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Abstract

The recently developed extended finite element method (XFEM) is applied to compute the steady-state energy release

rate of channeling cracks in thin films. The method is demonstrated to be able to model arbitrary singularities by using

appropriate enriching functions at selected nodes with a relatively coarse mesh. The dimensionless driving force for

channeling cracks is obtained as a function of elastic mismatch, crack spacing, and the thickness ratio between the

substrate and the film. The results are compared with those from several previous studies when available. Emphasis is

placed on the cases with compliant substrates, for which much less information is available from previous studies. It is

found that, while it is quite challenging to model the cases with very compliant substrates using regular finite element

method because of the strong singularities, the present approach using XFEM is relatively simple and straightforward.
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1. Introduction

Many applications in microelectronics (e.g., interconnects and electronic packaging) often involve in-

tegrated structures with dissimilar materials. Stresses are introduced during the processes of fabrication,

reliability testing, and operation. The stress field concentrates at the junctions of dissimilar materials, at the

corners, or, if there exists a crack, at the crack tip. The asymptotic analyses based on elasticity showed that

the stress field is singular at these points [1–3]. Analyses with traditional finite element models (FEMs) use

very fine meshes near the singular points to resolve the rapidly varying stress field [4,5]. In the cases of

growing cracks, continual remeshing is required [6]. Recently, a new finite element technique has been

developed to model cracks and crack growth with relatively coarse meshes and without remeshing [7–9].
The method has been named by the developers as the extended finite element method (XFEM). The
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robustness of XFEM has been demonstrated by several applications [10–12]. In XFEM, the standard

displacement-based finite element approximation is enriched near a crack by incorporating both the dis-

continuous field and the singular asymptotic crack tip field. In principle, the technique can be applied to

problems with arbitrary discontinuities and singularities. Belytschko et al. [13] have demonstrated the
application of XFEM to arbitrary discontinuities. This paper tends to demonstrate its application to ar-

bitrary singularities with one example: channeling cracks in a thin elastic film bonded to an elastic sub-

strate. The strength of singularity of this particular problem depends on the elastic mismatch between the

film and the substrate. Similar approach can be used to model other singularities.

The paper is organized as follows. In Section 2, we first give an overview of XFEM and then describe

the approach to model channeling cracks. Section 3 develops the numerical model, and Section 4 presents

the results for channeling cracks. The accuracy of the present approach is examined by comparing the

results with those available from previous studies. In addition, more complete results are presented for the
effects of elastic mismatch, crack spacing, and substrate thickness on the steady-state energy release rate.

Section 5 discusses the special case when the substrate material is extremely compliant in comparison with

the film.
2. The extended finite element method

In this section, we first give an overview of the XFEM and then describe how to apply the method to
compute the steady-state energy release rate of channeling cracks in thin films.
2.1. An overview of extended finite element method

To model a crack, the regular finite element method would have to exactly mesh the geometry of the

crack and use a very fine mesh near the crack tip to capture the singular stress field. When the crack grows,

cumbersome remeshing is required. Several new finite element techniques have been developed to relieve the

task in modeling cracks [14,15]. One recent development is to use an enrichment technique in the standard

finite element framework through a partition of unity method [7–9]. The method has been named by the
developers as the XFEM. An XFEM model consists of a regular FEM, which is independent of the crack

geometry, and a crack representation, which is independent of the elements. Fig. 1 illustrates a typical mesh

with a curved crack of two tips. The crack is represented by a piecewise linear curve. Selected nodes around

the crack have extra degrees of freedom associated with the enriching functions. For the nodes around the

crack tips (the circled nodes in Fig. 1), the enriching functions are derived from the near-tip asymptotic field

to incorporate the stress singularity. For other nodes around the crack (the squared nodes in Fig. 1), the

discontinuous Heaviside function is the only enriching function in order to incorporate the displacement

jump across the crack faces. With such enrichments, the finite element discretization of the displacement
field takes the form
uðxÞ ¼
X
i2I

ui/iðxÞ þ
X
j2J

bj/jðxÞHðxÞ þ
X
k2K

/kðxÞ
X
l

cklFlðxÞ
 !

