
 

 

 

 

 

 

 

 

 

Copyright 

by 

David Hamilton Van Wagener  

2011 

 

  



The Dissertation Committee for David Hamilton Van Wagener Certifies that this is 

the approved version of the following dissertation: 

 

 

Stripper Modeling for CO2 Removal Using Monoethanolamine and 

Piperazine Solvents 

 

 

 

 

 

Committee: 

 

Gary T. Rochelle, Supervisor 

A. Frank Seibert 

Thomas F. Edgar 

Thomas M. Truskett 

Craig N. Schubert 



 Stripper Modeling for CO2 Removal Using Monoethanolamine and 

Piperazine Solvents 

 

 

 

by 

David Hamilton Van Wagener, B.S. 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

Doctor of Philosophy 

 

 

 

The University of Texas at Austin 

August 2011 



Dedication 

 

 

To my family 

 

 



 v 

Acknowledgements 

 

First and foremost, I would like to thank my research advisor, Dr. Gary Rochelle.  

He has provided immense support throughout this work with his guidance, 

encouragement, and enthusiasm.  He has incredible passion and dedication to the field of 

carbon capture, and working with him on this topic has been a privilege.  He was always 

ready to discuss the problem at hand, whether it would take 2 minutes or 2 hours.  His 

love and knack for chemical engineering was always apparent when he would quickly 

resolve a quandary by pulling an equation, seemingly out of nowhere, to explain the 

phenomenon in question.  I will carry the influence of Dr. Rochelle as I continue my 

career in the field of chemical engineering research. 

I would also like to thank the funding sources for this project.  The Luminant 

Carbon Management Program and the Industrial Associates Program for CO2 capture 

directly supplied funding support for this project.  Specifically, I really appreciate the 

support of Aspentech and Chau-Chyun Chen to resolve the occasional software glitch.  

Additionally, the CO2 Capture Pilot Plant Project (C2P3) supported the pilot plant 

campaigns that were analyzed in this project. 

I also gratefully acknowledge the help that I received from the entire chemical 

engineering support staff.  Maeve Cooney has been immensely helpful and 

accommodating.  Maeve is always willing to lend a hand whether the task is large or 

small.  T Stockman also deserves my gratitude for helping sort through the "graduate 

student rules" when the handbooks were not so easy to comprehend.  Jim Smitherman, 

Butch Cunningham, and Kevin Haynes also served vital roles for me.  The doors, 

furniture, and stairwell were not always designed with handicap accessibility in mind, but 



 vi 

you went out of your way to make sure that I was comfortable and could get my work 

done.  I have also had the pleasure of working occasionally with Randy Rife and Patrick 

Danielewski to resolve hardware and Aspen issues. 

The support and camaraderie of the other students in the Rochelle Group was 

invaluable to my successes: Babatunde Oyenekan, Marcus Hilliard, Eric Chen, Jason 

Davis, Andrew Sexton, Ross Dugas, Bob Tsai, Stephanie Freeman, Xi Chen, Jorge Plaza, 

Sepideh Ziaii, Qing Xu, Fred Closmann, Stephanie Freeman, Thu Nguyen, Stuart Cohen, 

Peter Frailie, Alex Voice, Chao Wang, Lynn Li, Mandana Ashouri, Steven Fulk, Humera 

Rafique, and Omkar Namjoshi.  Sharing an office with Jorge, Peter, and Bob was a great 

experience, and they were always helpful for the instances where a quick group 

discussion avoided hours of searching for the solution alone.  Also, having now gone 

through the experience of writing a dissertation and preparing for the defense, I 

appreciate every minute that was spared by previous group members when they were on 

the verge of defending.  I learned the basics of stripper modeling from Babatunde 

Oyenekan as he was just finishing his writing; it certainly was not the most stress-free 

moment in time for him, and I appreciate the valuable lessons!  Working in the Rochelle 

group was a great experience. 

I have met a number of great people that I had shared my time with while 

studying in Austin.  In addition to other members of the group like Jorge, Peter, Bob, 

Stephanie, Alex, Ross, and Andrew, I've enjoyed unwinding from the stresses of grad 

school with other good friends.  I still have memories of working on the homework for 

first-year classes alongside Dan Miller, Adam Stephens, Grant Offord, Scott Owens, Sara 

Jones, and David Trombly.  The hours spent in the graduate lounge went by much 

quicker with your company..  I also appreciate the friends and support that has come from 

my roommates over the last 5 years: Dan Miller, Matt Panthani, Tarik Khan, Yevgeniy 



 vii 

Reznik, Thomas Nguyen, and Thomas Lewis.  There is not enough space for everyone 

here, but thank you to all of my Austin friends! 

Above all, I would like to thank my family.  You have always been my greatest 

supporter.  You are continually the source of my drive to succeed!  To my parents, thank 

you for all the encouragement to find what makes me happy while giving a helpful nudge 

when needed.  You have raised us to value family, even after venturing out on our own.  

To my brother and sister, you are great siblings and the best friends I could ask for.  

Whether sharing new music, offering advice, or exploring the world together, I always 

value having you in my life. 

 

 

 

 

 



 viii 

Stripper Modeling for CO2 Removal by Monoethanolamine and 
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Publication No._____________ 

 

 

David Hamilton Van Wagener, Ph.D. 
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Supervisor: Gary T. Rochelle 

 

This dissertation seeks to reduce the energy consumption of steam stripping to 

regenerate aqueous amine used for CO2 capture from coal-fired power plants.  Rigorous 

rate-based models in Aspen Plus
®
 were developed, and rate-based simulations were used 

for packed vapor/liquid separation units.  Five main configurations with varying levels of 

complexity were evaluated with the two solvents.  8 m piperazine (PZ) always performed 

better than 9 m monoethanolamine (MEA).  More complex flowsheets stripped CO2 with 

higher efficiency due to the more reversible separation.  Multi-stage flash configurations 

were competitive at their optimal lean loadings, but they had poor efficiency at low lean 

loading.  The most efficient configuration was an interheated column, with more effective 

and distributed heat exchange.  It had a secondary benefit of a cooler overhead 

temperature, so less water vapor exited with the CO2.  Using a rich loading of 0.40 mol 

CO2/mol alkalinity in 8 m PZ, the optimal lean loading was 0.28 and the energy 

requirement was 30.9 kJ/mol CO2. 
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Case studies were also performed on cold rich bypass and the use of geothermal 

heat.    When cold rich bypass is used with the 2-stage flash and 8 m PZ, it reduces 

equivalent work by 11% to 30.7 kJ/mol CO2.  PZ benefited the most from cold rich 

bypass because it had a higher water concentration in the overhead vapor than with MEA.  

In an advanced 2-stage flash with 8 m PZ, geothermal heat available from 150 down to 

100 °C requires 35.5 kJ work/mol CO2.  The heat duty and equivalent work was higher 

than other optimized configurations, but it would be a valid option if separating the heat 

source from the steam cycle of a coal-fired power plant was highly valued. 

Pilot plant campaigns were simulated with the available thermodynamic models.  

Two campaigns with 8 m PZ were simulated within small deviation from the measured 

values.  The average absolute errors in these campaigns were 2.5 and 2.7%.  A campaign 

with 9 m MEA in a simple stripper demonstrated that the MEA model did not predict the 

solvent properties well enough to appropriately represent the pilot plant operation.   
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Chapter 1: Introduction 

 

 

 

This chapter introduces the need for stripper modeling in the context of carbon 

dioxide (CO2) capture from coal-fired power plants.  Coal combustion for power 

production is a significant point source of CO2.  Post-combustion capture by 

absorption/stripping with alkanolamines is the state-of-the-art technology which has prior 

applications in the field of acid gas treating.  Modeling of the stripper component is 

essential to help evaluate and optimize the process operation to reduce the overall cost.  

The penalty of using a standard technology absorption/stripping process for CO2 removal 

from coal-fired power plants has been estimated to be approximately 30% of the total 

electricity produced, and the majority of the energy is used in the stripper and CO2 

compression.  The expected benefits of stripper modeling are discussed in this chapter.  

The research objectives are defined, and the scope of this work is described. 

 

1.1. CO2 CAPTURE FROM COAL-FIRED POWER PLANTS 

A study of atmospheric carbon dioxide concentrations at Mauna Loa, Hawaii was 

initiated in 1960, and it determined that CO2 levels have risen by about 17% in 41 years 

(Keeling et al., 2004).  Additionally, Antarctic ice cores show that trends over geologic 

scales of the average Earth surface temperature and the atmospheric CO2 concentration 

nearly track each other.  This observation suggests a direct correlation of atmospheric 

CO2 concentration with global surface temperatures (Petit et al., 1999).  The annual 

worldwide carbon emissions continue to rise each year, which have increased the 
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atmospheric CO2 concentration to 390 ppm from preindustrial levels of 300 ppm (Bates 

et al., 2008; Tans, 2010).  In order to attempt to mitigate global climate change by 

reducing greenhouse gases in the atmosphere, the release of carbon dioxide should be 

addressed.  While the CO2 emission rate of each individual coal-fired power plant is 

highly dependent on plant technology and type of coal, an emission rate of approximately 

10,000 ton/day is typical for a 500 MWe plant (Fisher et al., 2005).  Moreover, coal is the 

largest electricity producer in the United States, accounting for nearly 50% of the total 

production (EIA, 2006).  For this reason, coal-fired power plants have been recognized as 

the most important target for reducing point source emissions of CO2. 

 

1.2. ABSORPTION/STRIPPING WITH AMINE SOLVENTS 

Absorption/stripping using alkanolamine solvents is the state-of-the-art 

technology for removing CO2 from the flue gas of coal-fired power plants.  It is a post-

combustion technology, and a flowsheet describing its expected integration with a power 

plant is shown in Figure 1-1.  It is a tail-end process which could be installed with new 

plants, but it could also be retrofitted to current plants with few changes to the existing 

power plant.  Most coal-fired power plants already use an electrostatic precipitator (ESP) 

to remove fly ash and a flue gas desulfurization unit (FGD) to remove SOx.  The 

absorption/stripping unit would treat the flue gas after exiting the FGD.  After CO2 

removal, the cleaned flue gas travels to the stack, and the removed CO2 is compressed for 

sequestration.  To heat the reboiler, the absorption/stripping unit uses low-pressure steam 

taken between the IP and LP steam turbines in the coal plant.  Electricity is used to run 

the CO2 compressor and solvent circulation pumps. 
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Figure 1-1: Absorption/Stripping As a Post-Combustion Process for CO2 Capture from 

Coal-Fired Power Plants 

A generic flowsheet of the absorption process is shown in Figure 1-2.  Flue gas 

enters the absorber with approximately 12  mol% CO2 and is counter-currently contacted 

by the amine solvent, which absorbs 90% of the CO2 by a reversible chemical reaction.  

The treated gas is then sent to the stack.  The rich solvent exits the bottom of the absorber 

and is heated by hot lean solvent in a cross heat exchanger, then enters the top of the 

stripper.  Steam supplied to the reboiler of the stripper generates steam, which 

countercurrently contact the amine solution.  The steam strips CO2 from the solvent as it 

travels up the column.  The lean solvent exits from the reboiler and is recycled to the top 

of the absorber after being cooled by the cross exchanger and an additional trim cooler. 
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Figure 1-2: Absorption/Stripping with Alkanolamine Solutions 

 Aqueous monoethanolamine (MEA) is the current standard solvent in a 

concentration of 7 m (30 wt%); it has the most substantial research base.  It has also been 

used in the past for similar applications like H2S removal from natural gas.  Removing 

90% of CO2 using MEA is possible with this technology, but the capital cost and energy 

requirement of current systems are currently prohibitive (Rochelle, 2007).  The steam and 

electricity used for operating the pumps, compressors, and stripper reboiler typically 

accounts for 20-30% of the total power plant output.  In order to be a practical solution 

for industrial CO2 producers, the total energy penalty must be reduced. 

 

1.3. STRIPPER MODELING 

Although the energy consumption of a base case stripper with 7 m MEA is high, 

computer modeling of these process units can improve the understanding of the 

underlying mechanisms and help locate areas where work is lost.  This knowledge can 
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aid in the implementation of advanced technologies to reduce the overall energy usage.  

An accurate model is an important tool for the design and optimization of a full-scale 

process. 

There are two important considerations in the development of a stripper with high 

efficiency.  As with any chemical process, configurations with more complex heat and 

material recycles improve the overall reversibility by reducing driving forces (Leites et 

al., 2003).  Any realistic process has innate inefficiencies due to the driving forces 

required to minimize overall capital costs, but the efficiency of a simple stripper case can 

be drastically improved by introducing some complexity to the flowsheet.  The second 

important consideration is solvent choice.  Certain properties of the amine solvent can 

significantly affect the performance; these properties include CO2-carrying capacity, heat 

of absorption, heat capacity, and thermal degradation rate.  Reaction rate with CO2 at low 

temperature affects the performance of the absorber, which has a secondhand effect on 

the stripper operation. 

Although developing a process with a reduced energy requirement is the desired 

output of stripper modeling, another important aspect of developing a good model is 

ensuring accurate representation of the solvent and process.  Truthful representation of 

the solvent properties is accomplished by utilizing equilibrium and rate-based models to 

describe the behavior.  After selecting and cultivating the model of choice, additional 

checks of the model predictions are required.  Stripper models and pilot plant campaigns 

assist each other in being successful.  The model helps guide decisions of run conditions 

for pilot plant campaigns, and measurements from completed campaigns are used in the 

stripper model to verify accurate portrayal of the process.  A model verified with pilot 

scale data is a powerful tool to reliably suggest configurations and conditions for a full-

scale process. 
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1.4. PRIOR WORK 

Table 1-1 briefly summarizes previous simulation work in the area of 

absorption/stripping.  The contributions are categorized into system models (combined 

absorber and stripper modeling), absorber models, and stripper models.  Nearly all 

authors included an analysis of rate-based calculations, but kinetically controlled 

reactions were not usually considered. 

The majority of previous work in modeling of CO2 capture with aqueous amines 

focused on improving capture in the absorber; fewer papers have been published that 

emphasize the importance of optimizing the stripper performance.  Previous efforts in 

stripper modeling by other authors have implemented a variety of types of solvent 

models.  The models ranged in complexity; the simplest consisted of sets of equation-

based correlations to predict a minimum number of properties, and the most complicated 

utilized full thermodynamic models (like the e-NRTL model) to be internally consistent.  

Each model developed for an individual solvent system required a substantial amount of 

data to properly regress relevant model parameters, and was typically approached as an 

individual task separate from process modeling.  Several papers addressed the concept of 

chemical absorption and desorption with chemical reaction (Weiland et al., 1982; Bosch 

et al., 1990).  Some work progressed further to investigate theory of mass transfer and 

kinetic modeling (Astarita et al., 1980a; Astarita et al., 1980b; Escobillana et al., 1991; 

Cadours et al., 1997). 

Pilot plant results have been replicated by capture process simulations represented 

by equilibrium and rate-based models.  This type of work had two objectives: validating 

the stripper simulation and verifying the accuracy of pilot plant measurements.  There 
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was varying success in the ability to match pilot plant data.  Oyenekan constructed 

equilibrium and rate-based stripper models, but representing pilot plant data proved to be 

difficult (Oyenekan, 2007).  Conversely, Tobiesen constructed a stripper simulation 

whose sole purpose was to accurately represent pilot plant data.  The conditions in the 

column were successfully predicted with low deviation, but the model was not further 

implemented to develop or optimize stripper configurations (Tobiesen et al., 2008).  In 

addition to pilot plant reconciliation, stripper models have been used to evaluate the 

extent to which new configurations or solvents reduce the energy requirement in the 

stripper (Jassim et al., 2006).  Previous configurations of interest have included multi-

pressure columns and double matrix configurations.  Of all the prior work, some 

simulations were done in Aspen Plus
®
, but many were executed with in-house codes 

programmed in FORTRAN or other languages. 
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Table 1-1.  Simulations of CO2 Capture with Amines 

Author Year Tool 
Simulation 

Method 
Solvent Focus of work Accomplishments/conclusions 

System Models 

Desideri 1999 
Aspen 
Plus 

RadFrac 

Equilibrium 
Reactions 

MEA 
System modeling for 
MEA in Aspen Plus 

Full system model and cost 
analysis.  Electricity price doubles 

with CO2 capture 

Freguia 2002 
Aspen 
Plus 

RateFrac 

Kinetics/ 
Equilibrium 
Reactions 

MEA 
Development of rigorous 

system model using 
K+/PZ 

An optimum lean loading exists 
which minimizes the stripper 

energy requirement. 

Alie 2005 
Aspen 
Plus 

RateFrac 

Equilibrium 
Reactions 

MEA 
Model CO2 capture using 
decomposition method 

Energy cost is more important than 
capital costs, so reducing reboiler 

duty is key. 

Jassim 2006 
Aspen 
Plus 

RateFrac 

Kinetics/ 
Equilibrium 
Reactions 

MEA 
Analysis of advanced 

stripper configurations 
for reducing work 

Multi-level stripping can be 
beneficial because energy used by 

work is more efficient than 
heating. 

Oexmann 2008 
Aspen 
Plus 

RadFrac 

Equilibrium 
Stages 

K+/PZ 
K+/ PZ system modeling 

(2.5/2.5) 

An optimal solvent blend is a 
complex.  Factors = energy use, 

amine cost, and degradation rates. 

Zheng 2009 
In-House 

Code 
Equilibrium 

stages 
MEA, 
DMAP 

Verification with pilot 
plant, new amine 

evaluation 

8wt% MEA, 22wt% DMAP reduced 
heat requirement by 20% over 

30wt% MEA base case. 

Kvamsdal 2011 CO2SIM 
Equilibrium 

Stages 
AMP, 

PZ 

Verification with pilot 
plant, evaluation of new 

features 

Intercooling in the absorber and 
vapor recompression in the 

stripper reduced heat by 19%. 
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Author Year Tool 
Simulation 

Method 
Solvent Focus of work Accomplishments/conclusions 

Absorber Models 

Al-Baghli 2001 
In-House 

Code 
Kinetics 

MEA, 
DEA 

Rate-based absorption 
of CO2 using MEA and 

DEA 

Boundary layer rigorously 
calculated, important for absorber 

with multiple controlling rates. 

Chen 2007 
Aspen 
Plus 

RateSep 
Kinetics K+/PZ 

Pilot plant modification, 
kinetic absorber model 

reconciliation 

F1Y packing in absorber showed 
good results in model with 80% of 

air-water measured value. 

Stripper Models 

Oyenekan 2007 
Aspen 

Custom 
Modeler 

All model types Various 

Advanced stripper 
configuration 

development and 
analysis 

High P and T stripping is not 
kinetically controlled.  High ΔHabs 

decreases overall energy use.  
Complexity improves efficiency. 

Tobiesen 2008 
In-House 

Code 

Kinetics/ 
Equilibrium 
Reactions 

MEA 
Validation of rigorous 

stripper model with pilot 
plant 

Equilibrium and rate-based 
reactions give similar predictions in 
the stripper.  kg is more important 

in stripper than in absorber. 

van 
Nierop 

2011 MATLAB 
Equilibrium 

Stages 
MEA 

Effect of ΔHabs on overall 
performance 

Increased ΔHabs can decrease 
stripper temperature, but 

increases solvent rate and cooling 
load. 

This Work 2011 
Aspen 
Plus 

RateSep 

Equilibrium 
Reactions 

MEA, 
PZ 

Analyze performance of 
advanced configurations 

using MEA and PZ 
solvents 

Quantify benefit of stripping with 
concentrated PZ.  Determine 

relationship between complexity 
and efficiency.  Develop new 

configurations. 
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1.5. RESEARCH OBJECTIVES 

This work addresses the following objectives: 

1. Compare the energy performance of configurations with varying levels of 

complexity and determine the most efficient alterations. 

2. Evaluate the energy benefit of using concentrated PZ over MEA in the 

stripper. 

3. Quantify and qualify the difference in performance enhancement between 

MEA and PZ when using configurations with varying levels of 

complexity. 

4. Propose and evaluate the performance of innovative stripper 

configurations. 

5. Evaluate pilot plant campaigns with MEA and PZ to validate the 

thermodynamic models. 

The goal of this project is to use the results of a rigorous stripper model to make 

conclusions regarding improving the overall efficiency of the stripper.  Prior 

thermodynamic models for MEA and PZ are used to calculate the performance of each 

solvent.  In-depth analysis of each simulation of a configuration/solvent combination 

provides insight regarding the location of inefficiency within the process.  Additionally, 

the use of Aspen Plus provides the opportunity to simulate many new innovative stripper 

configurations.  Lastly, validation of the thermodynamic solvent models with pilot plant 

data provides the verification that laboratory scale measurements can be scaled to a full-

size process with an adequate modeling tool. 

 This work improves upon prior efforts by using a rate-based stripper model in 

Aspen Plus
®
 to investigate the combined effects of the stripper configuration and solvent 

choice.  The solvent models used in this work use the e-NRTL framework to predict all 
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relevant properties in the simulation while maintaining thermodynamic consistency.  In 

addition to comprehensive solvent models and simulation methods, the flowsheets 

proposed in this work are more practical than previous proposals, while effectively 

increasing stripper complexity and improving efficiency.  For example, multi-stage flash 

configurations are evaluated that increase the flowsheet complexity but would most likely 

decrease capital investment.  This work takes a strategic approach to analyzing the 

improvement in stripper performance with an increase in configuration complexity with 

both MEA and PZ. 
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Chapter 2: Stripper Modeling in Aspen Plus
®
 

 

 

 

This project focused on comparing the performance of different solvents and 

configurations.  In order to make conclusions on the potential improvement by using a 

novel solvent and/or configuration, a reliable stripper simulation method was established.  

Aspen Plus
®
 v7.1 was used with thermodynamic models for monoethanolamine and 

piperazine to represent the behavior of the solvents in a CO2 capture process.  The solvent 

models were developed by other authors.  This chapter introduces the chemistry of CO2 

absorption and stripping with aqueous amines solvents.  The models that represent 

monoethanolamine and piperazine in this work are also described. 

An understanding of the individual contributions to the overall energy 

requirement enabled an adequate analysis of stripper simulations.  Energy was required 

for pumping the solvent, heating the solvent to regenerate the lean solvent and produce 

CO2, and compressing the CO2 to pipeline specifications for transport and sequestration.  

The basis of these contributions is also introduced. 

 

2.1. AMINE CHEMISTRY 

In the absorber amines react with CO2 from the flue gas to chemically bind the 

compound to the solvent.  The reaction is reversible and requires heat in the stripper to 

release the CO2.  Several reactions can occur with any given solvent, but every reaction 

follows the same arrangement: 
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                   2-1 

"A" represents an amine/acid molecule, and "B" represents a molecule acting as a 

base. With the exception of amines that cannot form a carbamate, the CO2 replaces a H
+
 

ion on the nitrogen of the amine, and the base picks up the H
+
.  The base can be another 

amine molecule or a water molecule.  CO2 absorbed into solution is no longer in its 

original molecular state, but its apparent concentration in a loaded solution is described 

by the CO2 loading.  The loading value expresses the moles of CO2 absorbed per mole of 

alkalinity of the solvent, effectively accounting for the number of reactive nitrogen sites 

on each amine molecule. 

Monoethanolamine (MEA), the industry-standard solvent, is a primary amine and 

forms a single carbamate.  It has a moderate balance between the CO2 reaction rate, 

capacity, heat of absorption, and thermal/oxidative degradation rates.  The structure of 

MEA and ionic species are shown in Figure 2-1. 

 

 

 

Figure 2-1: Monoethanolamine (MEA), carbamate (bottom left), and protonated (bottom 

right) species in a CO2 loaded solution. 

Piperazine (PZ) is a cyclic molecule with two amine groups on each molecule.  It 

has gained recent interest as a potential solvent for CO2 capture because it has greater 

CO2 capacity and lower degradation rates compared to MEA (Freeman et al., 2010).  

Since each molecule has two amine groups, the number of possible reactions and the 

NH2

OH

NH

OH

O
-

O

NH3

+
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number of ion types in a loaded solution are greater than in an MEA solution.  Piperazine 

had previously only been studied as a solvent promoter, increasing the reaction rate of a 

slow solvent that otherwise had good properties.  Some examples of amines that have 

been studied with PZ promotion are potassium (Cullinane, 2005), diethylethanolamine 

(DEEA) (Vaida et al., 2009), methyldiethanolamine (MDEA) (Closmann et al., 2009), 

and MEA (Nainar et al., 2009). The main reason that piperazine had not been considered 

for a solvent on its own was its poor solubility in water; at ambient temperature (20 °C) a 

solution higher than 2 m PZ precipitates solids.  However, a solution in the CO2 loading 

range of 0.3-0.4, which is expected in the absorption/stripping process, has been found to 

be soluble down to 0 °C, and the wider, more conservative loading range of 0.2-0.4 is 

soluble down to at least 30 °C (Freeman et al., 2010).  A maximum concentration of 8 m 

PZ is being considered due to prohibitively high viscosity at higher concentration.  The 

structure of PZ and its ionic species are shown in Figure 2-2. 

Amine solvents absorb CO2 by chemisorption, as opposed to physical solvents 

that use physisorption.  Physical solvents dissolve the CO2 and hold it in solution by 

weak van der Waals forces.  The heat of absorption is generally very low, but a high 

driving force for dissolution is required in the absorber.  Chemical absorption attains a 

faster reaction rate with CO2 with a small driving force.  Chemisorption is preferred for 

carbon capture from industrial sources like coal-fired power plants because the CO2 

partial pressure of the flue gas is relatively low.  A partial pressure of approximately 

12 kPa can be expected in the flue gas of coal-fired power plants, and the CO2 content in 

natural gas applications is even smaller (Fisher et al., 2005). 
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Figure 2-2: Piperazine (PZ) in center and species in a CO2 loaded solution (clockwise 

from top left): dicarbamate, diprotonated, protonated, protonated carbamate (zwitterion), 

carbamate. 

 

2.2. SOLVENT THERMODYNAMIC MODEL FRAMEWORK 

There is a significant history of solvent models, especially for 30 wt% (7 m) 

MEA. The foundation of a correct simulation of the stripper is an accurate solvent model, 

a product of reliable data.  Various authors have contributed data on VLE and mass 

transfer characteristics of solvents other than MEA, including MEA/PZ, K
+
/PZ, and even 

potential new solvents like 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), an 

amine, promoted with carbonic anhydrase to increase its reaction rate with CO2 

(Aroonwilas et al., 1997; Dang, 2001; Cullinane, 2002; Le Tourneux et al., 2008).  A 

significant contribution to solvent data was made by Hilliard (2008), who measured VLE, 

heat capacity, heat of absorption, and speciation for MEA, PZ, K
+
/PZ, and MEA/PZ. 

NH NH

O

N NH

O
-

O

N NH2

+

O
-

NH2

+
NH

NH2

+
NH2

+

OO

N N

O
-

O
-



 16 

The type of thermodynamic model used for simulations typically depended on the 

modeling tool available to a specific author.  FORTRAN was often utilized to implement 

either equilibrium or rate-based models.  The level of model complexity was a choice of 

the modeler, and it can predict solvent properties using either individual correlations for 

each property or a full solvent model (i.e. e-NRTL) to predict everything.  For example, a 

model developed by Tobiesen used Fortran to define a rate-based simulation that 

accounted for heat and mass transfer in the liquid and vapor films (2008).  A number of 

models have been developed in Aspen Plus
®
 to represent alkanolamine solutions for use 

in CO2 capture.  The thermodynamic framework most suited for modeling the solutions is 

the electrolyte Nonrandom Two-Liquid (e-NRTL) model.  This model uses interaction 

parameters between molecules and electrolytes to calculate activity coefficients for all 

components in solution.  An early solvent model was developed by Austgen (1991) 

which broadly predicted VLE for CO2 and H2S in MEA, MDEA, MDEA/MEA, and 

MDEA/DEA solutions.  This MEA model was updated by Freguia (2003) to include VLE 

data collected by Jou (1995).  In his work Freguia also developed a full process model for 

the absorber and stripper, incorporating reaction rates in the absorber by utilizing 

experimental kinetic data at absorber conditions.  Cullinane produced a standalone 

FORTRAN model for PZ promoted potassium.  PZ was used as an additive to the 

potassium solvent to increase the reaction rate with CO2 (Cullinane et al., 2004).  A broad 

thermodynamic model for MEA was recently developed by Hilliard (2008) which 

included data sets for MEA from 3.5 to 11 m and temperatures from 40 to 120 °C.  In 

addition to the MEA model, further solvent models were developed for PZ, K
+
, and 

selected blends, including a global K
+
/MEA/PZ representation.  His work found that 

attempting to represent a broad range of solvents and conditions sacrificed accuracy of 

predictions. 
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2.2.1. Electrolyte-NRTL model 

The Electrolyte Non-Nonrandom Two Liquid (e-NRTL) model is an extension of 

the NRTL model, and it calculates activity coefficients and Gibbs free energy for the 

liquid phase (Chen et al., 1982).  The molar Gibbs free energy is calculated as a 

contribution of individual chemical potential terms, but an excess Gibbs free energy, G
ex

, 

is also calculated to account for non-ideality.  The excess Gibbs free energy has three 

components: the Pitzer-Debye-Hückel contribution from long range ion-ion interactions, 

the Born correction for the change in mixed solvent reference state, and the local 

contribution for short range ion-ion interactions (Chen et al., 2004).  The calculation 

method for the local contribution in the e-NRTL is as follows: 

 

  
      

  
    

 

          

       
    

 

  
   

        
 

  

                

           

    

 

  
   

        
 

  

                

           
 

2-2 

where 

    
         

      
                           

         

      
 

    
         

      
                           

         

      
 

                                                                

                                                                                 

Subscripts and indices of m, c, and a refer to molecules, cations, and anions, respectively.  

The binary interaction parameters, τ, are defined within the e-NRTL model as a function 

of temperature: 
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Equation 2-3 also has higher order parameters that can be regressed, but they are 

typically excluded to promote model stability.  Aspen Plus
®
 has non-temperature 

dependent default binary interaction parameters for the e-NRTL model.  The default 

values are given below in Table 2-1. 

Table 2-1: Default Binary Interaction Parameters for the E-NRTL Model in Aspen 

Plus® 

Pair type Default Value 

Molecule-Electrolyte 10 

Electrolyte-Molecule -2 

Water-Electrolyte 8 

Electrolyte-Water -4 

 

Appropriate interaction parameters, Gibbs free energy of formation, enthalpy of 

formation, and component heat capacities can be individually regressed to ensure that a 

solvent model accurately represents its physical system.  A rigorous methodology for this 

regression can be found in the dissertation by Hilliard (2008).  The simulations in this 

work all used the ELECNRTL property method in Aspen Plus
®
.  This method used the e-

NRTL model for liquid phase calculations and the Redlich-Kwong equation of state for 

vapor phase calculations. 

 

2.2.2. Solvent Representation in Aspen Plus
®
 

Each model to be used in this work had been regressed by other authors in Aspen 

Plus
®
 to fit laboratory data of an individual solvent.  A sequential regression method was 

used; this approach determined the values of parameters which affected only pure 
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component properties, and then values of parameters for binary mixtures were regressed, 

and so forth.  This method typically resulted in more stable regressions since fewer 

parameters were being regressed at once.  Models have been developed for use in Aspen 

Plus
®
 for both MEA (Hilliard, 2008) and PZ (Rochelle et al., 2010). 

 

2.2.2.1 Monoethanolamine 

The model used for MEA was developed by Hilliard as part of doctoral work.  In 

the regression first step, three MEA heat of vaporization parameters were regressed to 

match heat of vaporization and heat capacity data for pure MEA.  In the next step, binary 

interaction parameters for H2O-MEA were regressed to predict total vapor pressure, 

vapor-liquid equilibrium, heat capacity, and freezing point depression.  Finally, the 

ternary system H2O-MEA-CO2 was regressed.  CO2 solubility, MEA vapor pressure, heat 

capacity, heat of absorption, and speciation data were used to regress values of Gaq,fm, 

Haq,fm, Cp temperature dependent parameters A and B for the calculation of τ (Equation 

2-3).  The number of regressed parameters was reduced as much as possible while 

maintaining appropriate representation of the system.  Solvent models were also 

developed for solutions with more complex combinations including K
+
 and PZ, but they 

suffered a drop in accuracy as a wider range of conditions was represented.  The input 

file for the H2O-MEA-CO2 model can be found in Appendix A. 

The solvent of interest in this work is 9 m MEA, but the model was designed to 

represent 3.5-11 m MEA.  The data used to generate the model included concentrations 

of 3.5 m, 5 m, 7 m, and 11 m MEA.  Data for 9 m MEA has never been collected.  

Property data and model predictions for 7 m MEA can be found in the dissertation by 

Hilliard (Hilliard, 2008).  Figures 2-3 to 2-8 compare model predictions 9 m MEA to 
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available experimental data.  The VLE data for solutions of varying amine concentration 

collapsed on each other when plotted versus loading, so the predictions for 9 m MEA are 

compared to the data for 3.5 m-11 m MEA.  The best fit of CO2 solubility data was with 

7 m MEA.  Experimental data demonstrates the VLE of solutions of different amine 

concentration should fall in line with each other.  However, the values of P
*
CO2 increased 

with increasing amine concentration in Aspen Plus
®
 model for MEA.  This effect is 

demonstrated in Figure 2-4 for a sample temperature of 60 °C. 

 
Figure 2-3.  Equilibrium CO2 partial pressure of MEA.  Points = MEA solubility data for 

3.5-13 m by Hilliard, Dugas, and Jou, Curves = Hilliard model predictions for 9 m MEA.  

Blue = 40 °C, Red = 60 °C, Green = 80 °C, Black = 100 °C, Orange = 120 °C. 
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Figure 2-4.  Increasing CO2 partial pressure predictions of MEA model with increasing 

amine concentration.  Points = MEA solubility data at 60 °C in 3.5-13 m by Hilliard, 

Dugas, and Jou.  Curves = Hilliard model: blue = 7 m MEA, Red = 9 m MEA, Green = 

11 m MEA. 

Heat capacity, heat of absorption, speciation, and the amine volatility demonstrate 

some change with amine concentration.   Model predictions for heat capacity for 

9 m MEA is displayed in Figure 2-5. Model predictions for heat of absorption for 

9 m MEA is displayed in Figure 2-6.  Predicted speciation behavior of 9 m MEA at 40 °C 

and 60 °C is shown in Figure 2-7.  Amine volatility is not generally a heavy concern in 

stripper modeling, but a model with accurate volatility predictions generally has better 

amine activity coefficient specifications.  Figure 2-8 shows that the amine volatility does 

not increase dramatically with amine concentration, and the predictions for 9 m MEA are 

accurate within a small margin of error. 
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Figure 2-5.  Heat capacity for 9 m MEA.  Curves = Hilliard model predictions, Points = 

Hilliard experimental data for 7 m MEA. 

 
Figure 2-6.  Heat of absorption for 9 m MEA.  Curves = Hilliard model predictions by 

Gibbs-Helmholtz method, Points = Kim (Kim et al., 2007) experimental data for 7 m 

MEA. 
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Figure 2-7.  Speciation of 9 m MEA.  Curves = Hilliard model predictions, Points = 

Hilliard experimental data for 7 m MEA.  Blue = MEA, Red = MEACOO
-
, Green = 

HCO3
-
.  Solid/Filled = 40 °C, Dashed/Hollow = 60 °C. 

 
Figure 2-8.  Amine volatility of loaded 9 m MEA .  Curves = Hilliard model predictions.  

Diamonds = Hilliard experimental data for 7 m MEA, Squares = Hilliard experimental 

data for 11 m MEA.  Blue = 40 °C, Red = 60 °C. 
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The thermodynamic model for MEA regressed by Hilliard was an adequate model 

to simulate 9 m MEA, but it had its downfalls.  As shown in Figure 2-2, the model 

overestimated CO2 partial pressure as amine concentration increased.  This effect was 

exaggerated at high temperature since the model was regressed mainly with data at 40 °C 

and 60 °C.  In a simulation, this error would result in a larger CO2 partial pressure in the 

stripper.  The effect of this larger pressure would reduce the stripping steam requirement 

of the heat duty (see section 2.3), reducing the overall energy requirement.  The accuracy 

of the heat capacity predictions cannot be appropriately assessed since there is no data for 

9 m MEA, but the predictions for 7 m MEA were generally accurate within 1.5%.  

Similarly, experimental data was not available for heat of absorption of CO2 in 

9 m MEA, but the fit for 7 m MEA was within the scatter of the data.  The speciation in 

Figure 2-5 predictions fit the expected trends.  Lastly, MEA volatility was predicted 

reasonably well at 40 °C and 60 °C. 

 

2.2.2.2 Piperazine 

A solvent model used for PZ initially was developed by Hilliard as part of doctoral work, 

but the model was only designed for low concentrations (2-3.6 m PZ) and low 

temperature (40-60 °C).  Based on recent experiments (Freeman et al., 2010), 8 m PZ was 

the concentration of interest for this work.  Additionally, the ceiling temperature for PZ in 

the stripper is 150 °C, so accurate representation to this high temperature was needed.  

The model was updated by Frailie and Plaza to accurately represent the desired 

concentration, 8 m PZ.  The sequential regression method was also used for developing 

this model.  The updating by Frailie and Plaza, culminating in the 5deMayo (Cinco de 

Mayo) model, repeated the third step of the regression, which only regressed parameters 
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applicable to the ternary system.  The new regression focused on available data for 

concentrated PZ.  The number of regressed parameters was also reduced. 

Figures 2-9 through 2-13 compare model predictions to experimental data for 

8 m PZ.  Experimental data was available for VLE, heat capacity, heat of absorption, and 

amine volatility.  The heat of absorption data was collected by Freeman (2010), and its 

accuracy was debated due to the exceptionally high values and scatter in the data.  

Speciation data was not available, but predictions by the Aspen Plus
®
 model are included 

in Figure 2-12. 

 
Figure 2-9.  Equilibrium CO2 partial pressure for 8 m PZ.  Curves = 5deMayo model 

predictions, Points = experimental data: Diamonds = Hilliard, Squares = Dugas, 

Triangles = Ermatchkov, Crosses = Xu (Ermatchkov et al., 2006; Hilliard, 2008; Dugas, 

2009; Xu et al., 2011). 
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Figure 2-10.  Heat capacity for 8 m PZ.  Curves = 5deMayo model predictions, Points = 

experimental data (Rochelle et al., 2009). 

 
Figure 2-11.  Heat of absorption for 8 m PZ .  Curves = 5deMayo model predictions by 

Gibbs-Helmholtz method, Points = experimental data (Freeman, 2011). 
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Figure 2-12.  Prediction of speciation at 40 °C for 8 m PZ by 5deMayo model. 

 

Figure 2-13.  Amine volatility for 8 m PZ.  Curves = 5deMayo model predictions, Points 

= experimental data: Squares =  Xu, Diamonds = Nguyen (Nguyen et al., 2011; Xu, 2011 

(expected)). 
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Comparing to the available thermodynamic data for 8 m PZ, the 5deMayo model 

represents the solvent well.  The most significant offset from experimental data was in 

the heat capacity.  The 5deMayo model underpredicted heat capacity consistently by 

about 0.2 kJ/kg-K, or about 6%.  This error would surface in a lower sensible heat 

calculation by the model.  Additionally, the 5deMayo model predicts a heat capacity at a 

loading of 0.40 that crossed over the heat capacity at a loading of 0.29.  This error would 

result in slightly inaccurate heat exchanger calculations.  The rich solvent with a high 

loading would have a smaller temperature change in the main cross exchanger due to its 

higher heat capacity, so the rich inlet temperature to the stripper would be 

underestimated. 

