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Abstract
Atomistic simulations are performed to study the nonlinear mechanical behavior
of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the
effects of edge structures (armchair and zigzag, without and with hydrogen
passivation) on elastic modulus and fracture strength. The numerical results
are analyzed within a theoretical model of thermodynamics, which enables
determination of the bulk strain energy density, the edge energy density and the
hydrogen adsorption energy density as nonlinear functions of the applied strain
based on static molecular mechanics simulations. These functions can be used
to describe mechanical behavior of graphene nanoribbons from the initial linear
elasticity to fracture. It is found that the initial Young’s modulus of a graphene
nanoribbon depends on the ribbon width and the edge chirality. Furthermore,
it is found that the nominal strain to fracture is considerably lower for graphene
nanoribbons with armchair edges than for ribbons with zigzag edges. Molecular
dynamics simulations reveal two distinct fracture nucleation mechanisms:
homogeneous nucleation for the zigzag-edged graphene nanoribbons and edge-
controlled heterogeneous nucleation for the armchair-edged ribbons. The
modeling and simulations in this study highlight the atomistic mechanisms
for the nonlinear mechanical behavior of graphene nanoribbons with the edge
effects, which is potentially important for developing integrated graphene-based
devices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene ribbons with nanoscale widths (W < 20 nm) have been produced recently, either
by lithographic patterning [1–3] or by chemically derived self-assembly processes [4], with
potential applications in nanoelectronics and electromechanical systems. The edges of
graphene nanoribbons (GNRs) can be zigzag, armchair or a mixture of both [5]. It has
been theoretically predicted that the special characteristics of the edge states lead to a size
effect in the electronic state of graphene and control whether the GNR is metallic, insulating

0965-0393/11/054006+16$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/0965-0393/19/5/054006
http://stacks.iop.org/MSMSE/19/054006


Modelling Simul. Mater. Sci. Eng. 19 (2011) 054006 Q Lu et al

or semiconducting [5–8]. The effects of edge structures on deformation and mechanical
properties of GNRs have also been studied to some extent [9–18]. On the one hand, elastic
deformation of GNRs has been suggested as a viable method to tune the electronic structure
and transport characteristics in graphene-based devices [15, 16]. On the other hand, plastic
deformation and fracture of graphene may pose a fundamental limit for reliability of integrated
graphene structures.

The mechanical properties of bulk graphene (i.e. infinite lattice without edges) have been
studied both theoretically [19–21] and experimentally [22]. For GNRs, however, various edge
structures are possible [23, 24], with intricate effects on the mechanical properties. Ideally, the
mechanical properties of GNRs may be characterized experimentally by uniaxial tension tests.
To date, however, no such experiment has been reported, although similar tests were performed
for carbon nanotubes (CNTs) [25]. Theoretically, previous studies on the mechanical properties
of GNRs have largely focused on the linear elastic properties (e.g. Young’s modulus and
Poisson’s ratio) [11–15]. While a few studies have touched upon the nonlinear mechanical
behavior including fracture of GNRs [12, 13, 16], the effect of edge structures in the nonlinear
regime has not been well understood. In this study, by combining atomistic simulations with a
thermodynamics-based continuum model, we systematically investigate the nonlinear elastic
deformation of GNRs under quasistatic uniaxial tension, emphasizing the effects of edge
structures in both linear and nonlinear regimes.

The paper is organized as follows. Section 2 describes the method of atomistic simulations.
A thermodynamics model is presented in section 3 for analysis of the numerical results.
Section 4 discusses the edge effect on initial Young’s modulus of GNRs, and section 5 discusses
fracture of graphene. In section 6, the effect of hydrogen adsorption is analyzed. Section 7
summarizes the results.