; ð2:1Þ
where K is the set of circled nodes, J is the set of squared nodes, and I is the set of all nodes. The first term
at the right-hand side of Eq. (2.1) is the regular finite element approximation with ui as the nodal dis-

placements, and the other two terms are enrichments with extra degrees of freedom, bj and ckl, for the nodes

in sets J and K, respectively. /iðxÞ are the standard finite element shape functions. HðxÞ is the Heaviside
‘‘jump’’ function which is defined in the local coordinate system so that it equals to 1 at one side of the



Fig. 1. A typical XFEM mesh with a curved crack of two tips. The squared nodes are enriched with the Heaviside function, and the

circled nodes are enriched with the near-tip asymptotic field.
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crack and equals to )1 at the other side. FlðxÞ are the functions that span the asymptotic displacement field

at the crack tip. For two-dimensional elasticity problems, the functions FlðxÞ are
fFlðxÞ; l ¼ 1; . . . ; 4g ¼
ffiffi
r
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sin

h
2

� �
;
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� �
; ð2:2Þ
where ðr; hÞ are the local polar coordinates at the crack tip.

In the discretization of Eq. (2.1), the displacement field is global, but the supports of the enriching

functions are local because they are multiplied by the nodal shape functions. With such discretization and

enrichment, the finite element mesh can be considerably coarse near the crack tip, as the singularity has

been taken into account by the enriching functions. Furthermore, the elements need not to conform to the

crack geometry, which makes mesh generation very convenient, especially for curved cracks. Another great
advantage of this method is for growing cracks. No remeshing is necessary! As the crack grows, one only

needs to update the sets of nodes that are to be enriched, while the mesh remains unchanged.

The robustness of XFEM has been demonstrated by several applications [10–12], for both stationary and

slow growing cracks. It has also been applied to three-dimensional cracks [16] and arbitrary discontinuities

such as voids and inclusions [13]. In this paper, we demonstrate another application of XFEM aiming for

problems with different singularities. When modeling integrated structures with dissimilar materials, stress

singularities are ubiquitously present at locations such as material junctions, corners, and crack tips. The

strength of each singularity depends on the properties of the surrounding materials. Modeling such
structures with the traditional finite element method is tedious since a very fine mesh has to be generated

around each singular point [4,5]. On the other hand, a simpler mesh may be used in an XFEM model with

appropriate enriching functions. The enriching functions (2.2) were derived from the asymptotic field at the

crack tip in a two-dimensional homogeneous elastic body. Similar asymptotic fields are available for other

singularities [1–3]. For a different singularity, a different set of enriching functions can be derived from the

corresponding asymptotic field. In principle, the XFEM technique can be applied to arbitrary singularities.

As an example of such applications, the remainder of this paper will focus on channeling cracks in thin

films, where the strength of the singularity depends on the elastic mismatch between the film and the
substrate.
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Fig. 2. A crack channeling through a pre-tensioned film on a semi-infinite substrate.
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2.2. Extended finite element method for channeling cracks

Fig. 2 shows a crack channeling through a pre-tensioned film on a semi-infinite substrate. The crack is

arrested by the film/substrate interface in the direction perpendicular to the interface but advances in the
direction parallel to the interface. The crack front takes a curved shape so that the energy release rate at

every point of the front is the same. The problem is three-dimensional (3D) in nature. After the crack length

exceeds a few times the film thickness, the crack asymptotically approaches a steady state: the entire front

maintains its shape as the crack advances, and so does the opening profile in the wake. A 3D analysis of

crack channeling in an elastic film bonded to a rigid substrate indicated that the steady state is achieved

for crack lengths two to three times the film thickness [17]. Recently, Ambrico and Begley [18] showed that

the crack length to achieve the steady state is significantly larger when the substrate is more compliant than

the film. Here we will only consider cracks channeling at the steady state, in which case the energy release
rate at the channel front can be evaluated using two plane-strain problems, that is, by subtracting the strain

energy stored in a unit slice far behind of the front from that far ahead [19]. Both problems can be solved

with no knowledge about the shape of the channel front. The stress state far ahead of the channel front is

trivial: the film is subject to a uniform residual stress r0 and the substrate is stress-free (Fig. 3a). The stress

state at the wake far behind of the front is identical to that in a film with a plane-strain through-crack (Fig.

3b). Let dðzÞ be the opening displacement of the plane-strain crack. By the energy argument, the energy

release rate at the channel front is
Gss ¼
r0

2h

Z h

0

dðzÞdz: ð2:3Þ
Thus, to compute the steady-state energy release rate, one only needs to solve the plane-strain problem in
Fig. 3b for the opening displacement, dðzÞ.