Near the conclusion of this project, additional work by Frailie produced the Guy 

Fawkes model for concentrated PZ (Frailie et al., 2011).  This model addressed the 

inaccurate calculation of equilibrium constants, which was unknowingly offset in 

5deMayo by changing activity coefficients.  The new Fawkes model required fewer 

parameters to be regressed.  Additionally, the Fawkes model has the capability to predict 

the behavior of MDEA and the MDEA/PZ blend, though these solvents were not in the 

scope of this work.  This model aimed to predict more accurate activity coefficients and 

heat capacities.  The predictions of the Fawkes model are shown in Figures 2-14 through 

2-18.  This model will be licensed, so its input file is not included in this work. 
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Figure 2-14.  Equilibrium CO2 partial pressure for 8 m PZ.  Curves = Fawkes model 

prediction, Points = experimental data: Diamonds = Hilliard, Squares = Dugas, Triangles 

= Ermatchkov, Crosses = Xu (Ermatchkov et al., 2006; Hilliard, 2008; Dugas, 2009; Xu 

et al., 2011). 

 
Figure 2-15.  Heat capacity for 8 m PZ.  Curves = Fawkes model prediction, Points = 

experimental data (Rochelle et al., 2009). 
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Figure 2-16.  Heat of absorption for 8 m PZ.  Curves = Fawkes model prediction by 

Gibbs-Helmholtz method, Points = experimental data (Freeman, 2011). 

 

Figure 2-17.  Prediction of speciation at 40 °C for 8 m PZ by Fawkes model. 
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Figure 2-18.  Amine volatility for 8 m PZ.  Curves = Fawkes model predictions, Points = 

experimental data: Squares =  Xu, Diamonds = Nguyen (Nguyen et al., 2011; Xu, 2011 

(expected)). 

The thermodynamic property predictions for 8 m PZ were very accurate with both 

5deMayo and Fawkes.  The most noticeable differences in the properties shown in this 

report were in the heat capacity and speciation.  The most significant improvement with 

the newer Fawkes model was in the activity coefficients.  The CO2 activity in the liquid 

phase is small due to its low concentration, but accurately representing this activity is 

essential to describing the kinetic rate of reactions involving CO2.  Therefore, any 

modeling which utilized reaction kinetics would benefit from the Fawkes model, but 

5deMayo was sufficient if equilibrium reactions could be assumed. 
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The pump and compression work would be taken as electricity directly from the turbine 

generators on the power plant site.  Typically steam was used for the heat source in the 

reboiler.  Earlier work suggested the use of an equivalent work term to evaluate the heat 

duty on the same basis as the pump and compression work (Oyenekan, 2007).  The total 

equivalent work was calculated as the sum of the three individual contributions, shown in 

Equation 2-4. 

                       2-4 

The heating work, Wheat, is the amount of electricity that could be extracted from 

the steam used in the reboiler.  Without modeling the complex steam cycle of the power 

plant, the heating work was be approximated by Equation 2-5 below.  The equation 

assumed a Carnot efficiency based on the heating temperature and a heat sink at 40 °C.  

An additional 75% turbine efficiency was also included.  This method of evaluation also 

assumed that the steam was taken between the IP and LP turbines at the exact pressure 

required to heat the stripper.  Any superheating of the steam was neglected.  This 

calculation easily allowed for comparison of stripper configurations operating at different 

temperatures and variable proportions of steam and electricity usage. 

                  
           

     
  2-5 

Theat was the temperature of the heat source, which was the temperature of the 

reboiler plus an expected approach temperature.  Tsink was the assumed heat sink 

temperature. 

The heat duty can be further broken down into three components: sensible heat 

requirement, latent heat requirement, and stripping steam requirement.  The sensible heat 

goes into heating the solvent over the temperature difference of the rich to lean solutions.  

Typically the rich solvent is pressurized through the heat exchanger to overcome the head 
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of the column, so the rich temperature is the temperature of the solvent once it flashes to 

the pressure of the column.  The solvent heats up as it travels down the column until it 

exits at the reboiler.  As the solvent travels down the column and CO2 is stripped out, 

both the mass flow rate, ṁ, and the heat capacity, Cp, change.  The magnitude of the 

sensible heat can be calculated as an integral:. 

                   
     

     

 2-6 

The latent heat requirement is the amount of energy that goes into moving the 

CO2 from the liquid to vapor phase.  The latent heat has three components: the heat of 

reaction, heat of non-ideal mixing, and heat of vaporization.  Reaction heat is necessary 

to CO2 from the amine molecule within the liquid phase.  Next, as with any non-ideal 

process, heat is associated with mixing components.  The heat of vaporization transitions 

CO2 from the liquid to vapor phase.  The three heats are measured together 

experimentally as the opposite of the heat of absorption, -Habs (Kim et al., 2009).  The 

magnitude of the latent heat is simply calculated as the product of the heat of absorption 

and CO2 removal rate. 

                     2-7 

The stripping steam requirement is the amount of energy that goes into vaporizing 

steam that exits in the overhead with CO2.  In the generic stripper flowsheet, this energy 

is wasted because the stripped steam is condensed either in the cooler preceding the 

multistage compressor or and an intercooler between compression stages.  This wasted 

energy can be minimized by using a solvent or configuration which reduces the ratio of 

water to CO2 exiting in the overhead.  The magnitude of the stripping steam requirement 

is normalized for the CO2 removal rate by calculating the product of the H2O/CO2 ratio 

and heat of vaporization of water, Hvap,H2O. 
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           2-5 

The wasted heat in stripped steam cannot be eliminated completely by solvent 

choice alone.  At an elevated stripper temperature, water always has a substantial vapor 

pressure and, therefore, constitutes a significant portion of the exiting vapor. 

The search for new solvents often focuses on reducing the energy of regeneration 

in the stripper.  This search is often misguided, emphasizing the benefit of solvents with a 

low heat of absorption.  Considering only Equation 2-5, the heat of regeneration is 

directly correlated with the heat of absorption.  However, the three contributions to the 

heat duty are not independent of each other.  A simple approximation can demonstrate 

this concept, though a more rigorous analysis has been performed by another author 

(Oexmann et al., 2009).  The Gibbs-Helmholtz relation can be modified to represent CO2 

in the reactive amine solvent, and it clearly demonstrates that an increase in the heat of 

absorption of a solvent also increases the equilibrium partial pressure of CO2 in the 

stripper for a given temperature swing between the absorber and stripper. 

 
           

  

       
  

     

 
 2-6 

The equilibrium partial pressure of water is roughly constant with varying heat of 

absorption, though slight variations may occur with a difference of the interaction of 

water with the amine or CO2.  Nonetheless, due to the increase in P
*
CO2

, an increase in the 

heat of absorption of a solvent leads to an improvement in the selectivity for CO2 over 

water at the top of the column.  Moreover, the increase in column pressure reduced 

electricity demand of the process because a portion of the mechanical compression in the 

multistage compressor is replaced by compression in the rich pump.  Achieving higher 

pressure by pumping is much more efficient because the volumetric flow rate of the 

liquid is far smaller than the vapor in the first stages of the compressor.  The benefits of 
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using a solvent with a high heat of absorption to reduce stripping steam generation and 

achieve higher column pressure outweigh the penalty of supplying more heat for CO2 

desorption. 

 

2.4 SIMULATION METHODS 

Aspen Plus
®
 7.1 was used for this work due to its ability to model a wide range of 

rate-based systems.  The software used a sequential modeling method to converge 

stripper flowsheets.  Numerous convergence methods were available to close recycle 

loops and design-specification loops; generally recycle loops used the Wegstein method, 

and design-specifications used for simpler Secant method.  The simulations used 

thermodynamic models in the e-NRTL framework, as described in section 2.2.1.  Similar 

to most simulation software used for modeling CO2 capture with aqueous amines, the 

performance of the basic process units were calculated with equilibrium assumptions.  

These process units included heat exchangers, pumps, compressors, splitters/mixers, and 

flash/separation vessels. 

 

2.4.1. Vapor/Liquid Separation Modeling 

The stripping columns were represented using RadFrac blocks, which modeled 

the direct, counter-current contact of liquid and vapor.  These vapor/liquid separation 

columns had the option of running with equilibrium or rate-based assumptions for heat 

transfer, mass transfer, and reaction kinetics. 

The separation column was broken up into individual stages where a total amount 

of heat and mass transfer between phases was calculated.  The standard RadFrac block 

assumed equilibrium between the liquid and vapor phases in each stage.  Additionally, 
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chemical equilibrium was assumed within the liquid and vapor phases of each stage.  

Stage efficiencies, like a Murphree efficiency, can assist in translating equilibrium stages 

to a total packed height. 

Shortly before the start of this work, Aspentech released a feature called 

RateSep™, a new function within their RadFrac block.  The RateSep™ function 

provided the ability to perform rigorous rate-based calculations in gas/liquid separations.  

Several standard correlations were built in for heat transfer, mass transfer, column 

hydraulics, and interfacial area, but user-defined subroutines for each could be 

substituted.  This capability permitted modeling the gas/liquid separation with a higher 

level of complexity: equilibrium reactions.  In the equilibrium reactions method, the 

interfacial area, heat transfer rates, mass transfer rates, and hydraulics in each stage were 

calculated.  Chemical equilibrium was still assumed at each discretized point within the 

liquid and vapor films of each stage.  As a final layer of complexity, kinetic reactions 

could be specified within the liquid and vapor phases.  This simulation method can be 

called kinetic reactions.  All of the rate-based calculations from the equilibrium reactions 

method were also performed in the kinetic reactions method, and kinetic limited reaction 

rates were added to the set of equations to solve.  The kinetic reactions method was the 

most rigorous calculation approach in Aspen Plus
®

. 

The increase in complexity from equilibrium stages, to equilibrium reactions, to 

kinetic reactions each increased the simulation time and convergence issues for a stripper 

flowsheet.  The simplest method should be used to achieve results of a desired accuracy.  

For example, a simple separation with two components would be a good candidate for the 

equilibrium stages calculation method if its performance in a separation column would be 

expected to follow the predictions of the McCabe-Thiele method.  In contrast, a complex 
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separation with many components with slow heat and mass transfer in reaction rates 

would benefit from the kinetic reactions method. 

 

2.4.2. Simulation Specifications 

This report over a range of process configurations and solvents required a specific 

set of process specifications to allow for an adequate comparison between cases.  If 

certain specifications were not held constant across cases, the effect on one or more work 

contributions would not be accounted for and would be mistakenly attributed to the 

change in configuration or solvent.  The following process conditions were held constant 

unless otherwise specified: 

 Constant rich loading: this work follows with the decomposition method 

(Alie et al., 2005), and the stripper was run and optimized independently 

of the absorber. 

 5 °C cold side approach on main cross exchanger. 

 5 °C approach on steam heated reboilers. 

 Equal moles of vapor produced in each pressure stage: this specification 

yields the highest efficiency from a reversibility standpoint. 

 Constant reboiler temperature (variable stripping pressure). 

 50 kPa of pressure drop over cross exchanger. 

 150 kPa of liquid head for packed absorber height. 

 150 kPa of liquid head for packed stripper height. 

 5 m stripper packed height. 

 150 bar compressed CO2 pressure: typical pipeline specification for 

sequestration. 
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Stripper columns were modeled using the equilibrium reactions method.  The 

equilibrium stages method was too simple of a model because the Murphree efficiency of 

each individual stage could be an unpredictable function of temperature, CO2 loading, 

liquid and/or gas rate, etc.  Conversely, the kinetic reactions method was an overly 

complex method since the desorption reaction can be expected to be nearly instantaneous 

at elevated temperature in the stripper.  Mass transfer of the components would be the 

rate limiting contribution, so the equilibrium stages method was the best modeling option. 

  

 

 

 

 

  



 39 

 

Chapter 3: Stripper Complexity 

 

 

 

The majority of the energy requirement for an absorption/stripping system stems 

from regenerating the solvent in the stripper.  The base case stripper technology is a 

simple stripper.  Various inefficiencies arise in this process due to its simplistic nature 

and lack of advanced heat recovery.  This chapter introduces several advanced 

configurations that improve the reversibility in the stripper, which consequently improve 

the efficiency.  These configurations were evaluated for the base case solvent of 9 m 

MEA.  The effect of switching to 8 m PZ was also investigated. 

 

3.1. ADVANCED CONFIGURATIONS 

Fundamental work showed the benefit of reducing driving forces for generic 

chemical processes.  Driving forces surface in several forms: temperature driving forces, 

mass transfer driving forces, and chemical reaction driving forces.  Typical strippers for 

this application have very large driving forces in several locations.  Stripping columns 

with optimized conditions have large driving forces in the reboiler and bottom sections of 

packing and pinches at the top (Oyenekan, 2007).  Introducing more complexity to the 

flowsheet by means of splits, recycles, and multiple pressure stages can reduce the 

existing driving forces to cut down on total exergy loss (Leites et al., 1993; Leites et al., 

2003).  Complex flowsheets had previously been proposed that introduced many types of 

complexity simultaneously to improve the energy efficiency of the stripper.  These 
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process flow diagrams are shown in Figures 3-1 and 3-2.  Figure 3-1 shows an example 

of a process that incorporates interheating with two separate lean streams, and the 

incorporation of a semi-lean that is fed to the absorber at an optimized location. 

 
Figure 3-1.  Process flow diagram for purification of gas from CO2 with MEA solution 

with integration of solution regeneration and heat recycling.  I—absorber, II—

regenerator, III—heat exchanger, IV—cooler of solution, V—cooler (condenser) for 

steam-gas mixture, VI—reboiler, VII—pumps (Leites et al., 1993). 

Figure 3-2 shows a complex example of incorporating splits of the rich stream 

into the stripper.  This flowsheet has three feeds to the stripper at varying temperatures.  

Like the previous example, a semi-lean stream is drawn from the stripper and fed to an 

optimized location in the absorber.  A complex network of heat exchangers was used to 

not only recover heat from the hot lean solvent, but also from the flue gas feed and 

treated gas product. 
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Figure 3-2.  Process flow diagram for purification of gas from CO2 with MEA solution 

with three flows of rich solution and two flows of lean solutions.  I —absorber, II—

regenerator, III—heat exchanger, IV—cooler, V—cooler (condenser) for steam-gas 

mixture, VI—reboiler, VII—pumps (Leites et al., 1993). 

  Stripping in multiple pressure stages is another increase in complexity that 

improves reversibility by separating CO2 in multiple steps instead of all at once.  

Additionally, stripping with multiple pressure stages provides the opportunity to collect a 

portion of the CO2 at high pressure and reduce the compressor workload.  Essentially, 

stripping at multiple pressures yields the benefit of both high pressure and low pressure 

stripping.  High pressure stripping is beneficial to improve the selectivity of CO2 while 

collecting at high pressure.  Ambient pressure stripping is helpful to achieve a desired 

lean loading at lower temperature, which can avoid excessive thermal degradation of the 

solvent.  Several authors investigated the benefit of running selected complex 

configurations (Jassim et al., 2006; Oyenekan et al., 2007). 

Recent work in industry has also shown interest in the development of more 

complex configurations with higher efficiency.  MHI has been focused on more efficient 

heat recovery for the stripper and investigated an interheated column (Yagi et al., 2004).  

This configuration attempted to be a more reversible process by recycling a portion of the 
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heat contained in the lean solvent directly into the column.  Fluor also acquired a number 

of patents on the implementation of advanced configurations, including a lean flash 

configuration which is further described in section 3.1.3 (Benson et al., 1979; Reddy et 

al., 2004; Reddy et al., 2007). 

For this study, the complexity was represented as the total number of major pieces 

of equipment, excluding typical pumping and compression equipment.  The pumps and 

multistage compressor were excluded because they were a constant across all 

configurations.  As an example, a single stage heated flash had a complexity value of 2 (a 

heater and separation vessel), and a simple stripper had a value of 3 (a heater, vessel, and 

packing).  The complexity value of a configuration was decreased if an intercooler was 

eliminated by integrating a compression stage into the flowsheet.  This was the case in 

the 2-stage multi-pressure configuration.  It was expected that more complex 

configurations would improve performance but exhibit a diminishing return at higher 

complexity.  It was also expected that different configurations with similar complexity 

values might have different performance according to how efficiently the process units 

were arranged. 

Building upon prior conclusions (Oyenekan, 2007), this work continued the 

investigation of complexity by including new variations of advanced configurations.  The 

configurations can be separated into three subcategories: multi-stage flash, double matrix, 

and columns.  The analysis began with the most simple separation method, a 1-stage 

flash, and built upward systematically in complexity and total number of pressure stages.  

Each stage had a number of options: flash vs. packing, heated vs. adiabatic, and 

recompression of the vapor to the prior stage.  Even though these flowsheets aimed to 

investigate the effect of complexity on stripper performance, they are simpler and more 

practical than those presented by Oyenekan.  In this work, the multi-pressure had two 
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pressure stages instead of three, the double matrix had heated flashes in the place of 

packed, heated vessels, and the interheated column was heated in one location instead of 

using continuous countercurrent heat exchange. 

 

3.1.1. Multi-Stage Flash 

The multi-stage flash configurations included a specified number of equilibrium 

flashes arranged in series.  The 1- and 2-stage flash flowsheets are shown in Figures 3-3 

and 3-4.  In these configurations each equilibrium stage was heated to maintain 

isothermal operation.  Mainly CO2 and water flashed off in each stage, and the 

equilibrium pressure decreased as the CO2 loading decreased.  In the configurations with 

more than one stage (like the 2-stage flash), the low pressure vapor stream was 

condensed at 40 °C, compressed, and combined with the vapor from the stage before it.  

The final combined vapor stream was sent to the multi-stage compressor train.  3- and 4-

stage flash configurations are not shown, but they were also simulated and follow the 

same progression. 
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Figure 3-3.  1-Stage Flash with intercooled multi-stage compressor. 
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Figure 3-4.  2-Stage Flash with intercooled multi-stage compressor. 
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3.1.2. Double Matrix 

The double matrix was derived from the 2-stage flash.  Like the 2-stage flash, rich 

solvent was heated by the lean solvent in the main cross exchanger, and CO2 was stripped 

in two heated equilibrium flashes in series.  The double matrix added complexity by 

splitting a portion of the cold rich stream and contacting it in a flash with the vapor 

exiting the low-pressure second flash.  The double matrix was designed to achieve better 

efficiency than the 2-stage flash by using the water-rich low-pressure vapor as a heat 

source to condense steam and strip additional CO2 from the split solvent stream.  Once 

treated, the split solvent stream exited the vessel as a semi-lean stream, was cross 

exchanged with the corresponding split rich stream, and was returned to the absorber.  

The semi-lean would ideally be fed to the absorber at an optimized midpoint location.  

Each of the three flashes could also be packed columns, so three variations of the double 

matrix were simulated: 

1. Three equilibrium flashes, 20% solvent split to LP section 

2. Three equilibrium flashes, optimized solvent split for all lean loadings 

3. Two equilibrium flashes for heat stages, packed vessel for top of LP, 

optimized solvent split 

The two heated flashes provided enough driving force that very little packing 

would be needed before a mass-transfer pinch appeared, so the option of a packed 

column in the place of either heated flash was not explored.  An example flowsheet of 

variation 3 is shown in Figure 3-5.  
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Figure 3-5.  Double matrix with two heated equilibrium flashes, packed top low-pressure 

section, and multi-stage compressor. 

 

3.1.3. Columns 

This category contains process configurations which were stacked vertically, 

resembling columns.  This included modifications of the simple stripper as well as 

configurations with vapor recompression.  One design included in this section was the 2-

stage multi-pressure.  This flowsheet stripped CO2 at two pressure levels, recompressed 

the low pressure vapor, and fed the vapor to the higher pressure stage.  Like the multi-

stage flash and double matrix, both stages were heated to the same temperature.  The 

pressure in each vessel was dictated by the temperature and solvent composition.  The 

vapor production in each stage was specified to be equal, so fixing the pressures was not 

possible.  Three variations of the multi-pressure were simulated.  First, the flowsheet was 
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run using equilibrium flashes for both stages.  Next, the flowsheet was altered by 

replacing the flash in the top, high-pressure stage with a section of packing, depicted in 

Figure 3-6.  Finally, this second flowsheet with packing in the high-pressure stage was 

altered by applying heat only to the top stage, and the bottom stage was specified to be an 

adiabatic flash.  This third flowsheet resembled a simple stripper with an adiabatic flash.  

The separate adiabatic lean flash flowsheet (Fluor configuration) is shown in Figure 3-7. 
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n

 
Figure 3-6.  Multi-pressure column with isothermal sections and intercooled multi-stage 

compressor. 
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Figure 3-7.  Fluor configuration with simple stripper, adiabatic lean flash, and intercooled 

multi-stage compressor. 

In addition to the three multi-pressure configurations, an interheated configuration 

was simulated.  This arrangement split the simple stripper column into two sections and 

used an additional heat exchanger to recycle some of the heat in the lean solvent back to 

the column to more efficiently strip out CO2.  A previous author predicted that this type 

of configuration should be beneficial (Leites et al., 2003).  In a simple stripper, 

exchanging all of the heat with the rich feed in a single cross exchanger inevitably 

resulted in substantial flashing at the top of the column.  Interheating reduced the amount 

of heat exchanged to the rich stream in the main exchanger, so the degree of flashing 

would be reduced.  Additionally, the entering rich solvent would be cooler, so more 

stripping steam in the vapor would be condensed and the CO2 selectivity would be 

enhanced.  This interheated configuration was simulated in two forms.  In the first 

configuration, the solvent exiting the bottom of a packed column was exchanged with the 

hot lean stream, and then it was fed to an equilibrium flash which functioned as the 
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reboiler.  In the other variation, the liquid was drawn from the middle of the packed 

column and exchanged with the hot lean solvent, and then it was returned to the column 

in the stage below the drawoff.  To improve convergence and reduce the risk of a dry 

stage, only 80% of the liquid was drawn off in the simulation.  A 5 °C LMTD was 

specified on the exchanger for this arrangement.  Since a log mean approach was 

specified, the cold side approach was less than 5 °C.  This mid-column interheating 

flowsheet is shown in Figure 3-8.   
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Figure 3-8.  Interheated column with interheated position in middle of the column, 

intercooled multi-stage compressor.  80% liquid drawoff. 

 

3.1.4. Compression Work Calculation 

The compression section was specified identically for all configurations.  For 

flowsheets with product vapor exiting at multiple pressures, the low pressure vapor 

streams were cooled to 40 °C with knockout and removal of condensed water, 
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compressed to the pressure in the stage above, and combined with the vapor from the 

stage above.  The final mixed product vapor was also cooled to 40 °C with water 

knockout, and then it was fed to a multi-stage compressor train, which intercooled to 

40 °C, knocked out water between stages, and pressurized the CO2 to a final pressure of 

150 bar.  The Aspen Plus
®
 multi-stage compressor block, Mcomp, was temperamental, 

even when using the property method of SRK, which was more stable than e-NRTL for 

high pressure CO2-H2O systems.  Additionally, it was desired to use a minimum number 

of total compression stages while maintaining a compression ratio of no greater than 2.  

Manually manipulating the compression stages would slow down the total simulation 

time. 

A workaround for both of these problems was to develop a correlation for 

compressing a CO2 stream saturated with water to 150 bar.  The correlation used data 

collected from a separate Aspen Plus
®
 flowsheet.  Compression work was calculated for 

trains with inlet pressures ranging from 0.8 atm to 20 atm.  In the isolated simulation, the 

convergence of the compressor block was less of an issue, and work values were 

calculated for the range of inlet pressures with 3–8 compression stages.  The number of 

compression stages was minimized while maintaining a compression ratio of 2 or lower.  

There was no pressure drop in the intercoolers.  The Aspen Plus® simulation assumed a 

compressor polytropic efficiency of 72%.  The correlation demonstrated a near linear fit 

the compression work versus ln(Pfinal/Pinitial) since this term is found in the expression for 

calculating compression work of an ideal gas.  A 2-piece function provided a better fit 

than a single linear regression, so the final form of the correlation was piecewise and is 

shown in Equation 3-1.  This correlation is a continuous function at the transition point, 

though its first derivative is discontinuous.  However, if the compressor was simulated 

and its work was calculated within each simulation, discontinuities would exist when the 
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number of compression stages changed to meet the desired specifications, so the 

discontinuous first derivative of the correlation was not an issue. 

       
  

       
   

               
                      

               
                      

  3-1 

Equation 3-1 was used for all of the compressor work calculations in this work.  

The sensitivity of the compressor work calculation was evaluated for variable polytropic 

efficiency and intercooler pressure drop.  The polytropic efficiency of 72% that was used 

in the generation of Equation 3-1 was possibly lower than what would be observed in a 

real compressor; 80% efficiency could be possible.  Additionally, a real process would 

most likely experience pressure drop in the intercoolers.  The magnitude of the pressure 

drop in each intercooler would be proportional to the pressure of the gas fed to the cooler.  

The pressure drop for the intercooler of stage n could be calculated using Equation 3-2, 

using an individual pressure drop factor, ε, for the multi-stage compressor train. 

                3-2 

The total work of the multi-stage compressor was calculated at 80% polytropic 

efficiency with pressure drop factors of 0, 0.1, and 0.2.  These calculations were 

compared against the original calculations with 72% efficiency and no pressure drop.  

This comparison is shown in Figure 3-9. 
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Figure 3-9.  Sensitivity of CO2 compression work to compression efficiency and 

intercooler pressure drop. 

The compressor work was plotted as a function of the natural log of the inlet 

pressure to show the approximate linear trend as it was regressed in Equation 3-1.  The 

actual inlet pressures are displayed in the figure. 

A compressor efficiency of 80% and pressure drop factor of 0.2 may be a realistic 

set of parameters to expect in a real multi-stage compressor.  The estimation with 72% 

efficiency and no pressure drop was close to the calculations with the more realistic 

parameters (Figure 3-9).  Therefore, it was concluded that Equation 3-1 was a reasonable 

tool to predict the relative magnitude of the compressor work in relation to the heating 

work and pump work for the stripper. 

These calculations of compressor work were also compared against the theoretical 

minimum for isothermal compression at 40 °C.  The minimum work was equal to the 

change in process-initiating work, or the change in the Gibbs free energy.  Using data 
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from NIST (NIST, 2011), the minimum work for CO2 compression to 150 bar was 

calculated for varying inlet pressures using Equation 3-3. 

           3-3 

Figure 3-10 ratioed the calculated compressor work of Equation 3-1 to the 

minimum work calculated by Equation 3-3.  The overall thermodynamic efficiency was 

mostly constant, but it varied slightly with inlet pressure.  The discontinuities in the ratio 

are associated with the introduction of additional compressor stages.  The efficiency was 

56 to 59%.  As a comparison, the ratios of raw Aspen Plus
®
 predictions of two scenarios 

to the minimum work are also shown.  Again, the scenario with 80% efficiency and 20% 

pressure drop per intercooler had a slightly lower compressor work then the scenario with 

72% efficiency and no pressure drop, but the predictions were roughly equivalent. 

 

 

Figure 3-10.  Ratio of compressor work predictions to minimum work calculations.  Blue 

and red lines = ratio of Aspen Plus
®
 calculations to thermodynamic minimum.  Green 

line = Equation 3-1, 72% efficiency, no intercooler pressure drop, 2 piece correlation. 
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3.2. PERFORMANCE WITH MEA 

The widest range of configurations was evaluated with MEA.  The amine 

concentration was held constant at 9 m (35 wt%), and the rich loading was assumed 

constant at 0.5, which corresponded to a CO2 partial pressure of 5 kPa at 40 °C.  Since 

performance generally improves at higher stripper temperature with a greater temperature 

swing between the absorber and stripper, the maximum allowable temperature of 120 °C 

was the main case of interest.  The results are graphically presented for 120 °C reboilers, 

grouped into the four categories: multi-stage flash (Figure 3-11), double matrix (Figure 3-

12), columns (Figure 3-13), and interheated columns (Figure 3-14).  Each figure shows 

the optimization of lean loading to minimize total equivalent work.  The performance of a 

simple stripper is shown in each figure as a baseline comparison. 

 

Figure 3-11.  Performance of multi-stage flash configurations with 9 m MEA.  0.5 rich 

loading, 120 °C reboilers, 5 °C cold side approach on main heat exchanger, CO2 

compression to 150 bar, equal molar vapor production per pressure stage. 
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Increasing complexity with the multi-stage flash configurations demonstrated the 

improvement when the reversibility of the process was enhanced by adding pressure 

stages.  Compared to the simple stripper base case with an optimum performance of 34.0 

kJ/mol CO2, the 1-stage flash configuration had a substantially higher optimum 

equivalent work of 34.9 kJ/mol CO2.  Additionally, the optimal lean loading of the 1-

stage flash was 0.41 compared to 0.39 with the simple stripper.  The equivalent work and 

optimal lean loading both decreased as the number of flash stages increased.  At the 

higher number of pressure stages, however, each additional pressure stage yielded a 

diminishing amount of improvement.  Increasing the number of pressure stages from 1 to 

2 decreased the minimum equivalent work requirement from 34.9 to 33.5 kJ/mol CO2, 

respectively, an improvement of 4.2%.  Increasing the number of pressure stages from 3 

to 4 decreased the minimum equivalent work requirement from 33.1 to 33.0 kJ/mol CO2, 

respectively, an improvement of 0.5%. 

Figure 3-12 shows the performance results of double matrix configurations.  This 

figure makes several important conclusions.  First, the best double matrix configuration 

decreased the total equivalent work from the simple stripper by 1.6 kJ/mol CO2, or 4.8 %.  

Next, the benefit of optimizing a split ratio in these complex flowsheets was apparent. 
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Figure 3-12.  Performance of double matrix configurations with 9 m MEA.  0.5 rich 

loading, 120 °C reboilers, 5 °C cold side approach on main heat exchanger, CO2 

compression to 150 bar, equal molar vapor production per pressure stage. 

In the two cases where all vessels were flashes, the constant 20% split to the low 

pressure vessel only coincided with one point on the optimized split curve, where the 

optimal split was 20%.  At very low lean loading, the split optimized to high flow toward 

the low pressure vessel, but between lean loading values of 0.30 and 0.40, the split 

toward the low pressure vessel was between 7% and 37%.  The split when running at the 

optimal lean loading of 0.37 was 13%.  Adding packing to the top vessel decreased the 

required split, with optimal values of 5 to 27% between lean loading 0.30 and 0.40.  With 

packing in the top low-pressure vessel, the split when running at the optimal lean loading 

of 0.36 was 11%.  In addition to reducing the minimum equivalent work and split ratio, 

adding packing to the top section improved the performance at low lean loading.  The 

effect was minimal in this configuration, and there was a more noticeable benefit in the 

next subset of configurations, columns, in Figure 3-13. 
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Figure 3-13.  Performance of column configurations with 9 m MEA. 0.5 rich loading, 

120 °C reboilers, 5 °C cold side approach on main heat exchanger, CO2 compression to 

150 bar, equal molar vapor production per pressure stage. 

The stripper with an adiabatic lean flash (Fluor configuration) and the 2-stage 

multi-pressure configurations both improved performance over the simple stripper.  The 

multi-pressure column greatly benefited from packing in the top section, especially at low 

loading.  The Fluor configuration improved performance over the simple stripper by 

0.4 kJ/mol CO2, or 1.3%.  The multi-pressure column with a packed top section improved 

performance over the simple stripper by 0.8 kJ/mole CO2, or 2.6%.  The benefit of 

packing was greater for the multi-pressure column than for the double matrix 

configuration because all of the liquid and vapor received this benefit, unlike in the case 

of the double matrix where only the split liquid and half of the vapor passed through the 

packing. 
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Figure 3-14.  Performance of interheated columns with 9 m MEA. 0.5 rich loading, 

120 °C reboilers, 5 °C cold side approach on main heat exchanger, CO2 compression to 

150 bar, equal molar vapor production per pressure stage, 80% extracted solvent. 

The black "x" in Figure 3-14 represents a maximum lean loading where the 

stripper model would converge.  The interheated column had the best performance of all 

of the configurations.  Additionally, the interheating had the greatest effect when placed 

at the midpoint of the stripper column.  When the interheating exchanger was placed at 

the bottom of the column, directly above reboiler, the extracted liquid was much hotter 

than at the middle of the column, so less heat could be exchanged.  Moreover, the passing 

liquid and vapor streams were further from equilibrium at the bottom of the column.  By 

performing the interheating at the middle the column where the vapor and liquid were 

close to a mass transfer pinch, the interheating step was more separate from the heating in 

the reboiler.  Therefore, the mid-point interheated was more efficient.  Interheating 

improved the performance in several ways.  The optimal lean loading decreased from the 

simple stripper value, so the pump work and sensible heat requirements also decreased.  
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Next, the temperature at the top of the column was cooler than when running similar 

conditions for a simple stripper.  The cooler temperature reduced the stripping steam 

requirement.  Lastly, the rich solvent entering the column was cooler than with the simple 

stripper, so it did not flash upon entering the stripper.  By using this configuration, the 

total equivalent work was reduced from the simple stripper by 1.5 kJ/mol CO2, or 4.6%, 

at a lean loading of 0.37. 

 

3.2.1. Performance Effect with Temperature 

Performance generally improved with increasing reboiler temperature.  The 

partial pressure of CO2 rises faster than the partial pressure of water with increasing 

temperature, so a higher temperature always results in better CO2 selectivity and less 

energy required for stripping steam.  As a simple example, Figure 3-15 shows the effect 

of temperature between 100 °C and 130 °C in the 1-stage flash.  The minimum equivalent 

work and optimal lean loading both decreased as temperature increased.  The 

improvement was not consistent with each equal temperature step.  The heating and 

compression work requirements consistently increased and decreased, respectively, but 

the pumping energy requirement increased exponentially with temperature since it was 

related to the pressure of the vessel.  The downside to higher stripper temperature and 

exponentially increasing vessel pressure was the increasing pump work requirement with 

respect to the compression work benefit.  Since it was assumed that extra pressurization 

of the lean solvent could not be recovered through a liquid expander, high stripper 

temperature with overpressurization resulted in lost work from a flash valve that would 

be implemented.   
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Figure 3-15.  1-stage flash performance with varying reboiler temperature using 9 m 

MEA.  0.5 rich loading, 5 °C cold side approach on main heat exchanger, CO2 

compression to 150 bar. 

Figure 3-16 shows the trends in the heating work, compression work, and pump 

work for a 1-stage flash at optimal lean loadings for reboiler temperatures between 100 

and 130 °C.  Since the maximum operation temperature of MEA would be 120 °C, the 

increasing pump work requirement at high temperature was not significant enough to 

start increasing the total equivalent work. 
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Figure 3-16.  Equivalent work contributions for 1-stage flash.  9 m MEA, optimal lean 

loadings, 5 °C cold side approach on main heat exchanger, CO2 compression to 150 bar. 

Tables 3-1 to 3-3 display the equivalent work values for reboiler temperatures of 

100 °C and 110 °C in addition to the 120 °C cases.  The number of process units, 

equivalent work, lean loading, and vessel pressure(s) are listed for each configuration.  

The number of process units included vessels and heaters within the stripper section, but 

it excluded the main heat exchanger, pumps, and compressors because these process units 

were constant across all configurations.  The stripper with an adiabatic lean flash received 

a credit in the number of process units because the first compression stage between the 

flash and stripper column would not require the typical pre-cooler and condenser.  The 

total number of process units would roughly be related to configuration complexity since 

more process units would require a higher capital investment. 
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Table 3-1.  Results summary for all configurations at 100 °C.  9 m MEA, 0.5 rich loading, 5 °C main cross exchanger 

cold side temperature approach, CO2 compression to 150 bar. 

Configuration Process 

units 

Equivalent Work (kJ/mol CO2) Opt. ldg P at opt. 

 
0.3 ldg 0.37 ldg Opt. ldg mol/mol bar 

1-stage flash 2 50.1 41.5 37.0 0.44 2.3 

Simple stripper 3 39.0 37.5 36.9 0.41 1.8 

Stripper with adiabatic lean flash 3 37.9 36.9 36.0 0.42 2.3 / 1.3 

2-stage flash 4 44.5 37.9 35.1 0.43 3.1 / 2.1 

2-stage multi-pressure, packed top 4 - 36.5 35.2 0.41 2.3 / 1.7 

Interheated column 5 35.6 34.7 34.5 0.41 1.7 

3-stage flash 6 42.5 36.6 34.5 0.43 3.7 / 2.5/ 2.0 

Double matrix, packed LP top 6 38.2 36.0 35.0 0.42 2.9 / 1.9 

4-stage flash 8 41.4 35.9 34.2 0.42 4.0 / 2.8 / 2.2 / 1.8 

Table 3-2.  Results summary for all configurations at 110 °C.  9 m MEA, 0.5 rich loading, 5 °C main cross exchanger 

cold side temperature approach, CO2 compression to 150 bar. 

Configuration Process 

units 

Equivalent Work (kJ/mol CO2) Opt. lldg P at opt. 

 
0.3 ldg 0.37 ldg Opt. ldg mol/mol bar 

1-stage flash 2 45.9 38.4 35.7 0.42 3.6 

Simple stripper 3 36.9 35.6 35.1 0.40 2.9 

Stripper with adiabatic lean flash 3 37.0 35.1 34.5 0.41 4.0 / 2.3 

2-stage flash 4 40.6 35.2 33.9 0.41 5.2 / 3.2 

2-stage multi-pressure, packed top 4 36.1 34.3 33.8 0.40 4.4 / 2.9 

Interheated column 5 34.5 33.6 33.3 0.39 2.8 

3-stage flash 6 38.7 34.2 33.4 0.41 6.4 / 4.1/ 3.1 

Double matrix, packed LP top 6 36.3 33.9 33.4 0.39 4.7 / 2.7 

4-stage flash 8 37.7 33.8 33.3 0.40 7.1 / 4.8 / 3.6 / 2.9 
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Table 3-3.  Results summary for all configurations at 120 °C.  9 m MEA, 0.5 rich loading, 5 °C main cross exchanger 

cold side temperature approach, CO2 compression to 150 bar. 

Configuration Process 

units 

Equivalent Work (kJ/mol CO2) Opt. lldg P at opt. 

 
0.3 ldg 0.37 ldg Opt. ldg mol/mol bar 

1-stage flash 2 42.1 36.1 34.9 0.41 6.3 

Simple stripper 3 35.7 34.2 34.0 0.39 5.1 

Stripper with adiabatic lean flash 3 35.5 33.6 33.6 0.39 6.6 / 3.7 

2-stage flash 4 37.3 33.7 33.5 0.39 8.9 / 5.1 

2-stage multi-pressure, packed top 4 34.5 33.2 33.2 0.37 6.7 / 4.2 

Interheated column 5 33.5 32.5 32.5 0.37 4.2 

3-stage flash 6 35.8 33.2 33.1 0.38 10.9 / 6.6 / 4.6 

Double matrix, packed LP top 6 34.1 32.4 32.9 0.37 8.0 / 4.3 

4-stage flash 8 35.0 33.0 33.0 0.37 12.1 / 7.7  /5.4 / 4.2 
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Plaza et al. (2010) showed that 90% CO2 removal could be achieved at a lean 

loading of 0.41 and rich loading a 0.495 with 15 meters of packing and intercooling at the 

absorber midpoint to 40 °C.  If a shorter absorber were used, a lower lean loading could 

be desired to still achieve 90% removal.  Many of the optimal lean loadings were 0.41 or 

below, but the tables also document stripper performance of each configuration for lean 

loadings of 0.3 and 0.37 in addition to the optimal lean loading in case a lower lean 

loading would be necessary to achieve adequate absorber performance.  These equivalent 

work values at lower lean loading reiterated the concept that packed columns operate 

more efficiently under conditions with high solvent capacity. 

