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Abstract

This paper develops a theoretical model for wrinkling of an elastic film on an elastic–plastic metal layer caused by cyclic tem-

peratures. The film is compressively strained and bonded to the metal layer, which in turn lies on a thick substrate. The thermal

expansion mismatch between the metal and the substrate induces a biaxial stress, which is assumed to be large enough to cause the

metal to deform plastically during each cycle. Wrinkling of the film induces normal and shear tractions at the film–metal interface,

which bias the plastic flow of the metal. Consequently, the metal ratchets, namely, accumulates plastic deformation in the same

directions as the temperature cycles. Concomitantly, the wrinkle of the film grows. The model reveals an analogy between ratcheting

and creep. Analytical solutions are obtained for linear perturbation analysis and equilibrium states. Numerical simulations show

evolution of wrinkles under various conditions and the effect of elastic constraint.

� 2004 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
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1. Introduction

Under in-plane compression, a freestanding mem-

brane tends to buckle. For a thin film bonded to a

substrate, the buckling is constrained. If the substrate is
elastic and relatively compliant, the film may still buckle

into an equilibrium state [1–4], which is often called

wrinkling as the wavelength is usually shorter than

buckling of a free standing film. If the substrate creeps,

the wrinkling becomes a kinetic process, where the am-

plitude grows over time [5–11]. At high temperatures,

interfacial diffusion may also facilitate wrinkling [12].

This paper studies another mechanism of wrinkling,
which is induced by ratcheting plastic deformation un-

der cyclic temperatures. Wrinkling of thin films may

cause failure in layered structures or produce ordered

patterns for micro and nano fabrication.
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Thermal cycling is widely used in the microelectronics

industry as a test to qualify new products. Various

failure modes have been observed after cycling a device

between two temperatures for hundreds and thousands

of times. Understanding these failure modes is urgently
needed in order to interpret the qualification test and to

guide new designs. In particular, metal film crawling has

been observed for over two decades [13–15]. Metal films,

serving as interconnects in microelectronic devices,

crawl toward the die center as the temperature cycles,

resulting in excessive deformation near the die corners,

sometimes even cracking adjacent passivation layers.

The mechanism of metal film crawling as well as the
induced cracking has been recently explained using the

concept of ratcheting [16–19]. The deformation in the

same direction caused by a cyclic load (e.g., temperature

cycle) is known as ratcheting [20–22], which has been

observed in many engineering structures. The ratcheting

deformation in the metal films builds up stresses in the

brittle passivation layers and leads to cracking.

An analogy between ratcheting and creep has been
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Fig. 2. Schematic of an ideal structure with a compressed elastic film

on a metal layer: (a) reference state; (b) wrinkled state.
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developed to understand the kinetics of ratcheting-in-

duced crack initiation and growth [18,23,24].

The analogy between ratcheting and creep suggests

that, under certain conditions, a compressively strained

elastic film on a metal layer may wrinkle due to the
plastic ratcheting deformation of the metal under cyclic

temperatures, as it would on a creeping substrate [5–11].

Indeed, studies of thermal barrier systems have shown

that, upon thermal cycling, the thin film of thermally

grown oxide (TGO) wrinkles [10,25–28]. Fig. 1 shows a

schematic of a typical thermal barrier system, consisting

of a thick superalloy substrate, a metal alloy bond coat,

a TGO film, and a ceramic thermal barrier coat (TBC).
Wrinkling of the TGO film may lead to various failure

modes, such as delamination at the interfaces and

cracking of the ceramic TBC. The mechanism of wrin-

kling, however, has not been fully understood due to a

large number of factors that potentially play roles in the

wrinkling process. He et al. [25] carried out a numerical

analysis, showing that ratcheting occurs when the initial

wrinkle amplitude exceeds a critical value. In their
analysis, they neglected the thermal expansion mismatch

between the bond coat and the superalloy substrate.

Karlsson and Evans [27] relaxed this limitation and

showed enhanced ratcheting. Recent experiments have

indicated that thermal expansion mismatch between the

bond coat and the superalloy plays an important role in

the wrinkling process [29].

