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Loss of constraint on fracture in thin film structures due to
creep
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Abstract

Fracture in thin films is normally constrained by the substrates. If the substrate creeps, however, the constraint will
be lost over time. This paper presents a two-dimensional model for channel cracks in an elastic film on a viscous layer,
and implements an extended finite element method to evolve the displacement field and the stress intensity factor with
relatively coarse meshes. Solutions are obtained for stress intensity factors of channel cracks with several in-plane
geometries. The stress intensity factor increases with time, indicating the loss of constraint. Several scaling laws are
obtained. Extensions of the present model are outlined for nonlinear creeping and viscoelastic layers, as well as a thick
viscous substrate. Fracture in thin film structures subjected to ratcheting deformation under cyclic temperatures using
the analogy between creeping and ratcheting is also discussed. 2002 Acta Materialia Inc. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Fracture in a thin film structure is constrained
when both the film and the substrate are elastic [1–
3]. Fig. 1 illustrates the influence of constraint on
fracture. In Fig. 1(a), a crack of lengtha has been
inserted into a freestanding sheet of thicknessh,
initially under a uniform tensile stresss. The dis-
placement in the sheet far away from the crack is
held rigidly so that the remote stress does no work
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as the crack grows. After the insertion of the crack,
the elastic energy is relaxed in the volume of
material around the crack, as indicated by the
shaded region in Fig. 1(a). For a freestanding large
sheet, the volume is approximatelya2h, and the
change in the elastic energy is�UE � �
y2

a(s2/E)a2h, whereE is Young’s modulus of the
sheet. The dimensionless factorya takes into
account the exact geometrical details of the volume
of material affected by the crack and can be
determined by solving the appropriate elasticity
boundary-value problem. The energy release rate
G is the amount of the elastic energy decrease
associated with the crack advancing per unit
area, namely,
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Fig. 1. Schematic diagrams of thin film fracture: (a) A free-
standing sheet containing a through-crack under a uniform ten-
sile stress; (b) a thin film bonded to a substrate containing a
channel crack; and (c) a thin film on a viscous layer containing
a channel crack. In each case, the shaded region indicates the
volume of material in which the elastic energy is affected by
the crack.

G � 2y2
a

s2

E
a. (1)

In Fig. 1(b), a channel crack of length a has been
inserted into a thin film of thickness h on a sub-
strate. Prior to the insertion of the crack, the film
is under a uniform tensile stress s. The substrate
now constrains the elastic deformation affected by
the crack to a length scale of approximately the
film thickness. Consequently, the volume in which

the elastic energy is relaxed now scales with ah2,
and the change in the elastic energy becomes
�UE � �y2

b(s2 /E)ah2, where the dimensionless
factor yb characterizes the film–substrate interac-
tion and is independent of the crack length when
a�h. The energy release rate in this case is

G � y2
b

s2

E
h. (2)

A comparison between Eqs. (1) and (2) clearly
shows the effect of substrate constraint. For a free-
standing film, G scales with the crack length a. For
a film on an elastic substrate, G scales with the
film thickness h. In the latter case, as long as the
initial crack length exceeds the film thickness, the
energy release rate is independent of the crack
length. Whether this crack will grow into a long
channel crack is independent of the initial flaw
size.

Studies have shown that the constraint on frac-
ture is reduced when the substrate deforms plas-
tically [4,5]. By the same reasoning, if the substrate
creeps, the constraint will be completely lost over
time. The loss of constraint becomes an important
issue as many organic materials and glasses are
used in new devices, e.g. [6,7]. In this paper we
consider a thin film structure with a viscous inter-
layer between the film and the substrate (Fig. 1(c)).
The film is elastic and under residual tensile stress
s. As the interlayer creeps, the volume in which
the elastic energy is relaxed by the crack increases
and scales with ahl(t), where l(t) is a length scale
increasing with time. The energy release rate G
now increases with time, which indicates that the
constraint is gradually lost. The plan of this paper
is as follows. Section 2 describes a two-dimen-
sional (2D) model for a thin elastic film on a linear
viscous layer. Section 3 presents both analytical
and numerical solutions for several geometries.
Extensions of the present model are discussed in
Section 4.