2. Atomistic simulation

The second-generation reactive empirical bond-order (REBO) potential [26] is used in this
study for atomistic simulations. Briefly, the potential energy of an atomistic system is
calculated as

� =
∑

i

∑
j>i

[VR(rij ) − b̄ijVA(rij )], (1)

where rij is the interatomic distance between atoms i and j , VR and VA are pairwise potential
functions for the repulsive and attractive interactions, respectively, and b̄ij is a bond-order term
that depends on the number and types of neighbors to account for many-body interactions.
In particular, the bond-order function, b̄ij , in the second-generation REBO potential takes
into account the local bonding environment up to the third nearest neighbors, through its
dependence on both bond angles and dihedral angles [27]. With this, the REBO potential
allows the influence of atomic re-hybridization on the binding energy to change as chemical
bonds break and reform over the course of atomistic simulation. The complete form of the
REBO potential for both carbon–carbon (C–C) and carbon–hydrogen (C–H) interactions is
given in [26].

To limit the range of covalent interactions, a cutoff function is typically used in atomistic
simulations. The originally suggested form of the cutoff function for the REBO potential is

fc(r) =




1 r < D1

1

2

[
1 + cos

(
(r − D1) π

D2 − D1

)]
D1 < r < D2

0 r > D2




, (2)
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Figure 1. Rectangular GNRs with (a) zigzag and (b) armchair edges, subjected to uniaxial tension.

where D1 and D2 are the two cutoff distances for a smooth transition from 1 to 0 as the
interatomic distance (r) increases. For C–C interaction, D1 = 1.7 Å and D2 = 2.0 Å were
suggested [26]. However, as noted in several previous studies [12, 28–30], such a cutoff
function typically generates spurious bond forces near the cutoff distances, an unphysical
result due to discontinuity in the second derivative of the cutoff function. This artifact shall
be avoided in the study of nonlinear mechanical properties of graphene under relatively large
strains. As suggested by the developers of the original REBO potential [28], using a larger
cutoff distance could remove the unphysical responses. However, to keep the pair interactions
within the nearest neighbors, the cutoff distance must not be too large. In this study, the cutoff
function is taken to be 1 within a cutoff distance (D1 = 1.9 Å) and zero otherwise. It is found
that the numerical results up to fracture of GNRs are unaffected by the choice of the cutoff
distance within the range between 1.9 and 2.2 Å.

Classical molecular mechanics (MM) simulations are performed for GNRs subjected to
quasistatic uniaxial tension. For each MM simulation, a rectangular GNR of width W and
length L is first cut out from the ground state of an infinite graphene lattice, as shown by
two examples in figure 1. Next, by holding the length of the GNR with periodic boundary
conditions at both ends, edge relaxation is simulated to obtain the equilibrium state of the
GNR at zero strain (ε = 0). As shown in a previous study [18], the ribbon width reduces
slightly upon edge relaxation. Subsequently, by gradually increasing the ribbon length, a
longitudinal tensile strain (ε > 0) is applied. At each strain level, the statically equilibrium
lattice structure of the GNR is calculated to minimize the total potential energy by a quasi-
Newton algorithm [31]. For each GNR, the average potential energy per carbon atom at the
equilibrium state is calculated as a function of the nominal strain until it fractures, as shown
in figure 2. In all simulations, periodic boundary conditions are applied at both ends of the
GNR, whereas the two parallel edges (zigzag or armchair) of the GNR are free of external
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Figure 2. Potential energy per carbon atom as a function of the nominal strain for GNRs under
uniaxial tension, with (a) zigzag and (b) armchair edges, both unpassivated. The dashed lines show
the results for bulk graphene under uniaxial tension in the zigzag and armchair directions.

constraint. For comparison, the mechanical behavior of infinite graphene lattice under uniaxial
tension is also simulated by applying periodic boundary conditions at all four edges, in which
lateral relaxation perpendicular to the loading direction is allowed in order to achieve the
uniaxial stress condition. To study the effect of hydrogen adsorption along the free edges, MM
simulations of GNRs with both bare and hydrogen-passivated edges are performed.