The singularity at the crack tip of the plane-strain problem in Fig. 3b depends on the elastic mismatch

between the film and the substrate. Dundurs [20] introduced two parameters to characterize the elastic

mismatch
a ¼ l1ðj2 þ 1Þ � l2ðj1 þ 1Þ
l1ðj2 þ 1Þ þ l2ðj1 þ 1Þ ; ð2:4Þ

b ¼ l1ðj2 � 1Þ � l2ðj1 � 1Þ
l1ðj2 þ 1Þ þ l2ðj1 þ 1Þ ; ð2:5Þ
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Fig. 3. Schematics of the two plane-strain problems for a steady-state channeling crack, with (a) and (b) for far ahead of the channel

front and far behind of the channel front, respectively.
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where lj is the shear modulus of material j with j ¼ 1 for the film and j ¼ 2 for the substrate, mj is Poisson�s
ratio, and jj ¼ 3� 4mj under the plane-strain condition. The stress just ahead of the crack tip is of the form
rxxð0; zÞ ¼ C
r0hs

ð�zÞs ; ð2:6Þ
where C is a dimensionless number. The stress singularity exponent, s, is a function of Dundurs parameters

and is the root to the transcendental equation derived by Zak and Williams [2]
cosðspÞ � 2
a� b
1� b

ð1� sÞ2 þ a� b2

1� b2
¼ 0: ð2:7Þ
The value of s as a function of a and b was plotted in [19] and listed in a table by Beuth [21]. In the case of

no elastic mismatch (a ¼ b ¼ 0), the stress singularity reduces to the square root singularity of a crack tip in

a homogeneous elastic material, i.e., s ¼ 0:5. When the substrate is stiffer than the film (a < 0), the sin-

gularity is weaker, i.e., s < 0:5. When the substrate is more compliant than the film (a > 0), the singularity

is stronger, i.e., s > 0:5. For an extremely compliant substrate (a ! 1), the singularity exponent approaches

1 (s ! 1).

The asymptotic displacement field near the tip of the plane-strain through-crack takes the form
ujðr; hÞ ¼ r1�sfaj cosðshÞ þ bj sinðshÞ þ cj cos½ðs� 2Þh� þ dj sin½ðs� 2Þh�g; ð2:8Þ
where aj, bj, cj, dj are constant vectors for the corresponding material (again, j ¼ 1 for the film and j ¼ 2

for the substrate), and ðr; hÞ are the local polar coordinates with the origin at the crack tip. The asymptotic

displacement field, Eq. (2.8), is contained in the span of the following four functions:
fF �
l ðr; hÞ; l ¼ 1; . . . ; 4g ¼ r1�s cosðshÞ; r1�s sinðshÞ; r1�s cos½ðs

�
� 2Þh�; r1�s sin½ðs� 2Þh�

�
: ð2:9Þ
By replacing the enriching functions Fl (Eq. (2.2)) with the functions F �
l in the displacement discretization

(2.1), the XFEM technique can be used to solve the plane-strain problem of Fig. 3b with arbitrary elastic

mismatch between the film and the substrate. The solution for the opening displacement along the crack,
dðzÞ, is then integrated to compute the steady-state energy release rate of the channeling crack (Eq. (2.3)).
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3. Numerical model

Fig. 4a shows the geometry and the boundary conditions of the plane-strain problem. The crack is

represented by the line EF . The thickness of the film is h. The substrate also has a finite thickness H and
is simply supported at B and C. Along the vertical boundaries AB and CD, the roller boundary condition is

assumed, through which we are actually modeling a periodic set of parallel cracks of spacing S. Other

boundaries are traction free. The film is subjected to an initial tensile stress r0. At equilibrium, the film and

the substrate deform so that the tractions along the crack faces vanish and the crack opens. For each set of

material properties of the film and the substrate, solutions were sought with various values of S=h and H=h
in order to obtain the asymptotic solution for an isolated single crack (S=h ! 1) with a semi-infinite

substrate (H=h ! 1) and to investigate the effects of crack spacing and substrate thickness.
Fig. 4. The XFEM model of the plane-strain problem: (a) geometry and boundary conditions; (b) a example mesh; (c) a detailed mesh

around the crack tip.



