond this 

point will not be pursued.   

MEA thermal degradation increases with increasing temperature, increasing 

amine concentration and increasing CO2 concentration in the experimental apparatus.  

The rate of degradation doubled every 7
o
C corresponding to an activation energy of 

33kcal/mol.  The degradation rate was first order with respect to CO2 concentration and 

was slightly more than first order with respect to MEA concentration due to its 

involvement in multiple reactions in the polymerization mechanism.   

MEA thermal degradation is not catalyzed by stainless steel metals or copper and 

vanadium which are sometimes used as corrosion inhibitors.  There was no difference in 

the loss of MEA or of degradation product formation with metals present.  Metal 

concentrations leached into the heavily degraded MEA samples varied from 4 to 14mM 
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for Fe, and 1 to 7mM for Ni which is far less than the 100mM of each metal spiked into 

the test samples. 

The MEA and degradation product concentration data from a set of 7m MEA 

experiments was used to develop a kinetic model with a set of five reactions and six 

temperature dependent rate constants.  This model uses numerical integration using 

Euler‟s method to predict not only the concentration of MEA, but also the concentration 

of CO2 and the four largest degradation products.  The agreement between the model and 

experimental data for MEA concentration showed that only 3 out of 159 experiments 

were more than 15% apart and the average deviation in MEA concentration was less than 

5% across all temperatures, MEA concentrations and CO2 concentrations.  All of the rate 

constants have similar activation energies of about 33kcal/mol which corresponds to a 

doubling in the rate of each reaction every 7
o
C.  Since all of the rate constants are similar, 

the product mix will not change as a function of temperature as was shown for the 

concentration of HEEDA, HEIA, MEA trimer and triHEIA when normalized by MEA 

loss. 

  

8.3  STRIPPER AND RECLAIMER MODELING OF MEA 

 

The MEA thermal degradation model was used in conjunction with an ASPEN 

model of a MEA stripper by Van Wagener using the Hilliard (2008) VLE model in order 

to estimate amine losses under industrial conditions.  Roughly three-fourths of all 

degradation occurs in the stripper reboiler where the temperature is highest and CO2 

concentration is the lowest.  Even though the packing has the same liquid volume as the 

reboiler and an elevated CO2 concentration, the lower temperature outweighs the CO2 
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effect and only 27% of thermal degradation in the stripper occurs here.  For a clean 7m 

MEA system with an optimized lean loading for minimal stripper energy requirements, 

the MEA loss rate in the stripper varied from 3.8g MEA/mton CO2 for an atmospheric 

stripper to 250g MEA/mton CO2 for a stripper operated at 8atm.  The optimum pressure 

for the 7m MEA case with optimized lean loading was 3.5 atm, the equivalent work, 

assuming $50/MWh, cost $11.53/metric ton CO2 captured and the cost of MEA and 

disposal, assuming $2.42/kg MEA multiplied by a factor of 4 to account for reclaiming 

losses and disposal, came to $0.54/mton CO2 for a total of $12.07/metric ton CO2.   

Using a static lower lean loading of 0.2 mol CO2/mol MEA roughly doubled the 

rate of thermal degradation.  MEA loss increased from 3.8 to 8g MEA/mton CO2 for the 

atmospheric case and from 250 to 455g MEA/mton CO2 for the 8atm case compared to 

the optimized lean loading case.  For a static pressure stripper, the temperature in the 

reboiler increased due to the reduced partial pressure of CO2 at lower loadings.  This had 

a much stronger effect on the thermal degradation rate than reducing the CO2 

concentration by a factor of 2.  The increase in the degradation rate lowered the optimum 

pressure of the stripper to 2.8 atm with equivalent work costing $12.34/mton CO2 and 

MEA costing $0.51/mton CO2 for a total of $12.85/mton CO2.   

Increasing the MEA concentration to 11m MEA had the unexpected effect of 

decreasing the thermal degradation rate.  This was due to a decrease in the reboiler 

temperature of the stripper at the optimum lean loading since the 11m MEA system has a 

higher partial pressure of CO2 at a given loading than the 7m MEA system.  The loss rate 

ranged from 2-52g MEA/mton CO2 with an optimum pressure of 7atm.  At this pressure 

the equivalent work cost $10.30/mton CO2 and the MEA cost $0.40/mton CO2 

corresponding to a total cost of $10.70 which is substantially less than either of the 7m 

MEA cases.  Increasing the amine concentration can have an adverse effect on corrosion 
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and would also increase the solution viscosity which would affect mass transfer, pumping 

characteristics and would reduce the thermal conductivity of the solution, but if it resulted 

in an 11% decrease in the operating cost of the stripper, it would definitely be worth 

looking into.   

Two of the three variables used in this set of experiments, CO2 loading and amine 

concentration, ended up having the opposite effect on thermal degradation in the system 

modeling than in the experiments themselves since the experiment was run isothermally 

and the real system was isobaric.  The change in the CO2 loading and amine 

concentration affected the partial pressure of CO2 in the system, and since the system is 

isobaric, the temperature was altered to compensate.  This has several important 

industrial conclusions.   

Industrially there are several ways to decrease the amount of thermal degradation 

in the system.  The simplest solution is to run at lower pressures as this lowers the 

stripper temperature, however this also increases the equivalent work of the stripper and 

could be costly.  Running at solution compositions with an elevated CO2 partial pressure 

decreases the rate of thermal degradation by decreasing the temperature in the reboiler 

which can be accomplished by using higher amine concentrations and operating at 

elevated lean loadings.  Both of these factors decrease both thermal degradation and the 

equivalent work and should be considered first before an outright reduction in the stripper 

pressure.  Using an elevated amine concentration also had a much larger range of 

pressures to operate in where the total cost was close to the minimum meaning the 

stripper operation could be modified depending on the cost of energy and the cost of 

MEA giving the operator greater flexibility.  If the cost of energy were to increase, the 

stripper pressure could be increased to reduce the energy requirements and if the cost of 

MEA were to increase, the stripper pressure could be decreased to reduce thermal 
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degradation.  Decreasing the liquid hold-up in the reboiler would also decrease thermal 

degradation as the rate is 3 times faster at this stage than anywhere in the packing or cross 

exchanger.     

Using several rough assumptions for the reclaimer, it was determined that the 

model did a reasonable job of matching what is seen in industrial conditions where the 

losses of the reclaimer roughly matched the thermal degradation in the stripper when a 

1% slip stream from the reboiler of the stripper is sent to the reclaiming unit.  The 

optimum slip stream ratio for thermal degradation in three test cases at 5, 10 and 25psig 

was found to be much less than 1% on a purely MEA loss basis.  As the stripper pressure 

increases, the optimum slip stream ratio increases, but for the highest pressure system 

with VLE data available, 25psig or 1.7atm, the optimum slip stream ratio was still only 

0.002% of the total flow exiting the reboiler of the stripper.  At this slip stream ratio, the 

steady-state HEEDA concentration would be 0.11M and the sum of all thermal 

degradation products would be 0.31M.  At the optimum slip stream flow in all cases, 

about two-thirds of MEA loss occurs in the stripper.       

For an industrial system, the reclaimer can be a large source of thermal 

degradation if run inappropriately.  There is an optimum reclaiming rate associated with a 

decrease in the thermal degradation rate in the stripper without causing excess losses in 

the reclaiming unit.  In practice this ratio was assumed to be around 1% of the total 

solution flow, but in this modeling work it was shown to be over 2 orders of magnitude 

less.  This work is not 100% accurate due to a lack of a reliable VLE model at the 

concentrations and temperatures of a thermal reclaiming unit, but using the estimations 

provided, it should not be off by such a large discrepancy.  In a real system, if the 

reclaimer flow ratio were set only by the presence of thermal degradation products, the 

system needs to be operated at a much lower flow ratio.  If the flow ratio is set by the 
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presence of another impurity such as sulfate or heat stable salts, the amount of thermal 

degradation in the stripper can easily become negligible compared to the losses in the 

reclaiming unit.  If this is the case, the stripper should be operated at a much higher 

pressure to gain some savings from energy usage since the reclaimer, operating at these 

higher flow ratios, will remove any thermal products formed in the stripper anyway.        

 

8.4  ALTERNATIVE AMINE SYSTEMS 

8.4.1  Long Chain MEA Analogs 

Increasing the carbon chain length between the amine and alcohol group of 

straight chain alkanolamines of the monoethanolamine family decreased carbamate 

polymerization.  The original hypothesis proposed that by increasing the chain length, the 

stability of the oxazolidone ring would be reduced and this would effectively eliminate 

thermal degradation by carbamate polymerization.  3-amino-1-pentanol and 4-amino-1-

butanol had degradation products consistent with carbamate polymerization which was 

expected as these species will form 6 and 7 member oxazolidone rings respectively.  4-

amino-1-butanol also had a large degradation product that had a mass consistent with 

pyrrolidine which would be formed by a dehydrolysis of the parent amine in the absence 

of CO2.  5-amino-1-pentanol and 6-amino-1-hexanol would form an 8 and 9 member 

oxazolidone ring respectively, which were assumed to be unstable.  As predicted, they 

did not form any degradation products consistent with carbamate polymerization.  

Piperidine was formed from 5-amino-1-pentanol in a similar manner to the formation of 

pyrrolidine from 4-amino-1-butanol.  The degradation rate of 6-amino-1-hexanol was 

faster than all of the amines tested besides MEA, but this occurred through an alternate 

mechanism to carbamate polymerization.  
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The activation energy of the reactions initially decreased with carbon chain length 

when going from MEA to 3-amino-1-propanol, but then increased with each subsequent 

addition.  The longer 5 and 6 carbon molecules had a much stronger temperature 

dependence than MEA, seemingly doubling the activation energy.  This is far too large a 

change to be explained by an increase in the rate of the same reactions, therefore, an 

alternate reaction pathway must exist for the long chain MEA analogs. 