2. The model

A 2D model was developed to study the stress
relaxation of elastic film islands on viscous sub-
strates [8], and which is outlined below for the
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present study. The model is an extension of the 1D
shear lag model [9,10]. A similar model has been
used to study crack paths in thin elastic films
bonded to elastic substrates [11].

Fig. 1(c) shows an elastic film of thickness h on
a viscous layer of thickness H, which in turn lies
on a thick substrate. The thick substrate is assumed
to be rigid. The viscous interlayer starts to creep
at time t � 0. Before that, the interlayer is assumed
to be rigid, and the film is subjected to a uniform
biaxial tensile stress with the associated in-plane
strain e0. A plane stress approximation is used to
describe the in-plane deformation of the film, with
ua(x, y, t) as the in-plane displacements averaged
through the film thickness and measured relative
to the uniformly pre-strained state. The total aver-
age in-plane strains are

eab � e0dab �
1
2

(ua,b � ub,a). (3)

The greek subscripts, a and b, take on the values
of the in-plane coordinates, x and y. Assuming that
the material of the thin film is isotropic with
Young’s modulus E and Poisson’ s ratio n, the aver-
age in-plane stresses are

sab �
E

1�n2[(1�n)eab � neggdab]. (4)

We adopt the convention that a repeated greek
subscript implies summation over the two in-
plane dimensions.

In addition to the in-plane stresses, the film is
subjected to shear tractions ta along the interface
between the film and the viscous layer. For a thin
viscous layer, we assume that the flow velocities
are linearly distributed across the layer thickness.
At the film–interlayer interface, the velocities equal
to the in-plane velocities of the film. At the inter-
layer–substrate interface, the velocities are zero.
For the time being, we assume that the interlayer
is linearly viscous with viscosity h. The shear trac-
tions relate to the strain-rates as

ta �
h
H

∂ua
∂t

. (5)

Force balance of a differential element of the elas-
tic film requires that

sab,b�ta /h � 0. (6)

Eq. (6) can also be obtained by integrating the 3D
force balance equations over the thickness of the
film and interpreting sab as the average stress
across the film thickness. Note that Eq. (6) is equi-
valent to the 2D equilibrium equation for a plane
stress problem with a body force of magnitude
�ta/h.

In terms of the displacements, Eq. (6) becomes

∂ux

∂t
� D�∂2ux

∂x2 �
1�n

2
∂2ux

∂y2 �
1 � n

2
∂2uy

∂x∂y�, (7)

∂uy

∂t
� D�∂2uy

∂y2 �
1�n

2
∂2uy

∂x2 �
1 � n

2
∂2ux

∂x∂y�, (8)

where

D �
EhH

(1�n2)h
. (9)

Eqs. (7) and (8) evolve the displacement field,
analogous to the diffusion equations, with D as the
effective diffusivity.

Now consider a straight channel crack in the
elastic film, aligned parallel to the x-axis. The
mode I and mode II stress intensity factors at the
crack tip are related to the energy release rate by
the classical plane stress relation G � (K2

I �
K2

II) /E. Without any body force, the energy release
rate coincides with a path-independent J-integral:

J � �
C

(Wn1�sabnbua,1)ds, (10)

where C is any contour circling the crack tip in the
counter-clockwise direction with na as its outward
unit normal and ds as its arc length, and W is the
strain energy per unit area per unit thickness of the
film, i.e. W � sabeab /2. With a body force �ta/h,
as in Eq. (6), however, the conventional J-integral
is no longer path-independent. We introduce and
define a new integral