Table 1

Results of the convergence study for the case with no elastic mismatch between the film and the substrate (a ¼ b ¼ 0, H=h ¼ 20,

S=h ¼ 50)

N 5 10 20 30

Error (%) 5.3 2.1 0.8 0.5

N is the number of elements across the film thickness in the XFEM model, and the errors are computed relative to Eq. (3.1).
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The finite element meshes are generated as follows. First divide the whole domain into six regions, as

indicated by the dashed lines in Fig. 4a. In each of the six regions, a uniform mesh is generated with the

first-order four-node quadrilateral elements. In the upper-central region, the one with the crack, the mesh is

relatively fine. In the lower-left and lower-right regions, the mesh is coarse. In the other three regions, the
mesh is generated such that it is compatible with the adjacent regions. Fig. 4b shows an example of the

resulting mesh, and Fig. 4c shows the detail around the crack tip. In the following analyses, the mesh is

characterized by the mesh density in the upper-central region, because the mesh around the crack is the

most important for the accuracy of the results. Let N be the number of elements across the film thickness.

The upper-central region consists of 2N � 2N þ 1 elements, where one more element is used in the lateral

direction so that the crack aligns along the center of the elements as shown in Fig. 4c. Such alignment of the

crack with the elements is not necessary for XFEM, but is convenient for the computation of the opening

displacement. The meshes in the other regions are less important and they are generated accordingly with
reasonable aspect ratios.

Convergence studies were conducted to determine the appropriate mesh density. For a film/substrate

combination with no elastic mismatch, the steady-state energy release rate Gss can be obtained from the

solution for an edge crack in a homogeneous half-plane [22], as given in [19]
Gss ¼ 1:976
r2
0h
E� ; ð3:1Þ
where E� ¼ E=ð1� m2Þ is the plane-strain modulus of the film and the substrate. The results from the
XFEM model with different mesh densities are compared to (3.1) and the errors are listed in Table 1. The

mesh density is characterized by N , the number of elements across the film thickness. The error decreases as

N increases and is less than 1% when N ¼ 20. No significant improvement was achieved with N > 20.

Further convergence studies for film/substrate combinations with elastic mismatches showed that N ¼ 20

is generally sufficient for accuracy of about 1%.
4. Results and discussions

In the previous studies of cracking in thin films (e.g., [19]), a unifying dimensionless number Z has been
defined such that the energy release rate for a crack is
Gss ¼ Z
r2
0h
E�
1

; ð4:1Þ
where E�
1 is the plane-strain modulus of the film. The number Z is a dimensionless driving force, depending

on the cracking pattern. The practical significance of this dimensionless number was first documented by

Evans et al. [23]. For the channeling crack in the present study, the number Z depends on the Dundurs

parameters a and b, the thickness ratio H=h, and the dimensionless crack spacing S=h. Beuth [21] carried

out an analysis for a single channeling crack (S=h ! 1) in a thin film on a semi-infinite substrate

(H=h ! 1) with various elastic mismatches. Specifically, for the case with no elastic mismatch (a ¼ b ¼ 0),
Eq. (3.1) leads to Z ¼ 1:976. The effect of crack spacing was discussed in [19] and [24], but limited to the
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case with no elastic mismatch. Recently, Xia and Hutchinson [25] proposed a two-dimensional model for

crack patterns in thin films and obtained a semi-analytical formula for the steady-state energy release rate

of parallel cracks with the effects of elastic mismatch and crack spacing. In the present study, we compute

the opening displacement dðzÞ using the XFEM model constructed in the previous section, and then in-
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Fig. 5. The dimensionless energy release rate of channeling cracks for zero elastic mismatch between the film and the substrate.
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tegrate it to obtain the energy release rate (Eq. (2.3)). The results are compared to those from the previous

studies when available. In addition, the effect of finite substrate thickness is included so that the condition

under which the substrate can be approximated as semi-infinite is clear.