 

8.4.2  MEA Analogs with Mild Steric Hindrance 

 

Adding methyl groups to the primary and secondary carbons on the MEA 

molecule provide some steric hindrance.  The addition of a single methyl group to the 

primary carbon had the smallest effect, only decreasing the degradation rate compared to 

MEA by less than 20%.  Adding a methyl group to the secondary carbon had a larger 

effect reducing the degradation rate by about 50%.  Adding two methyl groups to the 

primary carbon, as in AMP, reduced the degradation rate by a factor of 4.  The 

degradation products formed for all three of these molecules follows the carbamate 

polymerization pathway used for MEA thermal degradation.  The largest identifiable 

products are imidazolidones just like in the MEA degradation experiments.  The 

temperature dependence of the pseudo-first order rate constant gave an activation energy 

for all three compounds of roughly 30 kcal/mol which is slightly less than MEA at 34 

kcal/mol.  
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8.4.3  MEA Blended with Another Amine 

 

All of the amines studied formed similar degradation products.  They were 

formed by the reaction of the blended amine with the MEA degradation intermediate 

oxazolidone to form a new amine which added an aminoethyl group to the nitrogen on 

the amine.  This new amine could also react with oxazolidone to continue the 

polymerization.  These species were all identified by IC/MS and varied in concentration 

depending on how reactive the blended amine was with CO2.   

Piperazine was the most reactive, followed by morpholine, then DGA
®
, and 

finally AMP.  Even though PZ and morpholine have no thermal degradation on their 

own, they degraded the most in the blended systems.  DGA
®
 reacted with oxazolidone at 

a slightly slower rate than MEA, but still had a higher degradation rate than in a DGA
®

 

only system.  MEA actually protected AMP from thermal degradation since it had a 

lower degradation rate than in an AMP only system.  Piperazine reacted with oxazolidone 

5 times faster than MEA, morpholine reacted 2.5 times faster than MEA, MEA degraded 

1.2 times faster than DGA
®
 and MEA degraded 33 times faster than AMP. 

The rate constant for MEA was constant for all four amines at 150
o
C and 135

o
C, 

but as the temperature decreased the rate constant for the PZ and morpholine was larger 

than the rate constants for DGA
®
 and AMP roughly doubling at 120

o
C.  This suggests 

that at the higher temperatures 135 and 150
o
C, the rate of the reaction of the amine 

attacking the oxazolidone is not rate limiting, but the rate of oxazolidone formation is rate 

limiting.  At lower temperatures in systems with the two fastest amines, PZ and 

morpholine, oxazolidone formation is still rate limiting since there is virtually no 

difference between the two.  At lower temperatures in the MEA only case, the 

MEA/DGA
®

 blend and the MEA/AMP blend, the amine attacking the oxazolidone 
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reaction is rate limiting since the strongest amine is MEA in all three systems and the rate 

is half that of the PZ and morpholine cases.    

 

8.4.4  Amine Screening  

 

The amines studied in this work were ranked based on loss of amine via thermal 

degradation for amine systems with 7m alkalinity with 0.4 mol CO2/mol alkalinity held at 

135
o
C for 4 weeks.  The order of degradation by grouping is as follows; cyclic amines 

with no side chains < long chain alkanolamines < alkanolamines with steric hindrance < 

tertiary amines < MEA < straight chain di- and triamines.  Ten new amine systems were 

screened that had not been discussed in previous work. 

Piperazine and morpholine, both 6 member rings with secondary amine groups, 

showed no thermal degradation over the course of these experiments.  No loss of amine 

was detected, nor were there any degradation products formed.  DGA
®
 was found to be 

resistant to thermal degradation compared to MEA and degraded at a rate similar to the 

long chain alkanolamines studied earlier.  The reason for the reduction in thermal 

degradation is believed to be due to increased ring size of the analogous oxazolidone 

species which would be unstable in solution.  Hydroxyethyl piperazine degraded at a rate 

similar to the MEA analogs with slight steric hindrance.  The addition of an ethanol 

group onto the piperazine ring provides a mechanism for thermal degradation that is not 

there otherwise.   

MDEA, AEP, and EDA degrade at a rate similar to MEA.  Industrial experience 

shows that MDEA has very little thermal degradation in practice, but in this system it was 

shown to have significant losses after just 4 weeks at 135
o
C.  In an industrial setting, the 
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temperature of the stripper of an MDEA system would be lower than 135
o
C and the CO2 

loading would also be much lower than the 0.4 mol CO2/mol MDEA used in these 

experiments.  MDEA had the largest number of degradation products of any of the 

amines studied due to the disproportionation reaction to a variety of secondary amines 

that would further degrade to a host of other compounds.  Aminoethylpiperazine (AEP) is 

unique in that it has a primary, secondary and tertiary amine on one molecule.  It 

degraded via a disproportionation reaction similar to the one found in MDEA.  It had 

significant thermal degradation, although all of the products detected still had some acid 

gas absorbing capacity.  EDA degraded to a variety of ureas and polymeric products at a 

rate slightly faster than MEA. 

Three amines degraded much faster than MEA; 2-piperidine methanol, DETA, 

and HEEDA.  2-Piperidine methanol degraded roughly twice as fast as MEA and was 

found to form polymeric products similar to the pathway for MEA.  Some interesting ring 

structures were shown as possible degradation products that matched the masses and 

expected retention times found by IC/MS.  DETA degraded very quickly with only 6% 

left after 4 weeks at 135
o
C.  The main degradation product was an internal urea between 

two of the nitrogen groups that essentially deactivates 2/3 of the active nitrogen groups 

available for reaction with CO2.  HEEDA degraded the fastest of all the amines studied.  

The main degradation product in a loaded system was the imidazolidone, HEIA.  This 

molecule would have no acid gas absorbing capacity.   
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8.5  RECOMMENDATIONS FOR FUTURE WORK 

 

One of the goals of this work was to gain a baseline understanding of thermal 

degradation in the absence of other degradation products and contaminants such as 

oxidative degradation products, sulfate and fly ash.  The initial amine should be spiked 

with known amounts of these products and thermal degradation experiments should be 

run to test how they affect the system.  Heat stable salts will lower the pH of the system 

which could slow the rate of amine attack on the oxazolidone.  SO2 in the system could 

react to form a more stable oxazolidone that would increase thermal degradation.  In 

general the other species could participate in the carbamate polymerization pathway to 

form a whole host of alternative products.          

In order to better understand amine losses as a whole, thermal degradation 

products will need to be tested under oxidative conditions and oxidative degradation 

products will need to be tested at elevated temperatures.  An experimental apparatus 

should be designed that cycles the amine back and forth between the oxidizing 

environment of the absorber and the reducing environment of the stripper.  This can also 

be achieved in pilot plant campaigns, but will take some time to test and will be more 

costly compared to a bench top design. 

Pilot plant testing of MEA at elevated amine concentrations should be pursued to 

find out if the energy and thermal degradation benefits found in the model are real or just 

an artifact of the VLE model used.  Increasing the concentration of amine from 30 to 40 

wt% had an 11% decrease in the overall operating cost of the stripper in the modeling.  In 

this test, the pressure of the stripper should also be increased to take advantage of the 

higher optimum pressure found in this work when compared to MEA at lower 

concentrations. 
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Thermal degradation experiments should also be run at conditions that will mimic 

the thermal reclaimer.  The concentration of amine should be greatly increased to over 80 

wt% with CO2 loadings from 0 - 0.2 and temperatures from 140 – 180
o
C.  A small set of 

experiments can be run and compared to the current model to test if the model still holds 

at these extremes.  Novel alternatives to thermal reclaiming or at least modification to the 

current thermal reclaiming design should be pursued since none of the current reclaiming 

methods besides thermal reclaiming remove thermal degradation products.  The volume 

of the thermal reclaimer should be minimized to reduce residence time and for higher 

concentrations of amines, vacuum reclaiming, or at least reclaiming at pressures below 

the stripper pressure should be pursued.  

Piperazine and morpholine should be pursued at elevated stripper pressures due to 

their strong resistance to thermal degradation.  Temperatures above 150
o
C should be 

tested before running the system at extreme pressures.  DGA
®
, as a long chain 

monoalkanolamine, and AMP, as a sterically hindered alkanolamine, should also be 

tested at slightly elevated pressures due to their commercial availability and resistance to 

thermal degradation.  Straight chain polyamines should be avoided due to their high rates 

of thermal degradation. 

Of the blended systems tested, the degradation rate was too high for the more 

expensive complimentary amine in the MEA/PZ, MEA/morpholine and MEA/DGA 

systems but was reduced in the MEA/AMP system.  A blend of AMP promoted by MEA 

could be an interesting industrial solvent where the faster rates of MEA could be used 

with the higher capacity of AMP without running into the solubility issues of a 

concentrated AMP only system and without having to sacrifice the more expensive 

amine.  Blended systems with piperazine and one of the other thermally resistant amines 

such as DGA
®
 could be interesting if operated at elevated stripper pressures. 
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Any future work on novel amine systems should include a quick screening for 

thermal degradation before the time and energy is spent on developing VLE models, rate 

measurements and the like.  The experimental design given here requires minimal effort 

if the analytical tools are already in place and can save valuable resources spent on more 

rigorous analysis.  Several screening experiments performed in this work halted work on 

amine systems that were otherwise considered promising.  
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Appendix A:  Raw Data Tables 

This appendix will give tabulated raw data for the chemical composition of 

samples.  IC areas, dilution factors and calibration curves will not be given, just final 

concentrations.  For runs with multiple samples taken for a single time point, the average 

of the samples will be given. 