 

3.2.2. Complexity effect with 9 m MEA 

Increasing complexity clearly demonstrated an improvement in stripper 

performance.  Improved stripper performance was characterized by a reduced optimum 

equivalent work.  A lower optimal lean loading also indirectly demonstrated better 

configurations because the absorber could run with less packing or higher purity with a 

lower lean loading.  The reduction in optimum equivalent work and lean loading was 

especially apparent in Figure 3-11, showing the difference between the various multi-

stage flash configurations.  Not only did the energy requirement decrease with more flash 

stages, but the optimal lean loading also decreased.  This figure also demonstrated a 

diminishing return effect; the improvement from the 1-stage flash to 2-stage flash was 

much more substantial than the improvement from the 3-stage flash to 4-stage flash.  If 

higher levels of multi-stage flash configurations were simulated, the realized 

improvement would be even less significant as the configurations approached a 

completely reversible process for flashing CO2 and water. 
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Vapor recompression was used in the Fluor configuration (adiabatic lean flash).  

Recompression improved performance by condensing some of the stripping steam 

contained in the low-pressure vapor, vaporizing CO2 in the high-pressure vessel.  

However, the trend of its benefit was unexpected.  Since the flash took a downward step 

in pressure, it would be expected that this lean flash configuration would be most 

beneficial at high reboiler temperature, where the stripper pressure was high and extra 

pressurization in the lean solvent was lost.  However, since this configuration was non-

isothermal, the high-pressure stripper column ran at a higher pressure than for the simple 

stripper.  At high reboiler temperature, this stripper pressure elevation effect was 

magnified.  Therefore, although the lean flash attempted to more reversibly bring the lean 

solvent from stripper pressure to absorber pressure, increasing pump work lessened the 

benefit of the adiabatic lean flash at high reboiler temperature. 

Unlike vapor recompression, inserting packing sections in place of equilibrium 

flashes did not improve performance at optimal lean loading as much as expected.  The 

effect of this addition was seen directly in the double matrix and 2-stage multi-pressure 

configurations.  In the case of the double matrix, the baseline configuration with three 

equilibrium flashes was altered by replacing the top flash of the low-pressure section with 

a packed column.  Adding packing in this location was expected to have the greatest 

effect on performance because a large amount of stripping steam was produced in the 

bottom flash of the low-pressure section, and the stripping steam required an adequate 

number of transfer units to fully condense and vaporize CO2 from the split rich stream.  

The other flashes included reboilers which mostly eliminated the need for transfer units.  

Similarly, in the 2-stage multi-pressure configuration, packing was inserted in the high-

pressure stage to better reach equilibrium with the inlet rich solvent to reduce the amount 

of stripping steam exiting in the vapor before it was cooled and compressed.  As seen in 
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Figures 3-12 and 3-13, including packing in these two configurations had only a minor 

effect at high lean loading where the CO2 capacity was low.  However, packing 

substantially improved performance in both configurations at low lean loadings when an 

increased number of transfer units was beneficial to achieve the increased amount of CO2 

liberation per unit solvent. 

The interheated column at 120 °C showed very promising results.  The 

configuration with interheating at the bottom of the packing had a minimum equivalent 

work of 33.0 kJ/mol CO2 at an optimal lean loading of 0.37.  However, the configuration 

with interheating in the middle of the packing performed even better with a minimum 

equivalent work of 32.5 kJ/mol CO2 at an optimal lean loading of 0.37.  This alternative 

placement of the interheating was believed to be beneficial because the vapor rising from 

the reboiler was allowed to approach equilibrium with the falling solvent before the extra 

heat was applied in the interheater.  This arrangement made the individual step changes 

smaller, therefore making it more reversible and more efficient.  At 120 °C, the 

interheated column had comparable performance to the double matrix, but the interheated 

column was only slightly more complex than a simple stripper. 

In Tables 3-1 to 3-3 the general trend of decreasing equivalent work with 

increasing complexity is displayed, though the trend did not fit a direct correlation with 

the number of process units.  Figure 3-17 shows the relationship between complexity and 

performance, quantified by the minimum total equivalent work.  This figure shows the 

decreasing trend in the equivalent work with increasing temperature for all 

configurations.  The points seemed to suggest a minimum at a complexity level of 5, but 

the minimum was an illusion of "scatter" that was inherent in each complexity level.  The 

configuration with a complexity of 5 was the interheated column, the most efficient of all 

of the flowsheets that were evaluated.  The interheated column does not represent an 
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actual minimum with respect to complexity since the equivalent work should approach an 

asymptote at infinite complexity.  Instead, this suggests that interheating was the most 

beneficial single flowsheet improvement, and it could be coupled with other 

improvements like vapor recompression or more pressure stages. 

 

Figure 3-17.  Decreasing trend of equivalent work with increasing complexity for 100 °C, 

110 °C, and 120 °C reboiler temperatures.  5 °C cold side approach on main heat 

exchanger, CO2 compression to 150 bar, equal molar vapor production per pressure stage. 

 

3.2.3. Reboiler temperature effect with 9 m MEA 

The difference in performance at varying reboiler temperatures demonstrated the 

importance of using packing at high temperature.  The multi-stage flash configurations 

demonstrated a reduced benefit from increasing the reboiler temperature from 100 °C to 

120 °C compared to the other configurations that used packing.  Table 3-4 demonstrates 

this conclusion more clearly by forming two configuration categories of multi-stage flash 

and packed configurations.  All configurations showed a relatively similar drop in the 
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equivalent work when increasing the reboiler temperature from 100 °C to 110 °C, but 

there was very little additional benefit for the multi-stage flash configurations by 

increasing the temperature to 120 °C. 

Table 3-4.  Higher benefit of increasing reboiler temperature with packed 

configurations.  Difference in minimum equivalent work values for each 

configuration. 

Configuration Process 

units 

Benefit of increasing T by 10 °C to: 

 
110 °C 120 °C 

1-stage flash 2 1.3 0.8 

2-stage flash 4 1.2 0.4 

3-stage flash 6 1.1 0.3 

4-stage flash 8 0.9 0.3 

Simple stripper 3 1.8 1.1 

Stripper with adiabatic lean flash 3 1.5 1.0 

2-stage multipressure, packed top 4 1.4 0.7 

Interheated column 5 1.2 0.8 

Double matrix, packed LP top 6 1.6 0.5 

As the reboiler temperature increased, the vapor pressure of water increased 

exponentially.  Similarly, the benefit from countercurrent cooling with rich solvent in a 

packed column had an exponentially increasing benefit.  Therefore, the improvement for 

packed configurations at the high temperature of 120 °C was better than the improvement 

for multi-stage flash configurations.  Moreover, the improvement at 120 °C was greater 

for fully packed configurations (simple stripper) compared to those that had exiting vapor 

that was not countercurrently contacted by rich solvent (double matrix, packed LP top). 

The 1-stage flash experienced the greatest benefit by increasing its temperature 

from 110 °C to 120 °C because all of the CO2 was stripped at the low, lean pressure 

where the stripping steam contribution was highest.  The configurations with more 

pressure stages did not realize as high of an improvement due to a relatively lower 

average improvement in CO2 selectivity. 
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3.2.4. Significance of Equivalent Work Evaluation 

This analysis also demonstrated the significance of evaluating performance by 

equivalent work as opposed to heat duty.  An analysis using heat duty would neglect the 

effect of temperature on the value of steam.  A heat duty analysis would also overlook the 

pumping and compression contributions to overall energy requirement.  An example of 

this difference can be seen in the comparison of the 2-stage flash with the simple stripper 

in Figure 3-18.   

 

Figure 3-18.  Total equivalent work and individual contributions for simple stripper and 

2-stage flash at 120 °C.  Dashed = simple stripper, Solid = 2-stage flash.  9 m MEA, 0.5 

rich loading, 5 °C cold side approach on main heat exchanger, CO2 compression to 150 

bar. 

The 2-stage flash had a lower minimum equivalent work but higher heat duty than 

the simple stripper.  The pump work requirements of the two configurations were fairly 

equivalent, except at very high lean loading when the 2-stage flash had a higher 

requirement.  The increase in pump work of the 2-stage flash at high loading was due to 

the growing pressure in the first stage, which directly impacted the work for the rich 
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solvent pump.  The improvement of the 2-stage flash over the simple stripper stemmed 

from reduction in compression work due to collection of CO2 at high pressure in the first 

flash, so the heat duty analysis did not recognize this benefit. 

The importance of equivalent work analysis with regards to varying reboiler 

temperature is demonstrated in Figure 3-19.  The total equivalent work, individual 

contributions, and total heat duty for a 2-stage flash with reboiler temperatures of 100 °C 

and 120 °C are compared.  The minimum total heat duties were 153 and 135 kJ/mol CO2 

for 100 °C and 120 °C, respectively, a 12% decrease.  However, converting these heat 

duties to heat works demonstrated a reduced benefit with values of 23.4 and 22.6 kJ/mol 

CO2, respectively, a 3% benefit.  The total work analysis also showed a 29% decrease in 

compression work and 50% increase in pump work by stripping at the higher temperature 

(Table 3-5).  Therefore, the equivalent work analysis provided a more accurate 

description of the source of improvement by stripping at higher temperature: when 

increasing the stripper temperature, the pump work increased, but the decreases in heat 

and compression work offset the pump work increase to result in a lower total equivalent 

work. 

In general, the trends for change in each individual work contribution were 

characterized.  Since this work was isothermal at desired reboiler temperatures, the 

stripper pressure was variable as the lean loading was optimized.  As lean loading 

increased, two effects occurred.  First, since the rich loading was constant, the CO2 

carrying capacity decreased with increasing lean loading since the Δloading was nearing 

zero.  Next, the stripper vessel pressure increased with increasing lean loading as dictated 

by VLE curves for CO2, water, and, to a lesser extent, amine.  Pump work was a direct 

function of solvent capacity and stripper pressure, so it increased with lean loading and 

reboiler temperature.  Compression work decreased with increasing stripper pressure, so 
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the work for compression decreased with increasing lean loading and stripper 

temperature.  Heat duty in heating work did not have monotonic trends with lean loading 

like pump and compression work.  Normalized heat duty always reached a minimum at a 

lean loading where the sensible and stripping steam heat requirements were balanced (as 

in Figure 3-19).  Additionally, heat duty always decreased with increasing reboiler 

temperature.  It reached a minimum that balanced the sensible heat and stripping steam 

heat inputs.  The trend of change in heating work with reboiler temperature was 

complicated.  Heating work confounded the trend with lean loading and reboiler 

temperature since it accounted for the higher value of high temperature steam.  

Nonetheless, the minimum heating work was found to decrease with increasing 

temperature when stripping to the optimal lean loading. 

 

Figure 3-19.  Total equivalent work and individual contributions for 2-stage flash.  

Dashed = 100 °C, Solid = 120 °C.  9 m MEA, 0.5 rich loading, 5 °C cold side approach 

on main heat exchanger, CO2 compression to 150 bar. 
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Table 3-5.  Total heat duty and work contributions from 2-stage flash at 100 °C and 

120 °C and optimal lean loadings for 9 m MEA. 

 
Total Q Wheat Wcomp Wpump 

 
kJ/mol CO2 

100 °C 152 23.2 14.3 1.2 

120 °C 135 22.6 10.1 1.8 

Evaluating by equivalent work instead of heat duty can demonstrate significantly 

different optimal lean loadings.  This effect is shown in Figure 3-20.  The response of 

equivalent work and heat duty with varying lean loading are shown for 9 m MEA with 

reboiler temperature of 120 °C.  Heat duty had a flat optimum, but the minimum heat 

duty occurred at a lean loading of 0.34.  In contrast, the equivalent work minimum 

occurred at a lean loading of 0.39. 

 

Figure 3-20.  Optimization of heat duty (red) and equivalent work (blue) for 9 m MEA.  

0.5 rich loading, 120 °C reboiler, 5 °C cold side approach, CO2 compression to 150 bar. 
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3.3. PERFORMANCE WITH PZ 

The typical concentrated PZ solvent concentration of 8 m was evaluated.  The rich 

loading was assumed to be constant at 0.4, which corresponded to 5 kPa at 40 °C.  The 

preferred stripping temperature was chosen to be the ceiling temperature of the solvent, 

which is generally considered to be 150 °C due to elevated thermal degradation rates 

above that temperature (Freeman, 2011).  The performance was also evaluated at 120 °C 

to investigate whether PZ could be an adequate replacement solvent for MEA in a plant 

whose reboiler temperatures were already designed to be 120 °C.  The number of 

configurations that were simulated with concentrated PZ was reduced from the work with 

MEA.  The most relevant configurations were simulated to determine the specific benefit 

of complexity with this solvent.  Concentrated PZ has twice the capacity of 7 m MEA, 

but its heat of absorption is lower; therefore, the magnitude of its benefit was uncertain.  

This solvent was evaluated with 1- and 2-stage flash (Figures 3-3 and 3-4), simple 

stripper (Figure 1-2), adiabatic lean flash (Figure 3-7), interheated column (Figure 3-8), 

and double matrix configurations (Figure 3-5). 

The lean loading was optimized for each configuration.  However, the optimal 

lean loading demonstrated understripping in many cases.  A saturated optimized lean 

loading represented a case where the optimal lean loading had a P
*
CO2 at 40 °C equal to 

10% of the rich solvent P
*
CO2 at 40 °C.  The saturated lean loading for 8 m PZ with a rich 

loading of 0.40 was 0.31.  An overstripped lean loading had a P
*
CO2 at 40 °C less than 

saturation, and an understripped lean loading had a P
*
CO2 at 40 °C greater than saturation.  

Figure 3-21 shows the lean loading optimization for all 6 configurations running with a 

reboiler temperature of 150 °C. 
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Figure 3-21.  Performance of various stripper configurations with 8 m PZ at 150 °C.  0.4 

rich loading, 5 °C cold side approach, CO2 compression to 150 bar. 

Some cases, particularly those with high complexity and/or high operating 

temperature, yielded a saturated optimal lean loading which was equal to the 90% 

removal spec.  The only case which had an optimal lean loading that was overstripped 

was the interheated column.  The equivalent work values are reported for each 

configuration at both 120 °C and 150 °C in Tables 3-6 and 3-7, respectively. 
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Table 3-6.  Minimum equivalent work for various configurations at 120 °C and using 8 m PZ.  

Configuration 
Opt. Lean Loading Pressure Weq Heat Duty Pump Work 

Weq @ P
*

CO2<= 

0.5 kPa 

mol CO2/mol alk bar kJ/mol CO2  
kJ/mol CO2 

1SF 0.35 3.9 35.6 138.9 0.8 39.2 

SS 0.33 3.3 33.5 120.4 0.9 33.7 

ALF 0.33 4.2 / 2.7 32.7 111.6 1.1 32.9 

2SF 0.34 4.8 / 3.7 34.1 131.6 0.9 35.7 

DM 0.32 4.3 / 3.1 34.9 115.7 1.0 35.2 

IHC 0.31 2.9 31.8 107.0 0.7 31.8 

 

Table 3-7.  Minimum equivalent work for various configurations at 150 °C and using 8 m PZ. 

Configuration 
Opt. Lean Loading Pressure Weq Heat Duty Pump Work 

Weq @ P
*

CO2<= 

0.5 kPa 

mol CO2/mol alk bar kJ/mol CO2 kJ/mol CO2 

1SF 0.33 11.0 35.3 124.7 1.9 36.1 

SS 0.31 9.3 33.1 111.9 1.4 33.1 

ALF 0.30 11.3 / 6.5 32.3 102.2 1.7 32.3 

2SF 0.32 14.2 / 10.1 34.0 119.0 2.1 34.1 

DM 0.29 12.2 / 8.1 32.2 209.5 3.5 32.2 

IHC 0.28 7.6 30.9 99.9 1.0 31.2 
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The improvement in the equivalent work between 120 °C and 150 °C was 

marginal, only 1% to 3% for the cases with optimized lean loadings, but when 

considering the equivalent work for lean loadings at saturation or lower, 150 °C 

demonstrated a 2% to 8% improvement.  The effect of complexity on the equivalent work 

was still noticeable, with a 5% and 6% maximum improvement over the simple stripper 

base case for 120 and 150 °C, respectively.  Additionally, the reduced capital cost of the 

multistage compressor would favor operating at the elevated temperature of 150 °C.  

Based on the lowest pressure vessel in each configuration, the 120 °C cases all required 

six compression stages to maintain a compression ratio of 2 or less, and 150 °C cases 

mostly required five compression stages, with the exception of the 1- and 2-stage flash 

configurations that required four compression stages. 

 

3.4. COMPARING PERFORMANCE OF MEA AND PZ 

Since PZ was expected to have better performance than MEA in the stripper, a 

comparison of the results of the two solvents was done.  The heat duty should drastically 

be reduced for concentrated PZ because it has twice the CO2 carrying capacity of the 

standard 7 m MEA solvent.  Potentially counteracting qualities of concentrated PZ were 

its lower heat of absorption and higher ceiling stripping temperature.  A lower heat of 

absorption reduces the CO2 equilibrium partial pressure at stripping conditions, but 

stripping at 150 °C could have a counteracting effect.  Additionally, concentrated PZ has 

been shown to have twice the reaction rate with CO2 compared to 7 m MEA.  The 

reaction rate with CO2 did not have a direct impact in the stripper since the reactions were 

assumed to be instantaneous; however, a faster reaction rate should result in better 
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absorber performance.  Therefore, when considering a constant absorber height, the rich 

loading in 8 m PZ should be higher than the rich loading in 9 m MEA when comparing 

on a common basis of P
*
CO2 at 40 °C.  The absorber was not directly coupled to the 

stripper in this analysis, so an approximation of the performance with both solvents was 

needed. 

 

3.4.1. Absorber performance approximation 

In order to appropriately compare the performance of the stripper using 9 m MEA 

and 8 m PZ, it was desired to determine a rich loading for each solvent which accounted 

for the difference in reaction rates in the absorber.  The overall reaction rate constant, kg’, 

combined the kinetic and mass transfer effects and can be used to calculate CO2 flux with 

the gas side driving force between the bulk gas and interface concentrations: 

        
           

   3-4 

Data for kg’ in MEA and PZ was measured by Dugas (2009) as a function of 

loading, which was directly indicative of the P
*
CO2 at 40 °C of the solution.  The rate 

constant was also measured with varying temperature and solvent concentration, both of 

which had little effect between 40 °C and 60 °C.  This data was gathered and correlated 

to predict kg’ as a function of P
*
CO2 at 40 °C for MEA using 40 °C and 60 °C data for 7 

m, 9 m, 11 m, and 13 m MEA.  A similar correlation was derived for PZ using 40 °C and 

60 °C data for 2 m PZ, 5 m PZ, and 8 m PZ. The final correlation for each solvent is: 

              
                    

         3-5 

                
                    

         3-6 

To calculate approximate absorber performance, a saturated lean loading was 

specified where its equilibrium partial pressure was 10% of the rich equilibrium partial 
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pressure since 90% removal in the absorber was expected.  Assuming a constant absorber 

height for all cases, the normalized CO2 absorption rate was calculated as the log mean 

flux: 

 

        
                   

   
         

         
  

 

3-7 

Next, corresponding rich and lean loading sets for MEA and PZ were calculated 

that made the log mean fluxes for the two solvents equal to each other, thereby indicating 

equivalent absorber performance.  These estimates assumed an isothermal absorber at 

40 °C.  Rich and lean loadings sets were calculated for both solvents for two cases:  

1. 0.50 rich loading for 9 m MEA 

2. 0.50 rich loading for 8 m PZ 

Table 3-8.  Loadings of 9 m MEA and 8 m PZ to match absorber log mean flux.  

Loadings predicted by isothermal absorber approximation at 40 °C 

Case MEA rich  MEA lean PZ rich  PZ lean 

 P*CO2 

(kPa) 
ldg  

P*CO2 

(kPa) 
ldg 

P*CO2 

(kPa) 
ldg  

P*CO2 

(kPa) 
ldg 

1 5.0 0.50  0.50 0.45 8.4 0.42  0.84 0.33 

2 1.5 0.48  0.15 0.40 5.0 0.40  0.50 0.31 

Prior work (Oyenekan et al., 2007) used a common rich and lean loading set for 

MEA corresponding to 5 kPa/0.5 kPa of P*CO2 at 40 °C.  Table 3-8 shows that these 

loadings for MEA corresponded to loadings for PZ that provided 8.4 kPa/0.84 kPa P*CO2 

at 40 °C.  It was expected that a more realistic rich loading with PZ would have a P*CO2 

at 40 °C of 5 kPa, so this case (case 2 in Table 3-8) was used for the comparison 

simulations. 
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3.4.2. 9 m MEA and 8 m PZ performance with similar absorber specification 

Using the rich and lean loadings for MEA and PZ detailed in case 2 of Table 3-8, 

five configurations were evaluated at the respective maximum temperatures for each 

solvent.  The five configurations were the 1-stage flash (Figure 3-3), 2-stage flash (Figure 

3-4), simple stripper (Figure 1-2), stripper with adiabatic lean flash (Figure 3-7), and 

interheated column (Figure 3-8) configurations.  The equivalent work at saturation as 

well as the optimal lean loading for each configuration are shown for 9 m MEA and 8 m 

PZ in Tables 3-9 and 3-10, respectively.  These tables also detail the normalized reboiler 

duty and work contributions for each configuration.  The vessel pressures are also 

reported, and these demonstrate one of the most significant benefits of using concentrated 

PZ: by running at 150 °C, the stripper ran at significantly higher pressures.  Table 3-11 

shows the performance of 8 m PZ at 120 °C.  Considering the two solvents at the 

equivalent temperature of 120 °C, the vessel pressures were consistently lower when 

using 8 m PZ. 

The use of 8 m PZ at high temperature in the place of 9 m MEA yielded a 3% to 

11% improvement depending on the configuration.  When changing the solvent from 9 m 

MEA to 8 m PZ, the simple stripper showed the greatest improvement of all the 

configurations with a decrease of 11%, followed by the interheated column with an 

improvement of 10%, and the adiabatic lean flash had the third-best improvement of 9%.  

The 1- and 2-stage flash configurations did not benefit much by using 8 m PZ, 

demonstrating only a 4% and 3% improvement, respectively. 

Another significant difference between the two solvents was that the optimal lean 

loading when using 9 m MEA was overstripped, but the optimal lean loading when using 

8 m PZ was understripped or near saturation.  At a low lean loading, the dominating 

effect that would increase the total equivalent work was the stripping steam requirement.  
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Since MEA has a high heat of absorption, the stripping steam requirement was generally 

lower, so it ran more optimally at lower lean loading than PZ.
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 Table 3-9.  Performance of 9 m MEA at 120 °C with a 0.48 rich loading, CO2 compression to 150 bar.  Pressure, total 

heat duty, and work contributions at optimal lean loading. 

Configuration 
Process 

units 
Equivalent Work Lean Loading Pressure Total Q Wheat Wpump Wcomp 

  
kJ/mol CO2 mol CO2/mol alk bar kJ/mol CO2 

Lean loading  
 

0.4 ldg Optimal 
     

1-Stage flash 2 37.4 37.2 0.39 5.1 153 24.6 1.2 11.4 

Simple Stripper 3 37.0 35.9 0.36 3.9 137 21.9 1.4 12.6 

Stripper with 

adiabatic lean flash 
3 36.8 35.4 0.36 5.2 / 2.9 132 21.1 1.5 12.8 

2-Stage flash 4 36.2 35.5 0.38 7.1 / 4.4 145 23.1 1.5 10.8 

Interheated column 5 35.3 34.2 0.35 3.5 129 20.6 0.5 13.0 

Table 3-10.  Performance of 8 m PZ at 150 °C with a 0.40 rich loading, CO2 compression to 150 bar. 

Configuration 
Process 

units 
Equivalent Work Lean Loading Pressure Total Q Wheat Wpump Wcomp 

  
kJ/mol CO2 mol CO2/mol alk bar kJ/mol CO2 

Lean loading  
 

0.31 ldg Optimal 
     

1-Stage flash 2 36.1 35.3 0.33 11.0 125 25.1 1.9 8.3 

Simple Stripper 3 33.1 33.1 0.31 9.3 112 22.6 1.5 9.0 

Stripper with 

adiabatic lean flash 
3 32.3 32.3 0.31 12.1 / 7.1 103 20.7 1.7 7.9 

2-Stage flash 4 34.1 34.0 0.32 14.2 / 10.1 119 24.0 2.0 7.3 

Interheated column 5 31.2 30.9 0.28 7.6 100 20.1 1.0 9.8 
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Table 3-11.  Performance of 8 m PZ at 120 °C with a 0.40 rich loading, CO2 compression to 150 bar. 

Configuration 
Process 

units 
Equivalent Work Lean Loading Pressure Total Q Wheat Wpump Wcomp 

  
kJ/mol CO2 mol CO2/mol alk bar kJ/mol CO2 

Lean loading  
 

0.31 ldg Optimal 
     

1-Stage flash 2 39.2 35.6 0.35 3.9 139 22.2 0.8 12.6 

Simple Stripper 3 33.7 33.5 0.33 3.3 120 19.3 0.9 13.3 

Stripper with 

adiabatic lean flash 
3 32.9 32.7 0.33 4.2 / 2.7 112 17.9 1.1 12.2 

2-Stage flash 4 35.7 34.1 0.34 4.8 / 3.7 132 21.1 0.8 11.8 

Interheated column 5 31.8 31.8 0.31 2.9 107 17.1 0.7 13.9 
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3.4.3. Comparison of solvent/configuration combinations 

Table 3-12 summarizes the results of important solvent/configuration 

combinations.  The minimum total equivalent work, optimal lean loading, vessel 

pressure, total heat duty, and work contributions are all detailed. 

Table 3-12: Noteworthy Solvent/Configuration Combinations.  9 m MEA at 120 °C 

and 8 m PZ at 150 °C. 

System 
Equivalent 

Work 

Lean 

Ldg 
Pressure Total Q Wheat Wpump Wcomp 

 
kJ/mol CO2 mol/mol bar kJ/mol CO2 

MEA - SS - 

0.5 rldg 
33.8 0.39 5.1 131 21.1 1.3 11.5 

MEA - SS - 

0.48 rldg 
35.9 0.36 3.9 137 21.9 1.4 12.6 

MEA - 2SF 

- 0.48 rldg 
35.5 0.38 7.1 / 4.4 145 23.1 1.5 10.8 

PZ - SS -

0.40 rldg 
33.1 0.31 9.3 112 22.6 1.5 9.0 

PZ - 2SF -

0.40 rldg 
34.1 0.31 

13.4 / 

9.4 
120 24.2 1.8 8.1 

PZ - IHC -

0.40 rldg 
30.9 0.28 7.6 100 20.1 1.0 9.8 

Various mechanisms within the stripper dictated the improvement of each 

combination.  Changes in compression and pump work were straightforward.  

Compression work decreased due to any increase in the pressure of the vessel(s), and 

pump work increased due to any increase in the pressure of the vessel(s).  However, 

pump work also decreased with reduced optimal lean loading due to increased capacity 

and decreased solvent circulation rate.  Several mechanisms directed changes in the 

heating work.  First, increased reboiler temperature at a constant total heat duty raised the 

heating work since the steam used was of higher quality.  Next, improved solvent 

capacity decreased the heat duty due to the lower sensible heat requirement.  Finally, the 

difference in the heats of absorption of CO2 of the solvents affected the amount of heat 
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duty needed to desorb CO2.  The improvements of each combination in Table 3-12 can be 

explained using these mechanisms.  The general conclusion was that 8 m PZ consistently 

performed better than 9 m MEA, mostly due to the fact that it was run at 150 °C.  At the 

higher temperature, the vessel pressures were significantly higher in the PZ cases, 

drastically reducing the compression work. 

The first and second cases both used 9 m MEA in a simple stripper, but the rich 

loading varied between 0.5 and 0.48.  As expected, the total equivalent work was lower 

with a high rich loading.  The optimal lean loading with a rich loading of 0.50 resulted in 

a stripper pressure of 5.1 bar, compared to 3.9 bar for a rich loading of 0.48.  

Consequently, the compression work was reduced by 1.1 kJ/mol CO2, or 8.7%.  The 

reboiler duty (and heating work) also decreased with the higher rich loading because the 

CO2 equilibrium partial pressure was higher at the top of the column, so the CO2 

selectivity was better. 

A comparison which demonstrated a major difference between the two solvents 

was the difference between the simple stripper and 2-stage flash with each solvent.  The 

flash configuration was capable of reducing the total work requirement with MEA, but 

the performance worsened when transitioning from the simple stripper to 2-stage flash 

with PZ.  By examining the changes in work contributions for this modification with each 

solvent, it was clear that MEA experienced a drop in compression work of 1.8 kJ/mol 

CO2, but PZ only experienced a drop of 0.9 kJ/mol CO2.  Both solvents experienced an 

increase in heating work since more stripping steam escaped from the equilibrium 

flashes, but MEA had a smaller increase due to its higher heat of absorption.  Combining 

all of the contributions, the 2-stage flash configuration was a beneficial change from the 

simple stripper when using MEA, but not for PZ. 
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Table 3-12 clarifies the source of improvement of the interheated column over the 

simple stripper.  First, since the rich solvent entering the top of the column was cooler, 

the stripping steam exiting in the vapor from the top of the column decreased.  Since the 

stripping steam requirement decreased, the reboiler duty and heating work also 

decreased.  Next, the column pressure was lower with the lower lean loading, so the rich 

pump pressure change decreased by 15%.  The lower optimal lean loading caused the 

solvent rate to decrease by 25%, so the overall decrease in rich pump work was 33%.  

The compression work increased by 9% due to the lower column pressure, but the other 

savings resulted in a much more efficient configuration. 

 

3.4.4. Update to Absorber Approximation 

The difference in optimal lean loadings between MEA and PZ needed to be 

addressed.  As previously pointed out, the process optimally utilized overstripping for 

MEA, but only typically optimized with a saturated lean loading for PZ.  The rich 

loadings of 0.48 and 0.4 for MEA and PZ, respectively, were calculated to be an accurate 

comparison in section 3.4.1 when paired with the respective lean loadings corresponding 

to 90% removal.  All amine solvents demonstrated trends of kg’ that increased with 

decreasing loading.  Since MEA optimized with lower lean loading, the actual log mean 

CO2 flux in the absorber was greater, so the rich and lean loadings for PZ needed to also 

be lower to similarly increase its log mean flux in the absorber.  Table 3-13 summarizes a 

supplemental set of rich and lean loadings for 9 m MEA and 8 m PZ.  The optimized runs 

for 9 m MEA in section 3.4.2 demonstrated variable optimal lean loadings, so a 

representative value of 0.36 was selected.  The new calculated loadings for PZ were not 

significantly different than the originally selected values.  Consequently, the simple 
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stripper at 150 °C had an energy requirement of 33.6 kJ/mol CO2 using the new rich and 

lean loadings, only 0.4 kJ/mol CO2 (1.4%) greater than the requirement with a rich 

loading of 0.4.  Approximately the same change could be expected for the other 

configurations. 

Table 3-13.  Rich and lean loadings for 9 m MEA and 8 m PZ predicted by 

isothermal absorber approximation based on optimal performance of 9 m MEA in 

stripper 

Solvent 
Rich Lean 

P*CO2  (kPa) ldg P*CO2  (kPa) ldg 

MEA 1.5 0.479 0.09 0.360 

PZ 4.5 0.394 0.45 0.308 

 

3.5. RECOMMENDED FLOWSHEET IMPROVEMENTS 

The performance of the heat exchanger was important to evaluate in order to 

make adequate recommendations for future flowsheet modifications.  The heat exchanger 

was simulated in this work using a constant cold side temperature approach, which 

assumed a variable exchanger area to attain the desired temperature approach.  However, 

an imbalance of heat capacity flows as well as excessive flashing of the rich solvent 

could result in a hot side temperature approach that was significantly higher than the cold 

side.  Table 3-14 shows the heat exchanger performance of the important combinations of 

solvent and configuration that were presented in Table 3-12.  When the pressure was 

sufficiently high to prevent flashing of the rich solvent, the hot side approach was 

between 6.1 and 7.7 °C.  However, at the pressures that were modeled in the simulations, 

flashing occurred and the hot side approaches were increased to 6.6 to 13.9 °C.  Such a 

drastic difference in the approach temperatures indicated a source of inefficiency.  

Tactics to balance the temperature driving force in the heat exchanger could include 
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overpressurization of the rich solvent to reduce flashing, reflux in the stripper to balance 

the heat capacity flows, and rich solvent bypass around the heat exchanger to balance the 

heat capacity flows. 

Table 3-14.  Heat exchanger performance of important solvent/configuration 

combinations, with and without rich solvent flashing.  9 m MEA at 120 °C and 8 m 

PZ at 150 °C. 

System 
Cold Side 
Approach 

Hot Side 
Approach 

Hot Side Approach 
(no flashing) 

 
C C C 

MEA - SS - 0.5 rldg 5.0 9.3 7.0 

MEA - SS - 0.48 rldg 5.0 8.8 7.0 

MEA - 2SF - 0.48 rldg 5.0 13.9 7.7 

PZ - SS - 150C 5.0 9.7 6.1 

PZ - 2SF - 150C 5.0 8.7 6.4 

PZ - IHC - 150C 5.0 6.6 6.5 

The intercoolers in the multi-stage compressor were also a potential source of low 

grade heat.  The amount of recoverable heat varies with the inlet pressure of CO2, but a 

saturated feed with a pressure of 2 bar and intercooling to 40 °C had 20.6 kJ/mole CO2 of 

total heat available for recovery.  However, this value assumed that the heat could be 

used all the way down to 40 °C.  Less heat would be available at a higher feed pressure.  

Nonetheless, recycling the heat removed in the intercoolers could be a way to reduce the 

impact of the heating requirement in the stripper. 

Lastly, configurations were explored in this chapter that utilized high stripper 

pressure.  For example, the optimum flowsheet with 8 m PZ in an interheated column 

with a reboiler temperature of 150 °C had a column pressure of 7.6 bar.  The required 

feed pressure of the absorber is typically only 1 atm.  The extra pressure to overcome 

head and pressure drop would be approximately 2.5 bar.  Therefore, whenever the lean 

return pressure was greater than 3.5 bar, the extra pressure could theoretically be 
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recovered in a liquid expanding turbine.  Due to pressure drop in pipes and process units, 

the heights of the absorber and stripper, and inefficiencies in the pumps and liquid 

expander, the rich pump work could not be fully recovered, but a slight benefit may be 

realized. 

Table 3-15.  Potential improvement in stripper performance by using lean solvent 

expansion with turbine 100% efficiency.  9 m MEA (0.48 rich loading) and 8 m PZ 

(0.40 rich loading). 

  
No Lean Recovery Lean Recovery 

 
Lean Loading Equivalent Work Equivalent Work 

 
mol/mol kJ/mol CO2 kJ/mol CO2 

MEA-2SF-120 °C 0.38 35.50 35.31 

PZ-IH-150 °C 0.28 30.95 30.61 

The 2-stage flash configuration with 9 m MEA had a high LP pressure and low 

equivalent work, so it was chosen for analysis with lean solvent expansion.  The high 

vessel pressures in the PZ configurations made them better candidates for recovering 

energy with lean expansion.  The interheated column with 8 m PZ had the best overall 

performance, so it was also of interest for further improvement.  Even so, the maximum 

recoverable energy was about 0.3 kJ/mole CO2, or 1%.  This result suggested that 

pursuing the use of a liquid expansion turbine to recover pressure energy from the lean 

solvent would only be worthwhile if scraping for every possible energy benefit. 

 

3.6. CONCLUSIONS 

1. Using either MEA or PZ, greater complexity in the stripper usually resulted in 

better energy efficiency due to a closer approach to a reversible process.  The type of 

complexity added to the simple stripper dictated the relative magnitude of the 

improvement. 
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2. The 2-piece compressor correlation assuming 72% polytropic efficiency and no 

pressure drop in intercoolers provided nearly the same approximation as 80% polytropic 

efficiency and 20% pressure drop in each intercooler. 

3. Evaluating performance by equivalent work accounted for the impact of variable 

vessel pressure and steam quality required when considering different reboiler 

temperatures and solvents. 

4. Increasing the number of pressure stages of a multi-stage flash from 1 to 2 with 9 

m MEA decreased the equivalent work by 4.2%.  There was a reduced benefit of 0.5% 

when the number of pressure stages in a multi-stage flash was increased from 3 to 4 with 

9 m MEA. 

5. The most beneficial single addition of complexity was interheating of a packed 

column.  The actual improvement varied by solvent, temperature, and rich loading, but 

the interheated column consistently required 4.8% to 7.8% less equivalent work. 

6. Reducing the rich loading of the MEA runs to a more conservative value of 0.48 

reduced the efficiency of each configuration by 2%-9%.  The configuration least affected 

by the loading change was the interheated column. 

7. Increasing the stripping temperature of 8 m PZ from 120 °C to 150 °C reduced the 

work requirement by 1% to 3% at optimal lean loadings, depending on the configuration. 

8. Using laboratory rate data and an isothermal absorber approximation at 40 °C, 

rich/lean loadings sets of 0.48/0.40 and 0.40/0.31 for 9 m MEA and 8 m PZ, respectively, 

were found to require an equivalent packed area in the absorber. 

9. The minimum equivalent work for the stripper was found with understripped lean 

loadings when simulating 9 m MEA, but the optimal lean loadings for 8 m PZ were 

higher, hovering around the saturation CO2 equilibrium partial pressure at 40 °C. 
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10. A simple stripper had the best improvement of 11% when changing the system 

from 9 m MEA at 120 °C to 8 m PZ at 150 °C. 

11. Compared to a simple stripper, 9 m MEA benefited from the 2-stage flash due to a 

reduction in compression work.  In contrast, 8 m PZ showed a decrease in efficiency 

because its benefit in compression work was smaller than the increase in heat work. 

12. 8 m PZ consistently had a lower energy requirement than 9 m MEA when using a 

rich loading which accounted for the faster reaction rate of PZ in the absorber.  The 

simple stripper and complex configurations with packed columns demonstrated 

substantial improvement of 9% to 11% better energy performance with PZ.  The multi-

stage flash configurations were 3% to 4% better with PZ. 

13. Equivalent work optimization yielded higher optimal lean loadings than heat duty 

optimization. 

14. The heat exchangers were imbalanced due to unequal rich and lean heat capacity 

flows and rich solvent flashing.  Rich bypass around the exchanger could resolve this 

inefficiency. 

15. Heat recovery from the intercoolers of the multi-stage compressor and energy 

recovery from the lean solvent through a liquid expansion turbine could both reduce the 

energy requirement, but the benefit would be marginal.  Heat recovery from intercoolers 

could recycle 20.6 kJ/mol CO2 assuming a stripper pressure of 2 bar, and the maximum 

benefit of using a liquid expansion turbine would be 1% of the total equivalent work. 
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Chapter 4: Optimization Case Studies 

 

 

 

The previous chapter focused heavily on the potential improvement in stripping 

efficiency by increasing configuration complexity or switching to a new solvent like PZ 

with more favorable qualities.  Though the equivalent work requirement was reduced by 

14%, further work should be done to continue reducing the energy usage and approach 

the thermodynamic minimum.  This chapter focuses on several case studies to improve 

the stripper performance or address the accuracy of calculations in the current approach.  

Bypass of the cold rich solvent around the main cross exchanger directly to the stripping 

vessel(s) was used as a method of condensing stripping steam by direct contact cooling.  

Geothermal heat was explored with a modified 2-stage flash configuration.  Lastly, a 

collaboration helped to more accurately calculate the penalty of CO2 separation and 

compression, and it also allowed for a comparison to the current calculation approach. 

 

4.1. ROOM FOR EXPANSION OF ANALYSIS 

Chapter 3 demonstrated that increasing stripper complexity can improve the 

energy performance.  Additionally, 8 m PZ further reduced the energy requirement by 

decreasing compression work through increased stripper pressure and by reducing the 

solvent circulation rate.  The minimum work requirement was 30.5 kJ/mole CO2, but the 

thermodynamic minimum work of separation and compression to 150 bar is 17.3 kJ/mole 

CO2.  Some inefficiencies in the process are unavoidable due to mechanical limitations; 
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this includes the inefficiencies in the pumps and compressors.  Heat exchangers also have 

implied irreversibility since a moderate approach temperature is required to use a 

reasonable exchanger size. 