Fig. 5 shows the results for the case with no elastic mismatch between the film and the substrate. The
dimensionless energy release rate is plotted as a function of the normalized crack spacing S=h for various

thickness ratios, H=h. A thinner substrate is more compliant and the corresponding energy release rate is

larger. The results become indistinguishable for H=hP 20. In other words, the results saturate into one

curve for thickness ratios larger than 20. Thus, in the case of no elastic mismatch, H=h ¼ 20 is sufficient for

a substrate to be considered semi-infinite. For a given thickness ratio, the energy release rate increases as

the crack spacing increases and asymptotically approaches the energy release rate for a single channeling

crack. For the case H=h ¼ 20, the value of Z approaches 1.976. The computed value of Z for H=h ¼ 20 and

S=h ¼ 50 is 1.960; the difference is less than 1%.
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Fig. 7. The dimensionless energy release rate of channeling cracks for two different elastic mismatches between the film and the

substrate: (a) a ¼ 0:5 and (b) a ¼ 0:95 (b ¼ a=4 in both cases).
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For the special case with no elastic mismatch and with a semi-infinite substrate, the energy release rate of

parallel cracks can be obtained with a high accuracy using the solution in [22] for parallel edge cracks in a

semi-infinite plane. The result was plotted as a function of h=S in [19] and is reproduced as the solid curve in

Fig. 6. The circles in Fig. 6 are the computed results from the present study for H=h ¼ 20. The dashed curve
is the semi-analytical solution by Xia and Hutchinson [25] using an approximate model. Evidently, the

present numerical solutions agree with the solid curve closely, but the dashed curve overestimates the

energy release rate by a few percents.

Fig. 7 shows the results for the cases with two different elastic mismatches between the film and the

substrate. In both cases, the substrate is more compliant than the film. For the cases with a substrate stiffer

than the film, the results are similar to that with no elastic mismatch (Fig. 5). In all calculations, the

Poisson�s ratio is set to be 1/3 for both the film and the substrate, so that the two Dundurs parameters

become a ¼ ðE1 � E2Þ=ðE1 þ E2Þ and b ¼ a=4. Previous studies have shown that the energy release rate
depends on b weakly. In each plot of Fig. 7, as the thickness ratio increases, the curves converge to a curve

for the case with a semi-infinite substrate (H=h ! 1); the convergence is slower when the substrate ma-

terial is more compliant. To approximate a semi-infinite substrate, we use a sufficiently large thickness ratio,

which is 20 for a ¼ 0 (see Fig. 5), 40 for a ¼ 0:5, and 60 for a ¼ 0:95. For a fixed thickness ratio, the energy

release rate increases as the crack spacing increases and asymptotically approaches a value that corresponds

to the case with an isolated single crack (i.e., S=h ! 1); the approaching is also slower when the substrate

material is more compliant.

Beuth [21] computed the energy release rate of a single channeling crack for a semi-infinite substrate with
various elastic mismatches using a dislocation formulation and solution procedure. To compare with his

results, we use a sufficiently large thickness ratio and a sufficiently large spacing to approximate a single

crack with a semi-infinite substrate. Both the thickness ratio and the spacing for such approximation de-

pend on the elastic mismatch; larger thickness ratio and larger spacing are used when the substrate material

is more compliant, as advised by Fig. 7. Fig. 8 shows the comparison between the present study and
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Fig. 8. The dimensionless energy release rate of a single channeling crack in a thin film bonded to a semi-infinite substrate as a function

of the elastic mismatch.
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Beuth [21]. The difference between the two is less than 1%, except for the three largest elastic mismatches

with aP 0:9. We discuss these cases in Section 5.
5. On very compliant substrates

The driving force for channeling cracks becomes extremely large when the substrate material is very

compliant. For a single crack on a semi-infinite substrate, the results from the present numerical model

differ from those in Beuth [21] by a few percents when the Dundurs parameter a is greater than 0.9, as listed

in Table 2. The computed values of Z from the XFEM model are greater than Beuth�s values for a ¼ 0:9
and 0.95, but is less than Beuth�s value for a ¼ 0:99. We noticed that very large crack spacing and thickness

ratio have to be used in the case a ¼ 0:99 to obtain the asymptotic result for a single crack with a semi-

infinite substrate. The value in Table 2 for a ¼ 0:99 is obtained by using S=h ¼ 800 and H=h ¼ 100.

However, as shown in Fig. 9, the result has not reached the asymptote yet, and using a larger spacing, S=h,
would yield a larger value of Z. The asymptotic result for a ¼ 0:99 is expected to be greater than Beuth�s
result as it is for a ¼ 0:9 and 0.95. However, due to the computational limit, we were not able to reach the

asymptotic solution for a ¼ 0:99.
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Fig. 9. The dimensionless energy release rate of channeling cracks for the elastic mismatch a ¼ 0:99.