The critical strain (or stress) to fracture as predicted by the static MM simulations may be
considered the ideal strength of the defect-free GNRs at zero temperature (T = 0 K). However,
the process of fracture nucleation and crack growth are typically not observable in the MM
simulations. On the other hand, molecular dynamics (MD) simulations at finite temperatures
can be used to study the fracture process. In this study, to qualitatively understand the fracture
mechanisms, classical MD simulations of GNRs under uniaxial tension are performed at
relatively low temperatures (from 0.1 to 300 K). The temperature control is achieved using
an Anderson thermostat [32]. Each GNR is loaded by increasing the nominal strain, with a
dwelling period of about 2 ps (or 2000 time steps) at each strain level. The strain increment
is adjusted so that increasingly smaller increments are used as the total strain increases, with
a minimum increment at 0.0005. The velocity-Verlet scheme is used for time integration
with a time step of around 1 fs. We note that MD simulations are often sensitive to the
temperature control and the loading rate. In this study, the MD simulations provide a qualitative
understanding of the fracture mechanisms, consistent with the static MM calculations. The
quantitative nature of the MD simulation is not essential for this purpose.

3. Thermodynamics

To understand the numerical results from atomistic simulations, we adopt a simple
thermodynamics model for GNRs under uniaxial tension. For a GNR of width W and length
L, the total potential energy as a function of the nominal strain consists of contributions from
deformation of the interior lattice (i.e. the bulk strain energy) and from the edges (i.e. the edge
energy), namely

�(ε) = NU0 + U(ε)WL + 2γ (ε)L, (3)

where ε is the nominal strain in the longitudinal direction of the ribbon (relative to the bulk
graphene lattice at the ground state), U0 is the potential energy per carbon atom at the ground
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Figure 3. (a) Bulk strain energy density of monolayer graphene under uniaxial tension in the
zigzag and armchair directions; (b) edge energy density of GNRs under uniaxial tension. The open
symbols are obtained directly from the atomistic simulations, and the solid lines are the polynomial
functions in equations (6) and (8).

state of graphene, N is the number of carbon atoms, U(ε) is the bulk strain energy density of
monolayer graphene (per unit area) and γ (ε) is the edge energy density (per unit length of the
free edges). The average potential energy per carbon atom is thus

�̄(ε) = �(ε)

N
= U0 + U(ε)A0 +

2A0

W
γ (ε), (4)

where A0 = 3
4

√
3r2

0 is the area per carbon atom at the ground state of graphene and r0 = 1.42 Å
is the equilibrium bond length of graphene. As shown in figure 2, the average potential energy
increases as the ribbon width (W ) decreases, an effect due to the contribution of the edge
energy (i.e. the third term on the right-hand side of equation (4)).

For an infinite graphene monolayer (W → ∞), the bulk strain energy density function,
U(ε), can be obtained directly from the MM calculations, namely

U(ε) = �̄(ε; W → ∞) − U0

A0
. (5)

Figure 3(a) shows the calculated bulk strain energy density versus the nominal strain in the
zigzag and armchair directions. For each case, the numerical results from atomistic simulations
are fitted with a polynomial function up to eighth order of the nominal strain, namely

U(ε) = a2ε
2 + a3ε

3 + a4ε
4 + a5ε

5 + a6ε
6 + a7ε

7 + a8ε
8, (6)

where the coefficients are listed in table 1. The eighth-order polynomial function in (6)
is necessary to achieve a satisfactory fitting with the second derivative of the strain energy
density function. The leading term of the polynomial function is necessarily quadratic so
that the strain energy is zero and a minimum at the ground state (ε = 0). Furthermore, the
hexagonal symmetry of the graphene lattice at the ground state dictates that it is isotropic under
an infinitesimal strain (ε � 1). Thus, the quadratic term in equation (6) is independent of
the loading direction. However, the symmetry is broken under a finite deformation, leading
to nonlinear, anisotropic elastic properties [19–21], as represented by the high-order terms on
the right-hand side of equation (6). Consequently, the coefficients listed in table 1 are different
for the two loading directions except for the quadratic term (a2).
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Table 1. Coefficients of the polynomial fitting in equation (6) for the bulk strain energy density
function of graphene subject to uniaxial tension in zigzag and armchair directions (unit: J m−2).

