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Graphene monolayers supported on oxide substrates have been demonstrated with superior charge
mobility and thermal transport for potential device applications. Morphological corrugation can
strongly influence the transport properties of the supported graphene. In this paper, we theoretically
analyze the morphological stability of a graphene monolayer on an oxide substrate, subject to van
der Waals interactions and in-plane mismatch strains. First, we define the equilibrium separation and
the interfacial adhesion energy as the two key parameters that characterize the van der Waals
interaction between a flat monolayer and a flat substrate surface. By a perturbation analysis, a
critical compressive mismatch strain is predicted, beyond which the graphene monolayer undergoes
strain-induced instability, forming corrugations with increasing amplitude and decreasing
wavelength on a perfectly flat surface. When the substrate surface is not perfectly flat, the
morphology of graphene depends on both the amplitude and the wavelength of surface corrugation.
A transition from conformal (corrugated) to nonconformal (flat) morphology is predicted. The
effects of substrate surface corrugation on the equilibrium mean thickness of the supported graphene
and the interfacial adhesion energy are analyzed. Furthermore, by considering both the substrate
surface corrugation and the mismatch strain, it is found that, while a tensile mismatch strain reduces
the corrugation amplitude of graphene, a corrugated substrate surface promotes strain-induced
instability under a compressive strain. These theoretical results suggest possible means to control the
morphology of supported graphene monolayers by substrate surface patterning and strain

engineering. © 2010 American Institute of Physics. [doi:10.1063/1.3437642]

I. INTRODUCTION

The stability of two-dimensional (2D) lattice structure of
suspended graphene sheets has been attributed to the intrin-
sic microscopic corrugation in the third dimension.' Numeri-
cal simulations have suggested different mechanisms for the
observed corrugations in graphene, including thermal
fluctuation” and molecular absorption.3 Supported on a sub-
strate, corrugation of monolayer graphene has been observed
to partly conform to the substrate surface.*™ The interfacial
interaction between graphene and its substrate, which varies
from strong chemical bonds for epitaxial graphene on a
single-crystal substrate’ ' to weak van der Waals forces for
mechanically exfoliated graphene on an amorphous substrate
(e.g., silicon dioxide or SiO,),*® plays a critical role in de-
termining the morphology of supported graphene. So does
the intrinsic elastic stiffness of the monolayer glraphene,lz’13
for both in-plane and bending deformation. Furthermore, a
mismatch strain between graphene and the supporting sub-
strate could also affect the morphology of both fully and
partly supported graphene.14 Such a mismatch strain could
result either from a differential thermal expansion between
graphene and an oxide substrate'* or from the lattice mis-
match between an epitaxial graphene and its crystalline
substrates.*!" In general, it is important to understand the
quantitative nature of both the intrinsic and extrinsic corru-
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gation in graphene because the morphology can strongly in-
fluence the physical properties of graphene, such as the elec-
tronic structures'> ' and thermal conductivity.l&19

In the present study, we theoretically analyze the effects
of substrate surface corrugation and mismatch strain on the
morphology of a graphene monolayer supported on an oxide
substrate. The effect of surface corrugation has been consid-
ered in a recent study,zo where the van der Waals interaction
energy between a monolayer graphene and its substrate was
numerically calculated using a Monte Carlo method. Here,
we present an analytical approach that explicitly relates the
interaction energy to the surface corrugation and the interfa-
cial properties. Moreover, the effect of mismatch strain is
considered, which predicts a strain-induced instability under
a compressive strain and reduced corrugation under a tensile
strain. Together, these theoretical results suggest that the
morphology of graphene can be tuned via substrate surface
patterning or strain engineering.

Il. GRAPHENE ON A FLAT SURFACE

In this section, we consider van der Waals interactions
and strain-induced instability of monolayer graphene on an
oxide substrate with a perfectly flat surface. The effects of
surface corrugation are analyzed in Sec. III.