Chapter 3 focused on applying individual types of complexity to configurations to 

see how each affected energy performance.  A common source of wasted heat was 

stripping steam.  The water vapor that escaped with CO2 could only be reduced to 

equilibrium conditions at the top of the columns.  All of the heat that supplied the energy 

to generate the water vapor went to waste when the gas was cooled and water was 

condensed.  Water condensing was done before the multi-stage compressor as well as 

between stages.  A majority of the water was condensed in the pre-cooler which ran at 

40 °C.  Therefore, recycling the heat contained in the water vapor instead of using the 

cold sink of cool water could improve the overall efficiency. 

A downside of using steam for the stripper that was generated in the boiler of the 

coal plant is that this steam would feasibly only be available at one temperature.  A plant 

would be designed to draw steam at a single point at the IP/LP crossover, which would be 

at a specific pressure and temperature.  Although isothermal stripping is the most 

reversible approach from a thermodynamic standpoint, a large temperature swing exists 

between the absorber and stripper.  Therefore, methods should be explored that utilize 

heat at multiple temperature levels.  With this consideration, non-isothermal 

configurations could be designed to take advantage of heat sources that are available at 

multiple temperature levels. 

The decomposition method was adopted for this work to simplify the analysis of 

the stripper.  The absorber and stripper each have problems that are very different from 

each other, so it was helpful to evaluate the stripper without considering the impact of the 

absorber.  Additionally, the stripper has always been simulated without considering the 
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direct impact of drawing steam from the power generation cycle.  While it was fair to 

assume that these two sections have little direct impact on the optimization of the 

stripper, a fully rigorous and credible analysis should expand its scope as much as 

possible.  This type of analysis could confirm or refute the assumptions that have been 

made for the types of simulations that were done in Chapter 3 and other previous work by 

different authors. 

 

4.2. COLD RICH BYPASS TO IMPROVE 2-STAGE FLASH PERFORMANCE AT PILOT 

PLANT 

In previous configurations, high mole fraction of non-CO2 components in the 

overhead vapor resulted in reduced performance.  Water vapor in the overhead stream, 

stripping steam, was especially present in configurations without packing as well as when 

8 m PZ was used.  Since the configurations were modeled with the hot overhead streams 

being condensed with cooling water, heat trapped in the form of stripping steam was 

wasted.  Volatilized amine also represented non-optimal performance.  The vapor amine 

concentration was always low compared to CO2 and water, but its presence in the vapor 

could cause operational issues.  Condensing amine on the compressor blades would cause 

corrosion, and high amine concentration in the return of condensate would increase its 

viscosity.  In the case of 8 m PZ, high amine concentration in the condensate without 

dissolved CO2 could risk precipitation and clog process units or pipes.  Therefore, a 

method to reduce the vapor concentrations of both highly condensable impurities could 

improve the performance of various configurations/solvent systems. 

Cold rich bypass was proposed as a simple modification to the 2-stage flash 

configuration.  The flowsheet of bypass for a 2-stage flash is shown in Figure 4-1.  This 

method has previously been used to take advantage of the heating capability of exiting 
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vapor (Leites et al., 2003; Mak, 2006).  The rich solvent was bypassed around the cross 

exchanger and then directly to the flash vessels.  A small amount of packing was used in 

the top section of each flash to countercurrently contact the cold rich solution with the 

rising hot vapor from the flash.  This vapor/liquid contact served as a direct contact 

cooler for the vapor, condensing both water and amine vapor.  In turn, CO2 was also 

released from the rich solvent due to released latent heat of the condensing water and 

amine.  This concept was expected to improve the energy performance and reduce the 

amine volatility of all configurations with both solvents.  The analysis of this concept was 

limited to its application to a 2-stage flash, a simple stripper, and an interheated column.  

8 m PZ was expected to have the greatest benefit with bypassed solvent due to its higher 

stripping steam requirement and high risk of precipitation with PZ.  The 2-stage flash 

should experience the greatest improvement since it had no packing, so its vapor 

concentrations were at the equilibrium conditions of the high temperature reboilers. 

Figure 4-1 used the pilot plant skid as the basis for the rich bypass flowsheet.  The 

unique aspect of this process was the presence of two separate heat exchangers to 

perform the main heat exchange.  The plant was originally designed to have a stripper 

temperature of 100 to 120 °C.  The new high-temperature 2-stage flash skid was designed 

for operating PZ at 150 °C, so a second, high-pressure heat exchanger was added.  This 

heat exchanger was designed to deliver the heat exchange necessary to attain 150 °C as 

well as withstand the high-pressure of PZ at elevated temperature. 
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Figure 4-1.  Cold rich bypass to both vessels of a 2-stage flash. 

 

4.2.1. Benefit of Cold Rich Bypass for Pilot Plant Flowsheet 

The first analysis of cold rich bypass considered drawing the bypass from this 

stream of rich solvent between the two heat exchangers, as shown in Figure 4-1.  Bypass 

modifications were evaluated in two configurations: 

1. Rich bypass to both the high-pressure and low-pressure vessels (2SF-

LP/HP Byp). 

2. Rich bypass to only the low-pressure vessel (2SF-LP Byp). 

Bypass to both vessels was analyzed as a best case scenario for performance with 

bypass.  However, since the low-pressure vessel was at the lowest loading, its vapor had 

the lowest concentration of CO2 and the highest concentration of amine and water vapor.  

Therefore, rich bypass only this vessel was also considered to see whether bypass to both 

vessels was necessary. 
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The flowsheets were simulated with the Fawkes model for PZ to ensure correct 

representation of the amine volatility.  Bypassing solvent around the high-pressure 

exchanger was going to change the balance of its approach temperatures, as well as 

change the amount of flashing that occurred within the exchanger.  For that reason, a 

method more rigorous than specifying the cold side approach was needed.  Assumptions 

were imposed on each heat exchanger to maintain constant performance.  A constant 

LMTD of 5 °C was specified for the low-pressure heat exchanger.  A constant average U 

was specified for the high-pressure heat exchanger.  The total area of the high-pressure 

heat exchanger was 219.6 ft
2
.  The following fundamental equation for heat exchangers 

was used for this analysis: 

          4-1 

where Q is the heat duty exchanged, U is the overall heat transfer coefficient, A is 

the heat exchanger area, and ΔT is the temperature difference between the hot and cold 

streams.  Unless considering ideal cases, both the overall heat transfer coefficient and the 

temperature difference change throughout the exchanger area.  Therefore, the expression 

must either be integrated along the exchanger area or approximated by calculating in 

pieces.  The latter approach was used by utilizing a base case simulation of the 2-stage 

flash.  The following calculations were for a 2-stage flash simulation with a 5 °C LMTD 

on the low-pressure exchanger, a rich loading of 0.4, and a lean loading of 0.26.  The 

temperature profile in the high-pressure exchanger was calculated by splitting the heat 

duty into 5 segments.  The profile is shown in Figure 4-2, and the conditions in the 

exchanger are detailed in Table 4-1. 
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Figure 4-2.  Profile of Temperature Difference between hot and cold streams in High-

Pressure Heat Exchanger of 2-Stage Flash.  0 = cold side, 1 = hot side.  0.4 rich loading, 

0.26 lean loading, 5 °C LMTD on low-pressure heat exchanger. 

Table 4-1.  High-Pressure Exchanger Conditions for 2-Stage Flash Base Case, HP 

pressure = 13.5 bar. 

Segment Exchanger Position Cold T Hot T Q dT UA 

  
°C °C kW °C kW/°C 

0 0 90.0 98.5 
 

8.5 
 

1 0.2 99.2 108.9 36.0 9.7 3.96 

2 0.4 108.5 119.3 36.0 10.7 3.52 

3 0.6 117.9 129.6 36.0 11.6 3.22 

4 0.8 127.4 139.8 36.0 12.4 2.99 

5 1 135.9 150.0 36.0 14.2 2.71 

The total heat duty in the high-pressure heat exchanger was 179.9 kW, so each of 

the five segments exchanged 36.0 kW.  The temperature difference for each segment was 

assumed to be the average of its hot side and cold side values of ΔT.  Therefore, the UA 

for each segment could be calculated as follows: 
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4-2 

where i is the segment.  The sum of all UAi values gave an overall UA and was 

divided by the exchanger area (219.6 ft
2
) to give a calculated average U.  This calculation 

gave an average U of 0.804 kW/m-K. 

For all following calculations, the same average U was specified for the high-

pressure heat exchanger.  Several beneficial effects were observed by splitting the rich 

solvent and contacting the high temperature vapor in either stream with the cold liquid, 

detailed in Table 4-2.  The bypass to each vessel was 5% of the total rich solvent, and the 

packed sections were 12 in of Mellapak 500Y.  The diameter of the packing was set to be 

the same as the packing in the stripper column, 16.8 inches.  The flood at this diameter 

varied from 4 to 10% with a range of rich bypass from 0 to 25%.  The total PZ contained 

in the vapor was calculated as the combined molar flow rate of PZ released from both 

flash vessels, and it was normalized by the stripped CO2 rate. 

A simple stripper under the same heat exchange specifications was reported for a 

baseline comparison.  The data in Table 4-2 demonstrated the importance of improving 

performance and reducing volatility at low lean loading where water and amine 

concentrations in the vapor were high.  In the simple stripper baseline, total released PZ 

increased by 18% when the lean loading decreased from 0.30 to 0.26 because the PZ 

concentration increased from 527 to 576 ppm and the CO2 concentration decreased.  

There was a substantial increase in PZ volatility and equivalent work when switching 

from a simple stripper to 2-stage flash at both lean loadings.  Bypassing solvent to only 

the low-pressure flash significantly improved the volatility and performance.  At lean 

loadings of 0.26 and 0.30, the released PZ improved by 54 and 63%, and the equivalent 

work decreased by 8.3 and 6.7%, respectively.  Including bypass to the high-pressure 
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vessel improved performance more, but the effect was not as significant as bypassing to 

the low-pressure vessel.  The lower amine and water concentration in the high-pressure 

vapor meant that there was less room for improvement than in the low-pressure vessel.  

Additionally, the pressure ratio of 2 resulted in the production vapor being weighted 

toward the low-pressure flash.  Since more vapor was produced at the low pressure, it 

was more important to treat the low-pressure vapor with cold rich bypass. 

Alternate cases were run with a pressure ratio between flash stages of 1.5.  This 

lower pressure ratio yielded vapor flows that were more balanced on a molar basis.  Table 

4-3 shows the performance and decrease in PZ volatility at these conditions. 

Since this pressure ratio of 1.5 balanced the production of vapor from the two 

flashes, the performance for these cases was better than the cases with a pressure ratio of 

2.  Another important conclusion from these cases with balanced vapor production was 

that adding bypass to the high-pressure vessel was nearly as important as adding bypass 

to the low-pressure vessel, especially when considering the reduction in the equivalent 

work.  The cases with bypass to both vessels demonstrated equivalent work values less 

than the simple stripper baseline values presented in Table 4-2. The downside to 

implementing bypass to both flash vessels would be the implication of higher process 

complexity, which would result in a larger capital investment and more difficult process 

control.  However, adding a short section of packing to the top of a flash vessel would be 

a less significant increase in capital compared to other high complexity configurations 

suggested in Chapter 3.  The simulations were more difficult to converge when there 

were two interacting packed sections with countercurrent rate based vapor/liquid 

calculations. 
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Table 4-2.  Improvement with 5% Cold Rich Bypass in 2-Stage Flash.  150 °C reboilers, rich loading = 0.40, PHP/PLP = 

2, compression to 150 bar.  LP HX = 3 °C cold side approach, HP HX = constant UA (16.4 kW/K). 

Rich 

loading 

Lean 

loading 
Configuration 

Total heat 

duty 
HP PZ LP PZ 

Total PZ in 

vapor 

Equivalent 

work 

Cold 

approach 

Hot 

approach 

mol/mol mol/mol 
 

kJ/mol CO2 ppm 
mmol PZ/   

kmol CO2 
kJ/mol CO2 °C °C 

0.4 0.26 SS 106.1 - 576 0.92 33.2 8.0 17.5 

0.4 0.26 2SF 130.1 894 3949 6.64 38.7 7.7 12.6 

0.4 0.26 2SF-LP Inj 113.7 873 2138 3.08 35.5 8.3 10.4 

0.4 0.26 2SF-LP/HP Inj 107.4 15 2211 2.79 34.2 8.5 9.0 

0.4 0.3 SS 101.0 - 527 0.78 32.5 6.8 13.4 

0.4 0.3 2SF 108.7 557 2106 3.00 36.4 6.5 8.1 

0.4 0.3 2SF-LP Inj 96.0 548 848 1.10 34.0 6.5 6.8 

0.4 0.3 2SF-LP/HP Inj 93.7 33 918 1.00 33.4 6.7 5.7 

Table 4-3.  Improvement with 5% Cold Rich Bypass in 2-Stage Flash.  Rich loading = 0.40, PHP/PLP = 1.5, compression 

to 150 bar.  LP HX = 3 °C cold side approach, HP HX = constant UA (16.4 kW/K). 

Rich 

loading 

Lean 

loading 
Configuration 

Total heat 

duty 
HP PZ LP PZ 

Total PZ in 

vapor 

Equivalent 

work 

Cold 

approach 

Hot 

approach 

mol/mol mol/mol 
 

kJ/mol CO2 ppm 
mol PZ/      

kmol CO2 
kJ/mol CO2 °C °C 

0.4 0.26 2SF 127.1 1560 3918 5.59 37.3 7.8 14.5 

0.4 0.26 2SF-LP Inj 112.5 1555 1673 2.80 34.4 8.4 12.7 

0.4 0.26 2SF-LP/HP Inj 101.5 167 1741 1.49 32.2 8.5 11.1 

0.4 0.3 2SF 107.4 927 2090 1.81 34.5 5.7 10.1 

0.4 0.3 2SF-LP Inj 96.3 925 456 0.74 32.3 6.8 8.8 

0.4 0.3 2SF-LP/HP Inj 86.6 49 476 0.24 30.7 6.7 7.5 
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4.2.2. Balancing Temperature Difference Driving Force in Heat Exchanger with 

Bypass 

Typically the lean solvent flow rate is smaller than the rich flow since CO2 and 

water exit in the overhead.  This effect reduces the temperature increase of the rich 

solvent, so the rich solvent does not approach the lean solvent temperature as closely.  

Additionally, the rich solvent can begin to flash in the heat exchanger, which reduces its 

temperature increase even further.  Therefore, the hot side approach is typically higher 

than the cold side approach in optimized flowsheets.  Bypassing rich solvent around the 

heat exchanger can undo this effect by equalizing the capacity flow rates for the 

countercurrent streams and overcompensating for flashing that occurs in the rich solvent.  

This effect is shown in Figure 4-3.  The trends were shown with a lean loading of 0.30 

and bypass only to the low-pressure vessel, but the trends were similar for all lean 

loadings and bypass configurations.  The main variables that affected balancing 

temperature differences across the heat exchanger was the total bypass percentage around 

the main heat exchanger. 
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Figure 4-3.  Temperature difference profile of the high-pressure heat exchanger with 

varying bypass percentage to low-pressure flash.  8 m PZ, 0.4 rich loading, 0.3 lean 

loading.  

The temperatures within the heat exchanger were calculated at the hot and cold 

ends as well as for evenly spaced points within the exchanger.  The cold side approach 

was fairly constant with varying split percentages because the low-pressure heat 

exchanger performance was constant and had consistent rich and lean flow rates between 

cases.  The hot side approach decreased as the bypass around the high-pressure exchanger 

increased.  The amount of flashing increased with more bypass as the less rich solvent 

was being heated by the same amount of lean solvent.  In Figure 4-3, the sharp increases 

in temperature difference toward the hot end of the exchanger indicated the relative 

magnitude of flashing.  This flashing would become especially important in the design of 

the heat exchanger if a smaller temperature approach were used along with a high bypass 

percentage.  In such a scenario, although the cold and hot temperature approaches might 
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suggest a feasible exchanger design, there could be a temperature pinch within the 

exchanger. 

 

4.2.3. Sensitivity Analyses 

The goal of this work was to simulate conditions that might be expected at the 

pilot plant is bypass concept were implemented and determine the optimal operating 

conditions.  In section 4.2.1 bypass was evaluated 5% split, 12 inches of Mellapak 500Y 

packing with a diameter of 16.8 inches, and lean loadings of 0.26 and 0.30.  In this 

section, the sensitivity of the flowsheet performance to each of these variables was 

evaluated.  The flowsheets were not being evaluated as upgrades to existing processes, so 

an arbitrary rich solvent flow rate of 50 kmol/s was used.  Consequently, the diameter of 

packing was not a meaningful result, but the flood was maintained at 80% by varying the 

diameter. 

First, the required height of packing was analyzed, shown in Figures 4-4 and 4-5.  

These figures demonstrated that the base case of 12 inches of packing was sufficient to 

maximize both performance and PZ capture.  When considering a lean loading of 0.26, 

the minimum height of packing to reach minimum equivalent work was approximately 8 

inches, but 24 inches was required to reach the minimum PZ release rate at a lean loading 

of 0.30.  Nonetheless, 12 inches of packing approached the minimum equivalent work 

and minimum PZ release rate at lean loadings of 0.26 and 0.30. 
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Figure 4-4.  Decrease in equivalent work with greater packed height.  8 m PZ, 150 °C 

reboilers, 0.40 rich loading, 5% bypass of rich solvent before high-pressure cross 

exchanger, bypass only to low-pressure flash, pressure ratio = 2. 

 

Figure 4-5.  Decrease in released PZ with greater packed height.  8 m PZ, 150 °C 

reboilers, 0.40 rich loading, 5% bypass of rich solvent before high-pressure cross 

exchanger, bypass only to low-pressure flash, pressure ratio = 2. 
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A lean loading of 0.3 was closer to optimal with the base case 2-stage flash than 

0.26, so the predicted equivalent work with 5% bypass was also lower at all packed 

heights.  The volatility of PZ was also lower at the lean loading of 0.3 since less free 

anime was available in solution.  Consequently, the total released PZ was lower for all 

packing heights at a lean loading of 0.3 than at 0.26. 

The sensitivity of equivalent work and released PZ to bypass percentage was also 

analyzed.  Again, this analysis was performed with bypass only the low-pressure flash 

vessel, but a similar trend would be seen with split to the high-pressure vessel.  Unlike 

the effect of packing height, bypass percentage did not have the same effect on equivalent 

work as it did on PZ release rate.  The effects for equivalent work and PZ release rate are 

shown in Figures 4-6 and 4-7, respectively. 

 

Figure 4-6.  Minimization of equivalent work with bypass to low-pressure flash vessel.  

8 m PZ, 150 °C reboilers, 0.40 rich loading, bypass only to low-pressure flash, bypass to 

12 in of Mellapak 500Y packing, pressure ratio = 2. 
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Figure 4-7.  Decrease in released PZ with higher bypass to low-pressure flash vessel.  8 m 

PZ, 150 °C reboilers, 0.40 rich loading, bypass only to low-pressure flash, bypass to 12 in 

of Mellapak 500Y packing, pressure ratio = 2. 

Surprisingly, the minimum equivalent work with a lean loading of 0.26 dropped 

below the predictions for a lean loading of 0.3 when the bypass was greater than 15%.  A 

higher bypass percentage transitioned the flowsheet more to a simple stripper as opposed 

to a 2-stage flash.  The main heat exchanger was not properly utilized at high bypass, and 

heat was used to increase the solvent temperature instead of cross exchange or 

countercurrent contact the vapor.  As seen in Figure 4-8, the optimal lean loading 

decreased with increasing bypass. 

If the split to the high-pressure vessel was also included in this type of analysis, 

the ratio of bypass split to the high-pressure and low-pressure vessels would also need to 

be optimized.  The water and PZ vapor content of each stream would be different, so the 

optimal bypass to each vessel would be unique. 
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Figure 4-8 shows the optimization of lean loading when considering bypass to the 

low-pressure flash vessel.  The curves of equivalent work and total released PZ are 

shown for 5% and 10% bypass the low-pressure vessel.  This analysis showed that bypass 

improved the performance and reduced the amount of volatilized amine, but the process 

conditions must be re-optimized.  When increasing the bypass from 5 to 10%, the 

minimum equivalent work was reduced from 33.9 to 32.6 kJ/mol CO2, and the optimal 

lean loading was reduced from 0.293 to 0.285. 

 

Figure 4-8.  Equivalent work and total released PZ variations with lean loading.  8 m PZ, 

150 °C reboilers, 0.40 rich loading, bypass only to low-pressure flash, bypass to 12 in of 

Mellapak 500Y packing, pressure ratio = 2. 

When using bypass only to the LP flash vessel and a pressure ratio of 2, the 

optimal run conditions were 10% bypass and a lean loading of 0.29.  The predicted liquid 

and vapor temperatures within the 12 inches of packing are depicted in Figure 4-9.  The 

concentration of CO2 in the vapor is also described.  From this plot it was apparent that 

12 inches of packing was not enough to attain equilibrium at the top of the column; the 
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temperatures and compositions of the liquid and vapor were still changing at the top.  

However, as shown in Figure 4-5, 12 inches of packing was nearing the height of 

minimum equivalent work.  At these conditions, the 2-stage flash base case with no 

bypass had an LP vapor CO2 concentration of 49.1%, and Figure 4-9 shows the 

improvement to 72.5% at the top of the column.  It was clear that this bypass 

modification benefited performance by improving the CO2 selectivity and reducing the 

temperature of the overhead vapor.  The reduced temperature of the vapor cut down on 

the wasted heat in the condenser.   

 

Figure 4-9.  Predictions of vapor and liquid temperatures and vapor CO2 concentration 

for optimum bypass case with 2-stage flash using 8 m PZ.  10% bypass to LP flash, 0.40 

rich loading, 0.29 lean loading, 12 inches Mellapak 500Y, pressure ratio = 2. 

The McCabe-Thiele plot for the same case is shown in Figure 4-10.  The column 

nears an equilibrium pinch toward the bottom of the column, right above the reboiler.  

The other noticeable characteristic of the diagram was CO2 absorption that occurred at 

the top of the column where the cold bypass entered.  The cool rich solvent was 113 °C in 
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this case, and Figure 4-9 shows that it quickly heated up to 121 °C upon contacting the 

128 °C vapor.  The rich solvent condensed water and absorbed a small amount of CO2, 

increasing the loading by 0.002.  As the liquid continued down the packing, it cooled the 

vapor, condensed water, and released CO2.  This effect was similar to the "free stripping" 

effect that was observed in the double matrix configuration (Figure 3-5).  However, in 

this case the flowsheet was not complicated by adding a semi-lean stream that should be 

introduced to an optimized absorber mid-point. 

 

Figure 4-10.  McCabe-Thiele diagram for optimum bypass case with 2-stage flash using 

8 m PZ.  10% bypass to LP flash, 0.40 rich loading, 0.29 lean loading, 12 inches 

Mellapak 500Y, pressure ratio = 2. 

 The performance of the main heat exchanger is plotted in Figure 4-11.  The 

temperature difference driving force was more balanced compared to the 2-stage flash 

base case.  More flashing occurred toward the hot end of the exchanger, qualitatively 

described by the sharper change in steepness on the hot side of the exchanger.  The 
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variability in the temperature difference was reduced by balancing the heat capacity flows 

of the rich and lean streams. 

 

Figure 4-11.  Cross exchanger performance of optimum bypass case.  Lines-solid: 10% 

rich bypass, dashed: no bypass.  Constant UA between cases calculated from pilot plant 

performance and exchanger area. 

This analysis demonstrated that cool rich bypass would be an advisable upgrade 

to the 2-stage flash flowsheet of the pilot plant skid.  12 inches of packing was sufficient 

to approach minimum equivalent work and volatilized PZ.  Performance improved with 

increasing bypass, but excessive bypass had a negative effect on equivalent work because 

very little stripping occurred at the high-pressure.  When using a pressure ratio between 

flashes of 2, bypass to the low-pressure vessel had a greater effect than bypass the high-

pressure vessel because the majority of the vapor was produced in this flash.  However, 

bypass to the high-pressure vessel was also beneficial when considering a pressure ratio 
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of a simple stripper under similar heat exchange conditions when a pressure ratio of 1.5 

was used.  Using the heat exchanger performance from the pilot plant, the equivalent 

work requirement with a lean loading of 0.30 was 32.5 kJ/mol CO2.  A 2-stage flash with 

bypass to both vessels, a lean loading of 0.30, and a pressure ratio of 1.5 had a predicted 

performance of 30.7 kJ/mol CO2.  The total amount of released PZ was decreased by 

87% from the standard 2-stage flash at these conditions. 

When considering a pressure ratio of 1.5 and bypass only to low-pressure flash, 

the optimal lean loading decreased to 0.285 and the minimum equivalent work was 32.6 

kJ/mol CO2.  This performance required 12 inches of packing to contact 10% bypass. 

 

4.3. COLD RICH BYPASS APPLIED TO GENERIC CONFIGURATIONS 

The analysis in section 4.2 was directed toward an application specific for the 

pilot plant skid that we used at the J. J. Pickle Research Center.  A main hindrance of this 

analysis was the specific performance of the heat exchanger.  A fully optimized process 

would have a heat exchanger designed specifically for the process to obtain a desirable 

approach temperature.  For this reason, 8 m PZ was evaluated again with bypass to a 2-

stage flash.  This same flowsheet was also evaluated with 9 m MEA as a comparison.  

Next, these two solvents were evaluated with cold rich bypass to a simple stripper.  

Finally, bypass to an interheated column using 8 m PZ was also evaluated since this 

flowsheet without bypass was the most efficient option that was explored in Chapter 3.  

The simulations with PZ were modeled using the 5deMayo model, and the simulations 

with MEA were modeled using the Hilliard model.  The packed section for contacting the 

vapor with the bypassed solvent was held constant at 12 inches of Mellapak 500Y, and 

the main cross exchange performance was held constant with a 5 °C LMTD.  A constant 
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UA in the exchanger was not used as it was in the previous section because a single heat 

exchanger was modeled and it was not designed from pilot plant specifications.  The heat 

exchangers in this section could be designed to meet the 5 °C LMTD specification. 

 

4.3.1. Bypass with 8 m PZ and 2-Stage Flash 

This system was reevaluated using the bypass approach that would be applied to 

each of the other combinations of solvent and configuration.  As seen in Figure 4-12, the 

rich bypass was taken before the main cross exchanger, so the solvent being injected to 

the top of the vessels was colder than in the analysis in section 4.2. 

Lean

Rich

Condensate

CO2

 Multistage compressor

n

n=1

n=2

 
Figure 4-12.  Cold rich bypass to low-pressure vessel of 2-stage flash.  Bypass drawn 

before main cross exchanger. 

The trend of equivalent work with changing bypass was similar to what was seen 

in section 4.2.  The trends are shown in Figure 4-13.  The minimum work requirement 

without bypass was 32.5 kJ/mol CO2, and the optimal bypass flowsheet reduced the work 
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requirement to 29.8 kJ/mol CO2, a reduction of 8.2%.  This flowsheet used a bypass of 

7.5%.  When using low values of lean loading, the optimal bypass percentage was higher 

because more water was contained in the vapor.  Therefore, more cold solvent was usable 

to cool the vapor and condense water.  In contrast, running with a high lean loading and 

high bypass introduced a parasitic use of heat to bring the cold solvent up to the stripper 

temperature of 150 °C. 

 

Figure 4-13.  Equivalent work requirement for 8 m PZ in 2-stage flash with bypass to 

low-pressure flash.  150 °C reboilers, 0.40 rich loading, equal molar vapor production per 

stage, 5 °C LMTD in main cross exchanger, compression to 150 bar. 

The temperature profile of the liquid and vapor as well as the loading profile of 

the optimum case are displayed in Figure 4-14.  The profiles with this cold rich bypass 

were more complicated than the previous results in section 4.2.3 with the bypass taken 

midway through the heat exchange.  Since the bypass entered the packing at 50 °C in this 

case, the liquid and vapor temperatures were both significantly colder at the top of the 

packing when compared with Figure 4-9.  Since the liquid was so cold, its equilibrium 
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CO2 partial pressure was lower than the CO2 partial pressure in the vapor, so CO2 

absorption occurred in the top 20% of the column as the liquid heated up.  It must be re-

emphasized that this simulation assumed equilibrium reactions within the packing.  

Future simulations should consider the implementation of kinetic reaction calculations 

since the reaction rates would start to become rate limiting at the lower temperature in the 

top of the column. 

 

Figure 4-14.  Temperature and loading profiles of optimum bypass case with 2-stage 

flash using 8 m PZ.  7.5% bypass to LP flash, 0.40 rich loading, 0.28 lean loading, 

150 °C reboilers 12 inches Mellapak 500Y, equal molar vapor production per pressure 

stage. 

The McCabe-Thiele plot for the same case is shown in Figure 4-15.  The 

absorption at the top of the column was apparent in this diagram; the equilibrium partial 

pressure of the entering liquid was below the operating line until the loading increased to 

0.486.  As the liquid continued further down the packing, it cooled the vapor, condensed 

water, and released CO2. 
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Figure 4-15.  McCabe-Thiele diagram for optimum cold bypass case with 2-stage flash 

using 8 m PZ.  7.5% bypass to LP flash, 0.40 rich loading, 0.28 lean loading, 150 °C 

reboilers 12 inches Mellapak 500Y, equal molar vapor production per pressure stage. 

Compared to the main analysis in section 4.2.3, the minimum work requirement 

with these specifications was lower.  The colder temperature of the rich solvent 

condensed more water in the existing vapor and yielded a nearly pure stream of CO2 to be 

fed to the multi-stage compressor.  The CO2 purity of the low-pressure vapor in the 

optimum case was 97%, improved from 46% without bypass.  The high-pressure vapor 

only had a purity of 65%, so it could also realize some benefit from cold rich bypass.  

However, the required bypass rate would be lower all of the water would be condensed 

with a smaller amount of cold solvent. 

 

4.3.2. Bypass with 9 m MEA and 2-Stage Flash 

A 2-stage flash configuration was the ideal flowsheet with which to evaluate cold 

rich bypass.  The vapor leaving the flashes was at high temperature and had high water 
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content, so contacting the overhead vapor with cold rich bypass could purify the stripped 

CO2.  MEA has a higher heat of absorption than PZ, so the water content of the overhead 

vapor was not as significant as with 8 m PZ, but it could still realize benefit.  Similar to 

the previous section, the packed section for contacting the vapor with the bypassed 

solvent was held constant at 12 inches of Mellapak 500Y, and the main cross exchange 

performance was held constant with a 5 °C LMTD.  The trends with varying lean loading 

and bypass are shown in Figure 4-16. 

 

Figure 4-16.  Equivalent work requirement for 9 m MEA in 2-stage flash with bypass to 

low-pressure flash.  120 °C reboilers, 0.50 rich loading, equal molar vapor production per 

stage, 5 °C LMTD in main cross exchanger, compression to 150 bar. 

These simulations showed a much more distinct optimal bypass than the PZ 

simulations.  The minimum equivalent work for each lean loading was not subtle and 

rounded, but there was a sharp upward inflection at the point where additional water 

vapor was not condensed with increasing bypass.  These results also demonstrated the 

decreasing optimal value of bypass as lean loading increased.  The optimal bypass was 
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1% for a lean loading of 0.43, but the optimal bypass increased to 5% at a lean loading of 

0.35.  The magnitude of optimal bypass was explained by the amount of water that 

needed to be condensed from the gas.  The CO2 purities of the overhead vapor with no 

bypass at these two loadings were 80% and 57%, respectively.  The global optimum with 

bypass was 30.7 kJ/mol CO2 with a lean loading of 0.35 and 5% bypass to the low-

pressure vessel, compared to 31.7 kJ/mol CO2 at a lean loading of 0.39 with no bypass.  

The improvement using this configuration with MEA was less than with PZ, only 3.2%.  

The difference was because the CO2 purity of the low-pressure vapor in the optimum case 

using MEA without bypass was 69%, compared to 46% with PZ. 

 

4.3.3. Bypass with 8 m PZ and Simple Stripper 

The benefit of bypass in a simple stripper flowsheet was analyzed as a 

comparison to the 2-stage flash.  Although the simple stripper contained packing that 

counter currently contacted rich solvent with vapor rising from the reboiler, cold rich 

bypass would cool the gas further and more effectively condense water vapor exiting 

from the column.  The additional packed section for contacting the vapor with the 

bypassed solvent was held constant at 12 inches of Mellapak 500Y, and the main cross 

exchange performance was held constant with a 5 °C LMTD.  The trends with varying 

lean loading and bypass are shown in Figure 4-17. 
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Figure 4-17.  Equivalent work requirement for 8 m PZ in simple stripper.  150 °C 

reboiler, 0.40 rich loading, 5 °C LMTD in main cross exchanger, compression to 150 bar. 

The simple stripper also showed a decrease in optimal bypass with increasing lean 

loading due to reduced water vapor content from the bypass case.  The optimum case 

with no bypass had a CO2 purity of 65% and an equivalent work of 31.4 kJ/mol CO2.  

The minimum equivalent work when using bypass was 28.6 kJ/mol CO2 at a lean loading 

of 0.30 and 7.5% bypass.   

 

4.3.4. Bypass with 9 m MEA and Simple Stripper 

Bypass was also analyzed in a simple stripper using 9 m MEA.  This was the base 

configuration in the analysis of Chapter 3.  The additional packed section for contacting 

the vapor with the bypassed solvent was held constant at 12 inches of Mellapak 500Y, 

and the main cross exchange performance was held constant with a 5 °C LMTD.  The 

trends with varying lean loading and bypass are shown in Figure 4-18. 
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Figure 4-18.  Equivalent work requirement for 9 m MEA in simple stripper.  120 °C 

reboiler, 0.50 rich loading, 5 °C LMTD in main cross exchanger, compression to 150 bar. 

The equivalent work showed a sharp minimum with a lean loading of 0.40, like 

the other results with MEA in section 4.3.2.  However, the optima were flatter for lower 

lean loadings.  The equivalent work for the optimum case with no bypass was 32.8 

kJ/mol CO2 with a CO2 purity of 75%.  Since the vapor had comparatively less water 

content than the 2-stage flash simulations and the simple stripper simulation with PZ, the 

improvement with bypass was marginal, only 4.2% down to 31.4 kJ/mol CO2.  This 

analysis demonstrated that bypass would not be as important to implement if using a 

simple stripper with 9 m MEA.  The packing combined with the high heat of absorption 

yielded low water content in the overhead vapor, so direct contact with bypassed cold 

rich solvent yielded only a small improvement. 
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4.3.5. Bypass with 8 m PZ and Interheated Column 

The interheated column was the most energy-efficient configuration that was 

explored in Chapter 3.  This configuration combined with 8 m PZ was able to attain a 

14% improvement over the base case of 9 m MEA with a simple stripper.  Since the 

interheated column was the most efficient, it was desired to quantify the potential 

improvement by implementing bypass into the configuration.  The additional packed 

section for contacting the vapor with the bypassed solvent was held constant at 12 inches 

of Mellapak 500Y, and the main cross exchange performance was held constant with a 

5 °C LMTD.  The trends with varying lean loading and bypass are shown in Figure 4-19. 

 

Figure 4-19.  Equivalent work requirement for 8 m PZ in interheated column.  150 °C 

reboilers, 0.40 rich loading, 5 °C LMTD in main cross exchanger, compression to 150 

bar, 80% liquid extraction for interheating. 

This configuration and solvent had an equivalent work of 30.3 kJ/mol CO2 and a 

CO2 purity of 77%.  Figure 4-19 demonstrated that the global minimum had a lean 

loading of 0.28, a split of 5%, and resulted in an equivalent work of 30.1 kJ/mol CO2.  
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This analysis demonstrated a very minimal improvement of 1.4%.  The benefit was much 

less than the other configurations when using PZ because the water content of the vapor 

was already low.  The interheating had a secondary effect on the temperature of the 

overhead vapor.  Since a portion of the heat from the lean solvent was exchanged with 

liquid from the middle of the column, less heat was transferred in the main heat 

exchanger.  Therefore, the rich solvent entering the column was cooler than in a simple 

stripper, so the overhead vapor was also cooler.  Since this effect existed, cold rich 

bypass had a smaller impact. 

The format of Figure 4-19 also demonstrated another effect of bypass.  At low 

values of bypass, the optimal lean loading stayed constant while the minimum equivalent 

work decreased.  At higher levels of bypass, the minimum equivalent work increased 

while the optimal loading decreased substantially. 

 

4.3.6. Bypass Summary 

Cold rich bypass resulted in a benefit for both solvents in every configuration, 

though the improvement was different for each solvent and configuration.  Table 4-4 

compares the minimum equivalent work with and without using bypass.  The absolute 

and percent improvements are also tabulated for each bypass option compared to its base 

case with no bypass.  The 2-stage flash cases had the option of bypassing solvent to the 

low-pressure vessel, high-pressure vessel, or both.  The low-pressure vessels had higher 

water content than the high-pressure vessels because the CO2 partial pressure was lower 

at the lower lean loading.  Therefore, bypass to only the high-pressure vessel was not 

explored because if only one vessel received bypass, the low-pressure vessel should be 

selected. 



 122 

Table 4-4.  Summary of improvement with bypass for combinations of solvents and configurations.  Optimized bypass 

split, 5 °C LMTD, compression to 150 bar.  8 m PZ: 0.40 rich loading, 150 °C.  9 m MEA: 0.50 rich loading, 120 °C. 

Solvent Rich ldg Configuration Base case Bypass optimum Improvement Ldg @ opt P @ opt 

 mol/mol  kJ/mol CO2   mol/mol bar 

8 m PZ 0.4 2-stage flash, bypass to LP 32.5 29.8 2.7 8.2% 0.28 12.9 / 7.7 

8 m PZ 0.4 2-stage flash, bypass to HP/LP 32.5 28.8 3.7 11.3% 0.28 12.0 / 7.7 

9 m MEA 0.5 2-stage flash, bypass to LP 31.7 30.7 1.0 3.2% 0.35 7.6 / 3.6 

9 m MEA 0.5 2-stage flash, bypass to HP/LP 31.7 29.9 1.8 5.7% 0.35 7.3 / 3.6 

8 m PZ 0.4 PZ, simple stripper 31.4 28.6 2.8 8.9% 0.3 8.8 

9 m MEA 0.5 MEA, simple stripper 32.8 31.4 1.4 4.2% 0.375 4.3 

8 m PZ 0.4 PZ, interheated column 30.5 30.1 0.4 1.4% 0.28 7.7 
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Configurations with PZ demonstrated a greater reduction in equivalent work due 

to the high concentration of water in the overhead vapor.  The cold bypassed solvent 

effectively condensed the water to improve overall efficiency.  Considering the simple 

stripper and 2-stage flash cases, the absolute improvement by adding bypass with PZ as 

the solvent was always at least twice as significant as the improvement seen with MEA. 

The simple stripper base cases both had better CO2 purity than the 2-stage flash 

cases since the packed column condensed water from the vapor as it contacted the 

slightly cooler rich solvent.  Since the simple stripper cases had less water in the vapor, 

they had less opportunity for potential improvement.  Adding cold rich bypass to only the 

low-pressure flash had approximately the same benefit as bypass to the simple stripper.  

These 2-stage flash cases specified equal vapor production in each flash vessel, so a 

lesser, but still substantial amount of water vapor also escaped with the high-pressure 

vapor.  Sensitivity analyses were not performed with bypass to both flash vessels, but the 

performance was evaluated for the 2-stage flash with MEA and PZ using optimized 

bypass to both vessels.  In each case, the optimal bypass split to the high-pressure vessel 

was less than the split to the low-pressure vessel because the water composition in the 

vapor was lower at high-pressure.  With each amine, bypassing solvent to both flash 

vessels yielded a greater overall improvement than bypassing to a simple stripper.  