 

A.1.  MEA RAW DATA 

Table A.1 was formed from MEA samples taken in triplicate and run in triplicate 

for each analytical method.  This data was used in the formation of the MEA kinetic 

model.  Most of the other data is from single time point experiments. 
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Table A.1  Raw data for MEA product concentrations (molality) used in kinetic model development 

Sample MEA HEEDA HEIA Trimer TriHEIA Quat QuatHEIA MW 169  MW 147/260 N2 Total 

7m MEA a=0.2 T=150 t=8days #104 5.32 0.32 0.36 0.08 0.03 0.00 0.00 0.00 0.02 7.18 

7m MEA a=0.2 T=135 t=4wks #100 5.44 0.27 0.28 0.06 0.02 0.00 0.00 0.00 0.02 6.85 

7m MEA a=0.2 T=120 t=16wks #96 5.64 0.24 0.20 0.06 0.01 0.00 0.00 0.00 0.01 6.76 

7m MEA a=0.2 T=100 t=16wks #91 6.43 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.53 

7m MEA a=0.5 T=150 t=4days #88 4.50 0.23 0.71 0.06 0.07 0.00 0.00 0.00 0.03 6.89 

7m MEA a=0.5 T=135 t=2wks #85 4.77 0.21 0.65 0.06 0.07 0.00 0.00 0.00 0.03 6.94 

7m MEA a=0.5 T=120 t=9wks #79 5.00 0.18 0.52 0.05 0.07 0.00 0.00 0.00 0.02 6.92 

7m MEA a=0.5 T=100 t=16wks #76 6.40 0.11 0.09 0.02 0.00 0.00 0.00 0.00 0.00 6.90 

7m MEA a=0.4 T=150 t=2days #48 5.90 0.22 0.17 0.03 0.01 0.00 0.00 0.00 0.01 6.82 

7m MEA a=0.4 T=150 t=4days #51 5.18 0.28 0.46 0.06 0.04 0.00 0.00 0.00 0.03 7.07 

7m MEA a=0.4 T=150 t=6days #58 4.04 0.25 0.70 0.07 0.13 0.01 0.01 0.01 0.05 7.02 

7m MEA a=0.4 T=150 t=8days #62 3.51 0.23 0.85 0.07 0.18 0.01 0.01 0.01 0.05 6.70 

7m MEA a=0.4 T=150 t=2wks #68 2.63 0.18 0.88 0.06 0.29 0.02 0.02 0.03 0.05 6.18 

7m MEA a=0.4 T=135 t=4days #27 6.53 0.12 0.00 0.01 0.00 0.00 0.01 0.01 0.00 6.85 

7m MEA a=0.4 T=135 t=8days #30 6.00 0.21 0.17 0.04 0.01 0.00 0.01 0.00 0.01 6.97 

7m MEA a=0.4 T=135 t=2wks #33 5.52 0.24 0.33 0.06 0.04 0.00 0.00 0.01 0.02 7.07 

7m MEA a=0.4 T=135 t=4wks #40 4.36 0.22 0.55 0.07 0.14 0.01 0.01 0.01 0.04 6.82 

7m MEA a=0.4 T=135 t=9wks #44 2.73 0.16 0.83 0.06 0.33 0.02 0.02 0.03 0.04 6.26 

7m MEA a=0.4 T=120 t=2wks #11 6.64 0.10 0.00 0.01 0.00 0.00 0.00 0.00 0.00 6.86 

7m MEA a=0.4 T=120 t=4wks #15 6.31 0.16 0.07 0.03 0.00 0.00 0.01 0.00 0.01 6.97 

7m MEA a=0.4 T=120 t=9wks #18 5.65 0.20 0.29 0.06 0.04 0.00 0.01 0.01 0.02 7.00 

7m MEA a=0.4 T=120 t=16wks #21 5.02 0.20 0.45 0.07 0.09 0.00 0.01 0.00 0.03 6.95 

7m MEA a=0.4 T=100 t=4wks #2 6.94 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.02 

7m MEA a=0.4 T=100 t=9wks #5 6.88 0.06 0.00 0.01 0.00 0.00 0.00 0.00 0.00 7.03 
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Table A.2  Original 100
o
C MEA data for all amine and CO2 concentrations  

Molality Loading Weeks MEA (m) HEIA (m) Estimated Urea 
3.5 0.2 1 3.51 0.00 0.00 

3.5 0.2 2 3.50 0.00 0.01 

3.5 0.2 4 3.44 0.01 0.01 

3.5 0.2 6 3.48 0.01 0.01 

3.5 0.2 8 3.34 0.01 0.01 

3.5 0.4 1 3.49 0.00 0.01 

3.5 0.4 2 3.39 0.01 0.01 

3.5 0.4 4 3.46 0.01 0.02 

3.5 0.4 6 3.54 0.01 0.02 

3.5 0.4 8 3.45 0.02 0.02 

3.5 0.5 1 3.50 0.00 0.01 

3.5 0.5 2 3.45 0.01 0.01 

3.5 0.5 4 3.40 0.00 0.00 

3.5 0.5 6 3.52 0.02 0.02 

3.5 0.5 8 3.70 0.02 0.02 

7 0.2 1 6.96 0.00 0.01 

7 0.2 2 7.02 0.01 0.02 

7 0.2 4 7.06 0.01 0.03 

7 0.2 6 6.99 0.02 0.03 

7 0.2 8 7.00 0.03 0.03 

7 0.4 1 6.99 0.00 0.02 

7 0.4 2 6.66 0.01 0.04 

7 0.4 4 6.99 0.02 0.05 

7 0.4 6 6.94 0.04 0.05 

7 0.4 8 7.03 0.05 0.05 

7 0.5 1 7.09 0.01 0.03 

7 0.5 2 7.05 0.01 0.04 

7 0.5 4 6.87 0.03 0.05 

7 0.5 6 6.98 0.04 0.06 

7 0.5 8 6.99 0.06 0.06 

11 0.2 1 10.63 0.00 0.03 

11 0.2 2 10.86 0.01 0.04 

11 0.2 4 11.14 0.02 0.05 

11 0.2 6 11.86 0.03 0.06 

11 0.2 8 11.26 0.05 0.06 

11 0.4 1 10.81 0.01 0.05 

11 0.4 2 11.07 0.02 0.06 

11 0.4 4 11.24 0.04 0.08 

11 0.4 6 10.90 0.07 0.10 

11 0.4 8 11.04 0.09 0.11 

11 0.5 1 9.12 0.02 0.05 

11 0.5 2 10.18 0.02 0.07 

11 0.5 4 10.69 0.06 0.10 

11 0.5 6 11.18 0.09 0.12 

11 0.5 8 11.07 0.10 0.14 

 



 

 235 

Table A.3  Original 120
o
C MEA data for all amine and CO2 concentrations  

Sample  MEA (m) HEIA (m) HEEDA (m) TriHEIA (m) 

11m MEA a=0.2 T=120C t=1wks 10.23 0.06 N/A 0.00 

11m MEA a=0.2 T=120C t=2wks 10.59 0.12 N/A 0.00 

11m MEA a=0.2 T=120C t=4wks 9.80 0.21 N/A 0.00 

11m MEA a=0.2 T=120C t=6wks 10.42 0.16 N/A 0.02 

11m MEA a=0.2 T=120C t=8wks 9.66 0.26 N/A 0.02 

11m MEA a=0.4 T=120C t=1wks 10.39 0.04 N/A 0.02 

11m MEA a=0.4 T=120C t=2wks 9.86 0.15 N/A 0.02 

11m MEA a=0.4 T=120C t=4wks 9.33 0.19 N/A 0.03 

11m MEA a=0.4 T=120C t=6wks 8.59 0.55 N/A 0.05 

11m MEA a=0.4 T=120C t=8wks 8.14 0.69 N/A 0.08 

11m MEA a=0.5 T=120C t=1wks 10.36 N/A N/A 0.00 

11m MEA a=0.5 T=120C t=2wks 9.63 N/A N/A 0.03 

11m MEA a=0.5 T=120C t=4wks 10.20 N/A N/A 0.03 

11m MEA a=0.5 T=120C t=6wks 6.98 N/A N/A 0.10 

11m MEA a=0.5 T=120C t=8wks 6.60 N/A N/A 0.16 

7m MEA a=0.2 T=120C t=1wks 7.30 0.04 0.00 0.00 

7m MEA a=0.2 T=120C t=2wks 6.52 0.07 0.00 0.00 

7m MEA a=0.2 T=120C t=4wks 6.56 0.13 0.00 0.00 

7m MEA a=0.2 T=120C t=6wks 6.26 0.15 0.06 0.00 

7m MEA a=0.2 T=120C t=8wks 6.29 0.18 0.11 0.00 

7m MEA a=0.4 T=120C t=1wks 6.88 0.04 0.05 0.00 

7m MEA a=0.4 T=120C t=2wks 6.43 0.06 0.07 0.00 

7m MEA a=0.4 T=120C t=4wks 6.13 0.12 0.16 0.00 

7m MEA a=0.4 T=120C t=6wks 6.07 0.31 0.14 0.03 

7m MEA a=0.4 T=120C t=8wks 6.15 0.50 0.17 0.04 

7m MEA a=0.5 T=120C t=1wks 6.56 0.04 0.07 0.00 

7m MEA a=0.5 T=120C t=2wks 6.03 0.10 0.11 0.00 

7m MEA a=0.5 T=120C t=4wks 5.71 0.23 0.13 0.03 

7m MEA a=0.5 T=120C t=6wks 5.25 0.31 0.17 0.05 

7m MEA a=0.5 T=120C t=8wks 5.00 0.43 0.17 0.08 

3.5m MEA a=0.2 T=120C t=1wks 3.94 0.03 0.00 0.00 

3.5m MEA a=0.2 T=120C t=2wks 3.30 0.03 0.00 0.00 

3.5m MEA a=0.2 T=120C t=4wks 3.19 0.05 0.00 0.00 

3.5m MEA a=0.2 T=120C t=6wks 3.15 0.07 0.00 0.00 

3.5m MEA a=0.2 T=120C t=8wks 3.18 0.04 0.21 0.00 

3.5m MEA a=0.4 T=120C t=1wks 3.85 0.02 0.00 0.00 

3.5m MEA a=0.4 T=120C t=2wks 3.22 0.05 0.00 0.00 

3.5m MEA a=0.4 T=120C t=4wks 3.13 0.03 0.00 0.00 

3.5m MEA a=0.4 T=120C t=6wks 3.01 0.13 0.11 0.00 

3.5m MEA a=0.4 T=120C t=8wks 3.43 0.25 0.09 0.02 

3.5m MEA a=0.5 T=120C t=1wks 3.91 0.04 0.00 0.00 

3.5m MEA a=0.5 T=120C t=2wks 3.26 0.05 0.00 0.00 

3.5m MEA a=0.5 T=120C t=4wks 2.82 0.09 0.08 0.00 

3.5m MEA a=0.5 T=120C t=6wks 2.81 0.14 0.15 0.00 

3.5m MEA a=0.5 T=120C t=8wks 2.90 0.20 0.14 0.00 
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Table A.4  Original 135
o
C MEA data for all amine and CO2 concentrations  