© 2010 American Institute of Physics
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A. van der Waals Interaction

The free energy of van der Waals interaction between a
monolayer and a substrate can be obtained from the pairwise
potential energy for the atom-atom interaction based on the
Hamaker summation method.”' In the present study, we take
the standard form of the Lennard-Jones potential for the pair-
wise interaction between a carbon atom in graphene and a
substrate atom, namely,

C C
WLJ(r)=—r—6‘+r—§, (1)

where r is the distance between the two atoms, C, and C, are
the constants for the attractive and repulsive interactions, re-
spectively. Assuming an effectively homogeneous substrate,
we sum (integrate) the energy between one carbon atom and
all the atoms in the substrate to obtain an atom-surface po-
tential for each carbon atom near the surface. Next, summing
up the atom-surface potential for all the carbon atoms in the
monolayer graphene (flat or corrugated) results in the
monolayer-surface interaction energy, namely,

W= f J- WLJpspngSdAg? (2)
Ag YV

where p, is the number of atoms per unit volume of the
substrate, p, is the number of carbon atoms per unit area of
the graphene monolayer, V; is the substrate volume, and A, is
the area of the graphene monolayer. By the integration in Eq.
(2), the substrate has been treated as a three-dimensional
continuum and the graphene monolayer a 2D continuum
membrane. Such a treatment is sufficient for the present
study where the characteristic length scale (e.g., corrugation
wavelength) is relatively large compared to the interatomic
bond lengths in both the graphene and the substrate.

Near a flat substrate surface, the atom-surface interaction
potential has been well documented,21 based on which the
interaction potential between a flat monolayer and a flat sub-
strate surface can be written in an analytic form

3 9
R YTV

where U,qw is the monolayer-surface interaction energy per
unit area, z is the distance between the monolayer and the
substrate surface [Fig. 1(a)], & is the equilibrium separation,
and I'y is the interfacial adhesion energy per unit area. As
plotted in Fig. 1(b), the interaction potential reaches a mini-
mum at z=h,, and the adhesion energy (I'y) corresponds to
the depth of the energy well at the equilibrium separation.
Therefore, the flat monolayer-substrate interaction is fully
characterized by the two parameters, h, and Iy, which are
related to the pairwise Lennard-Jones constants in Eq. (1) as
ho=[2C,/(5C,)]"® and T'y=mp,p,C,/(9h}).

The equilibrium separation () between a monolayer
graphene and an oxide substrate is often assumed to be simi-
lar to the interlayer spacing in bulk graphite, i.e., 0.34 nm.
However, atomic force microscopy measurements of
graphene on SiO, have reported values ranging from 0.4 to
0.9 nrn,4’22’23 commonly referred to as the thickness of mono-
layer graphene. On the other hand, the adhesion energy (I'y)
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FIG. 1. (Color online) (a) Schematic illustration of a graphene monolayer on
a flat substrate surface; (b) the van der Waals interaction energy per unit area
as a function of the separation; and (c) the van der Waals force per unit area
as a function of the separation.

for monolayer graphene on oxide has not been experimen-
tally measured to the best of our knowledge, while a value of
0.6 eV/nm? was estimated based on the interlayer interac-
tion energy in graphite.4 In the present study, we take h
=06 nm and T[,=0.6 eV/nm?> (or equivalently,
0.096 J/m?) as the representative values in all calculations.

The van der Waals interaction force (per unit area, posi-
tive for attraction) between a flat graphene monolayer and a
flat substrate surface can be obtained by taking the first de-
rivative of the interaction energy in Eq. (3) with respect to z,
and the corresponding stiffness is obtained by taking the sec-
ond derivative, namely,

AU, qw 91“0{(%)4 (h())lo]
oagw)=—7T"=—"|—] -|— , 4
aw(2) T . (4)
U g 27r0{ 2<h0>5 5<h0>“]
kyqw(z) = — W _Z0) 220 LS 20) | (5
vaw(2) dz* hy 3\ z 3\ z ®)

As plotted in Fig. 1(c), the van der Waals force (oqw) is zero
at the equilibrium separation (z=h,) and reaches a maximum
(thus termed as strength), o,,,,=1.4661"y/h, at z=1.165h,.
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The initial stiffness at the equilibrium separation is: kg
=27Ty/ h}. Taking hy=0.6 nm and [';,=0.6 eV/nm?, we ob-
tain that o,,,,=230 MPa and k,=7200 MPa/nm. Alterna-
tively, the values for i, and I'y may be estimated from me-
chanical measurements of the initial stiffness and the
strength of graphene-substrate interaction (i.e., iy~ 0.,/ kg
and Ty~ o2, /k).