JB � �
C

(Wn1�sabnbua,1)ds �
1
h�

A

taua,1dA, (11)

where A is the area bounded by the contour C and
the crack. It can be shown that the new integral JB
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is indeed path-independent. Near the crack tip, the
stress filed is singular in x and y, but smooth in t.
Consequently, in Eqs. (7) and (8), the terms on the
right-hand side are more singular than those on the
left-hand side, and the form of the singular field is
determined by setting the right-hand side to zero.
The latter is identical to the governing equations
for the 2D elastic field without any body force.
Thus, the presence of the body force does not
change the character of the dominant singular
behavior at the crack tip, and the gradient of the
displacements has the conventional inverse square
root singularity at the tip (i.e. ua,1 � r�1/2), so that
the area integral at the right-hand side of Eq. (11)
is nonsingular. As the contour C approaches the
crack tip, the area integral approaches zero and JB

approaches J. The new integral JB coincides with
the energy release rate G.

In the remainder of this paper, the above 2D
model is solved by using the finite element method.
The finite element software dynaflow[12] is
used. First, the evolving displacement field is
solved from Eqs. (7) and (8). At each time step,
the strain and stress are computed from Eqs. (3)
and (4), respectively. The presence of a crack is
modeled by using the extended finite element
method [13–16], in which discontinuous enrich-
ment functions are added to the conventional finite
element framework to account for the discontinuity
across the crack. Given the displacement, strain,
and stress fields at certain time, the stress intensity
factors are computed using the domain form of the
interaction integrals [13]. For the present problem,
the interaction integrals are derived from the new
integral, JB, instead of the conventional J-integral
used in Ref. [13]. All the results presented sub-
sequently are for mode I fracture, but the approach
can readily be extended for general mixed mode
fracture. While other numerical methods may be
applied to solve the problems and to compute the
stress intensity factor as well, the advantage of the
present approach using the extended finite element
method is that it allows the crack to be arbitrarily
aligned within the mesh and produces excellent
accuracy with a relatively coarse mesh.

3. Analytical and numerical solutions

This section considers three crack geometries
(Fig. 2). In all cases, the edges of the films are
traction-free. In addition to the numerical results,
several analytical scaling laws for the stress inten-
sity factor are deduced.

3.1. A semi-infinite straight crack in an infinite
film

Consider an infinite film with an isolated semi-
infinite straight crack along the negative x-axis
with the crack tip at x � 0. At t � 0, the stress
field in the film is uniform, the displacement is zero
everywhere, and the stress intensity factor at the
crack tip is zero. As the viscous layer creeps, the
stress field in the film relaxes in the crack wake,
but intensifies around the crack tip. The stress
intensity factor KI linearly depends on the biaxial
stress, s0 � Ee0 / (1�n). The problem lacks any
fixed length scale. (The thicknesses, h and H, enter
the model through the quantity D in Eq. (9) and
do not set the length scale of the problem.) Instead,
there exists a time-dependent length scale associa-
ted with creep, (Dt)1/2. Consequently, by dimen-
sional analysis, the stress intensity factor takes
the form

KI(t) � �Ee0(Dt)1/4, (12)

where � is a dimensionless number depending only
on Poisson’ s ratio n.

Numerical solutions are obtained for a crack of
length a in a film of size 2a × 2a, as shown in Fig.
2(a). The evolution of the displacement field is
similar to that in relaxation of a strained elastic
film on a viscous layer [8], starting from the trac-
tion-free surfaces (including the crack faces) and
diffusing into the film. The relaxation along the
crack faces leads to opening of the crack with
intensified stress around the crack tip. The crack
length a is chosen such that a�(Dtm)1/2, where tm
is an arbitrarily selected final time for computation.
For the time t � tm, the crack tip field is not affec-
ted by the relaxation from the outer boundaries,
simulating a semi-infinite crack in an infinite film.
Fig. 3 shows the normalized stress intensity factor,
K̄I � KI /Ee0(Dtm)1/4, as a function of the nor-
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Fig. 2. (a) A edge crack of length a in a square film of size
2a × 2a, which simulates a semi-infinite crack as a→�; (b) a
center crack of length 2a in a square film of size 2L × 2L, which
simulates a finite crack in an infinite film as L /a→�; and (c)
a corner crack of length a in an L-shaped film.