Sample MEA (m) HEIA (m) HEEDA (m) TriHEIA (m) 

11m MEA a=0.2 T=135C t=1wks 10.73 0.187 0.07 0.00 

11m MEA a=0.2 T=135C t=2wks 9.90 0.372 0.17 0.00 

11m MEA a=0.2 T=135C t=4wks 9.38 0.376 0.34 0.00 

11m MEA a=0.2 T=135C t=6wks 8.67 0.366 0.37 0.04 

11m MEA a=0.2 T=135C t=8wks 7.86 0.460 0.44 0.09 

11m MEA a=0.4 T=135C t=1wks 9.70 0.240 0.25 0.00 

11m MEA a=0.4 T=135C t=2wks 7.41 0.609 0.34 0.06 

11m MEA a=0.4 T=135C t=4wks 7.13 N/A 0.33 0.18 

11m MEA a=0.4 T=135C t=6wks 5.46 0.782 0.30 0.24 

11m MEA a=0.4 T=135C t=8wks 4.59 N/A 0.26 0.42 

11m MEA a=0.5 T=135C t=1wks 8.36 N/A 0.28 0.04 

11m MEA a=0.5 T=135C t=2wks 6.84 N/A 0.28 0.12 

11m MEA a=0.5 T=135C t=4wks 4.94 N/A 0.22 0.31 

11m MEA a=0.5 T=135C t=6wks 4.15 N/A 0.19 0.37 

11m MEA a=0.5 T=135C t=8wks 3.09 N/A 0.15 0.51 

7m MEA a=0.2 T=135C t=1wks 6.25 0.026 0.06 0.00 

7m MEA a=0.2 T=135C t=2wks 6.29 0.077 0.16 0.00 

7m MEA a=0.2 T=135C t=4wks 6.09 0.162 0.22 0.00 

7m MEA a=0.2 T=135C t=8wks 4.99 0.278 0.26 0.05 

7m MEA a=0.4 T=135C t=1wks 6.16 0.137 0.14 0.00 

7m MEA a=0.4 T=135C t=2wks 6.11 0.373 0.19 0.03 

7m MEA a=0.4 T=135C t=4wks 4.88 0.563 0.22 0.09 

7m MEA a=0.4 T=135C t=6wks 4.83 0.684 0.20 0.13 

7m MEA a=0.4 T=135C t=8wks 3.39 0.692 0.18 0.19 

7m MEA a=0.5 T=135C t=1wks 5.78 0.208 0.15 0.00 

7m MEA a=0.5 T=135C t=2wks 4.95 0.452 0.17 0.06 

7m MEA a=0.5 T=135C t=4wks 3.83 0.693 0.13 0.14 

7m MEA a=0.5 T=135C t=6wks 3.45 0.646 0.13 0.24 

7m MEA a=0.5 T=135C t=8wks 2.46 0.713 0.11 0.28 

3.5m MEA a=0.2 T=135C t=1wks 3.39 0.067 0.00 0.00 

3.5m MEA a=0.2 T=135C t=2wks 3.29 0.121 0.00 0.00 

3.5m MEA a=0.2 T=135C t=4wks 3.13 0.072 0.09 0.00 

3.5m MEA a=0.2 T=135C t=6wks 3.09 0.125 0.05 0.00 

3.5m MEA a=0.2 T=135C t=8wks 2.81 0.208 0.07 0.02 

3.5m MEA a=0.4 T=135C t=1wks 3.30 0.031 0.00 0.00 

3.5m MEA a=0.4 T=135C t=2wks 2.95 0.187 0.02 0.00 

3.5m MEA a=0.4 T=135C t=4wks 2.71 0.256 0.10 0.03 

3.5m MEA a=0.4 T=135C t=8wks 0.07 0.432 0.00 0.00 

3.5m MEA a=0.5 T=135C t=1wks 3.08 0.106 0.03 0.00 

3.5m MEA a=0.5 T=135C t=2wks 3.75 0.389 0.07 0.02 

3.5m MEA a=0.5 T=135C t=4wks 2.43 0.373 0.04 0.04 

3.5m MEA a=0.5 T=135C t=6wks 2.34 0.458 0.04 0.06 

3.5m MEA a=0.5 T=135C t=8wks 1.81 0.452 0.05 0.08 
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A.2  OTHER AMINE RAW DATA 

Table A.5  MEA analog concentration data at all temperatures with a loading of 0.4 mol 

CO2/mol amine 

Sample 
Amine 

(m) 
 

Sample 
Amine 

(m) 

2-amino-1-propanol T=100 t=8wks 6.70 
 

3-amino-1-propanol T=100 t=8wks 6.91 

2-amino-1-propanol T=135 t=4wks 4.69 
 

3-amino-1-propanol T=100 t=12wks 6.89 

2-amino-1-propanol T=135 t=8wks 3.72 
 

3-amino-1-propanol T=120 t=1wks 6.96 

2-amino-1-propanol T=150 t=2wks 3.72 
 

3-amino-1-propanol T=120 t=2wks 6.90 

1-amino-2-propanol T=100 t=8wks 6.76 
 

3-amino-1-propanol T=120 t=4wks 6.78 

1-amino-2-propanol T=100 t=12wks 6.77 
 

3-amino-1-propanol T=120 t=8wks 6.45 

1-amino-2-propanol T=120 t=1wks 6.79 
 

3-amino-1-propanol T=135 t=1wks 6.69 

1-amino-2-propanol T=120 t=2wks 6.60 
 

3-amino-1-propanol T=135 t=2wks 6.32 

1-amino-2-propanol T=120 t=4wks 6.52 
 

3-amino-1-propanol T=135 t=4wks 6.11 

1-amino-2-propanol T=120 t=8wks 6.32 
 

3-amino-1-propanol T=135 t=8wks 5.43 

1-amino-2-propanol T=120 t=12wks 6.09 
 

3-amino-1-propanol T=135 t=12wks 4.94 

1-amino-2-propanol T=135 t=4wks 5.74 
 

3-amino-1-propanol T=150 t=1wks 5.95 

1-amino-2-propanol T=150 t=1wks 5.58 
 

3-amino-1-propanol T=150 t=2wks 5.27 

1-amino-2-propanol T=150 t=2wks 4.98 
 

3-amino-1-propanol T=150 t=4wks 4.07 

AMP T=100 t=12wks 7.00 
 

4-amino-1-butanol T=100 t=8wks 7.14 

AMP T=120 t=1wks 7.00 
 

4-amino-1-butanol T=120 t=8wks 6.80 

AMP T=120 t=2wks 6.84 
 

4-amino-1-butanol T=135 t=4wks 6.30 

AMP T=120 t=4wks 6.80 
 

4-amino-1-butanol T=135 t=8wks 5.86 

AMP T=120 t=8wks 6.76 
 

4-amino-1-butanol T=150 t=2wks 5.53 

AMP T=135 t=1wks 6.71 
 

5-amino-1-propanol T=150 t=2wk 5.91 

AMP T=135 t=2wks 6.63 
 

5-amino-1-propanol T=150 t=6wk 5.62 

AMP T=135 t=4wks 6.37 
 

5-amino-1-propanol T=150 t=8wk 5.53 

AMP T=135 t=12wks 5.94 
 

5-amino-1-propanol T=135 t=2wk 6.40 

AMP T=150 t=1wks 6.22 
 

5-amino-1-propanol T=135 t=6wk 6.46 

AMP T=150 t=2wks 6.07 
 

5-amino-1-propanol T=120 t=8wk 7.05 

AMP T=150 t=4wks 5.59 
 

5-amino-1-propanol T=100 t=8wk 4.87 

   
6-amino-1-hexanol T=150 t=6wks 2.99 

   
6-amino-1-hexanol T=150 t=8wks 3.20 

   
6-amino-1-hexanol T=135 t=6wks 3.30 

   
6-amino-1-hexanol T=135 t=8wks 5.58 

   
6-amino-1-hexanol T=100 t=8wks 6.90 
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Table A.6  MEA blend concentration data for all temperatures at a loading of 0.4 

Temperature Time (wks) MEA AMP 
 

Temperature Time (wks) MEA Morph 

100 9 6.97 1.95 
 

100 3 6.54 1.91 

120 3 6.52 1.93 
 

100 9 6.36 1.85 

120 6 6.35 2 
 

120 3 6.3 1.83 

120 9 5.75 1.95 
 

120 9 4.9 1.39 

120 11 5.75 2 
 

120 12 4.53 1.28 

120 12 5.57 2 
 

135 3 5.13 1.48 

135 3 5.02 2 
 

135 8 2.32 0.61 

135 6 2.81 1.73 
 

135 11 1.53 0.41 

135 8 2.78 2 
 

150 3 1.29 0.44 

135 11 1.9 1.94 
 

150 6 0.76 0.29 

135 12 1.79 1.87 
     150 3 1.76 1.92 
     150 6 0.58 1.47 
     

         