max

B. Strain-induced instability

Subject to an in-plane compressive strain, the flat
graphene monolayer may become unstable and develop cor-
rugations. The compressive strain may result from thermal
expansion mismatch between graphene and the substrate,
noting in particular that the graphene has a negative thermal
expansion coefficient over a large temperature range.14 Cor-
rugation reduces the elastic strain energy in the graphene
monolayer, which consists of two parts, one for in-plane
compression and the other for bending; the former decreases
and the latter increases upon corrugation. In addition, corru-
gation increases the van der Waals interaction energy be-
tween graphene and the substrate. The competition among
the energetic terms sets a critical strain for onset of strain-
induced corrugation as well as the equilibrium corrugation
amplitude and wavelength beyond the critical strain.

Assume a sinusoidal corrugation of the graphene mono-
layer in form of

24(x) = ho + &, sin(z}\ﬂ) , (6)

where &, is the corrugation amplitude and N the wavelength
[Fig. 2(a)]. To the leading orders of the corrugation ampli-
tude, the elastic strain energy per unit area of graphene is

2 4 4

o[22 el a o
where & is the mismatch strain (<0 for a compressive
strain, relative to the ground state of graphene), C is the 2D
in-plane elastic modulus, and D is the bending modulus of
graphene. The derivation of Eq. (7) is similar to that for thin
film Wrinkling,24 except for the fact that the bending modulus
of monolayer graphene is not directly related to the in-plane
modulus by the classical elastic plate theory.13 Instead, both
C and D are intrinsic elastic properties of the graphene lat-
tice. Based on previous first-principle calculations,” we take
C=353 N/m and D=0.238 nN-nm (~1.5 eV) for the
graphene monolayer. Under the condition of small deforma-
tion, the elastic properties of graphene are linear and
isotropic.26

The van der Waals interaction energy between the cor-
rugated monolayer and the substrate can be obtained by in-
tegrating the atom-surface interaction energy over one wave-
length of the sinusoidal corrugation. For a relatively long
corrugation wavelength, compared to the C—C bond length
(~0.142 nm) in graphene, the average interaction energy
per unit area is approximately
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FIG. 2. (Color online) (a) Schematic illustration for strain-induced corruga-
tion of a graphene monolayer on a flat surface; (b) equilibrium wavelength
and (c) corrugation amplitude of the graphene versus the magnitude of the
compressive mismatch strain (¢ <0). The vertical dashed line in (b) indi-
cates the critical strain, £,=—0.0074, and the horizontal dashed line indicates
the corresponding corrugation wavelength, A\.=2.68 nm.

_ 1 27 8 67564>

Ugw==| U dx=To|—1+——H4—-%]

vdw )\fo VdW(Zg) X 0( + 4hé+ 3 hé
(8)

Combining Egs. (7) and (8), the total free energy (per
unit area) to the leading orders of the corrugation amplitude
is

~ 5 Ce(2mhy\?
UtOlal=F0(_1+Z}lg_(2) 27+r_0

D [2mh \*| & 3C [ 2mhy \*
+—2< T 0) }+—%{675+—(—7T 0) )
Tohg\ A 8K 8T\ A\
)

The equilibrium wavelength and amplitude for the
strain-induced corrugation are then determined by minimiz-

ing the total energy. First, by setting &ﬁmal/&ﬁg:O, we ob-
tain that
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- g(zwho)z D (2’77/10)4
5\ To\ x ) T\
(4{) — 0 0o (10)
ho 3C [ 2hy
675+ —
8\ A
By setting &Utotal/ dN=0, we obtain that
A\ 2D 38
s( ) +——+—5=0. (11)
2thy Chy  8hj

Inserting Eq. (10) into Eq. (11), we obtain a nonlinear equa-
tion for the corrugation wavelength:

400D & [ N \° 400D\ [ A \*
=] +|3-—5 ]| =] -3=0, (12)
Chi . \\, Chy J\\,
where

Dhé)m

A =2 , 13

c W<27Fo (13)

63T ,D

g, = O (14)