malized time, t̄ � t / tm, plotted in the logarithmic
scales for various Poisson’ s ratios. The results are
independent of a when a 	 5(Dtm)1/2 and can be
considered as for a semi-infinite crack in an infinite
film. As predicted by Eq. (12), the stress intensity
factor increases with time, fitting into parallel
straight lines in the logarithmic plot with the slope
equal to 1/4 for all Poisson’ s ratios. The dimen-
sionless number � equals to the normalized stress
intensity factor at t̄ � 1, and is listed in Table 1.

For a semi-infinite crack in an infinite film
bonded to an elastic substrate, the stress intensity
factor takes the form [2,11]

KE
I � yEe0(h)1/2, (13)

Fig. 3. Normalized stress intensity factor K̄I �
KI /Ee0(Dtm)1/4 as a function of the normalized time t̄ � t / tm

for a semi-infinite crack in an infinite film bonded to a viscous
layer. The straight lines are predicted by Eq. (12), and the open
shapes are the numerical results.

Table 1
Dimensionless number � in Eq. (12) for different Poisson’ s
ratios

n 0.0 0.1 0.2 0.3 0.4
� 1.121 1.239 1.372 1.527 1.711
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where y is a dimensionless number, depending on
the elastic mismatch between the film and the sub-
strate. The value of y, numerically computed in
Ref. [2], ranges from less than 1 for a very com-
pliant film on a relatively stiff substrate to more
than 5 for a stiff film on a relatively compliant sub-
strate. Nevertheless, the stress intensity factor
scales with the square root of the film thickness,
and the fracture is constrained by the elastic sub-
strate. However, with a creeping interlayer between
the film and the substrate, the present study (Eq.
(12)) shows that the stress intensity factor mono-
tonically increases with time, and the value can be
much larger than the constrained stress intensity
factor KE

I (Eq. (13)) after certain time. That is, due
to creep, the constraint on fracture in the thin film
is gradually lost over time.

3.2. A finite crack in an infinite film

Next, we consider a finite crack of length 2a in
an infinite film. In this case, analytical solutions
for the stress intensity factor are available at two
limiting points. At the very beginning, when
(Dt)1 /2
a, the stress intensity factor follows Eq.
(12) for a semi-infinite crack. At the other limit,
when (Dt)1 /2�a, the film reaches equilibrium
under the remote biaxial stress, and the stress
intensity factor approaches the equilibrium value
for a freestanding film under the same remote
stress, namely

K�
I �

Ee0
1�n

(πa)1/2. (14)

Therefore, the stress intensity factor first increases
with time, following Eq. (12), and then asymptoti-
cally approaches the equilibrium value in Eq. (14).

Numerical solutions are obtained for a square
film of size 2L × 2L with various L, as shown in
Fig. 2(b). The solutions are expected to approach
the solution for an infinite film as L /a→�. For a
finite L/a, however, stress relaxation from the
edges will eventually reach the crack. As a result,
the crack will gradually close down and the stress
intensity factor at the crack tips will decrease.
After a sufficiently long time, the film is fully
relaxed, the crack is completely closed, and the

stress intensity factor becomes zero. Fig. 4 shows
the numerical results for L /a � 5. The normalized
stress intensity factor versus the normalized time
is plotted. Four points are labeled along the curve
as A, B, C, and D, for which the corresponding
distributions of the normalized mean stress,
(sxx � syy) / (2s0), are plotted in the linear gray
scale contour. At t � 0, the film is under uniform
biaxial tensile stress and the stress intensity factor
at the crack tip is zero. As the viscous layer starts
to creep, the biaxial tensile stress drives the crack
to open. At point A, stress relaxation starts along
the crack wake and the film edges while most part