In this paper, we present a theoretical model that
predicts ratcheting-induced wrinkling without requiring

any critical amplitude. The paper is organized as fol-

lows. Section 2 develops the model for an ideal structure

(Fig. 2). Differing from the previous studies, the model

assumes a large thermal expansion mismatch between

the metal layer and the substrate. We demonstrate an

analogy between ratcheting and creep, similar to that for

metal film crawling [18]. Section 3 presents analytical
solutions for linear perturbation analysis and con-

strained equilibrium states. In Section 4, numerical
Fig. 1. Schematic of a typical thermal barrier system.
simulations are conducted to show the evolution of
wrinkles under various conditions. Section 5 concludes

with remarks on the implications and the limitations of

the model.
2. Model formulation

Fig. 2 shows the schematic of an ideal structure: an
elastic film of thickness h lies on a metal layer of average

thickness H0, which in turn lies on a thick substrate. At

the reference state (Fig. 2(a)), both the elastic film and

the metal layer are flat, and the film is subjected to an in-

plane biaxial stress r0. At the wrinkled state (Fig. 2(b)),

the film undergoes in-plane and out-of-plane displace-

ments, and the metal layer deforms accordingly. The

thick substrate is assumed to be rigid. The interface
between the elastic film and the metal layer is assumed

to be perfectly bonded with no separation or sliding.

That is, the displacements and the tractions are contin-

uous across the interface. Let w be the deflection (out-of-

plane displacement) of the film, ua the in-plane dis-

placement (a ¼ 1; 2), p the pressure (negative normal

traction) at the interface, and sa the shear tractions.

Employing the non-linear von Karman plate theory
[30,31] to account for large deflection of the film, equi-

librium requires that:

p ¼ Df

o4w
oxaoxaoxboxb

� Nab
o2w

oxaoxb
� sa

ow
oxa

; ð1Þ

sa ¼
oNab

oxb
; ð2Þ
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where

Df ¼
Efh3

12ð1� m2f Þ
; ð3Þ

Nab ¼ r0hdab þ Efh
1

1þ mf
eab

�
þ mf
1� m2f

eccdab

�
; ð4Þ

eab ¼
1

2

oua
oxb

�
þ oub

oxa

�
þ 1

2

ow
oxa

ow
oxb

: ð5Þ

In the above equations, Ef is the Young’s modulus of

the film, mf the Poisson’s ratio, Df the flexural rigidity,

Nab the in-plane membrane force, eab the in-plane strain,
dab the Kronecker delta. The Greek subscripts a and b
take on the values of in-plane coordinates 1 and 2, and a

repeated Greek subscript implies summation over 1 and

2. We assume that the film remains elastic during ther-

mal cycles with temperature-independent Young’s

modulus and Poisson’s ratio. The residual stress in the

film is also assumed to be temperature-independent,

which is a reasonable approximation if the thermal ex-

pansion mismatch between the film and the substrate is
small (i.e., af � as).

The stress state in the metal layer consists of two

parts: one is due to thermal expansion mismatch be-

tween the metal and the substrate, and the other is due

to the tractions at the film–metal interface. At the ref-

erence state (Fig. 2(a)), the interface tractions are zero

and the metal layer is under a biaxial thermal stress

only. With a small perturbation of the interface in the
form of wrinkling, the tractions, given by Eqs. (1) and

(2), superimpose the thermal stress in the metal. Assume

that the interface tractions are small compared to the

yield stress of the metal, but the thermal stress by itself is

large enough to cause the metal to yield plastically. Let

am and as be the thermal expansion coefficients of the

metal layer and the substrate, respectively. The defor-

mation compatibility between the metal layer and the
substrate requires that

dep þ dee þ am dT ¼ as dT ; ð6Þ
where ep and ee are the plastic and elastic in-plane strain

in the metal layer, respectively, and T is the temperature.

We assume that the metal does not creep within the

temperature range. Hooke’s law relates the incremental

elastic in-plane strain to the incremental thermal stress,

namely

dee ¼ 1� mm
Em

drT; ð7Þ

where Em is the Young’s modulus of the metal and mm is

the Poisson’s ratio.