Chy

Solving Eq. (12) gives the corrugation wavelength of
graphene as a function of the mismatch strain [Fig. 2(b)],
while the corresponding corrugation amplitude [Fig. 2(c)] is
calculated from Eq. (10). We note that only when e/e,=1
does there exist a real-valued solution for the corrugation
amplitude. Thus, . is the critical mismatch strain, beyond
which the graphene monolayer becomes corrugated even on
a perfectly flat substrate surface. Using the representative
values (C=353 N/m, D=0.238 nN nm, h,=0.6 nm, and
[,=0.6 eV/nm?), we obtain that £.=-0.0074 and A\,
=2.68 nm. Therefore, a small amount of compressive mis-
match strain (<1%) is sufficient to make the monolayer cor-
rugate due to the strain-induced instability. It can be seen in
Fig. 2 that A=\, and 6,=0 when &/e.=1. When e/e.>1,
the corrugation wavelength decreases and the amplitude in-
creases with the magnitude of the compressive strain, similar
to wrinkling of an elastic thin film on a hyperelastic
substrate.”’ The predicted wavelength (~2 nm) for the
strain-induced corrugation is much longer than the inter-
atomic bond length of grapheme (~0.142 nm), thus justify-
ing the treatment of the graphene monolayer as a continuum
membrane in the present study. Noticeably, the strain-
induced corrugation wavelength is several times shorter than
the reported wavelength (5—-10 nm) for the intrinsic ripples in
suspended graphene sheets,"” while the corrugation ampli-
tude is comparable to the height fluctuation (~0.07 nm) in
atomistic Monte Carlo simulations.” Similar ripples have
also been predicted along free edges of graphene
nanoribbons,” >’ due to presence of compressive edge
forces. For supported graphene nanoribbons, the effects of
edge energy and edge force would compete with the van der
Waals interaction energy and the elastic strain energy to de-
termine the equilibrium morphology, which is left for future
studies.
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FIG. 3. (Color online) (a) Schematic illustration of a single atom near a
corrugated surface; and (b) the first-order effect of surface corrugation on
the equilibrium separation of a single atom from the surface.

lll. GRAPHENE ON A CORRUGATED SURFACE

In this section, we consider effects of substrate surface
corrugation on morphology of supported graphene. First we
derive an approximate interaction energy function between a
single atom and a substrate with a periodically corrugated
surface. The interaction energy between a graphene mono-
layer and a corrugated surface is then obtained analytically to
the leading order of the corrugation amplitudes, based on
which the equilibrium morphology and the effects of mis-
match strain are analyzed.

A. Effect of surface corrugation on atom-substrate
interaction

Consider the van der Waals interaction between a single
carbon atom and a substrate with a corrugated surface [Fig.
3(a)]. Assume the surface to be sinusoidal with an amplitude
(8,) and a wavelength (\), namely,

2
2(x) =6, sin%x. (15)

Let (xg,yp,z0) denote the position of a carbon atom near the
corrugated surface. The van der Waals interaction energy is
obtained by integrating the pairwise Lennard-Jones potential
in Eq. (1) over the volume of the substrate (see Appendix for
details). To the leading orders of the surface corrugation am-
plitude, we obtain that

Wi(xg,20) = Wo(zo) + W, (Zo)Sin< 27Tx0) (é)
A 20

4rx) S 2
A ):|(Zo> ’ (16)

+ {Wz(Zo) - W3(ZO)COS<

where
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Tyl 3(hg\> 1[hy\°
wo(zO>=——°{—(—°) ——(—") ] (17)
pg 2 20 2 20
9T, | K 27z
Wl(Zo)=— 0[_021{2(_0)
pg | 20N A
h) (2%)
-— k=), 18
247057\ A (18)
ory| (hy\> 5(hy\°
W2<zO>=——°{(—°) ——(—0) ] (19)
2p,\z0/  2\z
36T, hi (477'10) hy (47710)
Wi(zo) = — K - K, ,
3(20) P [)\3 3\ 3Z(3)7\6 o\ T\
(20)

and K,(z) is the modified Bessel function of the second kind.