However, the additional benefit of bypassing to the high-pressure vessel was not as great 

as the improvement seen when bypassing to the low-pressure vessel. 

The interheated column with PZ realized very little benefit with cold rich bypass.  

The secondary interheating effect that cooled the rich solvent in the base case as 

compared to a simple stripper significantly reduced the opportunity to reduce the work 

requirement.  Bypass improved its performance only by 1.4%.  Overall, bypass was most 

beneficial with a 2-stage flash and 8 m PZ.  Using a rich loading of 0.4, a lean loading of 
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0.28, 4% bypass to the high-pressure vessel, and 7.5% bypass to the low-pressure vessel, 

the equivalent work was 28.8 kJ/mol CO2, compared to 32.5 kJ/mol CO2 without bypass. 

 

4.4. STRIPPING WITH GEOTHERMAL HEAT 

Geothermal heat is proposed as an alternative to using steam heat in the stripper.  

Freeing the steam cycle from the heating requirement in the stripper would be beneficial 

for power production at a coal-fired power plant; the steam cycle would not be subject to 

the disruptions that the stripper might cause.  The IP/LP crossover in a new-build power 

plant would be designed for a preferred operating point, and inefficiencies in the steam 

cycle would arise from fluctuations from the design point.  Therefore, an alternate source 

of heat could be an advantage since the stripper is coupled with the power generation 

facility. 

 

4.4.1. Stripper Flowsheets Using Geothermal Heat 

Using geothermal heat would be much different than using steam because the heat 

would be supplied from the brine at variable temperature.  Steam supplies heat at a single 

temperature where it condenses.  A typical steam reboiler would not make efficient use of 

geothermal brine because there would be a large approach temperature on the hot side of 

the exchanger where the brine is supplied, and there would be a pinch on the cold side.  

From an exergy standpoint, the high imbalance of temperature driving forces yields 

inefficiencies.  From the viewpoint of the process itself, a large hot side driving force 

indicates that the heat source is not being utilized to its maximum capacity; the heat could 

be used at a higher temperature.  Alternatively, using a cross exchanger with the hot brine 

and cool rich solvent could more effectively take advantage of the high temperature brine 
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by balancing the temperature approach throughout the exchanger.  Using a cross 

exchanger in place of a reboiler is not a matter of simply replacing the processing unit, 

but the flowsheet must be redesigned to use heat in such a manner. 

The earlier work demonstrated the effectiveness of a multi-stage flash 

configuration for stripping CO2.  The designs explored in Chapter 3 considered constant 

temperature flashes where the heat supplied was delivered in a reboiler with steam.  A 

form of the multi-stage flash configuration is proposed in this section that incorporated 

cross exchangers to contact hot brine with cool rich solvent to heat the solvent with brine, 

and the solvent was flashed at two different pressures. 

This work collaborated with a student in petroleum engineering who stimulated 

the practicality of drawing brine for CO2 stripping (Gupta, 2011).  Modeling of real 

geothermal reservoirs was important to predict the expected brine temperature, maximum 

extraction rate, and life of the geothermal reservoir.  This work considered the use of the 

Wilcox group of brine reservoirs due to its proximity to coal-fired power plants in Texas.  

The brine at this location was available at 150 °C, so PZ was selected as the solvent to 

avoid thermal degradation.  The 5deMayo thermodynamic model for PZ was used for 

these simulations (Rochelle et al., 2010).  8 m PZ was simulated in an advanced 2-stage, 

2-pressure flash (2T2PFlash) (Figure 4-20).  The configuration utilized an arrangement of 

five heat exchangers to remove heat from brine and the returning lean solvent more 

reversibly than with single exchangers for each of solvent and brine cross exchanging.  

The heating in this configuration was different from the flowsheets in previous 

simulations in that the rich solvent was fully heated before entering the two adiabatic 

flash vessels in series.  The first flash had the highest temperature and pressure, and the 

second flash dropped in both temperature and pressure.  The drop in temperature between 
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the high and low pressure flashes was lower than what would be observed in a typical 2-

stage flash because heat exchanger 4 was implemented. 

 

Figure 4-20.  Advanced 2-Stage, 2-Pressure Flash (2T2Pflash) for amine solvent 

regeneration with geothermal brine heating.  Conditions shown for the optimal case, 

designed for a 60 MWe coal-fired power plant, removing 1195 ton CO2/day. 

As with previous simulations of multi-stage flash configuration, all unit 

operations were modeled with chemical equilibrium within and between the gas and 

liquid phases.  Several conditions were specified to be constant while others were 

optimized.  A constant rich loading of 0.4 mol CO2/mol alkalinity was specified, which 

represented a CO2 partial pressure of 5 kPa at 40 °C.  The input temperature of the rich 

solvent coming from the absorber was specified to be constant at 50 °C.  The LMTD was 

5 °C for all exchangers, and a minimum approach of 1 °C was specified for either side.  

The temperature difference between flash vessels was varied to ensure that equal moles 

of vapor were generated in each flash.  This specification was made to maximize the 

reversibility of the process.  The multi-stage compressor work was calculated using the 

correlation in Equation 3-1.  The split of solvent between exchangers 2 and 3 was set to 

80% toward exchanger 3. 
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The heat capacity flows of the streams in heat exchanger 1 were mostly balanced, 

so the hot and cold side temperature approaches were both always approximately the 

same.  Therefore, the outlet temperature of the brine in exchanger 3 was closely 

connected to the equilibrium temperature in the low-pressure flash.  The low-pressure 

flash temperature was 5 °C higher than the rich outlet in exchanger 1, and this 

temperature was approximately 5 °C cooler than the cold brine temperature.  The 

geothermal well models required a constant drop in brine temperature of 50 °C between 

extraction to re-injection, and this stripper design allowed the low-pressure flash 

temperature to be the manipulated variable to achieve the desired drop in brine 

temperature. 

The brine was simulated as pure water, but the final value of importance was the 

total heat rate of the brine.  Simulating the flow of brine ensured that the split of heat rate 

in exchangers 3 and 5 represented accurate performance with the predicted temperatures.  

The lean loading was manipulated by varying the brine flow rate.  The overall work 

requirement including the pumps, multi-stage compressor, and heat duty was calculated 

using equivalent work.  For this work with variable temperature heating, the previous 

calculation method for heating work (Equation 2-5) was integrated between the inlet and 

outlet temperatures to account for the changing value of heat at different temperatures, 

which assumed that each unit of heat flow resulted in the same change in temperature 

along the entire temperature range.  The inlet and outlet temperatures in each heater i 

were Ti,o and Ti,f, respectively.  This integration gave Equation 4-1 for the heat work. 
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A comparison study that would be applied at a demonstration being planned by 

NRG Energy (Stopek et al., 2011) was also simulated.  The comparative configuration 

that was analyzed used 9 m MEA with a simple stripper and an adiabatic flash on the lean 

solvent (Figure 4-21).  MEA was represented the Hilliard thermodynamic model 

(Hilliard, 2008).  This configuration is patented by Fluor (Reddy et al., 2007) when using 

steam heating.  The flowsheet is used in a planned demonstration that is designed for 

MEA, so the same solvent was selected for this modeling with geothermal heating.  The 

brine heated a reboiler and a rich feed preheater that was added to extract additional heat 

from the brine.  Unfortunately, the reboiler had a large hot side approach temperature 

since the solvent temperature was constant, but this case represented a reconfiguration 

that could adapt the Fluor configuration to use brine if it was already constructed to use 

steam from the power plant.  The only additional process unit would be the cross 

exchanger to preheat the rich feed.  The same constants were specified as for the 2-stage 

flash.  The rich loading was specified to be 0.5 mol CO2/mol alkalinity, representing a 

CO2 partial pressure of 5 kPa at 40 °C. 
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Figure 4-21.  Fluor configuration modified for geothermal heating.  Conditions shown for 

the optimal case, designed for a 60 MWe coal-fired power plant, removing 1195 ton 

CO2/day. 

 

4.4.2. Geothermal Stripping Results 

The stripper was scaled to regenerate enough solvent to treat the flue gas of a 60 

MWe power plant.  The flue gas rate and composition from this size power plant was 

estimated by scaling an industrial estimate.  Approximately 1195 ton CO2/day would be 

removed for 60 MWe (Fisher et al., 2005).  The lean loading was optimized to minimize 

the overall work requirement.   

Figure 4-22 shows the behavior of both equivalent work and total heat duty as a 

function of lean loading in the 2T2PFlash.  The optimum equivalent work was at a lean 

loading of approximately 0.33, but the heat duty was minimized at a slightly higher lean 
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loading of 0.335.  These results were calculated using a rich loading of 0.4, 

corresponding to a P
*
CO2 of 5 kPa at 40 °C.  At the lean loading of 0.33, the equivalent 

work was 35.1 kJ/mole CO2. 

 
Figure 4-22.  Lean loading optimization for 2T2Pflash with 8 m PZ applied to a 60 MWe 

power plant.  0.40 rich loading, Tbrine,in = 150 °C, Tbrine,out = 100 °C, 5 °C LMTD on heat 

exchangers, CO2 compression to 150 bar. 

The P
*
CO2 at 40 °C for the optimal lean loading of 0.335 was approximately 

0.85 kPa.  Solvent concentrations representing a gas side removal of less than 90% might 

not provide adequate absorber performance since the acceptable loadings were calculated 

for 90% removal.  An overstripped lean solvent would perform well in the absorber 

because it would have a significant driving force to achieve the desired clean gas purity.  

Additionally, the lower lean loading would reduce the solvent circulation rate.  

Conversely, an understripped lean solvent would have trouble attaining the desired purity 

of 1.2% without using chilled water for cooling or excessive packing.  For this reason, the 
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operation point was chosen to have a lean loading of 0.31, where the P
*
CO2 at 40 °C was 

0.5 kPa.  At this lower lean loading, the equivalent work was 35.5 kJ/mole CO2. 

Since the temperature of the extracted brine was expected to decline over the 

length of the project, the sensitivity of the stripper performance with brine temperature 

was investigated.  The change in temperature of the brine across the process was held 

constant at 50 °C for all extraction temperatures.  The base case temperature of 150 °C 

required 40.8 MW of heat.  The expected decrease in brine temperature over a 30 year 

period was 2 °C (Gupta, 2011).  A reduction in brine temperature from 150 °C to 148 °C 

would change the heat duty to 41.2 MW, only a 2.4% increase from the design case.  An 

extreme scenario where the brine temperature dropped to 145 °C required 42.4 MW of 

heat, only 3.7% greater than the design case.  If a brine formation that could supply heat 

at 160 °C was found, the heat duty would decrease to 38.8 MW, a 4.5% drop from the 

design case.  Figure 4-23 displays the increase in heat duty and the equivalent work with 

decreasing brine temperature.  Each simulation converged multiple heat exchange recycle 

loops at once, and the tolerance set on each recycle loop resulted in a small variability of 

each point.  However, a general negative linear trend was observed. 



 132 

 
Figure 4-23.  Reduction in total heat duty with increasing brine temperature for 

2T2Pflash with 8 m PZ.  0.40 rich loading, ΔTbrine = 50 °C, 5 °C LMTD on heat 

exchangers, CO2 compression to 150 bar.  Points = simulation results, line = approximate 

linear representation. 

The Fluor configuration with brine heating was also optimized for lean loading 

with 9 m MEA.  As had been found in previous work with MEA (Van Wagener et al., 

2010), the optimal lean loading was in the overstripping region.  The minimum 

equivalent work was 36.3 kJ/mole CO2 at a lean loading of 0.39, seen in Figure 4-24.  

The overall heating requirement for a 60 MWe plant was 38.6 MW, a lower heat duty 

than the 40.8 MW required in the PZ calculation.  Previous work demonstrated a similar 

outcome, where a 2-stage flash with 8 m PZ had a higher heat duty than a simple stripper 

with 9 m MEA.  Even though the heat duty was less for MEA, the PZ solvent made up in 

overall performance by operating at a higher pressure, so the 2-stage flash had a 

significantly smaller compression work.  Overall, 9 m MEA had a higher equivalent work 

requirement than for 8 m PZ.  These calculations with MEA used a rich loading of 0.5 

with a P
*
CO2 at 40 °C of 5 kPa, and the optimal lean loading of 0.39 had a P

*
CO2 at 40 °C 
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of 0.13 kPa.  Therefore, the optimal lean loading was an acceptable range to be coupled 

with an absorber and expect adequate performance. 

 
Figure 4-24.  Lean loading optimization for Fluor configuration with 9 m MEA.  0.5 rich 

loading, Tbrine,in = 150 °C, Tbrine,out = 100 °C, CO2 compression to 150 bar. 

The difference in proportions of the three work contributions demonstrated that 

each configuration/solvent combinations could have its own application.  Using the 

2T2Pflash with 8 m PZ would be advantageous when aiming to minimize the overall 

energy usage.  However, the Fluor configuration with 9 m MEA would be advantageous 

if electricity was cheap and the goal was to minimize the heat usage as much as possible.  

The Fluor configuration with 9 m MEA reduced the heat duty from the 2-stage flash 

design case by 5.3% 
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4.4.3. Conclusions 

The 2T2PFlash configuration with 8 m PZ optimized with the lowest equivalent 

work, but the Fluor configuration with 9 m MEA optimized with the lowest heat duty.  

The individual work requirements for each of these systems are shown in Table 4-5 at 

their respective optimum operating conditions. 

Table 4-5.  Energy requirement of 2T2PFlash with 8 m PZ and Fluor configuration 

with 9 m MEA.  Brine supplied at 150 °C, CO2 compression to 150 bar. 

Work 

contribution 

9 m MEA, Fluor 

configuration 

8 m PZ , 2T2PFlash 

configuration 

 
kJ/mol CO2 

Q
heat

 123.1 130.1 

W
heat

 19.7 20.7 

W
comp

 15.0 13.6 

W
pump

 1.6 1.2 

W
eq

 36.3 35.5 

The design case was selected to be the advanced 2-stage flash using 8 m PZ, 

treating flue gas generated by the production of 60 MWe.  A conservative estimate of the 

brine extraction temperature was 148 °C, allowing for heat loss during the transportation 

from underground reservoir to well head along the wellbore.  Assuming a rich loading of 

0.40, the heating requirement was 41.2 MW, and the overall equivalent work was 

11.1 MWe, or 35.6 kJ/mol CO2.  Of the overall equivalent work, the total contribution 

from heating was 6.5 MWe, or 20.6 kJ/mol CO2.  The balance of the total work, 4.6 MWe, 

was electricity directly drawn for pump work and CO2 compression to 150 bar.  This 

electricity would be drawn directly from the generation of the turbines, as in any 

proposed post-combustion carbon capture with amines.  However, this flowsheet would 
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avoid disrupting the steam cycle to draw heat for the solvent regeneration.  The process 

integration and control of this heating option, therefore, could be very beneficial. 

 

4.5. OPTIMIZED INTERHEATED COLUMN WITH ABSORBER INTEGRATION 

In Chapter 3, the interheated column with 8 m PZ was the most energy-efficient 

combination of configuration and solvent.  A downside of the decomposition method 

used in this work was that its assumption that the stripper can be modeled separate from 

the absorber could bring about scrutiny regarding the accuracy of predictions.  Moreover, 

the equivalent work calculation made numerous assumptions, mainly that the value of 

steam used in the stripper could be adequately calculated using a Carnot calculation.  In 

this section, the interheated column was optimized through a collaboration that provided 

real absorber result inputs in the stripper calculations and rigorous steam cycle 

calculations to determine the actual penalty on a coal-fired power plant.  This section 

describes a collaborative effort that used results from UT absorber modeling (Plaza, 2011 

(expected)) and TUHH steam cycle and compressor models (Liebenthal, 2011 

(expected)). 

 

4.5.1. Integrated Model 

The interheated column (Figure 3-8) was simulated with the PZ solvent within 

Aspen Plus
®
 using the 5deMayo thermodynamic framework that was regressed in-house 

(Rochelle et al., 2010).  The simulation method was the same as in Chapter 3.  The 

interheated column configuration had the best performance in the complexity analysis 

because it more reversibly recycled heat from the lean solvent back to the column and 
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reduced the temperature at the top of the column compared to a simple stripper.  The 

optimal lean loading was also reduced when using the interheated column. 

The stripper simulation was separate from the absorber to promote convergence 

of the individual simulations, but the rich and lean solvent specifications from the 

absorber simulations were used as inputs for the stripper.  The stripper simulations 

included the stripper column and the cross exchange section with pumps and the main 

heat exchanger.  The following flowsheet constants were specified: 

1. Rich pump achieved 250 kPa above stripper pressure to account for head 

and frictional losses 

2. Lean pump achieved 350 kPa to account for head and frictional losses 

3. 5 °C cold side approach on main cross exchanger 

4. 5 °C LMTD on interheater cross exchanger 

5. 80% solvent extraction for interheating 

The stripper simulations were used to calculate the reboiler heat duty, lean, rich, 

and interheating pump duties, and stripper vapor pressure.  The reboiler heat duty was 

used by the steam cycle model to calculate the required steam rate.  The power plant 

model also calculated the compression work of the multi-stage dresser using the stripper 

overhead vapor pressure.  The reboiler temperature was held constant with varying L/G 

by changing the column pressure. 

The absorber was modeled separately from the stripper.  It used 15 m of Mellapak 

2X packing, intercooling to 40 °C at the column midpoint, and the work requirements of 

the blower and intercooler pump were calculated.  The column was simulated at varying 

values of lean loading, and 90% removal of CO2 was achieved by varying the L/G.  The 

lean loading and resulting rich loading as a function of absorber L/G are plotted in Figure 

4-25.  This plot also demonstrates the benefit of using intercooling in the absorber.  
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Without intercooling the rich loading dropped significantly when the temperature bulge 

coincided with the mass transfer pinch.  When using intercooling, the rich loading stayed 

fairly constant at 0.40 because there was no longer a temperature-based mass transfer 

pinch and the solvent was permitted to approach equilibrium more closely (Plaza, 2011 

(expected)). 

 

Figure 4-25.  Intercooled absorber predictions of rich and lean loadings for 90% removal 

with 15 m of Mellapak 2X. 

 

4.5.2. Stripper Model Results 

The stripper was evaluated at stripper temperatures between 100 and 150 °C in 

10 °C increments.  The effect of L/G on the individual outputs for each reboiler 

temperature are shown in the figures: 4-26 shows the total heat duty, 4-27 shows the total 

cooling duty, 4-28 shows the total electric usage, and 4-29 shows the stripper pressure.  

These calculations were used by the steam cycle model of a greenfield (new-build) power 

0.2

0.25

0.3

0.35

0.4

0.45

2 4 6 8 10 12

L
o
a
d

in
g
 (

m
o
l 

C
O

2
/m

o
l 
a

lk
)

L/G (mol/mol)

Rich Loading

Lean Loading

Intercooled

Non-Intercooled



 138 

plant to determine the net penalty in efficiency and specify the optimal operating 

conditions.  The compressor work was excluded from the total electric usage because it 

was calculated by a compressor model by the TUHH students. 

The steam cycle calculations from TUHH showed that the efficiency loss was 

minimized with a reboiler temperature of 140 °C and an absorber L/G of 4.9.  This 

solvent circulation rate corresponded to rich and lean loadings of 0.40 and 0.30, 

respectively.  The net efficiency of the power plant was 38.4%, a reduction of 7.4% from 

45.8%.  The efficiency did not significantly decrease when the reboiler temperature was 

increased to 150 °C, but it experienced a slight reduction in net efficiency to 38.3%.  This 

analysis demonstrated that the equivalent work and compressor work analyses that were 

used in previous work did not necessarily fully capture the intricate details that affected 

the penalty of the stripper. 

 

Figure 4-26.  Total reboiler duty. 
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Figure 4-27.  Total cooling duty.  Includes absorber intercooling, lean trim cooler, and 

first vapor condenser. 

 

Figure 4-28.  Total electric usage.  Includes blower, intercooler pump, interheater pump, 

rich pump, and lean pump. 
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Figure 4-29.  Column pressure. 

The relationship between the reboiler duty and total cooling duty was confounded 

by several interacting factors.  At a low lean loading and low L/G, the rich loading of the 

solvent provided by the absorber increased and was higher than 0.40.  Even at constant 

rich loading, the interheated column already demonstrated a minimal increase in total 

work at low lean loading.  The interheating served to provide a cooler rich feed to the 

column, which reduced the water content of the overhead vapor.  The total cooling duty 

decreased at low L/G with the combination of three factors: a decrease in intercooling 

duty in the absorber due to lower circulation rate, a decrease in trim cooler duty due to 

lower circulation rate, and a minimal decrease in CO2 selectivity.  There was a local 

maximum in cooling duty at an L/G of about 4.25 where there was a peak in intercooler 

duty. 

Unlike the analysis of the interheated column in Chapter 3, the rich loading was 

not constant in this study, though it was constantly close to 0.40.  Figure 4-30 compares 
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the calculated equivalent work of these cases at 120 °C and 150 °C to the simulations 

with a constant rich loading of 0.40.  The equivalent work predictions in these runs with a 

real absorber feed varied within close deviation from the constant rich loading simulation 

results.  Although the equivalent work appeared to flatten out at low lean loading with a 

reboiler temperature of 150 °C, the effect was only due to the slight increase in the rich 

loading. 

 
Figure 4-30.  Equivalent work calculations for interheated column with 8 m PZ.  Solid 

lines: rich feed calculated by absorber results, Dashed lines: constant rich loading of 0.40.  

5 °C cold side approach on main cross exchanger, 5 °C LMTD on interheating 

exchanger, CO2 compression to 150 bar, 80% liquid extraction for interheating. 

 

4.5.3. Assessing the accuracy of heating work calculation 
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production of a coal plant due to steam usage was calculated.  This portion of the 

equivalent work was the heat work, Wheat, and it was calculated using Equation 2-5.  This 

expression calculated the electricity production potential of steam that was used in the 

stripper.  It incorporated a Carnot efficiency term and an additional 75% efficiency term.  

This turbine efficiency value was based on approximations, but it had not been validated.  

Since this work included work from TUHH with simulations of a real steam cycle for a 

coal-fired power plant, the effectiveness of this heat work calculation was evaluated.  The 

heating work was calculated for the interheated column simulations using Equation 2-5.  

A 10 °C approach in the reboiler was used for the steam cycle calculations, so this same 

approach was used to calculate the heating temperature, Theat.  The sink temperature, Tsink, 

was assumed to be that of cooling water, 32 °C.  The calculated heat work values from 

each Equation 2-5 and the greenfield steam cycle calculations were compared.  The two 

work values for all temperatures were simultaneously used to regress an updated turbine 

efficiency value in Equation 2-5 to minimize the sum of squared errors.  The original 

efficiency with 75%, and a new turbine efficiency of 96% was found to give the closest 

match between the Greenfield calculations and heating work calculations.  A graphical 

representation of the match between the heating work calculations and greenfield steam 

cycle penalty from steam usage is shown in Figure 4-31.  The match between work 

prediction methods was very good.  The maximum deviation of the heating work 

prediction from the steam cycle calculation was 2% with the updated turbine efficiency 

of 96%. 
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Figure 4-31.  Heating work estimates by greenfield plant calculation (- -), heating work 

calculation with 75% turbine efficiency (···), and heating work calculation updated 

efficiency of 96% (―). 

 

4.5.4. Assessing the accuracy of the compressor work correlation 

The TUHH CO2 compressor model results from this collaboration were compared 

against the predictions by the correlation that was used for this work.  In this optimized 

case study for a greenfield plant, an integrally-geared compressor was considered.  The 

calculation method accounted for the non-ideal behavior of CO2 when compressing into 

the super critical fluid region.  Similar to the simulations were done to generate the 

compression work correlation, the number of compression stages were varied to achieve 

a pressure ratio per stage between 1.4 and 2.  The collaborative work only compressed 

CO2 to 110 bar, so the original correlation was updated to this specification to adequately 

compare the two predictions.  Equation 4-3 shows an updated correlation generated by 
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Aspen Plus predictions.  It predicted the work required to compressed CO2 to 110 bar 

with the minimum number of stages that yielded a compression ratio less than 2. 

       
  

       
                 

         4-4 

The compression work predicted by this correlation was compared against the 

calculations of the rigorous compressor model.  This comparison is graphically Figure 4-

32. 

 

Figure 4-32.  Work predictions for CO2 compression to 110 bar.  Points = TUHH 

predictions, line = correlation prediction (Eq. 4-3). 

The predictions by the compression work correlation were only slightly higher 

than the more rigorous predictions by TUHH.  The maximum deviation between the two 

methods was 0.88 kJ/mol CO2.  Correlating the TUHH predictions with the same 

framework as the previous correlation gave Equation 4-4. 
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4.5.5.   Optimized integrated model conclusions 

When integrated with the absorber, the stripper model predicted relatively 

equivalent performance compared to the predictions when only the stripper was 

considered.  The performance was similar because intercooling in the absorber provided a 

fairly constant rich loading of 0.40 regardless of the lean loading.  Additionally, the 

steam cycle models from TUHH predicted an optimal loading identical to what was 

predicted by the equivalent expression.  However, the heating work expression was found 

to be inaccurate when calculating the electricity penalty due to steam usage.  By adjusting 

the turbine efficiency from 75% to 96%, the heating work calculations were much closer 

to the TUHH predictions with their steam cycle model.  When considering the lower 

discharge pressure of 110 bar that was used for this analysis, the correlation from Aspen 

Plus
®
 data closely predicted the work requirement for the intercooled multi-stage 

compressor.  The correlation from Aspen Plus
®
 always overpredicted the work 

requirement.  The error between the two methods varied with stripper pressure, but the 

maximum deviation was 0.88 kJ/mol CO2. 

 

4.6. CONCLUSIONS 

1. Cold rich bypass is an advisable upgrade to the 2-stage flash skid at the pilot 

plant.  A majority of the vapor was produced in the low-pressure vessel, so bypass to only 

this flash tank had the greatest benefit. 

2. Compared to the base case 2-stage flash with 8 m PZ, the predicted equivalent 

work requirement decreased by 6.6 % to 34.0 kJ/mol CO2.  The total volatilized PZ 

decreased by 63 %.  This performance considered 10% cool rich bypass to the LP vessel, 
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a rich loading of 0.4, and a lean loading and 0.3.  These simulations used the exchanger 

performance from the pilot plant.   

3. Changing the pressure ratio to 1.5 balanced the vapor production rates of each 

flash.  Bypassing cold rich solvent to both flash vessels under these conditions dropped 

the equivalent for further to 30.7 kJ/mol CO2. 

4. PZ and 2-stage flash were the solvent and configuration that benefited most from 

rich bypass due to elevated water content in the overhead vapor.  Although the 

interheated column was the most efficient configuration that was previously simulated, it 

only experienced minor improvement with bypass. 

5. The minimum work requirement for an advanced 2-stage flash configuration 

using 8 m PZ and 150 °C brine was 35.5 kJ/mol CO2.  The required heat rate for a 60 

MWe coal-fired power plant was 40.8 MW. 

6. The modified Fluor configuration using geothermal heating with 9 m MEA had a 

total energy requirement of 36.4 kJ/mol CO2 and a heat rate of 38.6 MW for a 60 MWe 

coal-fired power plant. 

7. The 2T2PFlash with PZ had a lower work requirement than the Fluor 

configuration because its cross exchangers were able to take better advantage of the high-

temperature brine compared to the reboiler in the Fluor configuration. 

8. Integrating the stripper section with the absorber had little effect on the prediction 

of the energy requirement.  The rich loading had only slight variation with different 

values of lean loading when intercooling was used. 

9. The predicted values of heating work were compared against steam cycle model 

calculations.  A turbine efficiency of 96% in the heating work calculation matched the 

two methods well. 
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10. The compressor work correlation developed from Aspen Plus calculations only 

slightly overpredicted work values that were rigorously calculated by a TUHH model.  

The maximum overprediction was 0.88 kJ/mol CO2. 
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Chapter 5: Pilot Plant Modeling 

 

 

 

This chapter describes reproduction of pilot plant results using solvent models 

that were introduced in the earlier work.  The pilot plant campaigns used either 9 m MEA 

or 8 m PZ.  Several campaigns were run with each solvent, and deviations between pilot 

plant measurements and simulation values are analyzed in this chapter.  In addition to the 

traditional simple absorber and simple stripper configuration, the pilot plant 

experimented with a new 2-stage flash skid to demonstrate the practicality of predictions 

in this work.  Additionally, an intercooled absorber was used in some campaigns to 

achieve better CO2 removal and higher rich loading.  The simulations generally fit the 

data, but the temperature profile and heat loss was difficult to replicate. 

 

5.1. PILOT PLANT FOR CO2 CAPTURE 

An ongoing project at The University of Texas at Austin is pilot plant campaigns 

to demonstrate the practicality of new solvents and configurations.  The pilot plant is 

located at the J. J. Pickle Research Center in North Austin.  It is a multi-functional 

facility with the ability to run CO2 capture campaigns as well as distillation.  The CO2 

absorption/stripping unit runs with synthetic flue gas comparable to a 0.1 to 0.2 MW 

coal-fired power plant.  The removed CO2 runs in a closed loop, and the balance of the 

flue gas is air.  The pilot plant has gone through many modifications, but it typically runs 

with a simple absorber and simple stripper configuration (Chen, 2007; Plaza et al., 2010).  
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In the past the pilot plant has been run with the baseline solvent, 7 m MEA, as 

well as a promising blend of K
+
/PZ.  Over the course of this work, campaigns were run 

using 9 m MEA as well as 8 m PZ.  The regeneration was usually accomplished using a 

simple stripper.  Based on preliminary results from this work, a 2-stage flash skid was 

constructed at the pilot plant to evaluate the effectiveness of high temperature stripping 

with concentrated piperazine.  Consequently, a campaign in December 2010 was run with 

the 2-stage flash.  The general simple stripper configuration and measurements taken 

from the pilot plant are shown in Figure 5-1.  This flowsheet applied to all simple stripper 

campaigns except for the single 9 m MEA run in October 2007.  The difference in the 

flowsheet for this early run is described in section 5.2.1. 

Each campaign ran for multiple weeks and operating conditions were collected 

for 8 to 14 runs.  Each run attained steady-state using a Delta V control system from 

Fisher Rosemount.  Each run condition was measured in real time, and the steady-state 

value of each parameter was determined by averaging a series of values for that 

parameter after reaching steady-state.  All of the relevant time-averaged conditions 

around the stripper from each run were used to assess the accuracy of the simulation 

results as well as the pilot plant measurements. 
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Figure 5-1.  J. J. pickle pilot plant simple stripper configuration and measurements.  

Measured conditions listed in italics. 

 

5.1.1. On-Site Heat Balance Calculations for the Stripper 

Since the stripper operated at high temperature, it experienced heat loss even 

though there was insulation around the column.  The pilot plant operators derived a 

correlation to calculate the expected heat loss of the stripper.  This correlation was used 

for every campaign, regardless of the solvent and operation type (stripping or 

distillation).  Steam was boiled in the stripping column to calibrate the temperature 

sensors, and the closure of the energy balance was evaluated considering the reboiler and 

condenser duties.  The heat loss for each test trial was calculated as the difference 
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between the reboiler and condenser duties.  Finally, a correlation for predicted heat loss 

was derived in the form of Equation 5-1. 

        
   

  
                      5-1 

TT2075 was the internal stripper temperature and TT902 was the ambient 

temperature.  The constant, C, was the regressed parameter.  Its value for the different 

process configurations and process conditions are displayed in Table 5-1.  The heat loss 

was correlated for both the stripping column and the 2-stage flash skid.  In the case of the 

stripping column, different values of C were found for reboiler duties greater than and 

less than 0.4 MMBTU/h.  The correlation for the 2-stage flash heat loss used temperature 

sensor TT530B for the internal temperature in place of TT2075.  TT2075 was a mid-column 

measurement of the stripper, and TT530B was the temperature measurement of the liquid 

exiting the first flash vessel. 

Table 5-1.  Heat loss correlation coefficient for Equation 5-1 with various pilot plant 

configurations. 

Configuration Reboiler duty C 

 MMBTU/h BTU/h-F 

Column > 0.4 500 

Column < 0.4 300-400 

2-stage flash All 350 

The heat loss prediction at the pilot plant was to be a rough estimate of heat loss 

and not an exact value.  The C coefficient was designed to empirically represent a pseudo 

UA value, combining both the overall heat transfer coefficient and the exposed surface 

area of hot process units and piping (Seibert, 2011). 

This predicted heat loss was considered to be a variable in the Aspen Plus
®
 

simulations of the pilot plant campaigns.  Many of the heat loss predictions appeared to 

agree with the simulations, but the heat loss was a key variable to match the material and 
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energy balances for the Fall 2008 PZ campaign and Summer 2010 MEA campaign.  In 

these two campaigns, the "measured heat loss" referred to the value calculated by the 

pilot plant correlation (Equation 5-1), and the "simulation heat loss" referred to the final 

heat loss value used in the simulation that matched the material and energy balances. 

The heat balance of the stripper was also calculated during every run at the pilot 

plant.  This balance was calculated as the sum of all cooling duties and stream enthalpy 

flows ratioed to the reboiler duty, shown in Equation 5-2.  This heat balance with the 

reboiler and condenser duties, correlated heat loss, simple representations of stream 

enthalpies, and an assumed heat of absorption was typically within 10% error.  The 

enthalpies of the material streams were calculated using heat capacity and calculating the 

change from a reference temperature.  They did not account for the change in enthalpy 

due to the desorption of CO2, so the heat of absorption term, Qabs, was included. 

 

             
                                   

         
 5-2 

For the purposes of this work, when the energy balance of the simulations of pilot 

plant runs were evaluated, the net unaccounted heat flux was used instead of the percent 

balance value: 

                                                        5-3 

Aspen Plus
®
 calculated the change in enthalpy of the material streams using 

model parameters which accounted for the changing composition between the rich and 

lean solvent.  Therefore, this calculation of the change in enthalpy accounted for the 

desorption of CO2, so the heat of absorption term was not required for the calculation of 

the simulation energy balance. 
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5.1.2. Analysis of campaign simulation accuracy 

The simulation of each pilot plant run provided results to be compared with the 

pilot plant measurements.  The mean absolute percentage error (MAPE) was used to 

collectively quantify the error across a single campaign.  The calculation of this statistic 

for all of the conditions of one run is as follows: 

      
 

 
  

     

  
 

 

   

      5-4 

where n was the number of measurements, Si was the simulation results for 

condition i, and Mi was the pilot plant measurements for condition i.  The MAPE was 

also calculated for each condition across all the runs to find the average percentage 

deviation in that condition.  Finally, an overall MAPE value for the campaign was 

calculated by averaging the MAPE values for each run. 

 

5.1.3. Evaluating pilot plant performance 

The heat duties of the runs in each campaign were normalized by the CO2 gas rate 

to quantify the performance.  The heat duties were also corrected for heat loss by 

subtracting the respective heat loss value from the duty.  This calculation was performed 

for the simulation values as well as the measured values.  In each case, the heat loss that 

paired with each duty was used for the calculation; the measured heat loss values were 

used to correct the measured heat duties, and the simulation heat loss values were used to 

correct the simulation heat duties. 

A projected equivalent work was also calculated for the pilot plant runs.  The 

simulation results for each run calculated a pump work, and the expected compression 

work was calculated using the previously derived correlation, Equation 3-1.  The 

equivalent work was calculated both with and without heat loss correction of the heat 
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duty.  Considering the minimum predicted equivalent work for each campaign made it 

possible to compare the performance of the pilot plant to the simple stripper predictions 

in Chapter 3. 

 

5.2. MEA PILOT PLANT CAMPAIGNS 

Two sets of pilot plant data were collected using 9 m MEA, a more concentrated 

variation of the baseline solvent.  This solvent needed to be evaluated in the pilot plant to 

determine if it could be a practical improvement from the baseline, or whether it caused 

any operational difficulties.  The first campaign was only a single run in October 2007.  

This run served to demonstrate that 9 m MEA was operationally practical for 

absorption/stripping.  The second campaign with 9 m MEA was in September 2010, and 

it included a full set of 12 runs.  This campaign also ran without problems.  The Hilliard 

model for MEA was used for the simulations.  The data from these two campaigns are 

evaluated in the next two sections.  However, as seen in Figure 2-3, the Hilliard model 

for 9 m MEA overpredicted the CO2 partial pressure at elevated temperature.  The 

analysis of the MEA pilot plant campaigns demonstrated this issue. 

 

5.2.1. 9 m MEA Baseline Run (Fall 2007) 

Data was available from a single run that was executed in October 2007 using 9 m 

MEA.  Since 7 m MEA is the typical concentration, the data from this run was used as a 

preliminary evaluation tool for the practicality of MEA at this concentration.  

Additionally, the new Hilliard model for MEA needed to be validated against real plant 

data.  There was not a full campaign of runs, but the single run was enough to address the 

accuracy of the thermodynamic model when used at pilot scale. 
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The column contained 6.1 m of Mellapak 250Y packing with an inner diameter of 

0.43 m.  The stripper was coupled with a simple absorber with identical dimensions.  The 

stripper configuration was different from what would typically be expected, and it is 

depicted in Figure 5-2.  The reboiler was configured to heat only a fraction of the sump 

drawoff, but the split fraction was not recorded at the pilot plant.  While this was a source 

of uncertainty when evaluating the stripper performance, it provided an additional 

variable for fitting the pilot plant data. 

Rich

Lean

 
Figure 5-2.  Fall 2007 pilot plant stripper flowsheet.  Sump stream split between reboiler 

and main cross exchanger. 

This Aspen Plus
®
 simulation work assumed equilibrium reactions in the stripper.  

The RateSep
TM

 tool rigorously calculated the heat and mass transfer for each stage of the 

simple stripper.  The packing mass transfer and interfacial area model by Onda et al. 
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(1968) was used to estimate liquid mass transfer coefficients and interfacial area.  The 

reboiler was modeled as equilibrium. 

Temperature, composition, and flow rates were measured for the rich and lean 

streams.  The reboiler heat duty, column pressure, and column pressure drop were also 

measured.  The pilot plant used the existing correlation for measuring heat loss from the 

column, which was also reported.  Finally, temperature was measured at six points 

throughout the column, in the reboiler, in the sump, and in the overhead vapor.  The 

heights in packing of the six thermocouples are detailed in Table 5-2, measured from the 

top of the packing.  The pilot plant measurements of the operating conditions around the 

stripper are listed in Table 5-3. 

Table 5-2.  Thermocouple locations in stripper packing for pilot plant run in 

October 2007 run with 9 m MEA 

Thermocouple ID d from top (m) 

T1 T20710 0 

T2 T2078 0.99 

T3 T2076 2.92 

T4 T2075 3.05 

T5 T2073 4.01 

T6 T2071 6.08 

The data-fit package within Aspen Plus
®
 was used to reconcile the individual 

differences between pilot plant measurements and simulation predictions.  The most 

significant deviations between pilot plant data and simulation values were the 

temperatures in the column.  The data-fit reconciliations initially failed to produce close 

agreement of the temperature measurements in the column, but the best solution method 

was determined to be adjusting heat duties in selected stages within the column to 

estimate a heat loss profile.  Since the heat loss predicted by the pilot plant correlation 

was a single value as opposed to a profile, these individual heat duties on stages were 

specified to match the estimated temperature profile with the six given measurements.  
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To reduce the number of free variables, the split ratio to the reboiler and its duty were 

adjusted to match the reboiler temperature and lean loading.  The agreement between the 

values in Table 5-3 demonstrates that the CO2 removal at the pilot plant was verified with 

the model. 