When the metal is elastic dep ¼ 0, and a combination

of Eqs. (6) and (7) gives the thermal stress increment

drT ¼ � Em

1� mm
amð � asÞdT : ð8Þ
We adopt the J2 flow theory [32] to analyze the plastic

deformation in the metal layer. Assume that the metal is

elastic and perfectly plastic with a uniaxial yield strength,

Y , independent of the temperature. For a flat metal layer

with no tractions at the surface, the Mises yield condi-
tion dictates that the metal yields when rT ¼ �Y . The
thermal stress by itself causes cyclic plastic deformation,

but not ratcheting, i.e., the net deformation after one

cycle is zero. The tractions at the film–metal interface

perturb the stress state in the metal layer. To the first-

order approximation, we assume that the pressure at the

interface introduces a normal stress in the thickness di-

rection, i.e., r33 ¼ �p, and neglect the relatively small
shear tractions for now. Under these assumptions, the

in-plane stresses in the metal layer at yield become

r11 ¼ r22 ¼ rT ¼ �p � Y : ð9Þ
In addition, the equilibrium of the metal layer re-

quires that

or3a

ox3
¼ op

oxa
; ð10Þ

where r3a is the shear stress necessary to balance the

variation of the in-plane normal stresses in (9). Inte-

grating (10) with respect to x3 and setting r3a ¼ sa at the
film–metal interface (x3 ¼ H ), we obtain that

r3a ¼ sa �
op
oxa

Hð � x3Þ; ð11Þ

where H is the thickness of the metal layer at the

wrinkled state, i.e., H ¼ H0 þ w. Note that the shear

stresses in (11) vary linearly across the thickness of the

metal layer. The shear stresses are small and their con-
tribution to the yielding condition has been neglected. It

is cautioned that the above approximation is limited to

situations where the metal thickness is small compared

to the wavelength of the wrinkle.

The J2 flow theory dictates that the plastic strain in-

crement be in the same direction as the deviatoric stress

tensor, namely, depij ¼ ðrij � 1
3
rkkdijÞdk, where dk is a

scalar factor of proportionality. Consequently, we have

dep

1
3
rT þ pð Þ ¼

dep3
� 2

3
rT þ pð Þ ¼

dcpa
2r3a

; ð12Þ

where ep3 is the plastic strain in the thickness direction,
and cpa ¼ 2ep3a is the plastic shear strain. No summation

over a is noted in (12).

When the metal yields, without hardening, dee ¼ 0,

and from (6)

dep ¼ � amð � asÞdT : ð13Þ
Inserting (13) into (12), we obtain that:

dep3 ¼ 2 amð � asÞdT ; ð14Þ

dcpa ¼ �6 amð � asÞ
r3a

rT þ p
dT : ð15Þ



3710 S.H. Im, R. Huang / Acta Materialia 52 (2004) 3707–3719
Eqs. (13)–(15) are important for understanding the

ratcheting behavior. Assume am > as for no ambiguity.

Start from a low temperature TL. As the temperature

increases (dT > 0), the metal first deforms elastically

and then yields in compression (rT þ p ¼ �Y ). Further
increasing the temperature causes the metal to flow

plastically: the plastic in-plane strain decreases

(dep < 0), the plastic thickness strain increases (dep3 > 0),

and the plastic shear strain flows in the direction of the

shear stress r3a. Next, decrease the temperature (dT < 0)

after reaching a high temperature TH (TH > TL). Again,

the metal first deforms elastically (unloading) and then

yields in tension (rT þ p ¼ Y ). Upon yielding, the plastic
in-plane strain increases (dep > 0), the plastic thickness

strain decreases (dep3 < 0), and the plastic shear strain

flows again in the direction of the shear stress r3a.
Consequently, after one cycle, the net increments of

both the plastic in-plane strain and the plastic thickness

strain are zero. However, since the direction of the shear

stress r3a does not change, the plastic shear strain flows

in the same direction at both heating and cooling. After
each cycle, the plastic shear strain increases by a finite

amount, and the metal ratchets. Same ratcheting be-

havior occurs for as > am.
Fig. 3(a) shows a prescribed temperature cycle, and

Fig. 3(b) shows the corresponding in-plane stress. The

initial stress at A only affects the first cycle. Integrating
(a)  TH
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Fig. 3. (a) Prescribed temperature changes with time. (b) In-plane

stress as a function of temperature.
(15) over one cycle (e.g., CDEFC) and neglecting the

changes of the shear stresses r3a and the pressure p
within one cycle, we obtain the net increment of the

plastic shear strain per cycle

ocpa
oN

¼ r3a

gR
; ð16Þ

where

gR ¼ Em

12 1� mmð Þ
Em am � asð Þ TH � TLð Þ

1� mmð ÞY

�
� 2

��1

: ð17Þ

Eq. (16) has the same form as the linear ratcheting

approximation deduced by Huang et al. [18] for metal
film crawling, where a constant shear stress was applied

at the interface. The constant gR was named as rat-

cheting-viscosity in observation of the analogy between

the ratcheting deformation and Newtonian viscous flow

or linear creep.