Zigzag Armchair

a2 121.65 121.65
a3 144.06 1175.81
a4 −2947.21 −23 584.89
a5 14 517.28 219 264.35
a6 −41 544.88 −1189 116.03
a7 66 883.97 3459 762.95
a8 −46 193.34 −4159 339.72

Table 2. Coefficients of the polynomial fitting in equation (8) for the edge energy density of GNRs
with zigzag and armchair edges (unit: eV nm−1).

Zigzag Armchair

b0 10.41 10.91
b1 −16.22 −8.53
b2 25.99 11.39
b3 −123.40 −2034.17
b4 1387.77 37 377.27
b5 −6306.31 −374 309.95
b6 16 090.44 2144 425.42
b7 −29 257.32 −6538 094.57
b8 26 649.06 8061 231.96

For GNRs, the edge energy density function is determined by subtracting the bulk energy
from the total potential energy of the GNR based on equation (4), i.e.

γ (ε) = W

2A0
[�̄(ε) − U(ε)A0 − U0]. (7)

Figure 3(b) shows the calculated edge energy density versus the nominal strain for the zigzag
and armchair edges. The results are essentially independent of the ribbon width in the range
considered for this study (1 nm < W < 10 nm). Similar to the bulk strain energy density,
a polynomial function up to eighth order of the nominal strain is used to fit the edge energy
density, namely

γ (ε) = b0 + b1ε + b2ε
2 + b3ε

3 + b4ε
4 + b5ε

5 + b6ε
6 + b7ε

7 + b8ε
8, (8)

where the coefficients for the zigzag and armchair edges are listed in table 2. The first term on
the right-hand side of equation (8) is independent of the nominal strain, which represents the
excess edge energy at zero strain (ε = 0) as discussed in the previous study [18]. The second
term varies linearly with the strain, which gives the residual edge force or edge stress at zero
strain [18]. In general, however, the edge energy is a nonlinear function of the nominal strain.

Next we consider variation of the potential energy. Under uniaxial tension, the GNR
is subjected to a net force (F ) in the longitudinal direction. At each strain increment, the
mechanical work done by the longitudinal force equals the increase in the total potential
energy, which can be written in a variational form, i.e.

δ� = FLδε. (9)

Therefore, the force (F ) can be obtained from the derivative of the potential energy function,
with which a two-dimensional (2D) nominal stress can be defined without ambiguity as the
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Figure 4. Nominal stress–strain curves for GNRs under uniaxial tension, with (a) zigzag and (b)
armchair edges, both unpassivated. The dashed lines show the results for bulk graphene under
uniaxial tension in the zigzag and armchair directions.

force per unit width of the GNR, namely

σ(ε) = F

W
= dU

dε
+

2

W

dγ

dε
. (10)

Note that we do not assume any specific thickness for the monolayer graphene in the definition
of the 2D stress. When placed on a substrate, the thickness of a graphene monolayer depends
on the interaction between graphene and the substrate [33], which is not an intrinsic property
of graphene itself. As a result, the 2D stress in equation (10) has a unit of N m−1, different from
the conventional 3D stress (N m−2). Figure 4 shows the nominal stress–strain curves of the
GNRs, obtained by numerically taking the derivative of the potential energy in figure 2. Nearly
identical stress–strain curves can be obtained analytically by equation (10) with the polynomial
functions in equations (6) and (8). Apparently, the stress–strain relation for graphene is
nonlinear in all cases, for which the tangent elastic modulus can be defined as

E(ε) = dσ

dε
= d2U

dε2
+

2

W

d2γ

dε2
. (11)