Fig. 4. Numerical results for a square film with a center crack:
normalized stress intensity factor as a function of the nor-
malized time, and the distributions of the normalized mean
stresses corresponding to the points A, B, C, and D. The ampli-
tude of the normalized stress is visualized in the linear gray
scale color map between white (0) and black (1).
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of the film in between remains biaxially stressed;
at the crack tip, the stress intensity factor starts to
increase. At point B, stress relaxation has reached
most part of the film, but there is still part of the
film that is not affected and remains the initial
state; The stress intensity factor keeps increasing
with time. At point C, stress relaxation has reached
the whole film, and the stress intensity factor starts
to decrease. At point D, the stress magnitude has
dropped significantly in most parts of the film due
to stress relaxation; the stress intensity factor has
dropped to about half of that at point C and keeps
decreasing with time. Eventually the film will be
fully relaxed and the stress intensity factor will
become zero.

Although the film size in the above numerical
solutions is relatively small, the trend is similar for
any film sizes. Fig. 5 shows the stress intensity fac-
tor as a function of the time for various film sizes,
plotted in logarithmic scales. Also plotted in Fig.
5 is the solution for a semi-infinite crack given by
Eq. (12), as shown by the straight dashed line with
the slope equal to 1/4. The corresponding value of
� for n � 0.3 from Table 1 is used. The horizontal
dashed line corresponds to the equilibrium value
for an infinite freestanding film. For all film sizes,
the stress intensity factor first increases with time,
and then decreases. A larger film takes longer time
for stress relaxation to affect the stress intensity
factor and thus reaches a larger maximum stress
intensity factor. The equilibrium value of the stress

Fig. 5. Normalized stress intensity factor K̄I � (1�
n)KI /Ee0(πa)1/2 as a function of the normalized time t̄ �
Dt /a2 for a finite center crack in a square film of different sizes.

intensity factor given by Eq. (14) presents an upper
bound for the maximum stress intensity factor. For
a very large film, the stress intensity factor
approaches the equilibrium value asymptotically
before it decreases due to the effect of stress relax-
ation.

Comparing to a thin film bonded to an elastic
layer, with the presence of a viscous interlayer, the
stress intensity factor of a crack in the film
increases with time and may reach a much larger
value due to the loss of constraint. On the other
hand, the creeping of the interlayer relaxes the
stress in the film, which eventually reduces the
stress intensity factor. One implication of such
behaviors is that the crack may grow when the
stress intensity factor reaches a critical value, and
then arrest in the film as the stress intensity factor
drops below the critical value.

3.3. A crack in an L-shaped film

Fig. 2(c) shows an L-shaped film with a crack
at the corner. For a freestanding L-shaped film,
without introducing any crack, the film behaves
like a homogenous material with a 90° wedge cut.
Under a symmetric load, the stress is singular near
the corner, scaling with the distance r from the cor-
ner as s � kr�l [17]. The singularity exponent l
is the solution to a transcendental equation,

sin[(1�l)(2π�q)]�(1�l)sinq � 0, (15)

where q is the wedge angle and 0 � l�0.5. For a
straight crack, the angle is zero and l � 0.5. For
a 90° wedge angle, l � 0.456. The coefficient k
depends on the geometry and the remote load.
From dimensional analysis, we have k�s�ll, where
s� is the remote stress and l is a characteristic
length from geometry. For a freestanding L-shaped
film in Fig. 2(c), we take l � L. Now, if we intro-
duce a crack of length a(a
L) at the corner, as
shown in Fig. 2(c), the stress intensity factor at
the crack tip should be proportional to k and takes
the form