A condition for the ratcheting deformation is implied

by (17), namely

Em am � asð Þ TH � TLð Þ
1� mmð ÞY > 2: ð18Þ

When condition (18) is not satisfied, for example, if
the temperature range is too small, the metal deforms

elastically after the first cycle and does not accumulate

any plastic deformation. For the cases with as > am, the
same result holds after replacing am � as with as � am in

(17) and (18). Taking Em ¼ 200 GPa, Y ¼ 100 MPa,

mm ¼ 0:25, am � as ¼ 10�5 K�1, and TH � TL ¼ 100 K,

we obtain gR ¼ 33:3 GPa per cycle.

Let va be the accumulated in-plane displacements of
the metal. The plastic shear strain is, approximately,

cpa � ova
ox3
, where the in-plane variation of the displace-

ments has been neglected. Substituting (11) into (16) and

integrating with respect to x3, we obtain that

ova
oN

¼ 1

gR
sax3

�
� op
oxa

Hx3

�
� 1

2
x23

��
: ð19Þ

The boundary conditions for the displacements are: (1)

the displacements are zero at the metal–substrate inter-

face, i.e., va ¼ 0 at x3 ¼ 0; and (2) at the film–metal in-

terface, by continuity, the in-plane displacements of the

metal equal to the in-plane displacements of the film,

i.e., va ¼ ua at x3 ¼ H . Thus, the accumulation of the in-

plane film displacements is

oua
oN

¼ 1

gR
saH
�

� H 2

2

op
oxa

�
: ð20Þ

Furthermore, integration of (19) with respect to x3
from 0 to H gives the in-plane plastic flow rates across

the thickness. The mass conservation of plastic flow

requires that

oH
oN

¼ � o

oxa

Z H

0

ova
oN

dx3

� �
: ð21Þ
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Substituting (19) into (21) and noting that

H ¼ H0 þ w, we obtain that

ow
oN

¼ 1

gR

o

oxa

H 3

3

op
oxa

�
� H 2

2
sa

�
: ð22Þ

Eqs. (20) and (22), together with Eqs. (1) and (2),

describe the displacement evolution of the elastic film as
the temperature cycles. The equations are analogous to

those obtained for an elastic film on a viscous layer [8],

with the number of cycles N replacing the time t and the

ratcheting viscosity gR replacing the creep viscosity.

Similar analogy has been used to understand metal film

crawling and ratcheting-induced cracking [18,23,24]. In

fact, Eq. (20) reduces to that for metal film crawling [18]

when only a uniform shear traction acts at the metal
surface. The present model suggests that a non-uniform

shear traction causes the metal surface to undulate while

crawling. Also interestingly, a uniform pressure at the

surface does not cause any ratcheting deformation in the

metal, but a non-uniform pressure induces both crawling

and surface undulation. In all cases, a necessary condi-

tion for ratcheting deformation is given by Eq. (18).

As noted before, the model has several limitations.
For example, the temperature-dependent material

properties and strain hardening have been ignored. The

thickness of the metal layer is assumed to be small

compared to the wavelength of in-plane perturbation.

Nevertheless, the mechanism is robust in that the metal

layer ratchets as long as (i) the thermal expansion mis-

match causes the metal to yield, and (ii) the plastic shear

strain accumulates due to wrinkling perturbation. Con-
sequently, the quatitative results should be used with

caution, but the qualitative trends should be reliable.
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3. Analytical solutions

The previous section develops a model for ratcheting-

induced wrinkling, which is three-dimensional in gen-
eral. To make the problem simpler, the remainder of this

paper considers plane–strain deformation only. In this

case, analytical solutions are available for linear per-

turbation analysis and constrained equilibrium states,

analogous to those obtained in [8] for an elastic film on a

viscous layer.