For an infinite monolayer graphene (W → ∞), the stress–strain relation is fully
determined by the bulk strain energy density function. With the polynomial function in
equation (6), an analytical expression for the stress–strain relation may be obtained. In
figure 5(a) we plot the stress–strain curves for infinite graphene subjected to uniaxial tension in
the zigzag and armchair directions, comparing the results from the atomistic simulations with
first-principles calculations by Wei et al [20]. Figure 5(b) shows the corresponding tangent
modulus for bulk graphene. Apparently, the atomistic simulations with the REBO potential
considerably underestimate the stiffness of the graphene monolayer, even under infinitesimal
strain (ε ∼ 0). The initial Young’s modulus, E0 = (dσ/dε)ε=0, is 243 N m−1 by the REBO
potential and 345 N m−1 by the first-principles calculation. This discrepancy is the major
shortcoming of the REBO potential in modeling mechanical behavior of graphene and CNTs,
as noticed previously [34–36]. Nevertheless, the REBO potential has been used extensively,
including this study, to qualitatively understand the mechanical behavior of low-dimensional
carbon materials on the atomistic scale. Several modifications to the REBO potential have been
suggested recently [37–39], which are yet to show consistent improvement in the prediction
of Young’s modulus of graphene.
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Figure 5. (a) Nominal stress–strain curves for monolayer graphene under uniaxial tension in the
zigzag and armchair directions; (b) tangent Young’s modulus as a function of the nominal strain.

For GNRs, due to the edge effect, the nominal stress–strain relation depends on the ribbon
width, as shown in figure 4. The difference between GNRs with zigzag edges and those with
armchair edges is also appreciable, even at relatively small strains. We discuss the edge effects
in the following sections.

4. Edge effect on the initial Young’s modulus

The nominal stress–strain curves in figure 4 show approximately linear elastic behavior of all
GNRs at relatively small strains (e.g. ε < 5%). Following equation (11), the initial Young’s
modulus of the GNRs in the linear regime can be written as

E0 = Eb
0 +

2

W
Ee

0, (12)

where Eb
0 is the initial Young’s modulus of bulk graphene and Ee

0 is the initial edge modulus.
Using the polynomial functions in equations (6) and (8), we have

Eb
0 =

(
d2U

dε2

)
ε=0

= 2a2, (13)

Ee
0 =

(
d2γ

dε2

)
ε=0

= 2b2. (14)

While bulk graphene is isotropic in the regime of linear elasticity, the initial edge modulus
depends on the edge chirality with different values for the zigzag and armchair edges. As a
result, the initial Young’s modulus of the GNR depends on both edge chirality and ribbon width
(W ), as shown in figure 6. The initial edge modulus obtained from the REBO potential in this
study is Ee

0 = 8.33 nN (∼52 eV nm−1) for the unpassivated zigzag edge and Ee
0 = 3.65 nN

(∼ 23 eV nm−1) for the unpassivated armchair edge. With positive moduli for both edges, the
Young’s modulus of unpassivated GNRs increases as the ribbon width decreases. Figure 6
shows that the numerical results from the atomistic simulations agree closely with equation (12)
using the polynomial fitting parameters for the bulk and edge modulus. As such, it is predicted
that the edge effect on the initial Young’s modulus of GNRs diminishes as the ribbon width
increases. A similar effect has been reported for nanowires and nanofilms, for which the
surface effect leads to size-dependent Young’s modulus [40–42].

8
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Figure 6. Initial Young’s modulus versus ribbon width for GNRs with unpassivated and hydrogen-
passivated edges. The horizontal dotted–dashed line indicates the initial Young’s modulus of bulk
graphene predicted by the REBO potential.