KI � zs�(a)1/2�L
a�l, (16)

where z is a dimensionless number to be determ-
ined from more detailed analysis.
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If the L-shaped film is bonded to an elastic sub-
strate, the crack is constrained and the stress inten-
sity factor will be reduced. When the crack length
a is much bigger than the film thickness h, the
crack reaches the steady state, and the stress inten-
sity factor is proportional to (h)1 /2 but independent
of a and the film size L. The stress intensity factor
of the constrained crack is much below the uncon-
strained value in Eq. (16). However, the constraint
will be lost with a creeping interlayer between the
film and the substrate. At the beginning, when
(Dt)1 /2
a, the crack-tip field is not affected by the
film geometry and the crack can be considered
semi-infinite such that the stress intensity factor
essentially follows Eq. (12). Later, when
(Dt)1 /2�a, there are two possibilities: (1) If
(Dt)1 /2
L, the film size L is irrelevant as far as the
corner crack is concerned, and the characteristic
length is given by l � (Dt)1/2. Following the same
argument for the freestanding film, the stress inten-
sity factor at the crack tip takes the form

KI(t) � zEe0(a)1/2�Dt
a2�l/2. (17)

(2) If (Dt)1/2
L, stress relaxation causes the stress
intensity factor to decrease. Eventually, the film is
fully relaxed and the stress intensity factor
becomes zero. Therefore, with a creeping inter-
layer, the stress intensity factor first increases and
then decreases with a maximum value depending
on the film size L.

Fig. 6 shows the numerical solutions for the
stress intensity factor as a function of time for vari-
ous ratios between L and a. The same normaliz-
ation as in Fig. 5 is used for the stress intensity
factor and the time. Eq. (12) is also plotted in Fig.
6 as the dashed line, using the corresponding �
values from Table 1. For all film sizes, the stress
intensity factor follows Eq. (12) at the initial stage.
When L�a, we expect to see that the stress inten-
sity factor follows Eq. (17) when a
(Dt)1 /2
L..
However, this is not clear from our calculations,
even for L � 100a (not shown in Fig. 6). One
possible reason is that, from Eq. (12) to Eq. (17),
the slope changes from 0.25 to 0.228, which may
be too small to be seen in Fig. 6.

While Fig. 6 looks similar to Fig. 5, there is one
difference. The maximum stress intensity factor in

Fig. 6. Normalized stress intensity factor K̄I � (1�
n)KI /Ee0(πa)1/2 as a function of the normalized time t̄ �
Dt /a2 for a corner crack in an L-shaped film of different sizes.

Fig. 5 has an upper bound given by the equilibrium
value in Eq. (14), but there is no such bound in
Fig. 6 simply due to the singularity of the L-shape.
Thus, the stress intensity factor can reach a much
larger value and the crack is more likely to grow
at the corner of an L-shaped film.

4. Discussions and extensions

In this section, we discuss possible extensions
of the present model. Based on the analysis in Sec-
tion 3, we present the corresponding analytical sol-
utions at limiting cases, but leave the full numeri-
cal solutions for subsequent studies.

4.1. Nonlinear creeping model

The present model assumes a linear viscous
creeping interlayer between the film and the sub-
strate. One may extend the model to have a nonlin-
ear creeping interlayer. For example, by using the
power law creeping model, Eq. (5) becomes

ta � �bH∂ua
∂t �1/n

, (18)

where b has the unit of (stress)n × time and n is a
dimensionless number. Replacing Eq. (5) with Eq.
(18), the model yields a time-dependent length:
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l � � EnhnHt
(1�n2)nb�1/(n+1)

. (19)

Thus, for a semi-infinite crack, Eq. (12) becomes

KI(t) � �Ee0� EnhnHt
(1�n2)nb�1/2(n+1)

. (20)

Similarly, for a corner crack in an L-shaped film,
Eq. (17) becomes

KI(t) � zEe0(a)1/2� EnhnHt
(1�n2)nban+1� l

(n+1)
. (21)

When n � 1 and b � h, Eqs. (20) and (21) reduce
to Eqs. (12) and (17), respectively.