3.1. Linear perturbation analysis

Assume a sinusoidal wrinkle of small amplitude

w x1;Nð Þ ¼ A Nð Þ sin 2px1
k

� �
; ð23Þ

where AðN ) is the wrinkle amplitude, and k the wrinkle
wavelength. The perturbation in the in-plane displace-

ment has a small effect on the result and will be ignored

here. Refer to [8] for a full analysis.
Substituting (23) into (1), we obtain the pressure at

the film–metal interface

p ¼ Df

2p
k

� �4
"

þ r0hf
2p
k

� �2
#
A sin

2px1
k

� �
; ð24Þ

where only the first-order terms of A is retained for

linear analysis. The shear traction at the interface is zero

because the in-plane displacement has been ignored.

Inserting (23) and (24) into (22), and again keeping

only the first-order terms in A, we obtain the amplitude

growth per cycle

dA
dN

¼ s kð ÞA; ð25Þ

where

s kð Þ ¼ H 3
0

3gR

2p
k

� �4
"
� r0h� Df

2p
k

� �2
#
: ð26Þ

Note that, by neglecting the in-plane displacement,
the growth rate (26) is four times faster than that in [8] at

the limit of small underlayer thickness (i.e., H0 � k).
Solving (25), we obtain that

AðNÞ ¼ A0 expðsNÞ; ð27Þ
where A0 is the initial amplitude of the wrinkle.

Fig. 4 sketches the wrinkle growth rate s as a function

of the wavelength for a compressively strained

film (r0 < 0). The growth rate vanishes at a critical

wavelength

kc ¼
phffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 1� m2fð Þ
p ffiffiffiffiffiffiffiffiffi

Ef

�r0

r
: ð28Þ

When k > kc, sðkÞ > 0 and the wrinkle amplitude

grows exponentially. Otherwise, the amplitude decays.

The critical wavelength is an outcome of the compro-

mise between bending and in-plane deformation of the
film. Upon wrinkling, the film relaxes the strain energy
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associated with in-plane compression, but acquires

some bending energy. The reduction of compression

energy overcomes the bending energy for long wave-

length, but the bending energy prohibits wrinkling of

short wavelengths. The stability condition is identical
to that of Euler buckling of a freestanding membrane

[30] and to that of a compressed elastic film on a

viscous layer [6–8]. The deformation of the underlayer,

whether creeping or ratcheting, only affects the growth

rate.

As shown in Fig. 4, for wrinkles with very long

wavelengths, the growth rate diminishes. Growth of

long-wavelength wrinkles requires plastic flow over a
long distance in the metal layer and takes many cycles.

As a result, the wrinkle grows the fastest at an inter-

mediate wavelength

km ¼ phffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� m2fð Þ

p ffiffiffiffiffiffiffiffiffi
Ef

�r0

r
: ð29Þ

The corresponding growth rate is

sm ¼
16 1� m2f
� �2 � r0ð Þ3

9gRE
2
f

H0

h

� �3

: ð30Þ

We note that the wavelength of the fastest growing

mode is independent of the metal layer. The growth rate

in (30) increases as the thickness of the metal layer in-
creases, which is only correct for a thin metal layer as

assumed in this model. For a thick metal layer, the

growth rate should approach an asymptote for infinite

thickness, analogous to wrinkling on a thick viscous

layer [6,37].
3.2. Constrained equilibrium states

For a compressed elastic film on a viscous layer, ex-

periments have shown that wrinkles grow and attain an

equilibrium amplitude after some time [33]. The analogy

between creep and ratcheting suggests the same equi-

librium state for ratcheting-induced wrinkles. The

wrinkle reaches an equilibrium state when the tractions

at the interface between the film and the metal layer

vanish. At the equilibrium state, the metal undergoes
cyclic plastic deformation with no ratcheting and the

wrinkle does not grow. By setting p ¼ s1 ¼ 0 in Eqs. (1)

and (2), we obtain the equilibrium state:

w ¼ Aeq sin
2p
k
x1

� �
; ð31Þ

u1 ¼ � p
4k

A2
eq sin

4p
k
x1

� �
; ð32Þ

where

Aeq ¼
hffiffiffi
3

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
kc

� �2

� 1

s
: ð33Þ
Note that, at the equilibrium, the in-plane displace-

ment undulates with half wavelength of the wrinkle, a

result of non-linear behavior.

For any wavelength k > kc, Eq. (33) gives a real value

for the equilibrium amplitude, and a non-trivial equi-
librium state exists. Such an equilibrium state is similar

to post-buckling of a column under an axial compres-

sion. For a blanket film, infinitely many such equilib-

rium states exist. The total strain energy in the film is

lower for an equilibrium state with longer wavelength

[8]. Consequently, the equilibrium state of a finite

wavelength is energetically unstable. On the other hand,

the ratcheting of the metal layer controls the kinetics.
Near an equilibrium state, the wrinkle grows very

slowly, thus kinetically constrained.