         

         

         Temperature Time (wks) MEA PZ 

 

Temperature Time (wks) MEA DGA 

100 3 6.25 1.83 
 

100 3 7.23 2.08 

100 9 6.00 1.68 
 

100 9 6.40 1.85 

120 3 5.58 1.54 
 

120 3 6.56 1.95 

120 6 5.14 1.33 
 

120 6 6.42 2 

120 12 4.53 1.06 
 

120 9 6.06 2 

135 3 4.97 1.04 
 

120 11 5.88 1.95 

135 8 2.67 0.46 
 

120 12 5.75 1.93 

135 11 1.38 0.23 
 

135 3 5.27 1.8 

150 3 1.09 0.24 
 

135 6 2.94 1.33 

150 6 0.15 0.13 
 

135 8 2.48 1.25 

     
135 11 2.18 1.14 

     
150 3 1.38 1 

     
150 6 0.52 0.7 
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Table A.7  Amine screening concentration data 

Sample % Amine Remaining 

50wt% MDEA a=0.45 T=135 t=4wks 61 

7m DGA a=0.45 T=135 t=4wks 90 

3.5m EDA a=0.45 T=135 t=4wks 55 

2.3m DETA a=0.45T=135 t=4wks 6 

3.5m HEEDA a=0.45 T=150 t=4wks 0.4 

3.5m HEEDA a=0.45 T=135 t=4wks 2 

3.5m HEEDA a=0.45 T=135 t=8wks 1 

7m DGA a=0.45 T=135 t=4wks 92 

3.5m EDA a=0.45 T=150 t=4wks 44 

3.5m EDA a=0.45 T=135 t=4wks 55 

3.5m EDA a=0.45 T=135 t=8wks 51 

2.3m DETA a=0.45T=150 t=4wks 2 

2.3m DETA a=0.45T=135 t=4wks 5 

7M Morphaline t=4wk T=150 100 

7M Morphaline t=4wk T=100 101 

7M Morphaline t=4wk T=120 98 

2PdMeOH T=135 t=4w 27 

HEP  T=100 t=3w 100 

HEP T=135 t=5w 87 

AEP T=135 t=3w 72 
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Appendix B:  Sample Chromatograms 

This appendix will show sample chromatograms for all of the amine systems with 

before and after chromatograms of each. 

B.1  MEA CHROMATOGRAMS 

The following chromatograms show the progression of MEA degradation over 

time at 135
o
C.  The chromatograms at other temperatures are similar in nature and will 

not be included here. 
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Figure B.1  IC chromatogram of a undegraded 7m MEA sample with a loading of 0.4 

mol CO2/mol MEA 

 

Figure B.2  IC chromatogram of a 7m MEA sample with a loading of 0.4 mol CO2/mol 

MEA held at 135
o
C for 8 days 

 

Figure B.3  IC chromatogram of a 7m MEA sample with a loading of 0.4 mol CO2/mol 

MEA held at 135
o
C for 4 weeks 
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Figure B.4  IC chromatogram of a 7m MEA sample with a loading of 0.4 mol CO2/mol 

MEA held at 135
o
C for 9 weeks 

 

 

Figure B.5  HPLC chromatogram of a 7m MEA sample with a loading of 0.4 mol 

CO2/mol MEA held at 135
o
C for 1 week. 
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B.2  MEA ANALOG CHROMATOGRAMS 

 

 

Figure B.6  IC chromatogram of an undegraded 7m 3-amino-1-propanol sample with a 

loading of 0.4 mol CO2/mol MEA 

 

Figure B.7  IC chromatogram of a 7m 3-amino-1-propanol sample with a loading of 0.4 

mol CO2/mol MEA held at 135
o
C for 8 weeks 

 

Figure B.8  IC chromatogram of an undegraded 7m 4-amino-1-butanol sample with a 

loading of 0.4 mol CO2/mol MEA 
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Figure B.9  IC chromatogram of a 7m 4-amino-1-butanol sample with a loading of 0.4 

mol CO2/mol MEA held at 135
o
C for 8 weeks 

 

 

Figure B.10  IC chromatogram of an undegraded 7m 5-amino-1-pentanol sample with a 

loading of 0.4 mol CO2/mol MEA 

 

 

Figure B.11  IC chromatogram of a 7m 5-amino-1-pentanol sample with a loading of 0.4 

mol CO2/mol MEA held at 135
o
C for 8 weeks 
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Figure B.12  IC chromatogram of an undegraded 7m 6-amino-1-hexanol sample with a 
loading of 0.4 mol CO2/mol MEA 

 

Figure B.13  IC chromatogram of a 7m 6-amino-1-hexanol sample with a loading of 0.4 

mol CO2/mol MEA held at 135
o
C for 8 weeks 

 

 

Figure B.14  IC chromatogram of an undegraded 7m 1-amino-2-propanol sample with a 

loading of 0.4 mol CO2/mol MEA 
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Figure B.15  IC chromatogram of a 7m 1-amino-2-propanol sample with a loading of 0.4 

mol CO2/mol MEA held at 135
o
C for 4 weeks 

 

Figure B.16  IC chromatogram of a 7m 2-amino-1-propanol sample with a loading of 0.4 

mol CO2/mol MEA held at 135
o
C for 4 weeks 

 

 

Figure B.17  IC chromatogram of an undegraded 7m AMP sample with a loading of 0.4 

mol CO2/mol MEA 
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Figure B.18  IC chromatogram of a 7m AMP sample with a loading of 0.4 mol CO2/mol 

MEA held at 135
o
C for 12 weeks 

B.3  MEA BLEND CHROMATOGRAMS 

 

 

Figure B.19  IC chromatogram of an undegraded 7m MEA/2m PZ sample with a loading 

of 0.4 mol CO2/mol alkalinity 

 

Figure B.20  IC chromatogram of a 7m MEA/2m PZ sample with a loading of 0.4 mol 

CO2/mol alkalinity held at 135
o
C for 8 weeks 
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Figure B.21  IC chromatogram of an undegraded 7m MEA/2m morpholine sample with a 

loading of 0.4 mol CO2/mol alkalinity 

 

Figure B.22  IC chromatogram of a 7m MEA/2m morpholine sample with a loading of 

0.4 mol CO2/mol alkalinity held at 135
o
C for 8 weeks 

 

Figure B.23  IC chromatogram of an undegraded 7m MEA/2m DGA
®
 sample with a 

loading of 0.4 mol CO2/mol alkalinity 
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Figure B.24  IC chromatogram of a 7m MEA/2m DGA
®

 sample with a loading of 0.4 

mol CO2/mol alkalinity held at 135
o
C for 8 weeks 

 

Figure B.25  IC chromatogram of an undegraded 7m MEA/2m AMP sample with a 

loading of 0.4 mol CO2/mol alkalinity 

 

 

Figure B.26  IC chromatogram of a 7m MEA/2m AMP sample with a loading of 0.4 mol 

CO2/mol alkalinity held at 135
o
C for 8 weeks 
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B.4  AMINE SCREENING CHROMATOGRAMS 

 

 

Figure B.27  IC chromatogram of an undegraded 2.3m 1-(2-aminoethyl)piperazine 

sample with a loading of 0.4 mol CO2/mol alkalinity 

 

Figure B.28  IC chromatogram of a 2.3m 1-(2-aminoethyl)piperazine sample with a 

loading of 0.4 mol CO2/mol alkalinity held at 135
o
C for 3 weeks 

 

Figure B.29  IC chromatogram of an undegraded 2.3m diethylenetriamine (DETA) 

sample with a loading of 0.4 mol CO2/mol alkalinity 
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Figure B.30  IC chromatogram of a 2.3m diethylenetriamine (DETA) sample with a 

loading of 0.4 mol CO2/mol alkalinity held at 135
o
C for 4 weeks 

 

 

Figure B.31  IC chromatogram of an undegraded 7m DGA
®
 sample with a loading of 0.4 

mol CO2/mol alkalinity 

 

Figure B.32  IC chromatogram of a 7m DGA
®
 sample with a loading of 0.4 mol 

CO2/mol alkalinity held at 135
o
C for 4 weeks 
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Figure B.33  IC chromatogram of an undegraded 3.5m EDA sample with a loading of 0.4 

mol CO2/mol alkalinity 

 

 

Figure B.34  IC chromatogram of a 7m EDA sample with a loading of 0.4 mol CO2/mol 

alkalinity held at 135
o
C for 4 weeks 

 

 

Figure B.35  IC chromatogram of an undegraded 3.5m HEEDA sample with a loading of 

0.4 mol CO2/mol alkalinity 



 

 253 

 

Figure B.36  IC chromatogram of a 7m HEEDA sample with a loading of 0.4 mol 

CO2/mol alkalinity held at 135
o
C for 4 weeks 

 

 

Figure B.37  IC chromatogram of an undegraded 50 wt% MDEA sample with a loading 

of 0.4 mol CO2/mol alkalinity 

 

 

Figure B.38  IC chromatogram of a 50 wt% MDEA sample with a loading of 0.4 mol 

CO2/mol alkalinity held at 135
o
C for 4 weeks 



 

 254 

 

Figure B.39  IC chromatogram of an undegraded 7m morpholine sample with a loading 

of 0.4 mol CO2/mol alkalinity 

 

 

Figure B.40  IC chromatogram of a 7m morpholine sample with a loading of 0.4 mol 

CO2/mol alkalinity held at 150
o
C for 4 weeks 

 

 

Figure B.41  IC chromatogram of an undegraded 3.5m piperazine sample with a loading 

of 0.4 mol CO2/mol alkalinity 
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Figure B.42  IC chromatogram of a 3.5m piperazine sample with a loading of 0.4 mol 