It is noted in figure 4 that the nominal stress is not zero for GNRs at zero nominal strain.
This is due to the presence of a residual edge force (or edge stress) at zero strain. As discussed
in the previous study [18], relaxation of the edge bonds results in a compressive edge force
due to a mismatch in the equilibrium bond lengths. The edge force can be obtained as the first
derivative of the edge energy function, namely

f (ε) = dγ

dε
. (15)

With equation (8) for the edge energy density, the edge force at ε = 0 equals the coefficient b1,
which is negative (compressive) for both zigzag and armchair edges as listed in table 2. As a
result, the nominal stress of the GNRs as defined in equation (10) is negative at zero strain and
is inversely proportional to the ribbon width. The compressive edge force may lead to edge
buckling [18], which would partly relax the nominal stress and potentially affect the initial
stress–strain behavior for the GNRs. This effect is found to be negligible as the edge buckling
is typically flattened under uniaxial tension with the nominal strain beyond a fraction of 1%.

5. Fracture of GNRs

Without any defect, the theoretical strength of monolayer graphene (infinite lattice) is dictated
by intrinsic lattice instability. As shown in several previous studies [19–21, 30, 43], the critical
strain to fracture for graphene varies with the loading direction. Under uniaxial tension, as
shown in figure 5, the graphene monolayer fractures at the maximum nominal stress, when the
tangent modulus becomes zero (i.e. d2U/dε2 = 0). At a finite temperature, however, fracture
may occur much earlier due to thermally activated processes [12]. It is noted that both the
MM simulations and first-principles calculations predict higher tensile strength in the zigzag
direction than in the armchair direction. However, the REBO potential underestimates the
theoretical strength (fracture stress) of graphene in both directions. This discrepancy may be
a result of the discrepancy in the predictions of the initial Young’s modulus of graphene by the

9
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Figure 7. Fracture strain versus ribbon width for GNRs under uniaxial tension, with (a) zigzag
and (b) armchair edges. The horizontal dashed line in each figure indicates the fracture strain of
bulk graphene under uniaxial tension in the same direction.

two methods. On the other hand, the REBO potential overestimates the fracture strain in the
zigzag direction, whereas the predicted fracture strain in the armchair direction agrees closely
with the first-principles calculation.

For GNRs, the lattice structure becomes inhomogeneous due to edge relaxation, which
leads to two distinct fracture mechanisms for GNRs with zigzag and armchair edges. As shown
in figure 4(a), the GNRs with zigzag edges fracture at a critical strain very close to that of
bulk graphene loaded in the same direction. In contrast, figure 4(b) shows that the GNRs with
armchair edges fracture at a critical strain considerably lower than bulk graphene. In both cases,
the fracture strain slightly depends on the ribbon width, as shown in figure 7. The apparently
different edge effects on the fracture strain imply different fracture nucleation mechanisms for
the zigzag- and armchair-edged GNRs, which are revealed by MD simulations.

To qualitatively understand the fracture processes of GNRs under uniaxial tension, MD
simulations are performed at different temperatures (0 < T < 300 K). Figure 8 shows two
examples of fractured GNRs at 50 K. For the GNR with zigzag edges (figure 8(a)), fracture
nucleation occurs stochastically at the interior lattice of the GNR. As a result, the fracture strain
is very close to that of bulk graphene strained in the same direction, consistent with the MM
calculations (figure 7(a)). However, for the GNR with armchair edges (figure 8(b)), fracture
nucleation occurs exclusively near the edges. Thus, the armchair edge serves as the preferred
location for fracture nucleation, leading to a considerably lower fracture strain compared
with bulk graphene, as seen also from the MM calculations (figure 7(b)). Therefore, two
distinct fracture nucleation mechanisms are identified as interior homogeneous nucleation for
the zigzag-edged GNRs and edge-controlled heterogeneous nucleation for the armchair-edged
GNRs. In both cases, the fracture process is essentially brittle. The formation of suspended
atomic chains is observable, mostly near the edges, in the MD simulations as shown in figure 8.
A similar chain formation was observed in experiments [44] and in a first-principles study [16].