Combining the results from the linear perturbation

analysis and the equilibrium states, one can envision the

wrinkling process. Starting from a random perturbation,

the fastest growing mode (k ¼ km) dominates the initial

growth. The amplitude grows exponentially at the initial

stage of cycling and then saturates at the equilibrium
state. For the fastest growing mode, the equilibrium

amplitude is, Aeq ¼ h=
ffiffiffi
6

p
. Thereafter, the wrinkle

evolves toward longer wavelength and larger amplitude

to further reduce the elastic energy in the film, but very

slow due to the kinetic constraint of ratcheting defor-

mation in the underlying metal.
4. Numerical simulations

In this section, we simulate the wrinkling process by

integrating Eqs. (22) and (20) numerically with a finite

difference method. Consider plane strain deformation

only. Start with a displacement field, wðx1) and u1ðx1) at
cycle N . Eqs. (1) and (2) determine the tractions at the

film–metal interface. The displacement field is then up-
dated for the next cycle according to Eqs. (22) and (20).

Repeat the procedure to evolve the displacement field

over many cycles. The forward-time-centered-space

(FTCS) differencing scheme is used. To ensure numeri-

cal stability, each cycle is broken into many small in-

tervals. The equations are normalized so that only a

small number of dimensionless parameters need to be

specified.

4.1. Sinusoidal wrinkles

We first consider sinusoidal wrinkles. The initial

condition is specified as a sinusoidal deflection with a

small amplitude and zero in-plane displacement. The

periodic boundary condition is assumed for this simu-

lation. Fig. 5 shows the evolving displacements. Both
the coordinate and the displacements are normalized by

the film thickness. The following parameters were used

in the simulation: r0=Ef ¼ �0:014, A0=h ¼ 0:01,
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H0=h ¼ 10, k=h ¼ 20, gR=Ef ¼ 0:1. The wavelength was

selected to be close to the fastest growing mode to save

computation time. As the temperature cycles, the wrin-

kle grows, accompanied by a small amount of in-plane

displacement. Fig. 6 shows the wrinkle amplitude as a

function of the number of cycles. Initially, the amplitude

grows exponentially, following the prediction of linear

perturbation analysis. After about 40 cycles, the wrinkle
deviates from exponential growth and approaches the
equilibrium state after about 120 cycles; the amplitude

does not change significantly thereafter. Fig. 5 also

shows that the in-plane displacement evolves from a

wave of the wrinkle wavelength at the initial stage to a

wave of half the wrinkle wavelength at equilibrium, as

predicted by the analytical solution in Section 3. Al-

though the equilibrium state is energetically unstable,

subsequent evolution toward longer wavelengths is ex-
tremely slow due to the kinetic constraint of ratcheting,
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which was not observed in our simulations. A pertur-

bation to the equilibrium state may be necessary to

numerically trigger the evolution.

4.2. Wrinkling with elastic constraint

In a thermal barrier system (Fig. 1), the TGO film is

under compression due to lateral growth at high tem-

peratures. As temperature cycles, ratcheting of under-

lying bond coat allows the TGO film to grow wrinkles.

The TBC layer on top, however, constrains upward

deflection of the TGO film. Consequently, the wrinkle

tends to grow into the bond coat. Fig. 7(a) shows a
Fig. 7. (a) A thermal barrier system with wrinkled TGO film from [26].

(b) A model structure with elastic constraint on top of the film.
wrinkled TGO film in a thermal barrier system observed

by Mumm et al. [26]. Fig. 7(b) sketches a model struc-

ture to be used for simulations. Assume a clamped

boundary condition at both ends of the film. Within the

span, the TBC layer provides an elastic constraint
against upward deflection, but downward deflection is

not constrained, resembling the case when the TBC

layer is debonded from the TGO film due to interface

cracking. Outside the span, the film is clamped between

the bond coat and the TBC layer with perfect bonding.