4.2. Linear viscoelastic models

Another alternative of the material property of
the interlayer is linear viscoelastic. We consider
two simple models of viscoelasticity. First, using
the Kelvin/Voigt viscoelastic model, Eq. (5)
becomes

ta �
h
H

∂ua
∂t

�
m
H

ua, (22)

where m denotes the elastic shear modulus of the
interlayer. Comparing the two terms on the right-
hand side of Eq. (22), we have a time scale:

t∗ � h /m. (23)

When t
t∗, the viscous term (i.e. the first term)
dominates. For a semi-infinite crack, the stress
intensity factor follows Eq. (12) in this regime.
When t�t∗, the elastic term (i.e. the second term)
dominates, and the model reduces to that for a thin
film bonded to an elastic substrate [11]. Therefore,
the stress intensity factor will saturate at an equi-
librium value determined by the elasticity. For a
semi-infinite crack, from dimensional analysis, the
equilibrium value takes the form

Ke
I�Ee0�EhH

m �1/4

. (24)

Fig. 7(a) shows the schematic of the stress intensity
factor as a function of time for a semi-infinite crack
if the interlayer is Kelvin/Voigt-type viscoelastic.

Fig. 7. Schematic K-histories of viscoelastic models: (a)
Kelvin/Voigt model and (b) Maxwell model.

Alternatively, if we use the Maxwell model of
viscoelasticity, Eq. (5) becomes

ta � m�ua
H

�gpa�, (25)

where gpa is the viscous portion of the total shear
strain, and

∂gpa
∂t

�
ta
h

. (26)

Combining Eq. (25) with the film equilibrium equ-
ation (Eq. (6)), one can solve for the shear traction
tα with gpa as a parameter, and then evolve gpa by
Eq. (26). The Maxwell model has the same time
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scale, t∗, as the Kelvin/Voigt model given by Eq.
(23). However, the behaviors are quite different.
At t � 0, there is no viscous shear strain (i.e.
gpa � 0), and the model reduces to that for a thin
film bonded to an elastic substrate [11]. Thus, for
a semi-infinite crack, the stress intensity factor
instantaneously takes the form of Eq. (24). When
t
t∗, the viscous shear strain gpa is small compared
to the elastic strain, and the stress intensity factor is
predominantly determined by the elastic solution.
When t�t∗, however, the viscous shear strain
dominates and the model reduces to the linear vis-
cous model, i.e. Eq. (5). For a semi-infinite crack,
in this regime, the stress intensity factor follows
Eq. (12), increasing with time indefinitely. Fig.
7(b) shows the schematic of the stress intensity fac-
tor as a function of time for a semi-infinite crack
if the interlayer is Maxwell-type viscoelastic.

Comparing the viscoelastic behaviors predicted
by the Kelvin/Voigt model and the Maxwell
Model, we see that fracture in the thin film is con-
strained according to Kelvin/Voigt model, but the
constraint is lost according to the Maxwell model.
A more realistic model of viscoelasticity would be
the Burger model, which consists of a Maxwell
model and a Kelvin/Voigt model in series. We will
not discuss the behavior of the Burger model in
the present study.

4.3. Very thick viscous layer

In addition to the material property of the inter-
layer, another assumption we made in the present
model is that the thickness of the interlayer is small
compared to lateral dimensions (e.g. the film size
and the crack length). This assumption allows us
to further assume a linear variation of the flow
velocities across the thickness of the interlayer.
When the interlayer is very thick, however, this
assumption is not valid and Eq. (5) should be
replaced by

ta � h
∂ga
∂t

, (27)

where gα is the viscous shear strain at the interface.
To find the shear strain, one has to solve a 3D vis-
cous flow problem. With a semi-infinite viscous

layer underneath a thin film, dimensional analysis
leads to a time-dependent length scale

l � Eht /h. (28)

Scaling with this length scale, the stress intensity
factor at the tip of a semi-infinite crack takes the
form