CO2/mol alkalinity held at 135
o
C for 8 weeks 
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Appendix C:  MEA Model vs Experimental Data 

This appendix will show the difference between the MEA model and 

experimental data for several cases.  All the data presented here is in units of molarity 

instead of molality that is used in the rest of the data tables.  Molality is much easier to 

work with when dealing with a system that is adding and subtracting carbon dioxide 

because it is a ratio of the MEA to water and ideally does not change throughout the 

system.  Molarity, however, worked much better in the model development. 
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Table C.1  7m MEA model and experimental data at varying temperatures and CO2 concentrations 

Temp Loading Time MEA 

 
HEEDA 

 
HEIA 

 
Trimer 

 (oC) 
 

(days) Model Exper Model Exper Model Exper Model Exper 

100 0.2 107 4.83 4.50 0.03 0.03 0.00 0.00 0.00 0.00 

100 0.4 28 4.86 4.86 0.02 0.02 0.00 0.00 0.00 0.00 

100 0.4 61.2 4.82 4.82 0.04 0.04 0.00 0.00 0.00 0.00 

100 0.4 107 4.75 4.75 0.06 0.07 0.01 0.00 0.00 0.01 

100 0.5 107 4.71 4.48 0.07 0.08 0.02 0.06 0.01 0.01 

120 0.2 107 4.12 3.95 0.14 0.17 0.14 0.14 0.03 0.04 

120 0.4 14.2 4.69 4.65 0.08 0.07 0.02 0.00 0.01 0.01 

120 0.4 28 4.48 4.42 0.11 0.11 0.06 0.05 0.02 0.02 

120 0.4 61.2 4.00 3.96 0.14 0.14 0.18 0.20 0.03 0.04 

120 0.4 107 3.44 3.52 0.14 0.14 0.33 0.31 0.04 0.05 

120 0.5 61.2 3.79 3.50 0.14 0.12 0.24 0.36 0.04 0.04 

135 0.2 28 3.91 3.81 0.16 0.19 0.19 0.20 0.04 0.04 

135 0.4 4 4.60 4.57 0.10 0.08 0.03 0.00 0.01 0.01 

135 0.4 9 4.22 4.20 0.14 0.15 0.12 0.12 0.03 0.03 

135 0.4 14.2 3.87 3.86 0.15 0.17 0.21 0.23 0.04 0.04 

135 0.4 28 3.09 3.05 0.15 0.16 0.41 0.38 0.05 0.05 

135 0.4 61.2 1.92 1.91 0.15 0.11 0.63 0.58 0.04 0.04 

135 0.5 14.2 3.64 3.34 0.15 0.14 0.28 0.45 0.04 0.04 

150 0.2 9 3.56 3.73 0.18 0.23 0.26 0.25 0.05 0.05 

150 0.4 2 4.22 4.14 0.15 0.16 0.12 0.12 0.03 0.02 

150 0.4 4 3.61 3.63 0.16 0.19 0.28 0.32 0.05 0.04 

150 0.4 7 2.91 2.83 0.15 0.18 0.45 0.49 0.05 0.05 

150 0.4 9 2.55 2.46 0.15 0.16 0.53 0.60 0.05 0.05 

150 0.4 14.2 1.87 1.84 0.15 0.13 0.64 0.61 0.05 0.04 

150 0.5 4 3.33 3.15 0.15 0.16 0.36 0.50 0.05 0.04 
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Table C.2  MEA model and experimental data for all old 120
o
C MEA experiments 

Initial 
MEA  

CO2 
Loading Time  MEA (M)   

HEEDA 
(M)   

HEIA 
(M)   

TriHEIA 
(M)   

(M)   (days) Model Experimental Model Experimental Model Experimental Model Experimental 

6.58 0.2 7 6.48 6.12 0.04 N/A 0.00 0.03 0.00 0.00 

6.58 0.2 14 6.39 6.33 0.08 N/A 0.01 0.07 0.00 0.00 

6.58 0.2 28 6.20 5.86 0.12 N/A 0.04 0.13 0.00 0.00 

6.58 0.2 42 6.01 6.24 0.15 N/A 0.08 0.09 0.01 0.01 

6.58 0.2 56 5.82 5.78 0.17 N/A 0.12 0.15 0.01 0.01 

6.58 0.4 7 6.39 6.22 0.08 N/A 0.01 0.02 0.00 0.01 

6.58 0.4 14 6.19 5.90 0.12 N/A 0.04 0.09 0.00 0.01 

6.58 0.4 28 5.81 5.58 0.17 N/A 0.13 0.11 0.01 0.02 

6.58 0.4 42 5.45 5.14 0.18 N/A 0.22 0.33 0.03 0.03 

6.58 0.4 56 5.12 4.87 0.19 N/A 0.31 0.41 0.06 0.05 

6.58 0.5 7 6.34 6.19 0.09 N/A 0.02 N/A 0.00 0.00 

6.58 0.5 14 6.10 5.76 0.14 N/A 0.06 N/A 0.00 0.02 

6.58 0.5 28 5.62 6.10 0.18 N/A 0.18 N/A 0.02 0.02 

6.58 0.5 42 5.19 4.18 0.18 N/A 0.30 N/A 0.05 0.06 

6.58 0.5 56 4.79 3.95 0.18 N/A 0.41 N/A 0.08 0.09 

4.90 0.2 7 4.85 5.11 0.02 0.00 0.00 0.02 0.00 0.00 

4.90 0.2 14 4.80 4.57 0.04 0.00 0.01 0.05 0.00 0.00 

4.90 0.2 28 4.69 4.60 0.08 0.00 0.02 0.09 0.00 0.00 

4.90 0.2 42 4.58 4.39 0.10 0.04 0.04 0.10 0.00 0.00 

4.90 0.2 56 4.48 4.40 0.11 0.08 0.06 0.13 0.01 0.00 

4.90 0.4 7 4.80 4.82 0.04 0.04 0.01 0.03 0.00 0.00 

4.90 0.4 14 4.69 4.50 0.08 0.05 0.02 0.05 0.00 0.00 



 

 259 

Initial 
MEA  

CO2 
Loading Time  MEA (M)   

HEEDA 
(M)   

HEIA 
(M)   

TriHEIA 
(M)   

(M)   (days) Model Experimental Model Experimental Model Experimental Model Experimental 

4.90 0.4 42 4.27 4.25 0.13 0.10 0.11 0.21 0.01 0.02 

4.90 0.4 56 4.07 4.31 0.14 0.12 0.16 0.35 0.02 0.03 

4.90 0.5 7 4.77 4.60 0.05 0.05 0.01 0.03 0.00 0.00 

4.90 0.5 14 4.64 4.22 0.09 0.08 0.03 0.07 0.00 0.00 

4.90 0.5 28 4.37 4.00 0.12 0.09 0.09 0.16 0.01 0.02 

4.90 0.5 42 4.11 3.68 0.14 0.12 0.15 0.22 0.02 0.04 

4.90 0.5 56 3.87 3.50 0.14 0.12 0.22 0.30 0.04 0.06 

2.88 0.2 7 2.87 3.24 0.01 0.00 0.00 0.02 0.00 0.00 

2.88 0.2 14 2.85 2.72 0.02 0.00 0.00 0.03 0.00 0.00 

2.88 0.2 28 2.81 2.63 0.03 0.00 0.00 0.04 0.00 0.00 

2.88 0.2 42 2.77 2.59 0.04 0.00 0.01 0.06 0.00 0.00 

2.88 0.2 56 2.74 2.62 0.05 0.17 0.01 0.03 0.00 0.00 

2.88 0.4 7 2.85 3.17 0.02 0.00 0.00 0.02 0.00 0.00 

2.88 0.4 14 2.81 2.66 0.03 0.00 0.00 0.04 0.00 0.00 

2.88 0.4 28 2.74 2.58 0.05 0.00 0.01 0.02 0.00 0.00 

2.88 0.4 42 2.66 2.48 0.06 0.09 0.03 0.11 0.00 0.00 

2.88 0.4 56 2.59 2.83 0.07 0.07 0.04 0.20 0.00 0.02 

2.88 0.5 7 2.84 3.22 0.02 0.00 0.00 0.03 0.00 0.00 

2.88 0.5 14 2.79 2.69 0.04 0.00 0.01 0.05 0.00 0.00 

2.88 0.5 28 2.70 2.33 0.06 0.07 0.02 0.07 0.00 0.00 

2.88 0.5 42 2.61 2.31 0.07 0.12 0.04 0.12 0.00 0.00 

2.88 0.5 56 2.51 2.39 0.08 0.12 0.06 0.17 0.01 0.00 
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Table C.3  MEA model and experimental data for all old 135
o
C MEA experiments 

Initial 
MEA  

CO2 
Loading Time 

 MEA 
(M)   

HEEDA 
(M)   

HEIA 
(M)   

TriHEIA 
(M)   

(M)   (days) Model Experimental Model Experimental Model Experimental Model Experimental 