To approximate this elastic constraint, we add a term

linearly proportional to the upward deflection to Eq. (1)

for the pressure at the film–metal interface, namely

p ¼ Df

o4w
oxaoxaoxboxb

� Nab
o2w

oxaoxb
� sa

ow
oxa

� Sw�hðwÞ;

ð34Þ

where �hðwÞ is the heavyside function taking value 1 for

positive w and 0 for negative w, and S is a parameter

characterizing the stiffness of the elastic constraint.
Rigorously, the additional pressure due to elastic de-

formation of the TBC layer is more complicated and

depends on the elastic modulus and the thickness of the

TBC layer. Our focus here is to illustrate the effect of an

arbitrary elastic constraint on the wrinkling process by

using the model structure and the above approximation.

A more sophisticated analysis on the elastic constraint is

in progress and will be reported elsewhere.
With Eq. (34) replacing Eq. (1), we simulate the

wrinkling process with various degrees of elastic con-

straint. The initial condition is specified as a deflection

described by a Gauss function, i.e.

w x1;Nð ¼ 0Þ ¼ �A0 exp

�
� x21
D2

�
; ð35Þ

where A0 is the initial amplitude of the perturbation and

D is the characteristic half width. In all simulations

presented in this section, we start from the same initial
perturbation with A0=h ¼ 0:01 and D=h ¼ 20. The length

within the span of the model film is 200h, the com-

pressive stress in the film r0=Ef ¼ �0:014, and the rat-

cheting viscosity gR=Ef ¼ 0:1.
Fig. 8 shows a simulation of the evolving displace-

ment in the case of no constraint (i.e., S ¼ 0). The da-

shed line in each plot shows the initial perturbation.

Initially, the perturbation grows slowly, with the am-
plitude increasing and the width decreasing, consistent

with mass conservation of the plastic deformation of the

metal layer. After about 200 cycles, the wrinkle develops

multiple waves, with the dominant wavelength close to

the fastest growing mode predicted by linear perturba-

tion analysis (see Eq. (29) or Fig. 4). Subsequent growth

of the wrinkle is similar to that of a sinusoidal wrinkle as

shown in Fig. 5, except that the film is now clamped at
the both ends. Note that the wavelength after 5000 cy-
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cles is longer than that at 600 cycles, which is consistent

with the fact that the elastic strain energy of the film

decreases as the wavelength increases [8]. It is expected

that both the wrinkle amplitude and the wavelength

keep increasing as thermal cycling continues. Some nu-
merical errors accumulate after integrating over a large

number of cycles, as noted in Fig. 8 for N ¼ 5000.

Fig. 9 shows the simulation with a small elastic con-

straint S ¼ 0:1Ef . During the first 200 cycles, no signif-

icant upward deflection (w > 0) of the film occurs.

Consequently, the evolution of the perturbation is sim-

ilar to that in Fig. 8 for the elastic constraint is not a

factor. After 200 cycles, however, as the film tends to
wrinkle upward, the elastic constraint suppresses the

development of multiple waves. The growth of wrinkles

is constrained at the center portion of the film. After

5000 cycles, the perturbation evolves into a grooving

shape, with small pile-up ridges at the top. Simi-
lar shapes have been obtained from finite element

simulations [34].

Fig. 10 shows the simulation with a large elastic

constraint S ¼ 10Ef . Again, for the first 200 cycles, the

behavior is similar to previous cases. After 200 cycles,

the large elastic constraint almost completely suppresses

the upward deflection. After 300 cycles, the wrinkle

evolves into a shape with three peaks. It is interesting to
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see that, after 600 cycles, the larger peak at the center

grows deeper, with the smaller peaks consumed. In an-

other simulation (not shown), we started from an initial

perturbation with multiple peaks. As the temperature

cycles, the growth of the peaks competed with each
other; larger peaks grew and consumed smaller ones.

Eventually, only one peak with a large amplitude re-

mained. The implication of such behavior may be im-

portant for understanding the failure of thermal barrier

systems: many small undulations of the TGO film may

grow and merge into one big wrinkle to cause failure.