KI(t) � �Ee0(Eht /h)1/2. (29)

Comparing Eq. (29) with Eq. (12), we note the dif-
ferent dependences of the stress intensity factor on
the time for a semi-infinite viscous layer and for a
thin viscous layer. Thicker viscous layer leads to
faster increase in the stress intensity factor. Simi-
larly, for a corner crack in an L-shaped film, Eq.
(17) becomes

KI(t) � zEe0(a)1/2�Eht
ha�l. (30)

The same idea can be extended to the nonlinear
creeping model and the viscoelastic models.

4.4. Ratcheting–creep analogy

A further extension of the present model con-
siders fracture in thin film structures subjected to
ratcheting deformation. Temperature cycling has
been used as a reliability test to qualify integrated
materials structures in microelectronic and pho-
tonic industries. Under certain circumstances, the
structures deform in the same direction as the tem-
perature cycles. Such deformation is called ratchet-
ing [18–20]. Several examples of ratcheting in thin
film structures have been discovered recently [21–
26]. In particular, Huang et al. [24] discovered a
new failure mechanism induced by ratcheting in
thin film structures comprising both ductile and
brittle materials and developed a simple model
using a ratcheting–creep analogy.

As shown in Fig. 8, thermal expansion mismatch
induces a shear stress tm at the top surface of a
metal film, which is bonded to an elastic substrate.
As temperature cycles, the mismatch of the thermal
expansion coefficients between the metal film and
the substrate induces biaxial in-plane stresses,
which causes the metal film to yield, but the direc-
tion of the shear stress does not change. The metal
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Fig. 8. A metal film subjected to a shear stress at the top sur-
face.

film plastically yields in every temperature cycle,
leading to an increment of the plastic shear strain
gp in the direction of the shear stress. When the
shear stress is small, the ratcheting rate (i.e. the
plastic shear strain increment per temperature
cycle) is linearly proportional to the shear stress,
namely

∂gp

∂N
�
tm
hR

, (31)

where

hR �
Em

12(1�nm)�Em(am�as)(TH�TL)
(1�nm)Y

�2��1

.

(32)

The proportionality hR is called the ratcheting-vis-
cosity. Em is the Young’s modulus of the metal
film, nm is Poisson’ s ratio, Y is the uniaxial yield
strength, am and as are the coefficients of thermal
expansion of the metal film and the substrate,
respectively. The temperature cycles between TL

and TH.
Comparing Eq. (31) with Eq. (5), we see the

analogy between ratcheting and creep with the
number of cycles (N) in ratcheting analogous to
the time (t) in creep and the ratcheting-viscosity
(hR) analogous to the creep viscosity (h). Thus, if
the interlayer material in Fig. 1(c) is ductile, tem-
perature cycling will induce ratcheting deformation
in the ductile layer, which will also cause loss of
constraint on fracture in the elastic thin film. The
stress intensity factor as a function of the number
of temperature cycles follows the similar scaling
laws. For a semi-infinite crack, the stress intensity
factor takes the form

KI(N) � �Ee0� EhHN
(1�n2)hR

�1/4

, (33)

and for a corner crack in an L-shaped film, we have

KI(N) � zEe0(a)1/2� EhHN
(1�n2)hRa2�l/2. (34)

5. Conclusions

Fracture in a thin elastic film bonded to an elas-
tic substrate is constrained. The constraint is lost
if the substrate creeps or if there is a viscous inter-
layer between the film and the substrate. A 2D
model is presented, from which both analytical and
numerical solutions are obtained. Extensions of the
present model are discussed for nonlinear creeping
and viscoelastic interlayers as well as a semi-infi-
nite viscous layer. The analogy between creep and
ratcheting for thin film structures under cyclic tem-
peratures is discussed. The present study focuses
on stationary cracks. A detailed analysis of the
growing cracks will be presented elsewhere [27].
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