It is evident from figure 8 that the cracks preferably grow along the zigzag directions
of the graphene lattice in both cases. By the Griffith criterion for brittle fracture [45], this
suggests lower edge energy in the zigzag direction of graphene as opposed to the armchair
direction, which is consistent with our calculations of the edge energy in the previous study [18].
However, several first-principles calculations [17, 23, 46, 47] have predicted lower edge energy
for the armchair edge, opposite to the calculations using empirical potentials [9, 18]. On the
other hand, other first-principles calculations [19, 20] have predicted lower fracture strain and

10
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Figure 8. Fracture of GNRs under uniaxial tension. (a) Homogeneous nucleation for a zigzag
GNR; (b) edge-controlled heterogeneous nucleation for an armchair GNR. The circles indicate
the nucleation sites, and the arrows indicate the directions of crack growth. Color indicates the
potential energy of the carbon atoms.

stress for bulk graphene under uniaxial tension in the armchair direction (see figure 5(a)), in
qualitative agreement with the MM calculations in this study. A more quantitative study on
the fracture process of graphene is left for future work.

In addition to the fracture strain, the nominal fracture stress (i.e. uniaxial tensile strength) of
the GNRs can be determined from the stress–strain curves in figure 4. As shown in figure 9, the
fracture stress increases as the ribbon width increases for GNRs with unpassivated edges. The
edge effect is relatively small for the zigzag-edged GNRs, with all the fracture stresses around
36 N m−1, very close to that of bulk graphene. For the armchair-edged GNRs, the fracture stress
is considerably lower, e.g. 27.5 N m−1 for an unpassivated GNR with W = 2.5 nm, compared
with 30.6 N m−1 for bulk graphene under uniaxial tension in the armchair direction. Again,
the lower fracture stress for the armchair-edged GNRs can be attributed to the edge-controlled
heterogeneous nucleation mechanism shown in figure 8(b).

In this study we have focused on the fracture of defect-free GNRs. It is expected that
interior defects of graphene lattice, such as vacancies, dislocations and grain boundaries,
could have significant effects on the fracture of graphene. A similar effect has been studied
for CNTs [48, 49]. Recently, Terdalkar et al [50] have presented atomistic simulations of the
kinetic processes of bond breaking and bond rotation near a crack tip in graphene. Grantab
et al [51] have demonstrated by atomistic calculations an anomalous effect of tilt grain
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Figure 9. Nominal fracture stress versus ribbon width for GNRs under uniaxial tension, with (a)
zigzag and (b) armchair edges. The horizontal dashed line in each figure indicates the fracture
stress of bulk graphene under uniaxial tension in the same direction.

boundaries on the strength of graphene. Further studies on fracture of GNRs may consider
interactions between the interior defects and the edge structures.

6. Effects of hydrogen adsorption

The edges of GNRs are often passivated with hydrogen (H) atoms. Hydrogen adsorption
changes the bonding environment and the energetics of the edges. Subject to uniaxial tension,
the potential energy of a GNR now includes the contribution from hydrogen adsorption at the
edges, namely

�(ε) = NU0 + U(ε)WL + 2γ (ε)L − 2γH(ε)L, (16)

where γH(ε) is the adsorption energy per length for hydrogen passivated edges. The negative
sign for the last term in equation (16) indicates typically reduced edge energy due to hydrogen
adsorption [17, 23]. By comparing the calculated potential energies for the GNRs with and
without H-passivation, the adsorption energy can be determined as a function of the nominal
strain for both armchair and zigzag edges. At zero strain (ε = 0), our MM calculations predict
the hydrogen adsorption energies to be 20.5 eV nm−1 and 22.6 eV nm−1 for the zigzag and
armchair edges, respectively, which agree closely with the first-principles calculations [23].
Under uniaxial tension, the adsorption energy varies with the nominal strain, as shown in
figure 10. The calculated H-adsorption energy is fitted with an eighth-order polynomial
function, namely

γH(ε) = c0 + c1ε + c2ε
2 + c3ε

3 + c4ε
4 + c5ε

5 + c6ε
6 + c7ε

7 + c8ε
8, (17)

where the coefficients are listed in table 3. The first three terms on the right-hand side of
equation (17) directly affect the edge energy, edge force and edge modulus at infinitesimal
strain, respectively, whereas the higher order terms account for the nonlinear effects with finite
strain. The effect of elastic deformation (strain) on the adsorption energy demonstrates an
intrinsic coupling between mechanics and chemistry on the atomistic scale.