The elastic constraint plays an important role in deter-

mining the profile of wrinkling.
Fig. 11 shows the wrinkle amplitude at the center as a

function of temperature cycles for different stiffnesses of

the elastic constraint. The results are essentially same for

all simulations during the first 200 cycles, because of no

significant upward deflection of the film and thus no
effect of the elastic constraint. Without the elastic con-

straint (S ¼ 0), after 200 cycles, the amplitude grows

much faster than the initial stage, close to the fastest

growth rate. After about 400 cycles, the growth slows

down. However, due to the clamped boundary condition

and the mass conservation of the metal layer, no ana-

lytical solution for equilibrium state exists, and the

amplitude keeps increasing after many cycles, but very



N=0 N=300  

N=140  N=600 

N=200  

0 20 40 60 80 100 120 140 160 180 200

-0.03

-0.04

-0.05

-0.02

-0.01

0

0.01

x/h

w
/h

0 20 40 60 80 100 120 140 160 180 200

-0.03

-0.04

-0.05

-0.02

-0.01

0

0.01

x/h

w
/h

0 20 40 60 80 100 120 140 160 180 200

-0.03

-0.04

-0.05

-0.02

-0.01

0

0.01

x/h

w
/h

0 20 40 60 80 100 120 140 160 180 200

-0.03

-0.04

-0.05

-0.02

-0.01

0.01

x/h

w
/h

0 20 40 60 80 100 120 140 160 180 200

-0.03

-0.04

-0.05

-0.02

-0.01

0.01

x/h

w
/h

0 20 40 60 80 100 120 140 160 180 200

-0.03

-0.04

-0.05

-0.02

-0.01

0.01

x/h

w
/h

N=5000

Fig. 10. Simulated evolution of wrinkling as temperatures cycles with elastic constraint S ¼ 10Ef .

S.H. Im, R. Huang / Acta Materialia 52 (2004) 3707–3719 3717
slowly, due to the kinetic constraint of ratcheting de-

formation underneath. With some elastic constraint, the

amplitude growth is slower, but the amplitude after

many cycles can be as large as that with no constraint.

The stiffer the elastic constraint, the slower the wrinkle

grows and the more cycles it takes to develop as large

amplitude.
5. Discussions

The model developed in this study is to show the

mechanism of ratcheting-induced wrinkling. Several

approximations have been made during the course of
model development. The temperature-dependent mate-

rial properties and strain hardening have been ignored.

The thickness of the metal layer is assumed to be small

compared to the wrinkle wavelength. In thermal bar-

rier systems, the oxide layer grows and deforms ine-

lastically at high temperatures [26,27,34], and the metal

bond coat creeps [10]. All these could affect wrinkling

of the oxide film, making modeling the complete pro-
cess a formidable task. Nevertheless, the present model

provides interesting insight into a possible mechanism

of wrinkling, not only for thermal barrier systems but

also for other layered systems such as microelectronic

interconnects with a passivation film on a metal

conductor.
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A previous study on thermal barrier systems showed

that a critical undulation amplitude is required for rat-

cheting to occur [25]. In that case, the ratcheting was

induced by the significant shear stress generated by the
film undulation as temperature cycles, and the thermal

mismatch between the metal layer and the underlying

substrate was assumed negligible. The critical amplitude

is relatively large, comparable to the wrinkle wave-

length, which is unlikely at the initial stage. The present

model assumes small amplitudes of wrinkling but large

thermal expansion mismatches between the metal layer

and the substrate. Under this condition, the metal
ratchets without requiring any critical amplitude.

Therefore, the present mechanism may be responsible

for the initial growth of wrinkles.

One important consequence of wrinkling is the in-

duced failure in layered structures. For example, the

bending of the film may induce substantial tensile

stress at the crest of wrinkles despite the fact that the

average stress in the film is compressive [35,36]. A
rough estimate can be made by considering the equi-

librium state of a sinusoidal wrinkle. With the equi-

librium amplitude given by Eq. (33), the maximum

stress in the film is

rmax ¼
Ef

12ð1� m2f Þ
2ph
k

� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

k2

k2c
� 1

 !vuut
2
4 � 1

3
5: ð36Þ

For the fastest growing mode (k ¼ km), the stress is
approximately )1.3r0, which is tensile and can be large

enough to cause fracture. Wrinkle-induced fracture has

been observed in a compressed elastic film on a viscous

layer [36]. Another failure mode that can be induced by

wrinkling is debonding at the interface. A previous nu-

merical simulation showed that negative pressure of

about 35 MPa could build up at the interface [35], which

may be enough to cause debonding.
Numerical simulations in the present study have

shown interesting features of wrinkling process, espe-

cially for the cases with elastic constraint from a top

layer. The stiffness of the elastic constraint plays an

important role in determining the wrinkling profile after
many cycles. A sophisticated analysis is needed to better

understand the effect of elastic constraint.
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