Table 5-3.  October 2007 simple stripper pilot plant run measurements and 

simulation results (9 m MEA) 

Variable 
Pilot 

Plant 

Aspen 

Plus
® 

 
Variable 

Pilot 

Plant 

Aspen 

Plus
®
 

Lean stream 

 

Column data 

T (°C) 44.9 44.9 

 

T1 (°C) 87.6 86.7 

Flow (kg/min) 73.3 70.9 

 

T2 (°C) 86.3 86.3 

Ldg (mol/mol) 0.36 0.36 

 

T3 (°C) 87.9 87.9 

Rich stream 

 

T4 (°C) 90.4 90.4 

T (°C) 50.2 50.4 

 

T5 (°C) 91.0 91.0 

Flow (kg/min) 70.6 69.0 

 

T6 (°C) 95.3 95.3 

Ldg (mol/mol) 0.48 0.48 

 

Reboiler T (°C) 102.7 102.7 

Heat exchanger Ts 

 

     Q (kW) 143.0 143.3 

Rich in (°C) 44.9 44.9 

 

Q loss (kW) 22.6 24.9 

Rich out (°C) 91.6 93.1 

 

Sump T (°C) 98.2 97.8 

Lean in (°C) 98.6 99.7 

 

Column P, bot (kPa) 105.0 105.0 

Lean out (°C) 50.2 50.4 

 

ΔP, top (kPa) 0.14 0.14 

Performance 

 

ΔP, bot (kPa) 0.15 0.15 

Eq Work 

(kJ/mol CO2) 
- 41.2 

 

Outlet vapor T (°C) 87.4 87.0 

  Packing ht (m) 6.10 2.13 

The stripper was run with a reboiler temperature of 103 °C, which was much 

cooler than the ceiling temperatures for MEA of 120 °C.  The solvent model was able to 

match this temperature well with the column pressure and lean loading.  The simulation 

predicted a nearly identical reboiler duty, and the heat loss was only 12% greater than the 

calculated heat loss at the pilot plant.  The average variation between measured and 

calculated values was 3.8%.  The most significant change was the packing height, which 

was reduced to about 35% of the actual height.  The packing height was reduced so 

significantly in order to match the measured temperature profile while maintaining an 

overall heat loss close to the pilot plant prediction.  This result suggested that the Onda 
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correlation for interfacial area was insufficient for this application in aqueous amine 

based CO2 capture.  Due to the speed of the reactions and the high mass transfer rates, 

very little packing height was required in the stripper to attain equilibrium between the 

vapor and liquid at the top of the column. 

Other than the significant change in the packing height, the property predictions 

and overall energy balance were confirmed using the Hilliard MEA model, and the 

temperature profile was matched using on-stage heat duties.  Figure 5-3 displays the 

measured column temperature profile as a function of relative column height, the initial 

Aspen calculation with no heat loss, and the final Aspen calculation with a matched 

temperature profile by adjusting the heat loss.   

However, the liquid and vapor were at a mass transfer pinch at the top of the 

column for all cases.  Therefore the temperature profile, packing height, and ability to 

match other data should be a weak function of operating conditions.  This pilot plant 

operation is primarily a validation of the equilibrium model at these conditions.  

Although the partial pressure of CO2 was shown to be fit poorly by the model at high 

temperature (Figure 2-3), the temperature of this stripper run was low enough that only 

very minor deviation was observed.  Additionally, split ratio around the reboiler was used 

to match its temperature, and the increase in heat duty to match the column profile also 

served to match the performance of the column.  These available variables were enough 

to force the stripper material and energy balances from the simulation to match the 

measurements, even though there should have been deviations. 



 159 

 

Figure 5-3.  Temperature Profiles in Pilot Plant and Aspen Simulation.  Rich loading = 

0.48, 63% removal in absorber.  "Aspen calculation": no heat loss, 75% split to reboiler, 

6.1 m MP250Y packing.  "Adjusted temperatures": 1.5 m MP250Y packing, heat loss 

adjusted to match T profile.   

It was anticipated that the heat duties on individual stages would help predict the 

heat loss profile.  However, the heat loss did not follow a believable profile; the 

simulation predicted heat gains in some sections.  Heat duties were imposed on only 12 

of the 20 packed stages, so the heat loss profile was smoothed for graphical 

representation by averaging Qn-1 through Qn+1 for each stage n.  This demonstration is 

shown in Figure 5-4.  The majority of the heat loss was predicted to occur at the bottom 

of the column.  This prediction was expected since the column temperature was highest at 

the bottom.  The exact heat loss values predicted by the simulation are shown in Table 5-

4. 
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Figure 5-4.  Heat flow profile to match temperature profile in pilot plant run with 9 m 

MEA.  0 = top of column, 1 = bottom of column. 

Table 5-4.  Heat duties imposed in stripper column to match temperature profile. 

Relative distance from top Heat Flow 

 
kW 

0.05 -2.43 

0.11 -1.90 

0.26 1.06 

0.37 -0.30 

0.42 -1.71 

0.47 11.02 

0.58 2.44 

0.63 0.85 

0.74 0.80 

0.84 -4.54 

0.95 -14.40 

1.00 -15.56 

Due to the large temperature increase through the redistributor from the top 

section to bottom section, a significant heat gain was predicted in the middle of the 

column.  This behavior could not happen since the temperature of the stripper was about 

90 °C, far above the ambient temperature of about 25 °C.  The reason for this sharp 
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increase in temperature would require an in-depth analysis of the internal flow patterns 

and heat transfer of the column.  However, the increase in the bottom packing section 

could have been due to the redistribution of hot liquid to the outside of the column where 

the thermocouples were measuring temperature.  Another possible explanation for the 

increase in temperature from the transition from the top to bottom packing sections was a 

reduced amount of insulation around the redistributor where significant heat loss could 

have occurred.  While this explanation could explain a drastic temperature change of the 

vapor when traveling from the bottom to top packing section, the simulation results 

suggested that heat loss alone could not induce the temperature change that was observed. 

In summary, the Hilliard MEA model appropriately predicted process conditions 

and energy performance at the pilot plant using 9 m MEA, even though the VLE 

predictions of the model should have been inaccurate.  The available variables permitted 

the simulation material and energy balances to match the measurements.  The Onda 

model did not predict the interfacial area of the packing well, and the simulation only 

required 35% of the packing height that the pilot plant column used.  A balanced heat 

loss profile in the column did not accurately predict the temperature profile.  Imposed 

heat duties on 12 of the 20 packing stages were adjusted to match the temperature profile.  

This method demonstrated that there was more complexity to the temperature change 

within the column than the model predicted.  This difference could have been due to a 

non-distributed heat loss profile, complex liquid or vapor flow patterns, or temperature 

measurements of only a single phase.  A significant temperature increase from the top to 

bottom packing sections required a heat input in the simulation.  The flow patterns of 

liquid in the column may have been such that it did not migrate from the middle to 

outside of the column, or vice versa.  If this were to happen, the liquid at the outside of 

the column would cool substantially compared to the liquid flowing through the middle 
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of the column.  An analysis of flow patterns through the packing could provide insight to 

this result. 

 

5.2.2. 9 m MEA Intercooled Absorber and Simple Stripper Campaign (Summer 

2010) 

9 m MEA was run in the pilot plant again in August 2010.  The stripper 

configuration was still a simple stripper, but the absorber was intercooled to attain higher 

rich loadings.  The configuration of the stripper and the available measurements are 

detailed in Figure 5-1.  This campaign was used mostly to evaluate the impact of 

intercooling, but it provided another opportunity to validate the Hilliard MEA model at 

stripper conditions. 

The stripper used two 10-foot beds of Raschig-Jaeger RSP 250 packing.  The 

ceiling temperature of MEA is 120 °C, but the goal temperature for these runs was 

115 °C.  Consequently, the stripper pressure varied from 1.5 to 2.2 bar.  The data-fit 

package was not used for the simulations because it did not provide results that 

represented converged mass and energy balances.  The optimal evaluation method was 

determined to be running the stripper simulation using pilot plant measurements for the 

required inputs.  The deviations of the results were evaluated. 

The initial run using pilot plant measurements as inputs yielded low deviations for 

most result variables except the CO2 gas rate and lean loading.  Further inspection 

revealed that not only were all of the simulation predictions for these two result variables 

higher than their pilot plant measurements, but they were also roughly linearly correlated.  

As Figure 5-5 shows, the deviations followed the x-y line when plotted as percent 

deviations.  This outcome suggested that the predicted amount of CO2 stripped from 
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solution was equally over predicted on the gas and liquid sides.  A parity plot of the pilot 

plant measurements of CO2 removal based on gas and liquid measurements confirmed 

that the large deviations were not due to gross inaccuracies in either the gas side or liquid 

side measurements, Figure 5-6.  It was concluded that the energy balances of the 

measurements and simulations were inconsistent.  The energy balance could have been 

incorrect either through model predictions or pilot plant measurements.  Not only was the 

heat of absorption in 9 m MEA matched in the thermodynamic model within the error of 

the laboratory measurements, but manipulating the model parameters to attempt to 

correct this energy balance issue would have created more problems than it fixed.  

Therefore, the focus of correcting the energy balance was directed toward pilot plant 

measurements.  Since the pilot plant heat loss prediction was only a rough estimate, this 

value was used as an adjustable parameter. 

 

Figure 5-5.  Simulation results without heat loss manipulation for 2010 simple stripper 

campaign with 9 m MEA.  Percent deviations of overhead CO2 rate and Δldg were 

correlated.   
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Figure 5-6: Parity plot of measured CO2 removal by gas side (measured CO2 flow rate) 

and liquid side (product of solvent rate and change in loading) measurements at pilot 

plant. 

Adjusting the heat loss of the stripper column in the simulations effectively 

reduced the deviations of the lean loading and overhead CO2 rate.  The mean average 

percentage error (MAPE) was used to evaluate the deviations of the simulation results 

from the pilot plant measurements.  Using the measured heat loss as a variable to match 

the material balance, the MAPE of each run was between 0.9 and 3.7%.  The simulation 

heat loss values needed to be increased by 35 to nearly 180% compared to the measured 

pilot plant heat loss values.  The raw pilot plant measurements for the stripper are in 

Table 5-5.  Simulations were run using heat loss to match lean loading, and the deviations 

between the final simulation results and the corresponding pilot plant measurements are 

in Table 5-6.  The heat loss was adjusted significantly, but it was not included in the 
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calculation of the MAPE since the heat loss values that were provided were rough 

predictions, not raw measurements. 
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 Table 5-5.  Pilot plant measurements from Fall 2010 simple stripper-campaign with 9 m MEA. 

Variable Run → 1 2 3 4 5 6 7 8 9 10 11 12 

Rich flow kg/s 1.16 1.16 0.77 0.77 1.20 1.16 1.04 1.05 1.19 1.19 0.63 0.64 

Rich T C 51.2 48.1 46.7 46.1 53.2 51.2 45.3 44.9 49.8 44.2 36.5 36.5 

Lean flow kg/s 1.10 1.10 0.73 0.73 1.14 1.10 0.98 1.00 1.12 1.17 0.58 0.59 

Lean exit T C 53.1 50.3 48.4 47.9 55.1 53.1 47.5 47.0 52.0 47.5 38.1 38.0 

Reboiler T C 113.7 113.8 116.8 116.0 116.5 113.7 116.6 116.3 117.8 118.0 114.7 114.7 

Rich feed T C 51.2 48.1 46.7 46.1 53.2 51.2 45.3 44.9 49.8 44.2 36.5 36.5 

Rich hot T C 108.8 108.7 111.0 110.2 111.5 108.8 110.8 110.5 110.9 112.6 107.3 107.4 

Rich P kPa 431 434 425 424 401 431 416 425 422 424 352 358 

Overhead T C 103.5 103.3 102.5 101.6 106.3 103.5 103.6 102.7 103.7 104.0 100.4 100.2 

CO2 rate kg/s 0.035 0.037 0.030 0.031 0.034 0.035 0.039 0.040 0.025 0.027 0.040 0.040 

Cond. rate kg/s 0.026 0.037 0.000 0.013 0.000 0.026 0.022 0.056 0.003 0.017 0.015 0.014 

Condenser T C 33.3 33.9 27.9 31.1 32.9 33.3 25.4 26.6 31.1 32.5 24.7 24.5 

Reboiler duty kW 166.4 171.3 136.5 139.8 175.8 166.4 176.7 175.7 121.5 123.1 177.4 177.2 

Heat loss kW 19.5 19.4 25.7 31.8 31.4 19.5 25.9 25.7 26.0 26.0 26.8 26.7 

Column P kPa 165.4 165.4 182.7 177.1 177.8 165.4 177.5 177.5 219.2 219.2 158.5 158.5 

Pressure drop kPa 0.528 0.595 0.176 0.235 0.509 0.528 0.233 0.255 0.387 0.430 0.039 0.041 

Reboiler liq T C 113.7 113.8 116.8 116.0 116.5 113.7 116.6 116.3 117.8 118.0 114.7 114.7 

Reboiler vap T C 112.8 112.9 116.2 115.4 115.2 112.8 115.5 115.2 115.2 115.4 114.6 114.5 

Lean ldg mol/mol 0.314 0.292 0.285 0.280 0.284 0.288 0.280 0.277 0.364 0.362 0.197 0.199 

Rich ldg mol/mol 0.416 0.431 0.457 0.460 0.407 0.407 0.441 0.446 0.460 0.464 0.483 0.474 

MEA conc m 9.15 8.98 8.97 9.10 9.46 9.27 8.91 8.79 8.66 8.67 8.49 8.57 
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Table 5-6.  Deviation in result variables from pilot plant measurements of Fall 2010 pilot plant simple stripper 

campaign with 9 m MEA.  Heat loss used to match lean loading. 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 MAPE 

Lean flow 1% 1% 0% 0% 1% 1% 0% 0% 4% -1% -2% -1% 1.1% 

Rich hot T -2% -1% -3% -3% -2% -1% -2% -1% -3% -6% -2% -1% 3.0% 

Overhead T -3% -3% -3% -3% -4% -2% -3% -2% -2% -3% 1% 1% 2.5% 

CO2 rate -2% 3% 2% 4% 5% -5% -1% 2% 1% -1% -1% -4% 2.5% 

Reboiler liq T -3% -3% -3% -3% -4% -3% -3% -2% -6% -6% 0% 0% 4.0% 

Lean ldg -6% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 1% 3.0% 

MAPE 2.3% 2.2% 2.4% 2.7% 3.4% 2.5% 1.9% 1.5% 3.6% 3.7% 0.9% 1.3% 2.7% 

Heat loss 179% 148% 71% 35% 91% 192% 106% 81% 66% 40% 62% 74% 101% 
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 Figure 5-7 shows the behavior of the normalized heat duty as a function of lean 

loading.  The heat duty was normalized as described in section 5.1.3.  The measured heat 

duty was corrected by the measure heat loss, and the simulation heat duty was corrected 

by the simulation heat loss.  There was a significant difference in the normalized heat 

duty values from measurements and simulations.  This was due to the drastic increase in 

heat loss for the simulations, which reduced the heat duty when corrected for heat loss.  

Prior modeling results suggested that a minimum heat duty should be reached at a 

specific lean loading, and the heat duty should decrease with increasing rich loading.  

Even though the runs were categorized by rich loading, the rich loading still varied 

slightly, and the reboiler temperature was also not constant.  Nonetheless, a general 

decrease in heat duty with increasing rich loading was observed.  The highest rich 

loading of 0.47 had the largest variety of lean loadings, and a minimum heat duty 

appeared to occur around a lean loading of 0.29.  However, the optimum was flat and 

may have been an illusion of data scatter.  The optimal lean loading in Chapter 3 was 

approximately 0.4 for this solvent when the rich loading was 0.5. 
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Figure 5-7.  Normalized heat duty for 9 m MEA calculated from pilot plant 

measurements and simulation results, corrected for heat loss.  Solid points = modeling 

results, Hollow points = pilot plant results. 

The runs had reboiler temperatures between 109 and 114 °C, and the minimum 

heat duty in the simulations was 132 kJ/mol CO2 when corrected for heat loss, and the 

stripper pressure was 1.8 bar.  The heat work based on the heat duty for this minimum 

case was 28.5 kJ/mol CO2, and the heat work reduced to 19.7 kJ/mol CO2 when corrected 

for heat loss.  The calculated compression work to 150 bar was 14.5 kJ/mol CO2.  With a 

calculated 1.4 kJ/mol CO2 requirement for pump work at this low stripper pressure, the 

equivalent work for this operating condition was expected to be 44.4 kJ/mol CO2, or 35.6 

kJ/mol CO2 when corrected for simulation heat loss.  This performance was competitive 

with the optimal predicted conditions for 9 m MEA at 110 °C in Table 3-2, which was 

35.1 kJ/mol CO2. 

The hefty increases in heat loss from the measured values were determined to be 

due to an inaccurate representation of the 9 m MEA solvent by thermodynamic model.  
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Figure 2-3 shows the overprediction of CO2 partial pressure at the higher temperature 

expected in the stripper.  This error, coupled with a high heat of absorption prediction, 

yielded the errors in performance estimates. 

Table 5-7 shows the measured and simulation energy balances for Run 2 as an 

example of the issue.  The heat of absorption requirement is listed for both energy 

balances, though it was only used in the calculation for the measured energy balance (see 

Equations 5-2 and 5-3).  The overprediction of the heat of absorption by the simulation is 

apparent in this table, and it was also visible in Figure 2-6.  The high heat of absorption in 

the simulation required a higher heat rate than what was measured at the pilot plant, 

which would reduce the simulation heat loss compared to the measured value. 

Table 5-7.  Energy Balance of 2010 MEA Run 2 for Measured Values and Aspen 

Plus
®
 Simulation 

Heat Term Simulation Measured 

 
kW kW 

Reboiler 171.30 171.30 

Condenser -36.07 -81.61 

Heat loss -48.17 -19.43 

Stream enthalpy -87.25 -4.63 

Heat of absorption (-85.97) -50.58 

Balance -0.19 15.05 

The overprediction of the heat of absorption had a secondary effect.  Table 5-8 

shows the simulated conditions at the top of the stripper column of Run 2.  According to 

the Hilliard thermodynamic model, the rich solvent flashed to a loading of 0.396 and a 

temperature of 100.1 °C upon entry.  The model also predicted a CO2 partial pressure of 

87.4 kPa.  Experimental data suggests that the CO2 partial pressure at 100 °C and a 

loading of 0.396 should be 28.7 kPa.  Therefore, the predicted CO2 mole fraction in the 

overhead was too high in the simulation, which reduced the simulation value of the 
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condenser duty, seen in Table 5-15.  Therefore, the simulation heat loss was greater in 

order to balance this difference.  Measured values of most of the conditions in this table 

were not available for comparison because they could not be measured with the available 

instrumentation.  In the future, measurements of the overhead gas composition could help 

verify this conclusion. 

Table 5-8.  Aspen Plus
®
 Model Predictions for Conditions at the Top of the Column 

(2010 MEA Campaign-Run 2) 

ldg at packing top mol/mol 0.403 

Predicted overhead T C 100.2 

Predicted PCO2 kPa 87.1 

Predicted yco2  0.527 

Laboratory PCO2 kPa 31.4 

This issue needs to be addressed in the future by correcting the MEA model at 

this amine concentration. 

In summary, the Hilliard MEA model was able to predict the performance of the 

simple stripper campaign by using pilot plant measurements for inputs to the simulation, 

but the measured heat loss had to be increased significantly for all runs.  In the most 

extreme case, the simulated heat loss increased by 179% from the measured value.  The 

overall MAPE for the result variables in the simulation was 2.7%.  The minimum 

equivalent work was 35.6 kJ/mol CO2 when corrected for heat loss, which was 

competitive with previously optimized models, but the simulation heat loss increased the 

equivalent work by 8.8 kJ/mol CO2, or 25%. 

 

5.3. PZ PILOT PLANT CAMPAIGNS 

Concentrated PZ (8 m) was a solvent of high interest in the time period of this 

work.  Like 9 m MEA, this solvent needed to be evaluated in the pilot plant to determine 
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if it could be a practical improvement from the baseline, or whether it caused any 

operational difficulties.  8 m PZ was an interesting solvent to run because it had potential 

solubility issues.  At room temperature, PZ is insoluble in unloaded solutions at 

concentrations greater than 2 m.  8 m PZ is soluble down to at least 40 °C within the 

loading range of 0.2 to 0.4, but precipitation was possible at the near-freezing 

temperatures in Austin during the winter, especially near the boundaries of the solubility 

window.  The first two campaigns, in November 2008 and September 2010, used a 

simple stripper, shown in Figure 5-1.  The last campaign in December 2010 used the new 

2-stage flash skid.  Each campaign had 8 to 14 usable runs.  The 5deMayo model for 

concentrated PZ was used to run the simulations.  The data from these three campaigns 

are evaluated in the next three sections. 

 

5.3.1. 8 m PZ Simple Absorber and Stripper Campaign (Fall 2008) 

This campaign started in November 2008 and ran into December.  It was the first 

pilot trial with concentrated PZ at the Pickle pilot plant facility.  There was significant 

hesitation due to the risk of PZ precipitation, which could clog the lines and machinery.  

The raw pilot plant measurements are shown in Table 5-9.  As with the MEA 

simulations, the data-fit package was not used because it did not provide results that 

represented converged mass and energy balances.  Instead, the required inputs for the 

simulation were taken directly from pilot plant measurements, and the deviations in the 

result variables were analyzed.  The initial simulations had high deviations in both lean 

loading and the CO2 rate exiting the condenser.  The simulation predictions for lean 

loading and CO2 gas rate were both higher than the pilot plant measurements, and they 
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roughly followed a linear trend when plotted against each other, Figure 5-8.  This 

problem was similar to the issue encountered in the September 2010 9 m MEA campaign.   

 

Figure 5-8:  Simulation results without heat loss manipulation for 2010 simple stripper 

campaign with concentrated PZ.  Percent deviations of overhead CO2 rate and Δldg were 

correlated.   

After checking that the measured CO2 closed on the gas and liquid sides (Figure 

5-9), it was concluded that the problem was not faulty measurements.  Instead, an issue 

existed in the energy balance.  Since the heat of absorption of the 5deMayo model 

matched well with laboratory data, parameters of the thermodynamic model were not 

altered.  The measured heat loss was used as a variable to fit the lean loading.  Since all 

of the simulations were overstripped compared to the pilot plant measurements, the 

simulation heat losses all increased from the pilot plant measurements to match the lean 

loadings that were measured at the pilot plant.  The final deviations of the result variables 

are shown in Table 5-10.  The deviations in heat losses are also reported because they 
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were used to match the lean loadings, but they were not included in the calculation of the 

MAPE 

 

Figure 5-9: Parity plot of measured CO2 removal by gas side (measured CO2 flow rate) 

and liquid side (product of solvent rate and change in loading) measurements at pilot 

plant. 
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Table 5-9.  Pilot plant measurements from Fall 2008 simple stripper campaign with 8 m PZ. 

Variable Run → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Rich flow kg/s 1.10 1.11 1.11 1.12 0.89 1.33 1.11 0.89 1.32 1.11 1.28 1.28 1.06 0.85 

Rich T C 47.5 43.9 46.9 37.2 41.6 42.4 43.9 41.1 47.5 41.6 41.0 44.8 42.7 38.9 

Lean flow kg/s 1.04 1.07 1.05 1.09 0.84 1.28 1.07 0.85 1.26 1.08 1.24 1.22 1.01 0.81 

Rich feed T C 47.5 43.9 46.9 37.2 41.6 42.4 43.9 41.1 47.5 41.6 41.0 44.8 42.7 38.9 

Lean exit T C 49.9 46.5 49.5 39.7 44.1 45.4 48.2 44.9 51.7 45.3 44.8 48.6 46.5 42.6 

Reboiler T C 107.2 103.0 108.9 87.5 105.7 104.1 127.5 127.5 129.0 116.1 119.7 127.6 128.2 127.0 

Overhead T C 95.3 88.6 96.9 71.9 90.9 90.4 107.3 104.8 113.4 96.5 102.1 112.1 111.9 108.4 

CO2 rate kg/s 0.033 0.026 0.036 0.011 0.028 0.031 0.026 0.023 0.032 0.018 0.022 0.032 0.031 0.026 

Cond. rate kg/s 0.020 0.008 0.019 0.002 0.011 0.012 0.005 0.004 0.011 0.013 0.004 0.011 0.010 0.009 

Cond. T C 14.9 15.5 9.0 22.0 11.3 4.7 19.6 16.2 20.1 25.2 8.0 11.5 4.8 4.8 

Reb. duty kW 130.6 101.0 155.5 45.9 111.1 125.3 112.7 105.6 141.3 79.0 99.8 134.6 129.0 114.5 

Heat loss kW 13.1 12.1 21.4 14.0 18.9 20.6 21.8 27.5 26.7 23.1 26.6 30.3 32.3 30.1 

Column P kPa 137.9 137.8 137.9 137.9 137.9 137.8 413.6 413.6 351.6 351.6 351.6 344.6 344.6 344.6 

P drop kPa 0.154 0.144 0.182 0.164 0.127 0.147 0.142 0.097 0.104 0.168 0.117 0.059 0.029 0.054 

Reb. liq T C 107.2 103.0 108.9 87.5 105.7 104.1 127.5 127.5 129.0 116.1 119.7 127.6 128.2 127.0 

Reb. vap T C 105.7 100.6 108.6 90.5 105.7 102.3 124.4 124.3 126.3 111.0 120.1 127.3 128.7 129.5 

Rich ldg mol/mol 0.3 0.372 0.330 0.404 0.358 0.361 0.364 0.369 0.338 0.381 0.382 0.362 0.360 0.382 

Lean ldg mol/mol 0.3 0.308 0.254 0.386 0.284 0.303 0.305 0.298 0.267 0.331 0.316 0.274 0.257 0.262 

PZ conc m 7.45 7.87 9.18 8.18 7.82 8.21 8.06 7.88 7.84 7.67 4.81 4.95 4.90 4.64 
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Table 5-10.  Deviation in simulation result variables from pilot plant measurements of Fall 2008 pilot plant simple 

stripper campaign with 8 m PZ.  Heat loss used to match lean loading.  

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 MAPE 

Lean flow 1% 0% 1% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 0% 0.9% 

Lean ldg 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% -1% 0% 0% -3% 0.4% 

Overhead T 4% 6% 4% 17% 6% 6% 13% 15% 7% 17% 11% 5% 5% 7% 8.8% 

CO2 rate -10% -5% -8% -30% -17% -9% -7% -3% 5% 12% 6% -5% -3% 10% 9.2% 

Reboiler T 0% -1% 0% 0% 0% -1% 2% 3% 2% 4% 2% -1% 0% 1% 1.2% 

MAPE 3.0% 2.7% 2.6% 9.9% 5.1% 3.4% 4.6% 4.3% 2.9% 6.7% 3.8% 2.2% 2.0% 4.2% 4.1% 

Heat loss 92% 127% 45% 68% 90% 78% 93% 50% 13% 0% 10% 23% 6% 0% 49.6% 
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Excluding the simulation heat loss, the mean absolute percentage error (MAPE) 

for each of the five calculated variables was between 0.4 and 9.2%.  The overall MAPE 

was 4.1%.  The simulation heat loss, however, had much higher variability from the pilot 

plant measurements, with a MAPE of 49.6%. 

The conditions that were most accurately predicted were the lean flow rate and 

reboiler temperature.  The average lean flow deviation was 0.9%, and the average 

reboiler temperature deviation was 1.2% (1.4 °C).  The results with higher deviations 

included the overhead CO2 rate and the temperature of vapor exiting the stripper.  The 

CO2 rate deviation could have been due to the method for matching lean loading with 

heat loss.  The higher overhead temperature in simulations suggested that heat loss 

occurred between the top of the column and the measurement point.  The simulation of 

the stripper column reached a rich end pinch for all of the runs, but this would not be the 

source of deviation in the overhead temperature.  Had the pilot plant column not reached 

equilibrium, the partial pressure of water in the overhead vapor would have been higher 

than the simulation predictions, so the overhead temperature measured at the pilot plant 

would be higher than the simulation predictions. 

The normalized heat duty demonstrated high variability (Figure 5-10), and it did 

not express the clear trends that appeared in the MEA campaign, in Figure 5-7.  Firstly, a 

significant change in the lean flow rate of Run 4 resulted in a large difference between 

the normalized heat duties of the plant measurements and simulation predictions.  A clear 

decrease in heat duty with increasing rich loading was not present in this campaign.  The 

scatter in heat duties was due to variations between each run, including changes in 

reboiler temperature and PZ concentration.  There was a decrease in the corrected heat 

duty from the measurement to simulation values since the simulation heat losses were 
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increased from the measurements.  However, this effect was not as drastic as the MEA 

2010 simple stripper campaign. 

 

Figure 5-10.  Normalized heat duty for 8 m PZ calculated from pilot plant results, Fall 

2008, corrected for heat loss.  Solid points = modeling results, Hollow points = pilot plant 

results. 

The minimum heat duty was 122 kJ/mol CO2, but there was a lot of scatter in the 

data.  A decrease in heat duty with increasing rich loading was observed.  The total 

equivalent work did not show a trend with lean loading either, and its average value was 

46.2 kJ/mol CO2.  This average value was substantially lower than the optimum values in 

simulations: 33.5 and 33.1 kJ/mol CO2 at 120 °C and 150 °C, respectively.  This 

difference was attributed to non-optimal conditions at the pilot plant like lower boiler 

temperatures (between 88 and 131 °C), high heat loss of 19 to 35% of the reboiler duty, 

and most rich loading values were less than 0.40, which is achievable in the absorber and 

more efficient for the stripper.  The minimum equivalent work without heat loss was 

34.2 kJ/mol CO2. 
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While attempting to reconcile the significant increase in the heat loss that was 

required in the simulation to match the material balance, it was discovered that a lean 

solvent recycle was split from the stream exiting the reboiler in this campaign, as in the 

Fall 2007 MEA run (Figure 5-2).  The stripper was not modeled to account for this flow 

configuration, so the reboiler operated differently in the simulation than at the pilot plant.  

Recycling lean solvent to the sump would have reduced the loading of the collected 

solvent at the bottom of the column.  Therefore, this solvent with lower loading would 

have been more difficult to strip and require a higher heat duty than if the lean solvent 

recycle flow pattern was not used.  Since the simulation modeled a typical reboiler 

without lean solvent recycle, the calculations required a lower heat rate then the pilot 

experiment.  Therefore, the simulations predicted a greater heat loss than the measured 

value in order to account for the lower required reboiler duty. 

In summary, the simulations of this first pilot plant campaign with concentrated 

PZ appropriately matched the measured data.  An energy balance issue existed which 

gave consistently lower predictions of the lean loading in the simulations.  These 

inconsistencies were remedied by adjusting the heat losses within the column, but the 

average increase in the heat loss was approximately 50%.  A detailed analysis of the heat 

loss correlation used at the pilot plant could determine whether these significant changes 

in the heat loss were appropriate, which was explored in section 5.4.  Next, the overhead 

temperature was consistently over predicted by the simulation, which assumed no heat 

loss between the top of the column and the "measurement point".  Additional installation 

of the vapor line at the pilot plant could ensure that these measurements are more 

accurate.  The total equivalent work requirement including CO2 compression was higher 

than what was predicted in Chapter 3 because the reboiler temperature was lower, there 
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was significant heat loss, and the rich loading in most runs was less than the previously 

assumed 0.40. 

 

5.3.2. 8 m PZ Intercooled Absorber and Simple Stripper Campaign (Fall 2010) 

This campaign ran in September 2010.  It followed the August 2010 campaign 

with 9 m MEA that thoroughly tested intercooling.  Like the MEA campaign, 

intercooling was used in every run for this campaign with 8 m PZ.  The raw pilot plant 

measurements for the stripper are shown in Table 5-11.  This campaign was run with the 

intention of keeping the reboiler temperature constant.  The stripper column was not 

designed to withstand the high pressure of 8 m PZ at 150 °C, so it was run at 

approximately 120 °C.  The maximum pressure was 2.7 bar.  Three pressure levels were 

used which yielded three lean loadings since the reboiler temperature was constant.  The 

reboiler duty was varied to maintain the desired reboiler temperature at the specified 

column pressure. 

Once again, the data-fit package was not used because it did not provide results 

from fully converged runs.  Instead, the required inputs for the simulation were taken 

directly from pilot plant measurements, and the deviations in the result variables were 

analyzed.  Unlike the MEA campaign in summer 2010 and the PZ campaign in Fall 2008, 

there was no apparent issue with the energy balance.  As shown in Figure 5-11, the 

percent deviations in overhead CO2 rate and Δldg were smaller than in the previous 

campaigns, and there was no correlation between the two deviations.  Therefore, the heat 

loss predicted by the pilot plant software was not manipulated in the simulations. 
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Figure 5-11:  Simulation results without heat loss manipulation for 2010 simple stripper 

campaign with concentrated PZ.  Percent deviations of overhead CO2 rate and Δldg were 

correlated.  

The deviations in the result variables of the simulations are shown in Table 5-12.  

Since the heat loss was not manipulated, it was not included as a result variable for this 

campaign.  The conditions with the highest average absolute differences were the 

overhead temperature and the CO2 gas rate.  When considering the mean deviation, the 

average CO2 gas rate discrepancy was reduced from its average absolute value difference, 

but the overhead gas temperature deviation was still high.  The deviation signified the 

overestimation of the simulation temperature compared to the measured value, so the 

positive deviation indicated that the simulation values were consistently higher than the 

measured values.  This result demonstrated that heat loss likely occurred in the overhead 

piping, which reduced the temperature of the vapor before it was measured. 

The CO2 gas rate was over predicted by the simulations on average, but the 

change in loading was not similarly over predicted.  This result suggested that the 
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measured mass balance was slightly incorrect.  The mass balance could have been thrown 

off by small inconsistencies in the measurements of the solvent amine concentration, rich 

and lean solvent CO2 concentrations, and CO2 gas rate. 
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Table 5-11.  Pilot plant measurements from Fall 2010 simple stripper campaign with 8 m PZ. 

Variable Run → 1 2 3 5 6 7 8 9 11 12 13 

Rich flow kg/s 1.23 0.96 1.72 0.99 0.75 1.10 1.61 0.57 0.88 1.52 1.20 

Rich T C 48.1 43.5 45.9 47.9 42.3 44.7 45.9 41.7 40.1 44.0 41.3 

Lean flow kg/s 1.21 0.93 1.69 0.98 0.75 1.08 1.57 0.52 0.76 1.40 1.09 

Rich feed T C 48.1 43.5 45.9 47.9 42.3 44.7 45.9 41.7 40.1 44.0 41.3 

Lean exit T C 52.1 47.7 50.9 51.8 46.3 48.9 50.5 45.3 44.1 48.5 45.6 

Reboiler T C 122.3 122.6 122.4 123.9 121.8 122.7 123.1 120.5 121.7 122.1 121.4 

Overhead T C 106.8 105.2 107.6 108.8 103.5 106.2 107.4 103.9 105.0 107.4 104.6 

CO2 rate kg/s 0.033 0.031 0.044 0.031 0.031 0.041 0.060 0.029 0.044 0.065 0.055 

Cond. T C 23.9 22.0 25.6 22.8 23.0 30.2 27.6 23.6 26.2 19.1 27.9 

Reb. duty kW 132.8 118.7 175.8 134.9 120.1 164.1 222.7 119.2 164.1 250.5 205.1 

Heat loss kW 27.1 26.8 33.4 34.2 32.9 33.3 33.0 26.2 33.0 33.1 32.7 

Column P kPa 272.3 272.3 272.3 265.4 248.1 248.1 248.1 202.0 208.2 208.2 208.2 

P drop kPa 0.020 0.020 0.030 0.015 0.025 0.035 0.038 0.022 0.038 0.043 0.051 

Reb. liq T C 122.3 122.6 122.4 123.9 121.8 122.7 123.1 120.5 121.7 122.1 121.4 

Reb. vap T C 119.8 120.6 119.4 122.2 120.7 121.0 120.7 120.7 120.9 120.1 119.7 

Rich ldg mol/mol 0.365 0.370 0.364 0.355 0.367 0.357 0.354 0.366 0.370 0.364 0.379 

Lean ldg mol/mol 0.287 0.286 0.290 0.265 0.261 0.262 0.261 0.213 0.215 0.229 0.230 

PZ conc m 7.98 8.18 8.33 7.93 8.09 8.11 8.36 7.87 7.85 7.59 7.69 
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Table 5-12.  Deviation in result variables of Fall 2010 simple stripper campaign with 8 m PZ. 

Variable 1 2 3 5 6 7 8 9 11 12 13 MAPE Mean 

Lean flow -2.1% -1.8% -1.6% -3.7% -5.5% -3.9% -2.7% 0.7% 8.3% 1.5% 3.0% 3.2% -0.7% 

Lean ldg -0.4% -1.7% 0.5% 0.2% -0.2% -3.4% -2.2% 3.2% 8.7% 2.8% 5.1% 2.6% 1.2% 

Overhead T 4.6% 5.8% 3.4% 3.8% 6.2% 4.8% 4.0% 1.5% 0.7% -1.0% 0.0% 3.2% 3.1% 

CO2 rate 7.6% 0.4% 3.7% 4.2% -4.7% 1.7% -0.9% 5.4% -1.7% 6.4% 6.4% 3.9% 2.6% 

Reboiler T -0.1% 0.3% -0.6% 0.2% 1.0% 0.9% 0.6% 0.1% -1.0% -1.6% -1.4% 0.7% -0.1% 

MAPE 3.0% 2.0% 2.0% 2.4% 3.5% 2.9% 2.1% 2.2% 4.1% 2.7% 3.2% 2.7% 1.2% 
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Figure 5-12.  Normalized heat duty for 8 m PZ calculated from pilot plant results, 

corrected for heat loss.  Solid points = modeling results, Hollow points = pilot plant 

results.  120 °C reboiler. 

The measured heat duties in this campaign ranged from 154 to 181 kJ/mol CO2, 

which showed a decrease from the 2008 campaign with the same solvent.  When 

corrected for heat loss, the measured heat duties for this campaign ranged from 126 to 

148 kJ/mol CO2.  Similar to the previous campaign, there was substantial scatter in the 

heat duty data.  The pilot plant measurements had variability, but the simulations were 

able to distinguish trends in the data.  A decrease in the corrected heat duty was observed 

with increasing rich loading.  It was difficult to determine whether a minimum heat duty 

had been reached.  The plot of the heat duty relationship with the lean loading suggested 

an optimal lean loading between 0.26 and 0.28 for a rich loading of 0.375.  However, the 

optimum was flat and the points also suggested a continuing decrease as lean loading 

increased past 0.29, especially when considering the runs with lower rich loading values.  
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Collecting data points at slightly higher lean loading would confirm that the minimum 

heat duty was reached in the lean loading range from this campaign. 

The expected equivalent work was also calculated.  The calculation used the heat 

duties corrected for heat loss, a pump work calculated from the simulations, and a 

compressor work calculated by the work correlation.  The trends of these values are 

shown in Figure 5-13. 

 

Figure 5-13.  Equivalent work predictions for a simple stripper with 8 m PZ based on 

pilot plant results from Fall 2010.  Heat duty corrected for heat loss, pump work 

calculated by Aspen Plus
®
 simulation, and compressor work calculated by correlation. 

It was shown in Chapter 3 that configurations using 8 m PZ typically reach a 

minimum equivalent work at high lean loading values.  The optimized simple stripper 

model at 150 °C had an optimal lean loading of 0.31 when using a rich loading of 0.40.  

This pilot plant campaign demonstrated that the minimum equivalent work was not 

reached when the lean loading was increased to 0.29; rich loadings of 0.355 and 0.375 

both expressed a downward trend continuing up to the highest tested lean loading of 0.29.  
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The relationship between equivalent work and lean loading was not as flat as corrected 

heat duty because equivalent work accounted for the benefit of lower compressor work at 

higher lean loading and higher stripper pressure. 