Table 2

Comparisons of the results from Beuth [21], the XFEM model, and the regular FEM models with two different crack-tip element sizes

for the dimensionless driving force of a single channeling crack in a thin film bonded to a semi-infinite and very compliant substrate

a 0.9 0.95 0.99

Z (Beuth [21]) 9.071 14.04 37.43

Z (XFEM) 9.475 14.99 36.79

Z (regular FEM, h=he ¼ 103) 8.783 12.92 23.86

Z (regular FEM, h=he ¼ 107) 9.124 13.88 30.45



Fig. 10. A typical mesh near the crack for the regular FEM.
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The same problem can be solved using a regular FEM with a very fine mesh near the crack tip. Fig. 10

shows a typical mesh near the crack generated by ABAQUS. The second-order eight-node quadrilateral

elements were used together with a set of six-node triangular elements around the crack tip. Let he be the

size of the elements near the crack tip. By using an element size near the crack tip of about three orders of

magnitude smaller than the film thickness, i.e., h=he ¼ 103, we were able to compute the energy release rate

with the accuracy of about 1% for a < 0:9. For aP 0:9, however, the results differ from those in both Beuth
[21] and the present study using the XFEM model, and an even finer mesh has to be used. Table 2 lists the

computed energy release rates for a single crack on a semi-infinite substrate approximated by using the

spacing S=h ¼ 400 and the thickness ratio H=h ¼ 100. Two different crack tip element sizes were used. With

the crack-tip element size reduced down to seven orders of magnitude smaller than the film thickness (i.e.,

h=he ¼ 107), the results compare better with those from Beuth and the XFEM model. Again, S=h ¼ 400 is

not large enough to compute the asymptotic value for a ¼ 0:99. To further illustrate the requirement for

very fine mesh in the regular FEM models, Table 3 lists the results from both the XFEM model and the

regular FEMs for a small sample with S=h ¼ 4 and H=h ¼ 2. For the elastic mismatch a ¼ 0, the result
from the regular FEMs converges when the mesh density near the crack tip is two orders of magnitude

smaller than the film thickness, and the result is within 1% comparing to that from the XFEM model. For
Table 3

Comparisons of the computed results from the XFEMmodel and the regular FEMmodels with various element sizes near the crack tip

Model h=he Z ða ¼ 0Þ Z ða ¼ 0:99Þ
XFEM 20 1.363 1.926

Regular FEM 102 1.373 1.779

Regular FEM 103 1.374 1.819

Regular FEM 104 – 1.846

Regular FEM 105 – 1.863

Regular FEM 106 – 1.874

Regular FEM 107 – 1.882
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the elastic mismatch a ¼ 0:99, however, the result from the regular FEMs converges very slowly and differs

from the result of the XFEM model by about 2% when the mesh density near the crack tip is down to seven

orders of magnitude smaller than the film thickness. Larger difference is expected when S=h and H=h are

larger. Such requirement for a finer mesh with a larger a is due to the fact that the stress singularity at the
crack tip increases with the elastic mismatch. As we discussed in Section 3, the stress singularity exponent s
is 0.5 for a ¼ 0:5 and is about 0.94 for a ¼ 0:99. In contrast to the requirement of a finer mesh for a stronger

singularity in the regular FEM models, the XFEM model resolves the stress singularity by nodal enrich-

ments and the same mesh can be used for different singularities.
6. Conclusions

We apply the XFEM to compute the steady-state energy release rate of channeling cracks in thin films.

The singularity of the deduced plane-strain problem depends on the elastic mismatch between the film and

the substrate. The result demonstrates that the XFEM techniques can be applied to model problems with

the singularity exponent ranging from below 0.5 to nearly 1. In principle the method can be applied to

arbitrary singularities.

The dimensionless driving force for channeling cracks is obtained as a function of elastic mismatch,

crack spacing, and thickness ratio between the substrate and the film, from which the asymptotic result for

the case with a single crack and a semi-infinite substrate is extracted. Comparisons with the available
previous studies show good general agreements. The relatively large differences for cases when the substrate

is much more compliant than the film is discussed. Regular FEMs are used to support our discussions and

to show the advantages of the XFEM method.
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