6.58 0.2 7 6.10 6.42 0.14 0.04 0.06 0.11 0.00 0.00 

6.58 0.2 14 5.64 5.92 0.19 0.10 0.16 0.22 0.02 0.00 

6.58 0.2 28 4.89 5.61 0.21 0.20 0.34 0.22 0.07 0.00 

6.58 0.2 42 4.34 5.18 0.23 0.22 0.46 0.22 0.12 0.02 

6.58 0.2 56 3.89 4.70 0.24 0.26 0.54 0.28 0.16 0.05 

6.58 0.4 7 5.62 5.80 0.19 0.15 0.17 0.14 0.02 0.00 

6.58 0.4 14 4.80 4.43 0.20 0.20 0.40 0.36 0.07 0.03 

6.58 0.4 28 3.61 4.26 0.18 0.19 0.70 N/A 0.18 0.11 

6.58 0.4 42 2.81 3.27 0.18 0.18 0.86 0.47 0.27 0.14 

6.58 0.4 56 2.20 2.75 0.18 0.16 0.95 N/A 0.34 0.25 

6.58 0.5 7 5.39 5.00 0.19 0.16 0.24 N/A 0.03 0.02 

6.58 0.5 14 4.42 4.09 0.19 0.17 0.51 N/A 0.10 0.07 

6.58 0.5 28 3.08 2.95 0.16 0.13 0.84 N/A 0.23 0.19 

6.58 0.5 42 2.22 2.48 0.15 0.12 1.01 N/A 0.33 0.22 

6.58 0.5 56 1.60 1.85 0.14 0.09 1.10 N/A 0.41 0.30 

4.90 0.2 7 4.63 4.38 0.09 0.04 0.03 0.02 0.00 0.00 

4.90 0.2 14 4.37 4.41 0.13 0.11 0.08 0.05 0.01 0.00 

4.90 0.2 28 3.91 4.27 0.16 0.16 0.19 0.11 0.03 0.00 

4.90 0.2 56 3.22 3.50 0.18 0.18 0.33 0.19 0.09 0.03 

4.90 0.4 7 4.37 4.31 0.13 0.10 0.08 0.10 0.01 0.00 

4.90 0.4 14 3.87 4.28 0.15 0.13 0.21 0.26 0.03 0.02 

4.90 0.4 28 3.09 3.42 0.15 0.15 0.41 0.39 0.10 0.06 
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Initial 
MEA  

CO2 
Loading Time 

 MEA 
(M)   

HEEDA 
(M)   

HEIA 
(M)   

TriHEIA 
(M)   

(M)   (days) Model Experimental Model Experimental Model Experimental Model Experimental 

4.90 0.4 56 2.07 2.37 0.15 0.13 0.61 0.49 0.21 0.13 

4.90 0.5 7 4.23 4.05 0.14 0.11 0.12 0.15 0.01 0.00 

4.90 0.5 14 3.64 3.46 0.15 0.12 0.28 0.32 0.05 0.04 

4.90 0.5 28 2.74 2.69 0.14 0.09 0.51 0.49 0.13 0.10 

4.90 0.5 42 2.11 2.42 0.13 0.09 0.64 0.45 0.20 0.17 

4.90 0.5 56 1.63 1.73 0.13 0.08 0.72 0.50 0.26 0.19 

2.88 0.2 7 2.79 2.79 0.04 0.00 0.01 0.06 0.00 0.00 

2.88 0.2 14 2.70 2.71 0.06 0.00 0.02 0.10 0.00 0.00 

2.88 0.2 28 2.52 2.58 0.08 0.08 0.06 0.06 0.01 0.00 

2.88 0.2 42 2.36 2.54 0.10 0.04 0.09 0.10 0.02 0.00 

2.88 0.2 56 2.21 2.32 0.10 0.06 0.12 0.17 0.03 0.02 

2.88 0.4 7 2.70 2.72 0.06 0.00 0.02 0.03 0.00 0.00 

2.88 0.4 14 2.51 2.43 0.08 0.02 0.06 0.15 0.01 0.00 

2.88 0.4 28 2.18 2.24 0.09 0.08 0.14 0.21 0.03 0.02 

2.88 0.4 56 1.67 0.05 0.10 0.00 0.25 0.36 0.07 0.00 

2.88 0.5 7 2.65 2.54 0.07 0.03 0.03 0.09 0.00 0.00 

2.88 0.5 14 2.42 3.09 0.09 0.06 0.08 0.32 0.01 0.02 

2.88 0.5 28 2.03 2.01 0.09 0.04 0.18 0.31 0.04 0.03 

2.88 0.5 42 1.71 1.93 0.09 0.03 0.26 0.38 0.07 0.05 

2.88 0.5 56 1.44 1.49 0.09 0.05 0.31 0.37 0.10 0.07 
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Appendix D:  Methods Details 

This appendix will document settings and programming for various analytical 

methods covered in Chapter 3. 

D.1  CATION IC METHOD JASON3AUTO PROGRAM 

Dionex programming code for Jason3Auto program on ICS-2000 system where 

Eluent A is 6mM MSA, Eluent B is 8mM MSA, Eluent C is 55mM MSA and Eluent D is 

Millipore DI water. 

 

; ECD.MSA =  22.0 

; ECD.Recommended Current =  78 

 Pressure.LowerLimit = 200 

 Pressure.UpperLimit = 4000 

 %A.Equate = "6" 
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 %B.Equate = "8" 

 %C.Equate = "55" 

 %D.Equate = "%D" 

 Pump_InjectValve.LoadPosition 

 Data_Collection_Rate = 2.0 

 Temperature_Compensation = 1.7 

 Oven_Temperature = 40 

 Suppressor_Type = CSRS_4mm 

; ECD.H2SO4 =  0.0 

; ECD.Other eluent =  0.0 

 

 Suppressor_Current = 136 

 

-3.000 Flow = 1.20 

 %B = 90.0 

 %C = 10.0 

 %D = 0.0 

 Curve = 5 

 

-2.400 Pump_relay_1.open 

 

-2.300 Pump_Relay_1.Closed         duration = 120 

       Flow = 1.20 

 %B = 90.0 

 %C = 10.0 

 %D = 0.0 

 Curve = 5 

 

 0.000 Autozero 

 Flow = 1.20 

 %B = 90.0 

 %C = 10.0 

 %D = 0.0 

 Curve = 5 

 ECD_1.AcqOn 

 Pump_InjectValve.InjectPosition Duration= 30 

 Flow = 1.20 

 %B = 90.0 

 %C = 10.0 

 %D = 0.0 

 Curve = 5 

 

 

7.000 Flow = 1.20 

 %B = 90.0 

 %C = 10.0 

 %D = 0.0 

 Curve = 5 
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7.001 Flow = 1.20 

 %B = 80.0 

 %C = 20.0 

 %D = 0.0 

 Curve = 5 

 

12.000 Flow = 1.20 

 %B = 80.0 

 %C = 20.0 

 %D = 0.0 

 Curve = 5 

 

17.00 Flow = 1.20 

 %B = 30.0 

 %C = 70.0 

 %D = 0.0 

 Curve = 5 

 

20.000 ECD_1.AcqOff 

 Flow = 1.20 

 %B = 30.0 

 %C = 70.0 

 %D = 0.0 

 Curve = 5 

 

 End 

 

D.2  CATION IC PROGRAM SHUTDOWN 

 

Dionex programming code for Shutdown program on ICS-2000 system where 

Eluent A is 6mM MSA, Eluent B is 8mM MSA, Eluent C is 55mM MSA and Eluent D is 

Millipore DI water.  This program was run at the end of each sample to change the eluent 

to 100% water, reduce the flowrate and shut off the suppressor. 
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; ECD.MSA =  22.0 

; ECD.Recommended Current =  78 

 Pressure.LowerLimit = 200 

 Pressure.UpperLimit = 4000 

 %A.Equate = "6" 

 %B.Equate = "8" 

 %C.Equate = "55" 

 %D.Equate = "%D" 

 Pump_InjectValve.LoadPosition 

 Data_Collection_Rate = 2.0 

 Temperature_Compensation = 1.7 

 Oven_Temperature = 40 

 Suppressor_Type = CSRS_4mm 

; ECD.H2SO4 =  0.0 

; ECD.Other eluent =  0.0 

 

 Suppressor_Current = 0 

 

-3.000 Flow = 0.20 

 %B = 100 

 %C = 0. 

 %D = 0.0 

 Curve = 5 

 

-2.400 Pump_relay_1.open 

 

-2.300 Pump_Relay_1.Closed         duration = 120 

       Flow = 0.20 

 %B = 100.0 

 %C = 0.0 

 %D = 0.0 

 Curve = 5 

 

 0.000 Autozero 

 Flow = 0.20 

 %B = 100.0 

 %C = 0.0 

 %D = 0.0 

 Curve = 5 

 ECD_1.AcqOn 

 Pump_InjectValve.InjectPosition Duration= 30 

 Flow = 0.20 

 %B = 100.0 

 %C = 0.0 

 %D = 0.0 

 Curve = 5 

 

20.000 ECD_1.AcqOff 
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 Flow = 0.20 

 %B = 100.0 

 %C = 0.0 

 %D = 0.0 

 Curve = 5 

 

 End 

 

D.3  HPLC HEIA2 PROGRAM FOR ICS-3000 DUAL IC/HPLC SYSTEM 

 

Dionex programming code for HEIA2 program on ICS-3000 system where Eluent 

A is Millipore DI water and Eluent B is acetonitrile.  The evaporator temperature for the 

evaporative light scattering detector is set to 50
o
C and the nebulizer is set to 70

o
C with a 

nitrogen flow rate of 1.6 slm.   