The range in predicted total equivalent work (corrected for heat loss) was 

relatively small: 36.9 to 39.1 kJ/mol CO2.  The simulation heat loss was only 13 to 28% 

of the reboiler heat duty.  The equivalent work predictions are shown in Table 5-13.  

These predictions are shown for heat duties both with and without heat loss correction  

Table 5-13.  Equivalent work predictions for simple stripper with 8 m PZ based on 

pilot plant results from Fall 2010.  Pump work calculated by Aspen Plus
®
 

simulations, and compressor work to 150 bar calculated by correlation.  Lean 

loadings predicted by simulations. 

Run Loading (mol/mol) Q Weq Q with heat loss Weq with heat loss 

 
Rich Lean kJ/mol CO2 

1 0.365 0.286 131.1 37.14 164.7 42.63 

2 0.370 0.281 129.7 37.08 167.6 43.31 

3 0.364 0.292 136.0 37.84 167.9 43.02 

5 0.355 0.265 136.9 38.58 183.4 46.31 

6 0.367 0.260 131.9 37.87 181.7 46.06 

7 0.357 0.253 137.7 38.98 172.8 44.78 

8 0.354 0.255 140.5 39.45 164.9 43.50 

9 0.366 0.220 136.0 38.99 174.4 45.18 

11 0.370 0.234 134.4 38.58 168.3 44.02 

12 0.364 0.235 138.9 39.23 160.1 42.63 

13 0.379 0.242 130.6 37.81 155.4 41.77 

These predictions were not as attractive as in Chapter 3.  The absorber did not 

achieve a rich loading of 0.4 as expected in Chapter 3.   This could be a consequence of 

using too little wetted area in the packing of the absorber and was outside the scope of 

this stripper modeling. The absorber used only 20 feet of a packing with a nominal area 

of 250 m
2
/m

3
.  Plaza showed that an intercooled absorber with 15 m of a packing with a 
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nominal area of 205 m
2
/m

3
 could be used to get a fairly constant rich loading of 0.4   

(Figure 4-25). 

In summary, the simulations of this pilot plant campaign with concentrated PZ 

appropriately matched the measured data.  The energy balance issue that existed in 

previous campaigns was not present in these runs because the reboiler was run without 

splitting the lean solvent to recycle to the sump.  This campaign was similar to the 

previous campaigns in that the overhead temperature was consistently overpredicted by 

the simulation, which assumed no heat loss between the top of the column and the 

measurement point.  Additional insulation of the vapor line at the pilot plant could ensure 

that these measurements are more accurate.  Scatter in the process conditions confounded 

the heat duty data, but a minimum heat duty for a rich loading of 0.375 may have 

occurred at a lean loading between 0.26 and 0.28.  When corrected for heat loss, the best 

heat duty of the campaign was 128.5 kJ/mole CO2 with a rich loading of 0.37 and a lean 

loading of 0.29.  This run also represented the case with the smallest predicted equivalent 

work, 36.9 kJ/mole CO2.  Unlike the heat duty, the equivalent work showed a consistent 

downward trend with increasing lean loading.  The minimum equivalent work was not 

reached with lean loading values as high as 0.29.  

 

5.3.3. 8 m PZ Intercooled Absorber and 2-Stage Flash Campaign (January 2011) 

This campaign was performed in January 2011 and it followed the success of the 

8 m PZ campaign in September 2010.  This was the first campaign to use the 2-stage 

flash skid that was designed and constructed on-site.  Stripper simulations demonstrated 

that the 2-stage flash could result in a lower equivalent work for 9 m MEA.  

Unfortunately, the equivalent work of a 2-stage flash using 8 m PZ was calculated to be 
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slightly higher than a simple stripper with the same solvent, but the capital cost and 

practicality of constructing a 2-stage flash for high temperature and pressure operation 

with 8 m PZ would be more feasible than a full stripper column.  This campaign was the 

first pilot scale demonstration of the multi-stage flash technology.  The main goal of this 

campaign was to learn whether each flash vessel could achieve equilibrium, as it was 

modeled in the simulations.  Additionally, it was desired to find out whether the 

configuration posed any operational issues.  14 runs were attempted, but steady-state data 

was extracted for only 8 runs.  These steady-state runs were simulated using the 5deMayo 

model. 

 

5.3.3.1. Measured data from 2-stage flash campaign 

The raw pilot plant measurements for the stripper are shown in Table 5-14.  The 

skid flowsheet and example real-time conditions from Run 1 are shown in Figure 5-14.  

Several measurements from the pilot plant were redundant, and only the more accurate 

measurement was used in each case.  As an example, the temperature of the solvent in 

each flash was measured after the heater (TT520D/TT530C), in the flash vessel 

(TC522/TC524), and in the exiting liquid (TT530/TT535).  The temperature of the liquid 

exiting from each flash was decided to be the most accurate to represent the final flash 

temperature that would be reported in simulations.  Another example of redundant 

measurements was in the overhead vapor.  Three sets of measurements should have 

provided equal estimates of the total overhead vapor flow: the sum of the individual flash 

overheads (FT518 & FT517), the combined overhead vapor stream (FT519), and the sum 

of the CO2 and condensate streams exiting the overhead condenser (FT216 & FT204).  

However, the measurements of mixed component flows before the condenser required the 
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knowledge of the stream compositions to calculate the actual mass flow rate.  These 

compositions were not measured at the pilot plant, so each of these measurements could 

not be used (FT517, FT518, & FT519).  Lastly, the measured condensate rate was not a 

steady-state value because the condensate pump was only run with the accumulator (V-

106) got too full.  Therefore, the only reliable overhead flow measurement was the CO2 

rate (FT216).  The cooling duty of the condenser would have been a valuable 

measurement, but its reliability was uncertain.  The increase in temperature of the cooling 

water was only 1 to 3°F in each run.  With such a low change in temperature, the 

measurements of the supply and return temperatures of the cooling water would have to 

be impossibly accurate to provide a useful estimate of the condenser duty. 
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 Table 5-14.  Pilot plant measurements from January 2011 2-stage flash skid campaign with 8 m PZ campaign. 

Variable Tag Units 1 2 3 4 5 6 10 14 

Rich flow FT200 kg/s 0.844 0.641 1.115 0.989 0.986 1.173 1.293 0.826 

Lean flow FT201 kg/s 0.811 0.625 1.057 0.951 0.961 1.143 1.273 0.813 

PZ conc Lab m 8.76 7.64 7.51 7.62 6.38 6.47 7.28 7.92 

Rich ldg Lab mol/mol 0.351 0.362 0.372 0.375 0.365 0.371 0.377 0.377 

Semirich ldg Lab mol/mol 0.306 0.309 0.310 0.310 0.315 0.328 0.331 0.343 

Lean ldg Lab mol/mol 0.265 0.259 0.250 0.258 0.264 0.279 0.299 0.289 

Rich temp TT200 C 40.1 37.3 35.8 32.2 38.8 40.8 44.3 39.1 

Rich post-LP CX T TT520A C 73.9 94.6 88.5 85.2 81.3 86.5 88.5 92.7 

Rich pre-HP CX T TT506 C 71.5 90.8 85.6 82.0 77.9 83.3 85.5 89.4 

Rich hot T TT520C C 123.0 130.7 129.7 127.7 125.0 122.2 117.9 125.5 

LP Flash liq. T TT521A C 145.2 144.9 145.2 145.3 144.9 144.8 137.8 141.9 

Lean post-HP CX T TT521B C 92.5 104.9 111.0 100.3 110.6 115.1 101.4 103.9 

Lean pre-LP CX T TT215 C 88.5 101.7 107.2 96.4 108.7 113.5 100.4 102.3 

Lean temp TT212 C 56.4 43.4 57.5 45.2 60.3 62.4 43.4 39.1 

HP Heater T TT520D C 146.0 144.8 144.2 146.0 145.8 145.8 138.5 142.6 

HP Heater Q FC525 kW 112.5 74.4 150.5 138.4 165.9 167.3 135.4 78.8 

HP Flash P PC525 kPa 877 876 835 877 896 1060 873 1316 

HP Flash liq. T TT530 C 146.4 145.0 144.6 146.7 146.5 145.9 140.7 145.0 

LP Heater T TT530C C 146.0 145.9 146.0 146.0 145.9 145.9 138.5 142.6 

LP Heater Q FC526 kW 62.0 58.9 121.0 72.5 69.8 66.4 36.6 51.3 

LP Flash P PC528 kPa 585 585 546 585 598 701 584 660 

LP Flash liq. T TT521A C 145.2 144.9 145.2 145.3 144.9 144.8 137.8 141.9 

HP Overhead T TT517 C 138.4 135.8 137.9 139.7 138.7 137.5 132.3 133.4 

HP Overhead flow FT517 kg/s 0.028 0.023 0.039 0.046 0.032 0.022 0.028 0.010 
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Variable Tag Units 1 2 3 4 5 6 10 14 

LP Overhead T TT518 C 141.6 141.4 141.6 141.7 141.4 141.3 133.9 138.0 

LP Overhead flow FT518 kg/s 0.028 0.024 0.055 0.032 0.030 0.026 0.021 0.024 

Combined Flow FT519 kg/s 0.068 0.058 0.097 0.085 0.070 0.063 0.059 0.051 

Stripped CO2 FT216 kg/s 0.032 0.027 0.048 0.044 0.034 0.032 0.031 0.026 

Condenser T TT225 C 10.8 9.7 13.8 11.0 10.4 11.4 9.4 9.6 

Condenser flow FT204 kg/s 0.015 0.011 0.028 0.022 0.016 0.011 0.007 0.000 

Heat loss - kW 24.2 22.6 23.2 25.3 26.3 23.9 23.3 22.8 
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Figure 5-14.  Screenshot from Run 1 of pilot plant operation with 2-stage flash skid.  



 194 

The pre-existing, low-pressure exchanger was not modeled in the stripper 

simulations.  A bypass valve existed which rerouted lean solvent around the exchanger to 

prevent flashing.  The bypass valve was not always used, and the amount of bypass was 

never recorded.  Although the simulations could have been used to calculate the bypass 

fraction, this information would not have been insightful, and it also could have 

confounded the results.  Therefore, the scope of the simulations for the 2-stage flash 

included the high-pressure heat exchanger, both flash vessels, and the condenser. 

Several redundant measurements were taken at the pilot plant.  These 

measurements included the individual overhead flow rates from each flash vessel, the 

combined gas flow rate from these two streams, and the CO2 and condensate streams 

exiting the condenser.  Each of these three sets should have individually summed to the 

same value since the process was at steady-state.  However, each of the gas rates was 

measured with an orifice meter, which required the exact gas composition to correctly 

report the mass flow rate.  Unfortunately, the gas compositions were not measured at the 

pilot plant, so the only reliable gas flow rate measurement was the CO2 leaving the 

condenser since the stream was nearly pure CO2.  The condensate rate was also unreliable 

because the liquid accumulator was not run in steady-state; instead, pump P-103 was run 

when the tank needed to be emptied.  Due to the number of gas side measurements that 

were not usable, the CO2 purities of the individual overhead streams could not be 

determined.  However, the CO2 balance was still analyzed. 

Once again, the data-fit package was not used because it did not provide results 

from fully converged runs.  Instead, the required inputs for the simulation were taken 

directly from pilot plant measurements, and the deviations in the result variables were 

analyzed.  Even though the stripper was no longer a simple column, the pilot plant 
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measurements still provided an estimate of overall heat loss.  In the simulations, the heat 

loss estimate from the pilot plant was split evenly between the two flash vessels. 

 

5.3.3.2. Approach the equilibrium of flash vessels 

One of the important analyses from this campaign was comparing the actual 

conditions of the flash vessels at the pilot plant against equilibrium calculations by the 

solvent model.  This comparison checked whether the flash vessels had enough residence 

time to achieve a true equilibrium flash as it was previously simulated.  Figure 5-15 

shows the vessel pressure for various loadings of both the high-pressure and low-pressure 

vessels.  All of the pilot plant runs kept the flash temperatures near 145 °C, but there was 

slight fluctuation.  The pilot plant measured pressures were adjusted to the expected 

temperature at 145 °C by equation 5-5: 

      
           

  
      
     

      
 

 5-5 

where superscripts "T" and "145°C" represented the temperature of the reported pressure, 

either the measured temperature of the flash in the run or 145 °C, respectively.  The 

subscripts "meas" and "model" indicated pressures measured at the pilot plant and 

predicted by the model, respectively.  This equation changed the vessel pressure 

measured at the pilot plant according to the ratio of the pressure predicted by the model at 

145 °C to the pressure predicted at the actual run temperature.  The adjustments were 

mostly small.  When compared against the pressure prediction of the solvent model at the 

lean loadings reported at the pilot plant, it was apparent that equilibrium was achieved in 

the flash vessels at low loading.  However, the measured pressures were generally higher 

at high loading.  At the flash temperature of 145 °C, the measured pressure would have 
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been lower than the predicted pressure if the solvent did not reach equilibrium since 

water vapor would make up a greater proportion of the vapor than the equilibrium 

composition at that temperature and loading.  A similar deviation between measurements 

and model predictions was not observed in the laboratory scale data (Figure 2-14).  

Therefore, these measured pressures that were higher than the model predictions were 

likely to be due to measurement error.  The errors were probably mostly in the loading 

measurements because the steady-state pressure measurements were reliable. 

 

Figure 5-15.  Vessel pressures from raw measurements and corrected 145 °C. 

Simulations of the full stripper flowsheet were used to evaluate the performance 

of the pilot plant skid compared to simulation predictions.  Figure 5-16 shows a parity 

plot of the loading calculated in the simulation compared to the loading measured at the 

pilot plant.  The semi-rich and lean loadings were both included in this plot.  As shown 

by the dark dotted line, the simulation predicted loadings that were mostly within an 
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absolute difference of 0.01 of the loadings measured at the pilot plant; the largest 

difference was nearly 0.02 (7.5%). 

 

Figure 5-16.  Agreement of pilot plant loading measurements with predictions by 

5deMayo model under equilibrium assumptions.  Solid dotted line = ± 0.01, Light dotted 

line = ± 0.02. 

 

5.3.3.3. 2-stage flash flowsheet simulations 

This campaign was like the Fall 2010 PZ simple stripper campaign in that there 

was not a correlation between the deviations of overhead CO2 rate and Δldg.  However, 

the deviations in these two process conditions were two of the larger errors.  Ideally, an 

energy balance on the whole system could be performed, but this would require an 

accurate measurement of the condenser duty.  Using each of the heat duties and stream 

enthalpies estimated by the solvent model, an overall heat loss could be calculated to 

compare to the pilot plant estimate.  As shown in Figure 5-17, the percent deviations in 
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overhead CO2 and Δldg were smaller than in the previous campaigns, and there was no 

correlation between the two deviations.  Therefore, the heat loss predicted by the pilot 

plant software was not manipulated in the simulations. 

 

Figure 5-17.  Simulation results without heat loss manipulation for 2011 2-stage flash 

campaign with concentrated PZ.  Percent deviations of overhead CO2 rate and Δldg were 

correlated. 

The percent deviation in overhead CO2 rate was less significant and more 

scattered than in the Fall 2008 PZ and Fall 2010 MEA campaigns, so heat loss was not 

used as a variable to match performance.  Table 5-15 shows the percent deviation in the 

result variables for the simulations.  The MAPE was calculated for each run as well as for 

each variable.  The overall MAPE was only 2.9%.  The deviations in the individual 

overhead gas flows were ignored since they did not account for the actual composition of 

CO2 in their respective streams.  The highest absolute errors were observed in the HP 

overhead temperature (5.7%), the LP liquid temperature (5.0%), the total overhead CO2 

rate (4.7%), and the lean loading (3.3%).  Although the two flash vessels were generally 
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at the same temperature, the HP overhead gas generally had a greater temperature drop.  

This may have been due to its lower water content compared to the LP vessel, which 

allowed a greater drop in temperature while condensing an equivalent amount of water as 

in the LP overhead.
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Table 5-15.  Deviation in result variables from pilot plant measurements of January 2011 2-stage flash skid campaign 

with 8 m PZ campaign. 

Results 1 2 3 4 5 6 10 14 MAPE Mean 

Lean flow -1.8% -4.6% -2.5% -3.3% -3.0% -1.4% -2.1% -3.4% 2.8% -2.8% 

Semirich ldg 2.4% -0.6% 3.8% -1.0% 0.8% 3.9% 1.6% 2.6% 2.1% 1.7% 

Lean ldg -2.4% -7.5% -3.7% -4.4% -4.4% 1.3% -0.1% -2.3% 3.3% -2.9% 

Rich hot T -1.2% -0.5% -10.0% -2.7% -12.7% -9.4% 2.0% 2.0% 5.0% -4.1% 

LP Flash liq. T 1.1% 1.7% 0.0% 0.8% -0.5% -0.6% 0.0% 2.0% 0.9% 0.5% 

HP Heater T 2.1% 3.0% -0.3% 1.8% -0.3% -1.2% 2.1% 4.6% 1.9% 1.5% 

HP Flash liq. T 0.5% 1.3% -1.5% 0.2% -2.0% -2.3% -0.5% 1.2% 1.2% -0.4% 

LP Heater T 1.2% 1.8% -0.1% 0.9% -0.5% -0.6% 0.2% 2.4% 1.0% 0.6% 

HP Overhead T 6.3% 8.2% 3.2% 5.2% 3.5% 3.7% 5.8% 10.0% 5.7% 5.7% 

LP Overhead T 3.6% 4.2% 2.6% 3.3% 1.9% 1.8% 2.9% 4.8% 3.1% 3.1% 

Stripped CO2 -7.8% 2.0% 5.8% 1.1% 2.4% 1.8% 10.2% 6.1% 4.7% 2.7% 

MAPE 2.7% 3.2% 3.0% 2.3% 2.9% 2.6% 2.5% 3.8% 2.9% 0.5% 

HP Overhead flow -43.5% -26.6% -34.4% -30.9% -38.8% -39.5% -17.9% -13.5% 30.6% -30.6% 

LP Overhead flow 15.1% 18.5% 7.9% 17.2% 10.9% 25.7% 13.7% 28.5% 17.2% 17.2% 
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Since only eight runs were included in this analysis, there was not a clear 

description of the behavior of the heat duty as a function of lean loading.  The three runs 

with low rich loadings had relatively constant lean loadings.  Four of the high rich 

loading runs demonstrated that an optimum lean loading was between 0.26 and 0.29.  

These results were observed in both of the pilot plant measurements and simulation 

calculations (Figure 5-18). 

 

Figure 5-18.  Normalized heat duty of 2-stage flash with 8 m PZ, corrected for heat loss.  

Solid points = simulation calculations, Hollow points = pilot plant calculations. 

The heat duties in this campaign ranged from 206.4 to 310.8 kJ/mol CO2.  The 

heat duties were higher than the values for the simple stripper campaigns, which was 

expected from the simulation results in Chapter 3.  However, even the the heat duties 

corrected for heat loss were significantly higher than the optimum heat duty for a 2-stage 

flash at 150 °C in Chapter 3.  The minimum heat duty was 119 kJ/mole CO2, but the 

lowest corrected heat duty in this campaign was 170 kJ/mole CO2.  Several factors led to 

200

240

280

320

0.23 0.25 0.27 0.29 0.31

H
ea

t 
D

u
ty

 (
k

J
 /

 m
o
l 

C
O

2
)

Lean Loading (mol CO2 / mol alk)

0.355 rich loading

0.375 rich loading



 202 

the inefficient operation for this campaign.  The equivalent work values were also 

exceptionally high.  The heat duties and equivalent work values both with and without 

heat loss correction are shown in Table 5-16.  The heat duty was the dominant 

contribution to the equivalent work, so the trend of the equivalent work with relation to 

lean loading was nearly identical to the heat duty trend.   

Table 5-16.  Equivalent work predictions for 2-stage flash with 8 m PZ based on 

pilot plant results from Winter 2011.  Pump work calculated by Aspen Plus
®
 

simulations, and compressor work calculated by correlation.  Lean loadings 

predicted by simulations. 

Run Loading (mol/mol) Q Weq Q with heat loss Weq with heat loss 

 
Rich Lean kJ/mol 

1 0.351 0.258 225.8 55.02 262.0 62.19 

2 0.362 0.240 178.2 45.80 214.5 52.98 

3 0.372 0.241 217.0 53.34 237.3 57.27 

4 0.375 0.247 184.7 47.69 209.8 52.65 

5 0.365 0.252 261.9 62.08 294.8 68.44 

6 0.371 0.282 279.1 65.24 310.8 71.36 

10 0.377 0.298 188.7 46.72 218.2 52.23 

14 0.377 0.283 170.3 45.45 206.4 52.52 

The calculated total equivalent work without heat loss correction varied from 52.2 

to 71.4 kJ/mol CO2, with an average of 58.7 kJ/mol CO2.  With correction for heat loss, 

the total equivalent work ranged from 45.5 to 65.2 kJ/mole CO2, with an average of 52.7 

kJ/mole CO2.  This represented an average increase in the equivalent work due to heat 

loss of 6.0 kJ/mole CO2.  A reason that the equivalent work was so high was that the 

cross exchanger network could not achieve the same hot side temperature approach that 

was observed in previous campaigns.  The average hot side approach was 18.5 °C, 

compared to 6.1 °C in the previous PZ simple stripper campaign.  Therefore, the sensible 

heat requirement in this demonstration of the 2-stage flash technology was excessive, and 

the total equivalent work prediction was unreasonably high.  Another reason that this 
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campaign ran with low efficiency was that the vapor production was not evenly split 

between flash vessels.  Table 5-17 shows the simulation estimates of overhead vapor 

rates for the two flash vessels.  The LP vessel always produced more vapor than the HP 

vessel.  The pressure ratio between vessels was generally 1.5, except for Run 14 where 

the pressure ratio was 2.  This was a consequence of the low rich loading.  In future 

campaigns, more absorber packing area will be provided to achieve a greater rich 

loading.  This should balance the molar flow rates of the vapor streams exiting two flash 

vessels and make the separation more reversible and efficient. 

Table 5-17.  Individual overhead vapor rates of flash vessels and ratio of molar 

vapor flow rates calculated by simulations 

Run HP vapor rate LP vapor rate nHP/nLP 

 kmol/s kmol/s  

1 0.49 1.16 0.43 

2 0.52 1.04 0.50 

3 0.76 2.20 0.35 

4 0.99 1.37 0.72 

5 0.59 1.19 0.49 

6 0.38 1.06 0.36 

10 0.67 0.79 0.85 

14 0.25 1.05 0.24 

In summary, the results of the high temperature 2-stage flash campaign with 8 m 

PZ demonstrated an excellent approach to equilibrium for both flash tanks in all of the 

runs.  The simulation of the skid gave good agreement with the pilot plant measurements; 

the MAPE for the individual conditions ranged from 0.9 to 5.7%.  The largest deviations 

were in the overhead temperatures, the overhead CO2 rate, the lean loading, and the hot 

side temperature of the rich solvent.  The higher prediction of overhead temperatures was 

simply explained through heat loss.  A consistently lower lean flow rate in the simulation 

calculations was likely to be the main reason that the rich solvent reached a lower 
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temperature in the simulations than in the pilot plant.  Although the overhead CO2 rate 

and lean loading had high deviations on average, they were not linked to each other as in 

previous campaigns.  The overall performance of these 2-stage flash runs were poor, with 

an average equivalent work of 58.7 kJ/mol CO2.  The high equivalent work in relation to 

previous campaigns was due to the poor cross exchanger performance which led to a high 

sensible heat requirement. 

 

5.4. MEASURED AND SIMULATED ENERGY BALANCE DIFFERENCES 

5.4.1. Main heat exchanger performance 

The heat loss discrepancy was evaluated in more depth and all of the constituents 

of the energy balance were scrutinized.  The energy balance, as calculated when running 

the pilot plant, included the stripping column and condenser, but the balance did not 

include the main heat exchanger; the derived heat loss correlation for estimating a 

measured heat loss did not include expected heat loss from the heat exchanger.  However, 

this heat exchanger was not insulated, and loss of heat from this process unit was 

expected.  When experimental results were compared to the simulation of the stripper, 

additional heat loss from the heat exchanger would be indicated by a lower hot 

temperature of the rich solvent.  The hot lean, cold lean, and cold rich temperatures were 

specified in the simulation based on process measurements, so an absence of heat 

exchanger heat loss in the simulation would boost the temperature of the rich solvent on 

the hot side as well as the hot side approach.  Table 5-18 summarizes the hot side 

temperature approaches from the measured pilot plant data and simulation values for all 

four campaigns.  For the most part, the variability in the approach temperatures was low.  

The difference in heat flow to change the rich solvent temperature by this difference was 
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also calculated.  It was generally low, except in the case of the 2-stage flash campaign.  

This was the only campaign where considerable heat loss in the heat exchanger was 

apparent.  The simulation hot side temperature approach was higher than the measured 

hot side approach by 0.4 to 15.1 °C, with an average difference of 6 °C.  While a possible 

explanation for this difference could have been a pressure specification in the simulation 

that was too low and allowed extra flashing of the solvent, this was not the case.  The 

pressure of the rich stream in the simulation was set to match the pressure of the first 

flash vessel.  Even without extra pressurization, no flashing of the rich solvent was 

observed in the simulations.  The heat exchanger only brought the solvent to a 

temperature of 110 to 130 °C, so the high pressure of the first vessel was enough to 

prevent flashing in the heat exchanger.  Since the higher hot side approach in the 

simulation was not a result of rich solvent flashing in the simulations, the energy balance 

of this high pressure heat exchanger was analyzed based on measured and simulated data.  

Table 5-19 shows the calculation of the energy balance for the high-pressure exchanger 

based on the measured temperatures.  This method assumed no flashing of the rich 

solvent.  
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 Table 5-18.  Measurement and simulation values of hot side approach of main cross exchanger for all pilot plant 

campaigns.  Difference in heat exchanged for different approach temperature. 

Run 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Average 

Fall 2010 MEA simple stripper 

Simulation Tapp,h °C 3.4 3.8 5.5 6.0 3.3 3.1 4.3 4.4 3.7 4.8 9.1 8.2 
  

5.0 

Measured Tapp,h °C 4.9 5.1 5.8 5.8 5.0 4.9 5.9 5.8 6.9 5.5 7.3 7.3 
  

5.9 

Q for Tapp,h difference kW 6.0 5.4 0.7 0.5 7.1 7.1 5.5 5.0 13.0 2.5 3.8 1.9 
  

4.9 

Fall 2008 PZ simple stripper 

Simulation Tapp,h °C 4.0 3.5 4.8 2.2 4.0 3.9 5.1 5.1 5.6 4.2 4.5 5.1 5.7 6.1 4.6 

Measured Tapp,h °C 4.5 4.4 5.0 3.8 4.9 4.7 6.2 6.5 6.0 5.3 5.4 5.6 6.0 6.2 5.3 

Q for Tapp,h difference kW 1.8 3.5 1.0 6.1 2.5 3.4 4.3 4.5 1.8 4.2 3.9 2.2 1.1 0.2 2.9 

Fall 2010 PZ simple stripper 

Simulation Tapp,h °C 5.4 6.0 6.2 
 

5.7 6.6 6.7 7.0 7.6 
 

7.6 7.5 7.6 
 

6.7 

Measured Tapp,h °C 5.5 6.3 6.2 
 

5.7 5.9 6.0 6.3 6.1 
 

6.4 6.6 6.6 
 

6.1 

Q for Tapp,h difference kW 0.8 0.7 0.1 
 

0.2 1.7 2.5 3.7 2.9 
 

3.6 4.7 4.1 
 

2.3 

Winter 2011 PZ 2-Stage Flash 

Simulation Tapp,h °C 25.1 17.4 28.5 22.2 35.0 33.2 
   

17.6 
   

16.7 24.5 

Measured Tapp,h °C 22.2 14.2 15.5 17.6 19.9 22.6 
   

20.0 
   

16.4 18.5 

Q for Tapp,h difference kW 8.5 6.9 49.1 15.4 50.5 42.1 
   

10.4 
   

1.1 23.0 
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 In the 2-stage flash campaign, the average rich and lean heat capacities in the 

heat exchanger were calculated by a correlation developed in-house (Rochelle et al., 

2009).  The correlation was as follows: 

                                             5-6 

where 

                                                         5-7 

                              5-8 

                                 5-9 

 ωH2O, ωPZ, and ωCO2 were the weight fractions of water, PZ, and CO2 in the 

solution, respectively.  The average heat capacity for each stream was calculated using 

the amine concentration, loading, and temperatures in and out of the heat exchanger.  The 

expected heat exchange to/from each stream i could then be calculated: 

                         5-10 

A rich new outlet temperature was calculated that made the heat absorbed by the 

rich solution equal to the heat delivered by the lean solution.  The results of these 

calculations for all 8 runs are shown in Table 5-19.  The new rich outlet temperature 

based on these calculations was always closer to the simulation value than the reported 

measurement.  Since the measured heat exchanger performance of the previous PZ 

campaign with a simple stripper agreed with the simulation values, it can be assumed that 

the thermodynamic model for PZ and the laboratory heat capacity measurements should 

agree with pilot scale results.  Therefore, it was most likely that the measurement of the 

rich outlet temperature from this high-pressure exchanger in this campaign was 

consistently too high. 
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Table 5-19.  Energy balance of high-pressure heat exchanger from 2-stage flash 

campaign with PZ.  Rich outlet temperatures estimated by making rich Q 

exchanged equal to lean value based on laboratory heat capacity measurements. 

Run 

 

1 2 3 4 5 6 10 14 

Cold in T C 71.5 90.8 85.6 82.0 77.9 83.3 85.5 89.4 

Cold out T C 123.0 130.7 129.7 127.7 125.0 122.2 117.9 125.5 

Hot in T C 145.2 144.9 145.2 145.3 144.9 144.8 137.8 141.9 

Hot out T C 92.5 104.9 111.0 100.3 110.6 115.1 101.4 103.9 

Cp,rich,avg kJ/kg-K 3.55 3.46 3.43 3.44 3.23 3.25 3.38 3.51 

Cp,lean,avg kJ/kg-K 3.59 3.43 3.43 3.43 3.26 3.31 3.41 3.52 

Q exchanged (rich) kW 154.4 88.5 169.0 155.6 150.0 148.1 141.4 104.7 

Q exchanged (lean) kW 153.4 85.8 124.0 146.7 107.7 112.6 158.1 108.5 

New cold out T C 122.6 129.5 117.9 125.1 111.7 112.9 121.7 126.8 

Cold out T (sim) C 121.6 130.0 116.7 124.3 109.1 110.7 120.2 128.0 

Three runs showed especially significant changes from the measured cold (lean) 

outlet temperature to the new calculated value: runs 3, 5, and 6. The measured cold outlet 

temperatures were not higher than in the other runs, but the measured hot outlet 

temperatures were hotter: the measurements for runs 3, 5, and 6 were 110-115 °C, 

whereas the other runs were 92-100 °C.  This higher cold lean temperature resulted in 

less heat exchanged, so the hot rich temperature was also lower.  Since these calculations 

resulted in new rich outlet temperatures close to the simulation predictions, it was 

verified that the simulation was accurately using the heat capacity according to the 

laboratory measurements. 

 

5.4.2. Differences between Measured and Simulated Condenser Duties 

 The measured and simulation values of the condenser duty were correlated for 

the 2010 PZ simple stripper campaign and the 2011 PZ 2-stage flash campaign.  The 

other two campaigns were ignored for this analysis since there energy balances were 

concluded to be inaccurate.  These relationships for the two selected campaigns are 
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shown in Figure 5-19.  Each of these data sets was correlated, and the intercept is 

recorded in Table 5-20.  These intercepts represented the expected condenser duty by the 

simulation for the cases where no cooling would be required in the experimental 

operation.  These values indicated the magnitude of the apparent heat loss in the overhead 

at the pilot plant.  This heat flow was coupled with the condenser duty of the simulations, 

but it was lumped in with the measured heat loss of the pilot plant.  The most overhead 

heat loss was observed in the 2-stage flash campaign, with an intercept of 25.8 kW.  This 

campaign was proposed to have the highest condensation in the overhead piping for two 

reasons.  First, the temperatures of the vapor streams were higher than in other 

campaigns.  Second, the overhead vapor had to travel all the way from the 2-stage flash 

skid on the ground to the condenser at the top of the structure.  In the other campaigns 

with the simple stripper configuration, the overhead exited the column at the top and 

traveled the short distance directly to the condenser.  Compared to the new 2-stage flash 

skid, the stripper column had more exposed metal at the top and in flanges in the 

overhead pipe, but the data suggested that the 2-stage flash still suffered more heat loss in 

the overhead. 



 210 

 

Figure 5-19.  Comparison of simulation and measured values of condenser duty. 

Table 5-20.  Condenser duty intercepts based on simulation and measured 

condenser duty parity plot 

Campaign Condenser duty intercept (kW) 

2010 PZ simple stripper 18.8 

2011 PZ 2-stage flash 25.8 

 

 

5.5. CONCLUSIONS 

1. The 5deMayo model for concentrated PZ accurately represented the solvent in 

two pilot plant campaigns.  The VLE was predicted well, and properties associated with 

the energy balance gave results with close agreement with the measured conditions. 

2. The Hilliard MEA model did not predict performance of a simple stripper pilot 

plant campaign well.  The CO2 partial pressure was overpredicted, and the heat of 

absorption estimate was too high.  Drastic increases in the measured heat loss were 
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required in the simulations in order to match the material balance while closing the 

simulation energy balance. 

3. Since the Hilliard MEA model overpredicted performance at the pilot plant, 

estimates of the energy requirement using this solvent in earlier chapters are also likely to 

be overpredicted.  Therefore, the performance of 8 m PZ compared to 9 m MEA was an 

even better improvement then what was predicted. 

4. The measured data from the 2010 simple stripper campaigns with MEA and PZ 

both had minimum reboiler duties of 154 kJ/mole CO2 

5. Data-fit within Aspen Plus
®
 would be capable of manipulating all simulation 

inputs to provide the best fit to pilot plant data by the least squares method, but the data-

fit package did not provide results representing fully converged runs.  Therefore, the pilot 

plant runs were simulated using plant measurements for simulation inputs, and the 

deviations in the result variables were analyzed. 

6. The overall energy balance did not fit for the 2008 PZ and 2010 MEA campaigns.  

This lack of closure was apparent through a correlation between the percent deviations of 

stripped CO2 and Δldg. 

7. The energy balance issue was addressed by manipulating the heat loss that was 

predicted at the pilot plant.  This heat loss of most runs was increased by up to 125%, but 

two extreme cases required increases of 148% and 179%. 

8. The overall MAPE for each campaign was between 2.7 and 4.1%.  The percent 

deviations in the heat losses were not included in these values. 

9. The conditions of the low-pressure flash in the 2-stage flash campaign 

demonstrated equilibrium conditions based on estimates by the solvent model.  The high-

pressure flash did not match equilibrium conditions as well as the low-pressure flash, 

which could be due to inaccurate measurements. 
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10. Simulations of the 2-stage flash runs fit the pilot plant data within small error by 

splitting the predicted heat duty evenly between the two flash vessels. 

11. An area at the pilot plant that was not adequately measured was the condenser.  

The condenser should be run with lower cooling water flow rates to increase its ΔT, and 

the condensation be managed in a way such that its steady-state flow can be measured.  

Improving these measurements would provide insight to the overall energy balance as 

well as the overhead vapor composition, respectively.  

12. The performance of the pilot plant runs was worse than the respective optimized 

cases in Chapter 3 due to heat loss, higher heat exchanger approach temperatures, lower 

rich loading, and lower lean loadings. 

13. Heat loss in the heat exchanger was located in the high temperature 2-stage flash 

campaign with 8 m PZ in 2011.  The hot side temperature approach calculated by the 

simulation was consistently higher than the measured value. 

14. The measured and simulated energy balances of the 2008 PZ simple stripper 

campaign did not match because an alternate flow pattern around the reboiler was used.  

The energy balances in the simulations had to be adjusted by manipulating the heat loss 

in the column. 

15. The measured and simulated energy balances of the 2010 MEA simple stripper 

campaign did not match because the VLE predictions were not accurate enough for 

MEA.  The PCO2 and heat of absorption predictions were both too high, and these resulted 

in better performance in the stripper simulations than what was observed at the pilot 

plant.  The energy balance was adjusted by manipulating the heat loss to match the CO2 

removal rate. 

16. The measured condenser duties were consistently lower than the simulation 

values.  This result was likely due to heat loss and condensation in the overhead pipe.  
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Since condensation occurred before the condenser, the required condensing duty was 

lower than what was predicted by the simulations.  The high temperature 2-stage flash 

campaign had the highest average heat loss in the pipe, 25.8 kW. 
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Chapter 6: Conclusions and Recommendations 

 

 

 

This chapter summarizes the findings of this work and collates the conclusions.  

The conclusions are categorized by the general research areas: stripper complexity, novel 

stripper configurations, and pilot plant studies.  Recommendations for future work are 

also presented. 

 

6.1. CONCLUSIONS 

6.1.1. Stripper Complexity 

Interheating with the stripper column requires 4.8 to 7.8% less equivalent work 

than a simple stripper.  An interheated stripper with 8 m PZ at 150 °C requires 30.9 

kJ/mole CO2.   

Greater stripper complexity generally results in better energy efficiency due to a 

closer approach to a reversible process.  A single increase in complexity does not always 

provide the same reduction in energy consumption.  Increasing the number of pressure 

stages of a multi-stage flash from 1 to 2 with 9 m MEA decreases the equivalent work by 

4.2%.  There is a reduced benefit of 0.5% when the number of pressure stages in the 

multi-stage flash was increased from 3 to 4 with 9 m MEA.   

Evaluating the performance with equivalent work instead of heat duty is 

important when considering different configurations, solvents, and reboiler temperatures 

because it accounts for the higher value of steam at high temperature as well as the pump 

and compressor work effects when the stripper pressure changes.  As an example, 9 m 
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MEA with reboiler temperatures of 100 °C and 120 °C using a 2-stage flash and a rich 

loading of 0.5 is considered.  The optimal lean loadings based on minimum heat duty for 

the two temperatures are 0.41 and 0.37, respectively.  The optimal lean loadings based on 

the equivalent work that these two temperatures are 0.425 and 0.385, respectively. 

8 m PZ requires up to 11% less equivalent work than 9 m MEA.  The simple 

stripper is the configuration that benefits the most with PZ; the simple stripper requires 

33.1 kJ/mol CO2 with 8 m PZ, which is 11% less than the energy requirement with 9 m 

MEA.  Packed configurations improve by 9 to 11% with the solvent change, whereas 

multi-stage flash configurations are only 3 to 4% better with PZ.     

Reducing the rich loading with 9 m MEA from 0.50 to a more conservative value 

of 0.48 reduces the efficiency of each configuration by 5 to 7%.  The configuration least 

affected by the loading change is the interheated column; the equivalent work decreases 

from 34.2 to 32.5 kJ/mole CO2 when the rich loading decreases from 0.5 to 0.48. 

With 8 m PZ, increasing the stripper temperature from 120 °C to 150 °C reduces 

the work requirement by 1 to 3% at the optimal lean loadings, depending on the 

configuration.   

Later work with validating pilot plant campaigns revealed that the performance of 

9 m MEA was overestimated with the Hilliard thermodynamic model.  The conclusions 

of the trends with this solvent are valid, but the actual benefit of 8 m PZ over 9 m MEA 

will be greater than reported.   