The 2D nominal stress–strain relation for a GNR with H-passivated edges can then be
obtained as

σ(ε) = dU

dε
+

2

W

(
dγ

dε
− dγH

dε

)
, (18)
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Figure 10. Hydrogen adsorption energy of GNRs under uniaxial tension. The open symbols
are obtained directly from atomistic simulations, and the solid lines are the polynomial fitting in
equation (17).

Table 3. Coefficients of the polynomial fitting in equation (17) for the hydrogen adsorption energy
of GNRs with zigzag and armchair edges (unit: eV nm−1).

Zigzag Armchair

c0 20.53 22.61
c1 −16.14 −8.25
c2 0.3798 21.66
c3 144.49 −297.69
c4 −577.04 1755.68
c5 5109.55 19 851.33
c6 −31 512.41 −342 205.25
c7 84 961.78 1835 393.08
c8 −83 158.52 −3589 655.15

and the tangent modulus is

E(ε) = d2U

dε2
+

2

W

(
d2γ

dε2
− d2γH

dε2

)
. (19)

Figure 11 compares the stress–strain curves for H-passivated GNRs, unpassivated GNRs and
bulk graphene. At infinitesimal strain, the initial Young’s modulus follows equation (12), but
with a modified edge modulus due to H-adsorption, namely

Ee
0 =

(
d2γ

dε2

)
ε=0

−
(

d2γH

dε2

)
ε=0

= 2b2 − 2c2. (20)

As shown in figure 6, H-adsorption has a negligible effect on the initial Young’s modulus for
GNRs with zigzag edges. In contrast, the effect is significant for GNRs with armchair edges.
The edge modulus as defined in equation (20) becomes negative for the H-passivated armchair
edge. Consequently, by equation (12), the initial Young’s modulus of the GNR decreases as
the ribbon width decreases, opposite to the unpassivated GNRs.
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Figure 11. Comparison of nominal stress–strain curves under uniaxial tension for bulk graphene,
GNRs with unpassivated edges and GNRs with hydrogen-passivated edges: (a) zigzag-edged GNR
(W = 4.3 nm) and (b) armchair-edged GNR (W = 4.4 nm).

The effect of hydrogen adsorption on fracture strain is shown in figure 7. Hydrogen
passivation of the edges leads to slightly lower fracture strains for zigzag GNRs, but slightly
higher fracture strains for armchair GNRs. The effect is relatively small in both cases. Figure 9
shows that H-adsorption slightly increases the fracture stress for both zigzag- and armchair-
edged GNRs. The same facture mechanisms shown in figure 8 are observed in MD simulations
for GNRs with H-passivated edges.

7. Summary

This paper presents a theoretical study on the effects of edge structures on the mechanical
properties of graphene nanoribbons (GNRs) under uniaxial tension. Both the bulk strain
energy density and edge energy density (without and with hydrogen passivation) are calculated
from atomistic simulations as functions of the nominal strain. Due to the edge effect, the
initial Young’s modulus of GNRs under infinitesimal strain depends on both the chirality
and ribbon width. Furthermore, it is found that the strain to fracture is considerably lower
for armchair-edged GNRs than for zigzag-edged GNRs. Two distinct fracture nucleation
mechanisms are identified, homogeneous nucleation for GNRs with zigzag edges and edge-
controlled heterogeneous nucleation for those with armchair edges. Hydrogen adsorption
along the edges is found to have relatively small effects on the mechanical behavior of zigzag-
edged GNRs, but its effect is more significant for armchair-edged GNRs. Finally, we note that
several reconstructions have been predicted for the edge structures of graphene [23, 46, 47]
and reconstructed edges may have different effects on the mechanical properties of GNRs [11]
compared with the pristine edges considered in this study.
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