 
 Sampler.AcquireExclusiveAccess 

 Sampler_DiverterValve.Position_1 

 Column_TC.AcquireExclusiveAccess 

 Pressure.LowerLimit =  200 [psi] 

 Pressure.UpperLimit =  3500 [psi] 

 MaximumFlowRamp =  1.00 [ml/min²] 

 %A.Equate =  "%A" 

 %B.Equate =  "%B" 

 %C.Equate =  "%C" 

 %D.Equate =  "%D" 

 Flush Volume = 250 

 NeedleHeight =  2 [mm] 

 CutSegmentVolume =  10 [µl] 

 SyringeSpeed =  4 

 CycleTime =  0 [min] 

 WaitForTemperature =  False 

 Pump_1_Pressure.Step =  Auto 

 Pump_1_Pressure.Average =  On 

 Wait  FlushState 

 ELS_1.Step =  0.10 [s] 

 ELS_1.Average =  On 

 Column_TC.Mode =  On 

 Column_TC.TemperatureSet =  30.00 [°C] 

 ;Wait  Column_TC.TemperatureState 
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 Wait SampleReady 

 ELSD.Standby = NoStandby 

 EvaporatorTemperature.Nominal = 50 [°C] 

 NebuliserTemperature.Nominal = 70 [°C] 

 CarrierFlow.Nominal = 1.60 [slm] 

 PMTGain = 1 

 LightSourceIntensity = 85[%] 

 SmoothWidth = 20 

  

 

 

 

-2.000 Flow =  1.000 [ml/min] 

 %B =  2.0 [%] 

 %C =  0.0 [%] 

 %D =  0.0 [%] 

 

 0.000 ELSD.Autozero 

 Wait AZ_Done 

 Wait Ready 

 Load 

 Wait CycleTimeState 

 Inject 

 Wait InjectState 

 Pump_1_Pressure.AcqOn 

 ELS_1.AcqOn 

 Sampler.ReleaseExclusiveAccess 

 Column_TC.ReleaseExclusiveAccess 

 

 8.000 Flow =  1.000 [ml/min] 

 %B =  2.0 [%] 

 %C =  0.0 [%] 

 %D =  0.0 [%] 

 

15.000 Flow =  1.000 [ml/min] 

 %B =  20.0 [%] 

 %C =  0.0 [%] 

 %D =  0.0 [%] 

 

20.000 Pump_1_Pressure.AcqOff 

 ELS_1.AcqOff 

 Flow =  1.000 [ml/min] 

 %B =  20.0 [%] 

 %C =  0.0 [%] 

 %D =  0.0 [%] 

 ;Column_TC.ReleaseExclusiveAccess 

 End 
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D.4  HPLC ELS SHUTDOWN3 PROGRAM FOR ICS-3000 DUAL IC/HPLC SYSTEM 

 

Dionex programming code for ELS Shutdown3 program on ICS-3000 system 

where Eluent A is Millipore DI water and Eluent B is acetonitrile.  This method shuts 

was run at the end of each batch of samples to shut down the system by shutting off the 

ELSD and pump. 

   
 

 Sampler.AcquireExclusiveAccess 

 Column_TC.AcquireExclusiveAccess 

 Pressure.LowerLimit =  200 [psi] 

 Pressure.UpperLimit =  3500 [psi] 

 MaximumFlowRamp =  1.00 [ml/min²] 

 %A.Equate =  "%A" 

 %B.Equate =  "%B" 

 %C.Equate =  "%C" 

 %D.Equate =  "%D" 

 Flush Volume = 250 

 NeedleHeight =  2 [mm] 

 CutSegmentVolume =  10 [µl] 

 SyringeSpeed =  4 

 CycleTime =  0 [min] 

 WaitForTemperature =  False 

 Pump_1_Pressure.Step =  Auto 

 Pump_1_Pressure.Average =  On 

 Wait  FlushState 

 ELS_1.Step =  0.10 [s] 

 ELS_1.Average =  On 

 Column_TC.Mode =  On 

 Column_TC.TemperatureSet =  30.00 [°C] 

 Wait  Column_TC.TemperatureState 

 Wait SampleReady 

 Flow =  1.000 [ml/min] 

 %B =  2.0 [%] 

 %C =  0.0 [%] 

 %D =  0.0 [%] 

 ;vaporatorTemperature.Nominal = 100 [°C] 

 ;ebuliserTemperature.Nominal = 50 [°C] 

 ;CarrierFlow.Nominal = 1.60 [slm] 

 ;PMTGain = 3.5 

 ;LightSourceIntensity = 85[%] 
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 0.000 ELSD.Autozero 

 Wait AZ_Done 

 Wait Ready 

 Load 

 Wait CycleTimeState 

 Inject 

 Wait InjectState 

 ;Pump_1_Pressure.AcqOn 

 ;ELS_1.AcqOn 

 Sampler.ReleaseExclusiveAccess 

 

0.050 ;Pump_1_Pressure.AcqOff 

 ;ELS_1.AcqOff 

 ELSD.Standby = Standby 

 Motor = Off 

 Column_TC.ReleaseExclusiveAccess 

 End 

 

D.5  IC/MS JASON3AUTOSLOW PROGRAM  

 

 
       Sampler.AcquireExclusiveAccess 

       ;Initialize all Xcalibur synchronisation properties 

to 0. 

        ;Initialize all Xcalibur synchronisation properties 

to 0. 

       ReadyToRun =                  0 

       StartRun =                    0 

       InjectResponse =              0 

       Pressure.LowerLimit =         200 [psi] 

       Pressure.UpperLimit =         3000 [psi] 

       %A.Equate =                   "%A" 

       CR_TC =                       On 

       Flush Volume =                100 

       Wait  FlushState 

       NeedleHeight =                0 [mm] 

       CutSegmentVolume =            0 [µl] 

       SyringeSpeed =                3 

       CycleTime =                   0 [min] 

       WaitForTemperature =          False 
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       Data_Collection_Rate =        5.0 [Hz] 

       CellTemperature.Nominal =     30.0 [°C] 

       ColumnTemperature.Nominal =   30.0 [°C] 

       Suppressor_Type =             CSRS_4mm 

       ; Pump_ECD.H2SO4 =            0.0 

       ; Pump_ECD.MSA =              6.0 

       ; Pump_ECD.Other eluent =     0.0 

       ; Pump_ECD.Recommended Current =18 

       ; Pump_ECD.H2SO4 =            0.0 

       ; Pump_ECD.MSA =              6.0 

       ; Pump_ECD.Other eluent =     0.0 

       ; Pump_ECD.Recommended Current =24 

       Suppressor_Current =          136 [mA] 

       ECD_Total.Step =              0.20 [s] 

       ECD_Total.Average =           Off 

       Channel_Pressure.Step =       0.20 [s] 

       Channel_Pressure.Average =    Off 

       ;Wait                          SampleReady 

       Flow =                        0.50 [ml/min] 

       Pump_InjectValve.State LoadPosition 

       Wait                          SampleReady 

 

 0.000 ;Chromeleon sets this property to signal to 

Xcalibur, that it is ready to start a run. 

       ReadyToRun =                  1 

       ;Xcalibur sets this property to start the run or 

injection. 

       Wait                          StartRun 

 

 0.000 ;Chromeleon sets this property to signal to 

Xcalibur, that it is ready to start a run. 

       ;Xcalibur sets this property to start the run or 

injection. 

       Autozero 

       Concentration =               5.50 [mM] 

              Load 

              Wait                          CycleTimeState 

       Inject 

              Wait                          InjectState 

       ;Chromeleon sets this property to signal the 

injection to Xcalibur. 

       InjectResponse =              1 

       ;Chromeleon sets this property to signal the 

injection to Xcalibur. 
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       Pump_ECD_Relay_1.State Open 

              Sampler.ReleaseExclusiveAccess 

       Concentration =               5.50 [mM] 

 

 0.100 Pump_ECD_Relay_1.Closed Duration=138.00 

 

 2.300 Pump_InjectValve.InjectPosition Duration=30.00 

 

 2.400 ECD_1.AcqOn 

       ECD_Total.AcqOn 

       Channel_Pressure.AcqOn 

       Pump_ECD_Relay_2.Closed Duration=138.00 

       Concentration =               5.50 [mM] 

 

 16.400 Concentration =              5.50 [mM] 

 

 16.500 Concentration =              11.00 [mM] 

 

 26.400 Concentration =              11.00 [mM] 

 

 36.400 Concentration =              55.00 [mM] 

 

 47.400 Concentration =              55.00 [mM] 

 

 47.500 Concentration =              5.500 [mM] 

 

 50.00 Concentration =               5.500 [mM] 

        ECD_1.AcqOff 

        ECD_Total.AcqOff 

        Channel_Pressure.AcqOff 

        End 

 

D.6  IC/MS SHUTDOWN PROGRAM 

; Press F8 to open the command dialog 

; to add commands to the On/Off/Standby program. 

; For details see the online help. 

 PumpMode = On 

 Concentration = 0.00 [mM] 

 Flow = 0.20 [ml/min] 

 Suppressor_Mode = Off 

 CR_TC = Off 

 EluentGenerator.Mode = Off 
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D.7  THERMO TSQ SETTINGS 

This is the method details for the Thermo TSQ for all of the IC/MS methods.  

Only the first quadrapole is used with a mass to charge range of 50 to 300 m/z.  This 

could be modified to get a more accurate mass reading for a particular peak by reducing 

the scan range for the specific peak of interest and modifying the peak width, currently at 

0.7, to 0.05 which could give information as to the combination of nitrogen, carbon, 

oxygen and hydrogen atoms in the unknown species since each atom has a different blend 

of isotopes.  There are several programs on the internet that can give you the best 

possible combination of these species based on an accurate mass which could help in the 

further identification. 
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D.8  TSQ TUNE METHOD SETTINGS 

 These settings were optimized for MEA but worked well for all the amines tested. 

 

First Quadrapole Settings 

Lens 1-1 Voltage (V)   -0.9 

Lens 1-2 Voltage (V)   -33.4 

(+) Rod Driver Voltage (V)  76.7 

(-) Rod Driver Voltage (V)  -82.0 

Amplifier Temperature (C)  32 

Thermal Hat Temperature (C) 42   

 

Ion Optics Settings 

Q00 Offset (V)   -2.0 

Lens 0 Offset (V)   -0.7 

Q0 Offset (V)    -2.0 

Q00 and Q0 RF Voltage (V)  153 

 

Ion Source Settings 

 Spray Voltage (V)   4000 

Spray Currrent (uA)   7 

Sheath Gas Pressure (Arb)  49 

Aux Gas Pressure (Arb)  5 

Capillary Temp ( C)   200 

Capillary Offset (V)   35 

Tube Lens Offset (V)   63 
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