When switching from a simple stripper to 2-stage flash configuration, the 

equivalent work of 9 m MEA decreases by 1.1%, but the energy requirement is 

heightened by 3% with this switch of configurations when using 8 m PZ.  This opposite 

behavior of the solvents demonstrates that MEA and PZ have different properties and 

strengths; their relative benefit with each type of complexity differs.  There is a 
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substantial benefit in compression work for MEA that outweighs the increase in heat 

work.  In contrast, the 2-stage flash configuration with PZ worsens the equivalent work 

compared to the simple stripper because the lower heat of absorption yields a higher 

stripping steam content in the overhead vapor compared to MEA, so its increase in heat 

work is greater than its benefit in compression work. 

 

6.1.2. Novel Stripper Configurations 

Cold rich bypass reduces equivalent work for the 2-stage flash with 8 m PZ by 

6.6% to 34.0 kJ/mol CO2.  The total volatilized PZ decreases by 63% with the inclusion 

of bypass.  Changing the pressure ratio from 2 to 1.5 balances the vapor production rates 

of the flash vessels, so bypassing cold rich solvent to both flash vessels with a pressure 

ratio of 1.5 dropped the equivalent work to 30.7 kJ/mol CO2.  PZ and the 2-stage flash are 

the solvent and configuration that benefit most from rich bypass due to their elevated 

water content in the overhead vapor.  Although the interheated column is the most 

efficient optimized configuration, it only experiences minor improvement with bypass 

because the overhead vapor is already cooled. 

When using an advanced 2-stage flash configuration (2T2PFlash) with 8 m PZ 

and geothermal brine for heating, the minimum work requirement with 150 °C brine is 

35.5 kJ/mole CO2.  The required heat rate for a 60 MWe coal-fired power plant is 40.8 

MW.  The modified Fluor configuration with 9 m MEA has a total energy requirement of 

36.4 kJ/mol CO2 and a heat rate of 38.6 MW for a 60 MWe coal-fired power plant.  The 

2T2PFlash with PZ has a lower work requirement than the Fluor configuration because 

its cross exchangers are able to take better advantage of the high-temperature brine 

compared to the reboiler in the Fluor configuration. 
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The predictions with the isolated stripper simulations from this work match well 

with absorber simulation results.  Integrating the stripper section with an intercooled 

absorber has little effect on the prediction of the energy requirement with 8 m PZ; the 

rich loading has only slight variation with different values of lean loading when 

intercooling is used.  Using an intercooled absorber with 8 m PZ and 15 m of Mellapak 

2X packing, the rich solvent that is provided to the stripper maintains a loading of 0.4 

within a variation of 0.005. 

An increase in the turbine efficiency term used in the heat work expression from 

75 to 96% is required for the calculation to agree with steam cycle model predictions.  

With this modification, the heat work calculation closely follows the energy penalty 

prediction from the steam cycle model with reboiler temperatures from 100 to 150 °C.   

 

6.1.3. Pilot Plant Modeling 

The pilot plant campaigns in 2010 and 2011 using 8 m PZ were accurately 

simulated with the 5deMayo thermodynamic model.  The Fall 2010 campaign used a 

simple stripper, and the Winter 2011 campaign used a 2-stage flash.  The average 

absolute errors of the simulation results compared to the measurements for these 

campaigns were 2.7 and 2.5%, respectively.   

The energy balance of the 2008 simple stripper campaign with 8 m PZ does not 

close in the simulations because the system used an alternative reboiler flow scheme that 

is not represented in the simulation.  The lack of closure is apparent through a correlation 

between the percent deviations of stripped CO2 and Δldg.  The energy balance issue is 

addressed in this campaign by manipulating the measured heat loss.  This heat loss of 
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most runs is increased by up to 125%, but two extreme cases required increases of 148% 

and 179%.   

The energy performance of the 2-stage flash campaign was significantly poorer 

than the predictions of the previously optimized results.  The minimum normalized heat 

duty from the campaign was 206 kJ/mol CO2, compared to a predicted minimum heat 

duty of 119 kJ/mol CO2.  The increase in heat duty was due primarily to poor cross 

exchanger performance. 

The equilibrium flash conditions in the 2-stage flash campaign were matched 

within small deviation.  The temperatures and compositions of the low-pressure flash in 

the 2-stage flash campaign demonstrated equilibrium conditions based on estimates by 

the solvent model.  Simulations of the 2-stage flash runs fit the pilot plant data within 

small error by splitting the predicted heat duty evenly between the two flash vessels.   

The simulation of 2010 simple stripper campaign with 9 m MEA does not match 

the pilot plant measurements because the Hilliard solvent model overpredicts the CO2 

partial pressure as well as the heat of absorption.  Manipulating the measured heat loss 

forces the energy balance to match while simultaneously fitting the CO2 removal rate.  

Excluding the heat loss, the MAPE is 4.1%. 

The measured condenser duty at the pilot plant does not accurately reflect the 

actual required duty because heat loss occurs in the overhead, condensing some water 

vapor before it reaches the condenser.  Therefore, the measured condenser duty cannot be 

used to calculate the condensate rate.  A composition meter in the overhead or a steady-

state condensate rate meter need to be installed in order to conclude on the overhead 

composition and, therefore, the approach to equilibrium at the top of the column.   
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6.3. RECOMMENDATIONS 

Thermodynamic Models 

1. Improve the Hilliard thermodynamic model to accurately represent the 9 m MEA 

solvent.  At an amine concentration of 9 m, the partial pressure of CO2 was over 

predicted by Hilliard model.  A following observation mandated by the Gibbs-

Helmholtz relation was that the heat of absorption was also too high.  This 

inaccuracy was apparent in the 2010 MEA simple stripper campaign.  Once the 

new model is complete, the stripper data of the campaign should be simulated 

again to ensure that the measured heat loss at the pilot plant was accurate. 

2. Develop new thermodynamic models for new solvents of interest like 

methyldiethanolamine (MDEA)/PZ.  Compare the performances of new solvents 

in the stripper to PZ. 

 

Process Simulations 

1. Acquire rigorous process unit models for pumps and compressors to predict their 

work contributions with maximum accuracy.  The compressor work prediction in 

this work agreed within small error with rigorous compressor work models by 

graduate students at TUHH.  However, the pump work should be verified, and the 

actual work requirement of a large-scale supercritical CO2 compressor should be 

assessed. 

2. Incorporate realistic heat loss profile predictions for full-scale strippers into the 

process models to provide better predictions of the actual energy usage that could 

be expected. 
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3. Explore new process configurations with more complex arrangements of flash 

vessels.  Using a matrix of flash vessels at various temperatures could more 

efficiently strip CO2 through a typical temperature range. 

4. Reduce the total heat duty by integrating heat recovery recovery from the 

intercoolers of the multi-stage compressor and energy recovery from the lean 

solvent through a liquid expansion turbine.  Heat recovery from intercoolers could 

recycle 20.6 kJ/mol CO2 assuming a stripper pressure of 2 bar, and the maximum 

benefit of using a liquid expansion turbine would be 1% of the total equivalent 

work. 

5. Simulate the cold rich bypass configurations using the kinetic reactions method.  

Since the rich solvent entering the top of the packing was approximately 50 °C, the 

kinetic limitations of the reactions would be important to consider.  The required 

packing to get the same benefits as in this work would be taller. 

6. Use net present value (NPV) or a similar analysis to compare steam heating to the 

geothermal heating alternative in the stripper. 

 

Pilot Plant 

1. Incorporate direct quantitative measurement of condensate or overhead vapor 

composition.  The water content of the vapor is a direct indicator of the 

performance of the column and its approach to equilibrium.  With either a vapor 

composition measurement or a condensate measurement to accompany the CO2 

gas rate, more conclusions can be made with regards to the stripper performance.  

The measured condenser duty was not reliable enough to extract this data due to a) 

a high cooling water flow rate, resulting in a low cooling water ΔT, and b) heat 

loss in the overhead vapor line which liquefied water before the condenser. 
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2. Continue to run the reboiler flow without splitting the lean to recycle to the 

column sump.  This unknown recycle rate yields runs that are difficult to simulate, 

so the results are not as useful. 

3. Develop a stripper model that is capable of explaining the complex temperature 

behavior that was observed at the pilot plant. 

4. Quantify the amount of heat loss that occurs in specific locations like the heat 

exchanger, reboiler, redistributor, and other exposed areas like flanges and the top 

of the column. 

5. Update the correlation for measured heat loss at the pilot plant to include the effect 

of wind speed. 

6. Carry out additional high temperature 2-stage flash campaigns to approach the 

optimal performance that was predicted in simulations.  Run the flash vessels at 

higher pressures and reduce the heat loss. 

 

Industrial Recommendations 

1. Use an interheated column to maximize stripper efficiency with minimal capital 

cost investment. 

2. Replacing a large simple stripper with a 2-stage flash can provide similar, if not 

lower, performance with a lower capital cost investment. 

3. Implement cold rich bypass into any configuration to reduce the energy 

requirement and minimize amine volatility.  This upgrade works especially well 

when using solvents with a low heat of absorption. 

4. Use 8 m PZ over the industry-standard MEA.  The total energy requirement 

decreases due to lower compressor and pump work. 
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Appendix A: MEA Aspen Plus
®
 Input File 

 

 

 

A previously developed thermodynamic model for MEA in Aspen Plus
®
 v7.1 was 

used for simulations with the solvent in this work (Hilliard, 2008).  The reaction sets 

were cleaned up slightly to simplify the calculations.  The entire input file of a simulation 

with a blank flowsheet is included below.  It details the thermodynamic constants in the 

e-NRTL model that predicted the properties of loaded MEA solutions. 

 
; 

DYNAMICS 

    DYNAMICS RESULTS=ON 

     

 

IN-UNITS SI MASS-FLOW='kg/hr' PRESSURE=kPa TEMPERATURE=C  & 

        MASS-HEAT-CA='kJ/kg-K' PDROP='N/sqm'  

 

DEF-STREAMS CONVEN ALL  

 

SIM-OPTIONS  

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    SIM-OPTIONS RESTART=NO GAMUS-BASIS=AQUEOUS OLD-DATABANK=NO  

 

RUN-CONTROL MAX-TIME=10800.  

 

DESCRIPTION " 

    Electrolytes Simulation with Metric Units :  

    C, bar, kg/hr, kmol/hr, Gcal/hr, cum/hr.  

       

    Property Method: ELECNRTL  

       

    Flow basis for input: Mass  
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    Stream report composition: Mass flow  

    " 

 

DATABANKS 'APV71 ASPENPCD' / 'APV71 AQUEOUS' / 'APV71 SOLIDS' & 

         / 'APV71 INORGANIC' / 'APV71 PURE20' 

 

PROP-SOURCES 'APV71 ASPENPCD' / 'APV71 AQUEOUS' / 'APV71 SOLIDS' & 

         / 'APV71 INORGANIC' / 'APV71 PURE20' 

 

COMPONENTS  

    H2O H2O /  

    CO2 CO2 /  

    MEA C2H7NO /  

    MEA+ C2H8NO+ /  

    MEACOO- C3H6NO3- /  

    HCO3- HCO3- /  

    CO3-- CO3-2 /  

    H+ H+ /  

    OH- OH-  

 

HENRY-COMPS HC-1 CO2  

 

CHEMISTRY GLOBAL  

    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='mol/hr' PRESSURE=kPa  & 

        TEMPERATURE=C MASS-HEAT-CA='kJ/kg-K' PDROP='N/sqm'  

    STOIC 1 H2O -1. / H+ 1. / OH- 1.  

    STOIC 2 CO2 -1. / H2O -1. / H+ 1. / HCO3- 1.  

    STOIC 3 HCO3- -1. / H+ 1. / CO3-- 1.  

    STOIC 4 MEA+ -1. / MEA 1. / H+ 1.  

    STOIC 5 MEACOO- -1. / H2O -1. / MEA 1. / HCO3- 1.  

 

FLOWSHEET  

 

PROPERTIES ELECNRTL HENRY-COMPS=HC-1 CHEMISTRY=GLOBAL  

    PROPERTIES SRK / STEAMNBS  

 

PROP-DATA MDH 

    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='mol/hr' PRESSURE=kPa  & 

        TEMPERATURE=C MASS-HEAT-CA='kJ/kg-K' PDROP='N/sqm'  

    PROP-LIST DGAQFM / DHAQFM  

    PVAL MEA+ -171023632 / -336961728.8  

    PVAL MEACOO- -492922520 / -707209080  

 

PROP-DATA REVIEW-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 
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        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    PROP-LIST API / DGFORM / DGSFRM / DHFORM / DHSFRM /  & 

        DHVLB / FREEZEPT / HCOM / MUP / MW / OMEGA / PC /  & 

        RKTZRA / SG / TB / TC / VB / VC / VLSTD / ZC  

    PVAL H2O 10.0 / -54.6343 / -56.5492 / -57.7949 /  & 

        -69.9627 / 9.744507 / 0.0 / 0.0 / 1.84972 /  & 

        18.01528 / 0.344861 / 220.64 / 0.243172 / 1.0 /  & 

        100.0 / 373.946 / 18.8311 / 55.9472 / 18.0691 /  & 

        0.229  

    PROP-LIST API / DGFORM / DHFORM / DHVLB / FREEZEPT /  & 

        HCOM / MUP / MW / OMEGA / PC / RKTZRA / SG / TB / & 

        TC / VB / VC / VLSTD / ZC  

    PVAL MEA 7.5 / -24.6893 / -49.4025 / 11.88812 / 10.5 /  & 

        -325.765 / 0.77646 / 61.08308 / 0.446737 / 71.24 /  & 

        0.24764 / 1.0179 / 170 / 405.05 / 68.6673 / 225 /  & 

        60.3415 / 0.284  

    PROP-LIST DHFORM / FREEZEPT / MW / PC / VC / VLSTD /  & 

        ZC / RGYR  

    PVAL CO2 -94.05110000 / -56.57 / 44.0095 / 73.83 / 94 /  & 

        61.6782 / 0.274 / 1.04000E-10  

 

PROP-DATA REVIEW-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='J/kmol'  & 

        MASS-ENTHALP='kcal/kg' MOLE-ENTROPY='J/kmol-K' HEAT=Gcal  & 

        MOLE-CONC='mol/l' PDROP=bar  

    PROP-LIST DGAQFM / DHAQFM  

    PVAL HCO3- -587370182.1 / -690767961  

    PVAL CO3-- -538355662.9 / -677140000  

 

PROP-DATA CPAQ0-1 

    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='mol/hr' PRESSURE=kPa  & 

        MASS-HEAT-CA='kJ/kg-K' PDROP='N/sqm'  

    PROP-LIST CPAQ0  

    PVAL CO3-- 1334017.129 -5564.838795 5.192267274  & 

        -118575111.1 0.0 0.0 0.0 2000.000000  

    PVAL HCO3- 211386.984 -881.7986241 0.874689511 -18789290.32  & 

        0.0 0.0 0.0 2000.000000  

    PVAL MEA+ -1700442.83 7093.368695 -8.487374579 151145133.9  & 

        0.0 0.0 0 2000.000  

    PVAL MEACOO- -2408071.1 17268.3153 -26.0389963 0.0 0.0  & 

        0.0 0.0 2000.000  
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PROP-DATA CPDIEC-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    PROP-LIST CPDIEC  

    PVAL H2O 78.24662286 32730.85746 298.15  

    PVAL MEA 31.06961991 15128.19841 298.15  

 

PROP-DATA DHVLWT-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='J/kmol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    PROP-LIST DHVLWT  

    PVAL H2O 40655000 100.00 0.26623503 0.09110321 0.01  

    PVAL MEA 54835800 126.67 0.4041153 0.11011257 -27.37  

 

PROP-DATA HENRY-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=Pa TEMPERATURE=K  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    PROP-LIST HENRY  

    BPVAL CO2 H2O 170.7126000 -8477.711000 -21.95743000  & 

        5.78074800E-3 273.0000000 500.0000000 0.0  

    BPVAL CO2 MEA 89.452 -2934.6 -11.592 0.01644 273.0000000  & 

        500.0000000 0.0  

 

PROP-DATA NRTL-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    PROP-LIST NRTL  

    BPVAL H2O MEA -123.323712 2575.16998 0.2 0.0 22.061396  & 

        -0.029745916 0.0 1000  

    BPVAL MEA H2O -1.71338728 -214.123176 0.2 0.0 0.0 0.0  & 
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        0.0 1000  

    BPVAL H2O CO2 10.06400000 -3268.135000 .2000000000 0.0 0.0  & 

        0.0 0.0 200.0000000  

    BPVAL CO2 H2O 10.06400000 -3268.135000 .2000000000 0.0 0.0  & 

        0.0 0.0 200.0000000  

 

PROP-DATA VLCLK-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    PROP-LIST VLCLK  

    BPVAL MEA+ OH- -390.9954000 1000.000000  

 

PROP-DATA GMELCC-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    PROP-LIST GMELCC  

    PPVAL H2O ( H+ HCO3- ) 8.04500000  

    PPVAL ( H+ HCO3- ) H2O -4.07200000  

    PPVAL H2O ( H+ CO3-- ) 8.04500000  

    PPVAL ( H+ CO3-- ) H2O -4.07200000  

    PPVAL H2O ( H+ OH- ) 8.04500000  

    PPVAL ( H+ OH- ) H2O -4.07200000  

    PPVAL H2O ( MEA+ HCO3- ) 12.77005390  

    PPVAL ( MEA+ HCO3- ) H2O -3.80956870  

    PPVAL CO2 ( MEA+ HCO3- ) 49.15747970  

    PPVAL ( MEA+ HCO3- ) CO2 -5.89256106  

    PPVAL CO2 ( MEA+ CO3-- ) 15.00000000  

    PPVAL ( MEA+ CO3-- ) CO2 -8.00000000  

    PPVAL CO2 ( MEA+ OH- ) 15.00000000  

    PPVAL ( MEA+ OH- ) CO2 -8.00000000  

    PPVAL MEA ( MEA+ HCO3- ) 1.78726059  

    PPVAL ( MEA+ HCO3- ) MEA -30.84763770  

    PPVAL MEA ( MEA+ CO3-- ) 15.00000000  

    PPVAL ( MEA+ CO3-- ) MEA -8.00000000  

    PPVAL MEA ( MEA+ OH- ) 15.00000000  

    PPVAL ( MEA+ OH- ) MEA -8.00000000  

    PPVAL H2O ( MEA+ MEACOO- ) 19.03188830  

    PPVAL ( MEA+ MEACOO- ) H2O -7.38531897  

    PPVAL CO2 ( MEA+ MEACOO- ) 15.00000000  



 227 

    PPVAL ( MEA+ MEACOO- ) CO2 -8.00000000  

    PPVAL MEA ( MEA+ MEACOO- ) 16.87100390  

    PPVAL ( MEA+ MEACOO- ) MEA -13.62627530  

 

PROP-DATA GMELCD-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    PROP-LIST GMELCD  

    PPVAL H2O ( MEA+ HCO3- ) 156.09046700  

    PPVAL ( MEA+ HCO3- ) H2O -214.82514800  

    PPVAL CO2 ( MEA+ HCO3- ) 430.10816000  

    PPVAL ( MEA+ HCO3- ) CO2 14444.83540000  

    PPVAL CO2 ( MEA+ CO3-- ) 0.0  

    PPVAL ( MEA+ CO3-- ) CO2 0.0  

    PPVAL CO2 ( MEA+ OH- ) 0.0  

    PPVAL ( MEA+ OH- ) CO2 0.0  

    PPVAL MEA ( MEA+ HCO3- ) 3128.53045000  

    PPVAL ( MEA+ HCO3- ) MEA 6981.73393000  

    PPVAL MEA ( MEA+ CO3-- ) 0.0  

    PPVAL ( MEA+ CO3-- ) MEA 0.0  

    PPVAL MEA ( MEA+ OH- ) 0.0  

    PPVAL ( MEA+ OH- ) MEA 0.0  

    PPVAL H2O ( MEA+ MEACOO- ) -789.61025500  

    PPVAL ( MEA+ MEACOO- ) H2O 432.17895100  

    PPVAL CO2 ( MEA+ MEACOO- ) 0.0  

    PPVAL ( MEA+ MEACOO- ) CO2 0.0  

    PPVAL MEA ( MEA+ MEACOO- ) -2809.73880000  

    PPVAL ( MEA+ MEACOO- ) MEA 1864.65113000  

 

PROP-DATA GMELCE-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    PROP-LIST GMELCE  

    PPVAL H2O ( MEA+ HCO3- ) 24.60156680  

    PPVAL ( MEA+ HCO3- ) H2O -5.89393435  

    PPVAL CO2 ( MEA+ HCO3- ) 2262.77769000  

    PPVAL ( MEA+ HCO3- ) CO2 659.23135400  

    PPVAL CO2 ( MEA+ CO3-- ) 0.0  

    PPVAL ( MEA+ CO3-- ) CO2 0.0  
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    PPVAL CO2 ( MEA+ OH- ) 0.0  

    PPVAL ( MEA+ OH- ) CO2 0.0  

    PPVAL MEA ( MEA+ HCO3- ) 66.01464320  

    PPVAL ( MEA+ HCO3- ) MEA 440.40354300  

    PPVAL MEA ( MEA+ CO3-- ) 0.0  

    PPVAL ( MEA+ CO3-- ) MEA 0.0  

    PPVAL MEA ( MEA+ OH- ) 0.0  

    PPVAL ( MEA+ OH- ) MEA 0.0  

    PPVAL H2O ( MEA+ MEACOO- ) -19.69365630  

    PPVAL ( MEA+ MEACOO- ) H2O 1.75887248  

    PPVAL CO2 ( MEA+ MEACOO- ) 0.0  

    PPVAL ( MEA+ MEACOO- ) CO2 0.0  

    PPVAL MEA ( MEA+ MEACOO- ) 22.41433100  

    PPVAL ( MEA+ MEACOO- ) MEA 16.45050280  

 

PROP-DATA GMELCN-1 

    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr'  & 

        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C  & 

        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'  & 

        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol'  & 

        MASS-ENTHALP='kcal/kg' HEAT=Gcal MOLE-CONC='mol/l'  & 

        PDROP=bar  

    PROP-LIST GMELCN  

    PPVAL CO2 ( MEA+ HCO3- ) .1000000000  

    PPVAL CO2 ( MEA+ CO3-- ) .1000000000  

    PPVAL CO2 ( MEA+ OH- ) .1000000000  

    PPVAL MEA ( MEA+ HCO3- ) .1000000000  

    PPVAL MEA ( MEA+ CO3-- ) .1000000000  

    PPVAL MEA ( MEA+ OH- ) .1000000000  

    PPVAL CO2 ( MEA+ MEACOO- ) .1000000000  

    PPVAL MEA ( MEA+ MEACOO- ) .1000000000  

 

EO-CONV-OPTI  

 

STREAM-REPOR MOLEFLOW MOLEFRAC  

 

PROPERTY-REP PARAMS NOPCES PROP-DATA DFMS NOPARAM-PLUS  

; 

; 

; 

; 

; 
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Appendix B: Tabulated Simulation Results 

 

 

 

Simulation results were presented in Chapters 3 and 4 that demonstrated the 

performance of various stripper configurations with 8 m PZ and 9 m MEA.  This 

appendix tabulates the data that was used to generate the figures. 

 

Table B-1.  Predicted compressor work based on Aspen Plus
®
 simulations and 

thermodynamic minimum.  Data used for Figures 3-9 and 3-10. 

Inlet 

Pressure 

72% eff, 

0% ΔP 

80% eff, 

0% ΔP 

80% eff, 

10% ΔP 

80% eff, 

20% ΔP 

Thermodynamic 

Minimum@40°C 

bar Compression Work (kJ/mol CO2) 

0.80 19.99 17.89 18.89 20.00 11.47 

0.90 19.30 17.28 18.18 19.25 11.17 

1.00 18.66 16.71 17.60 18.57 10.90 

1.15 17.84 15.98 16.78 17.72 10.54 

1.25 17.84 15.97 16.37 17.18 10.32 

1.50 16.81 15.06 15.75 16.48 9.85 

2.00 15.28 13.70 14.31 14.95 9.10 

2.50 14.61 13.08 13.24 13.82 8.53 

3.00 13.68 12.26 12.74 13.24 8.06 

3.50 12.91 11.57 12.03 12.50 7.66 

4.00 12.25 10.99 11.40 11.87 7.32 

4.50 11.67 10.48 10.89 11.32 7.02 

5.00 11.66 10.44 10.76 10.83 6.75 

5.50 11.19 10.03 10.34 10.67 6.51 
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Inlet 

Pressure 

72% eff, 

0% ΔP 

80% eff, 

0% ΔP 

80% eff, 

10% ΔP 

80% eff, 

20% ΔP 

Thermodynamic 

Minimum@40°C 

bar Compression Work (kJ/mol CO2) 

6.00 10.77 9.65 9.95 10.27 6.28 

6.50 10.38 9.31 9.60 9.90 6.08 

7.00 10.02 8.99 9.27 9.58 5.89 

7.50 9.69 8.70 8.98 9.27 5.72 

8.00 9.38 8.42 8.69 8.98 5.56 

8.50 9.09 8.16 8.43 8.71 5.41 

9.00 8.82 7.92 8.18 8.46 5.26 

9.50 9.10 8.16 8.35 8.21 5.13 

10.00 8.86 7.94 8.13 8.33 5.00 

10.50 8.62 7.73 7.92 8.12 4.88 

11.00 8.40 7.53 7.72 7.91 4.76 

11.50 8.18 7.34 7.53 7.71 4.65 

12.00 7.98 7.16 7.34 7.53 4.55 

12.50 7.79 6.99 7.17 7.35 4.45 

13.00 7.60 6.82 7.00 7.18 4.35 

13.50 7.42 6.66 6.84 7.02 4.26 

14.00 7.25 6.51 6.68 6.86 4.17 

14.50 7.08 6.36 6.53 6.71 4.08 

15.00 6.92 6.21 6.39 6.56 4.00 

15.50 6.76 6.08 6.24 6.42 3.92 

16.00 6.61 5.94 6.11 6.28 3.85 

16.50 6.47 5.81  6.14 3.77 

17.00 6.33 5.69  6.98 3.70 

17.50 6.20 5.57   3.63 

18.00 6.07 5.46   3.56 

18.50 5.95 5.35  6.60 3.50 

19.00    6.47 3.43 

19.50 5.75 5.17  6.35 3.37 

20.00     3.31 
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Table B-2a.  Performance of all configurations with 9 m MEA with a reboiler 

temperature of 120 °C.  Data used for Figures 3-11 to 3-14. 

Lean 

Loading 

Simple 

Stripper 

1-Stage 

Flash 

2-Stage 

Flash 

3-Stage 

Flash 

4-Stage 

Flash 

mol/mol Equivalent Work (kJ/mol CO2) 

0.20 37.38 59.40 49.82 46.38 44.61 

0.21 37.27 57.07 48.01 44.85 43.11 

0.22 37.16 54.88 46.37 43.42 41.83 

0.23 37.03 52.83 44.86 42.06 40.64 

0.24 36.89 50.94 43.49 40.86 39.59 

0.25 36.73 49.18 42.22 39.75 38.63 

0.26 36.56 47.55 41.05 38.85 37.78 

0.27 36.38 46.03 39.98 37.96 36.99 

0.28 36.18 44.62 39.00 37.14 36.28 

0.29 35.96 43.31 38.09 36.41 35.63 

0.30 35.74 42.10 37.25 35.75 35.05 

0.31 35.51 40.99 36.53 35.17 34.54 

0.32 35.28 39.97 35.88 34.66  

0.33 35.05 39.04 35.31 34.21 33.77 

0.34 34.82 38.17 34.77  33.46 

0.35  37.39 34.34 33.57 33.22 

0.36  36.69 34.00 33.33 33.05 

0.37 34.21 36.08 33.72 33.19 32.96 

0.38 34.08 35.57 33.55 33.13 33.01 

0.39 34.04 35.21 33.49 33.25 33.13 

0.40 34.11 34.99  33.43 33.37 

0.41 34.32 34.94 33.89 33.81  

0.42 34.74 35.13 34.41 34.44 34.56 

0.43 35.52 35.68 35.28 35.51 35.63 

0.44 36.81 36.76  37.05 37.05 

0.45 38.80 38.72 39.10 39.66 39.66 
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Table B-2b.  Performance of all configurations with 9 m MEA with a reboiler 

temperature of 120 °C.  Data used for Figures 3-11 to 3-14. 

Lean 

Loading 

Double matrix, 

20% split 

Double matrix, 

opt split 

Double matrix, opt 

split, LP packing 

2-Stage 

Multipressure 

mol/mol Equivalent Work (kJ/mol CO2) 

0.20 45.13 39.62   

0.21 43.63    

0.22 42.29    

0.23 41.06 38.25 36.96  

0.24 39.95    

0.25 38.93 36.96  40.74 

0.26 38.01   39.71 

0.27 37.17  35.30 38.82 

0.28 36.43 35.81  38.04 

0.29 35.69    

0.30 35.11 34.79 34.23  

0.31 34.62   36.12 

0.32 34.22   35.62 

0.33 33.88 34.00  35.17 

0.34 33.62  33.24 34.77 

0.35 33.45 33.43  34.43 

0.36 33.37   34.15 

0.37 33.41 33.19 32.89 33.95 

0.38 33.61   33.85 

0.39 34.00 33.23  33.86 

0.40 34.66  33.22  

0.41 35.72 33.80  34.46 

0.42 37.38  34.23 35.15 

0.43 39.97 34.84  36.44 

0.44 44.16 36.70 36.72 38.41 

0.45 51.35 39.01 42.99 41.55 
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Table B-2c.  Performance of all configurations with 9 m MEA with a reboiler 

temperature of 120 °C.  Data used for Figures 3-11 to 3-14. 

Lean 

Loading 

2-Stage Multipressure, 

packing 

Stripper with 

lean flash 

Interheated 

above reboiler 

Interheated at 

mid-column 

mol/mol Equivalent Work (kJ/mol CO2) 

0.20 37.05 37.50 37.32  

0.21 36.87   34.89 

0.22 36.68  36.97  

0.23 36.48 37.09   

0.24 36.23  36.55  

0.25 35.98   34.38 

0.26 35.71  36.06  

0.27 35.42 36.41   

0.28 35.14  35.51 33.82 

0.29 34.82 35.83   

0.30 34.51  34.90  

0.31 34.22 35.10   

0.32 33.94  34.29 33.16 

0.33 33.68 34.58   

0.34 33.48  33.71  

0.35 33.33   32.78 

0.36 33.21 33.86 33.20  

0.37 33.16 33.60  32.48 

0.38 33.18  32.97  

0.39 33.31 33.59 32.96 32.54 

0.40 33.56 33.81  32.67 

0.41 34.01 34.30 32.88 33.14 

0.42 34.70 34.79 33.35 33.49 

0.43 35.80 36.05   

0.44 37.42    

0.45 39.99    

 

  



 234 

Table B-3.  Performance of 1-stage flash with 9 m MEA at various flash 

temperatures.  Data used for Figure 3-15. 

Lean Loading 100 °C 110 °C 120 °C 130 °C 

mol/mol Equivalent Work (kJ/mol CO2) 

0.20 67.16 63.91 59.40 54.29 

0.21 65.22 61.75 57.07 52.13 

0.22 63.27 59.58 54.88 50.10 

0.23 61.40 57.44 52.83 48.25 

0.24 59.60 55.58 50.94 46.56 

0.25 57.87 53.67 49.18 45.05 

0.26 56.19 52.00 47.55 43.59 

0.27 54.58 50.30 46.03 42.30 

0.28 53.02 48.76 44.62 41.12 

0.29 51.52 47.30 43.31 40.04 

0.30 50.07 45.92 42.10 39.07 

0.31 48.68 44.63 40.99 38.20 

0.32 47.34 43.41 39.97 37.42 

0.33 46.06 42.27 39.04 36.73 

0.34 44.83 41.21 38.17 36.12 

0.35 43.66 40.21 37.39 35.60 

0.36 42.56 39.30 36.69 35.17 

0.37 41.52 38.44 36.08 34.85 

0.38 40.55 37.66 35.57 34.64 

0.39 39.65 36.95 35.21 34.58 

0.40 38.85 36.39 34.99 34.70 

0.41 38.15 35.97 34.94 35.07 

0.42 37.57 35.72 35.13 35.76 

0.43 37.17 35.72 35.68 36.95 

0.44 37.01 36.10 36.76 38.88 

0.45 37.24 37.19 38.72 42.03 
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Table B-4.  Equivalent work contributions for 1-stage flash with 9 m MEA at 

varying flash temperatures.  Data used for Figure 3-16. 

Flash T 
Lean 

Loading 

Equivalent 

Work 

Heat 

Work 

Compression 

work 

Pump 

Work 

°C mol/mol kJ/mol CO2 

100 0.44 37.01 21.11 14.98 0.92 

110 0.42 35.72 21.86 12.96 0.90 

120 0.405 34.94 22.76 10.82 1.36 

130 0.39 34.58 23.71 8.88 1.98 

 

Table B-5.  Performance of important configurations with 8 m PZ with a reboiler 

temperature of 150 °C.  Data used for Figure 3-21. 

Lean 

Loading 

1-Stage 

Flash 

2-Stage 

Flash 

Simple 

Stripper 

Adiabatic 

Lean Flash 

Double 

Matrix 

Interheated 

Column 

mol/mol Equivalent Work (kJ/mol CO2) 

0.20 55.84 46.40 35.43 34.61 35.11 32.26 

0.21 53.41 44.57 35.24 34.37 34.67 
 

0.22 50.86 42.67 35.02 34.18 34.26 31.89 

0.23 48.64 41.50 34.78 33.91 33.82 31.60 

0.24 46.38 39.94 34.53 33.60 33.38 
 

0.25 44.28 38.69 34.28 33.35 32.97 31.30 

0.26 42.52 37.61 33.97 33.02 32.72 
 

0.27 40.78 36.55 33.74 32.79 32.47 31.08 

0.28 39.24 35.78 33.47 32.52 32.24 30.95 

0.29 38.03 35.07 33.29 32.41 32.22 
 

0.30 36.91 34.41 33.13 32.30 32.24 30.96 

0.31 36.06 34.10 33.11 32.35 32.59 31.19 

0.32 35.53 34.00 33.25 32.63 33.04 31.82 

0.33 35.31 34.27 33.64 33.17 34.13 
 

0.34 35.58 34.86 34.31 34.01 35.75 33.21 

0.35 36.47 36.13 35.68 35.64 38.40 36.18 

0.36 38.57 38.40 38.85 38.39 44.12 
 

0.37 42.78 43.46 
 

43.72 
 

42.58 

0.38 52.66 53.06 
 

53.97 
 

54.89 

0.39 81.32 88.89 
 

78.59 
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Table B-6.  Cool rich bypass based on pilot plant results with 2-stage flash in 8 m 

PZ.  Bypass taken between LP and HP cross exchangers.  0.40 rich loading, 3 °C 

cold side approach on LP exchanger, constant UA on HP exchanger, pressure ratio 

= 2, CO2 compression to 150 bar.  Data used for Figure 4-8. 

Bypass 5% 10% 5% 10% 

Lean 

Loading 
Equivalent Work PZ in vapor 

mol/mol kJ/mol CO2 mmol/kmol CO2 

0.25 36.87 34.35 4.304 2.570 

0.27 34.92 32.97 2.599 1.458 

0.29 33.93 32.59 1.453 0.827 

0.31 34.43 33.71 0.844 0.482 

0.33 37.21 37.06 0.508 0.322 

0.34 40.14 39.50 0.404 0.290 

 

Table B-7.  Cold rich bypass with 2-stage flash and 8 m PZ.  Bypass taken before 

cross exchanger.  0.40 rich loading, 5 °C LMTD on cross exchanger, equal molar 

vapor production per pressure stage, CO2 compression to 150 bar.  Data used for 

Figure 4-13. 

Lean Loading 0.22 0.26 0.28 

Bypass Equivalent Work 

% kJ/mol CO2 

0 40.84 35.91 33.85 

1 
 

35.05 
 

3 38.37 33.36 33.10 

5 36.72 31.65 30.08 

7.5 34.76 30.31 29.80 

10 33.16 30.06 30.44 

12.5 31.86 30.64 31.06 

15 31.08 31.34 32.06 

17.5 31.36 32.15 32.84 

20 31.90 33.07 32.88 
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Table B-8.  Cold rich bypass with 2-stage flash and 9 m MEA.  Bypass taken before 

cross exchanger.  0.50 rich loading, 5 °C LMTD on cross exchanger, equal molar 

vapor production per pressure stage, CO2 compression to 150 bar.  Data used for 

Figure 4-16. 

Lean Loading 0.2 0.25 0.3 0.35 0.4 0.43 

Bypass Equivalent Work 

% kJ/mol CO2 

0 49.76 41.75 35.54 32.53 31.87 34.08 

1 49.43 41.37 35.12 32.17 31.51 33.46 

2 49.10 40.99 34.73 31.75 31.05 33.71 

3 48.74 40.55 34.35 31.35 31.33 
 

5 48.08 39.73 33.59 30.70 31.60 34.76 

7.5 47.17 38.74 32.73 30.94 32.31 
 

10 46.17 37.88 31.98 31.31 
 

37.07 

12.5 45.35 36.89 31.65 31.75 
  

15 44.40 36.08 31.95 32.17 34.80 39.74 

20 42.77 34.58 32.72 33.44 36.97 43.49 

 

Table B-9.  Cold rich bypass with simple stripper and 8 m PZ.  Bypass taken before 

cross exchanger.  0.40 rich loading, 5 °C LMTD on cross exchanger, equal molar 

vapor production per pressure stage, CO2 compression to 150 bar.  Data used for 

Figure 4-17. 

Lean Loading 0.24 0.27 0.3 0.32 0.34 

Bypass Equivalent Work 

% kJ/mol CO2 

0 
  

31.42 31.58 
 

0.5 33.10 31.93 31.06 31.16 32.34 

1 32.93 31.75 30.70 30.74 31.95 

2 32.50 31.21 30.07 30.06 31.37 

3 32.13 30.72 29.55 29.43 31.26 

5 31.43 29.81 28.77 29.21 31.82 

7.5 30.62 29.09 28.64 29.88 33.71 

10 29.98 28.81 29.24 30.93 34.96 

12.5 29.53 28.96 29.85 32.41 37.02 

15 29.49 29.41 30.96 33.67 38.73 
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Table B-10.  Cold rich bypass with simple stripper and 9 m MEA.  Bypass taken 

before cross exchanger.  0.50 rich loading, 5 °C LMTD on cross exchanger, equal 

molar vapor production per pressure stage, CO2 compression to 150 bar.  Data used 

for Figure 4-18. 

Lean Loading 0.2 0.25 0.3 0.35 0.4 

Bypass Equivalent Work 

% kJ/mol CO2 

0.5 32.54 36.82 34.57 33.13 32.52 

1 32.43 36.77 34.38 32.93 32.41 

2 31.99 36.67 34.24 32.67 31.96 

3 31.71 36.58 34.05 32.38 31.82 

5 31.42 36.33 33.63 31.89 32.02 

7.5 31.59 36.09 33.23 31.68 32.51 

10 32.00 35.90 32.94 31.86 33.11 

15 
 

35.44 32.73 32.63 34.82 

20 
 

35.18 33.30 33.75 37.01 

 

Table B-11.:  Rich bypass with the interheated column in 8 m PZ.  Bypass taken 

before cross exchanger.  0.40 rich loading, 5 °C LMTD on cross exchanger, equal 

molar vapor production per pressure stage, CO2 compression to 150 bar.  Data used 

for Figure 4-19. 

Split (%) 1 5 7.5 10 

Lean Loading Equivalent Work 

mol/mol kJ/mol CO2 

0.20 31.83 31.45 31.36 31.35 

0.24 30.96 30.56 30.61 30.79 

0.26 30.61 30.21 30.38 
 

0.28 30.35 30.07 30.40 31.10 

0.30 30.38 30.19 30.80 31.81 

0.32 31.19 31.08 32.39 33.73 

0.34 32.60 34.04 35.81 
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