Evidently, the first term on the right hand side of Eq.
(16) is the interaction energy between a single atom and a
substrate with a perfectly flat surface, with an equilibrium
separation h, and the binding energy I'y/p, (per atom),
which naturally leads to the flat monolayer-substrate interac-
tion energy (per unit area) in Eq. (3). The second term oscil-
lates with the in-plane coordinate x, linearly proportional to
the surface corrugation, while the third term represents a
second-order effect on the interaction energy.

Derivatives of the interaction energy with respect to the
coordinates of the carbon atom give the van der Waals forces
acting on the atom in z and x directions, respectively:

daw, aw, w 2 O,
F.(x9,20) = L (—l——l>sin<ﬂ>(—s>

dz, dzy 2o A 20
. { AW, 2W, ( dw,
dZ() 20 dZ()

—%>Cos<4wx0>}(é)2, (21)
20 A 20

2aW 2mxg \ ([ O
S TS

20
47W 4 5. \?
_T 3sin( Wx0)<—°> . (22)
A A 20

The equilibrium position of a single atom near the corrugated
surface can then be found by setting both the forces to be
zero, or equivalently, by minimizing the interaction energy in
Eq. (16).

By retaining only the first-order terms in Eq. (21), we
obtain the equilibrium z-coordinate as a function of the
x-coordinate of the carbon atom, namely

Z(xg) = ho{l + B(%)sinzzxo}, (23)

where
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Furthermore, the first term on the right hand side of Eq. (22)
suggests that the in-plane force (F,) vanishes when 27xy/\
=2nm* /2 (n is an integer), i.e., when the atom is directly
above a peak or a trough of the surface corrugation. How-
ever, examination of the stability shows that only the equi-
librium positions above the trough of the corrugation is
stable, because W,(hy) >0 and the atom-substrate interaction
energy reaches a minimum when 2mxy/AN=2nm7—m/2. In-
cluding the second-order terms does not affect the equilib-
rium x-coordinate, but does affect the equilibrium
z-coordinate as well as the energy magnitude (binding en-
ergy) due to the nonlinear nature of the van der Waals inter-
action. As shown in Sec. III B, the second-order terms are
essential in considering monolayer-substrate interaction with
a corrugated surface.

To illustrate the first-order effect of the substrate surface
corrugation on the atom-substrate interaction, Fig. 3(b) plots
the dimensionless parameter B as a function of the corruga-
tion wavelength. As given in Eq. (23), the equilibrium sepa-
ration of a single atom from the corrugated surface oscillates
with the x-coordinate with an amplitude BJ,, where B de-
pends only on the ratio, N/ k. The value of 8 has two limits:
for a long-wavelength surface corrugation (A>h,), B=1,
meaning that the equilibrium position (z;) by Eq. (23) fol-
lows exactly the surface corrugation with a constant separa-
tion hg; on the other hand, for a short-wavelength corrugation
(N hy<0.5), B~=~0, meaning that the equilibrium position
(zy) is independent of the surface corrugation (i.e., the sur-
face is effectively flat). For surface corrugation of interme-
diate wavelengths, 3 varies between 0 and 1, and the oscil-
lation of the equilibrium position (z;) has a smaller
amplitude (B6;) than the substrate surface corrugation. Thus,
it is expected that a monolayer of atoms (e.g., graphene) on a
corrugated surface would in general be corrugated, partly
conforming to the surface with a smaller amplitude, except
for an effectively flat surface with very short corrugation
wavelengths.

B. Surface induced corrugation of graphene

When a graphene monolayer is placed on top of a cor-
rugated substrate surface, the van der Waals interaction be-
tween the individual carbon atoms and the substrate favors
conformal corrugation of the monolayer. However, the
corrugation-induced deformation of the monolayer increases
the elastic strain energy in the monolayer, which tends to
resist corrugation. The equilibrium morphology of the sup-
ported graphene monolayer is thus determined by the com-
petition between the van der Waals interaction and the intrin-
sic elasticity of graphene, assuming the substrate to be rigid.
As illustrated in Fig. 4, on a periodically corrugated surface
as described by Eq. (15), we assume a sinusoidal morphol-
ogy for the monolayer
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FIG. 4. (Color online) Schematic illustration of a graphene monolayer on a
corrugated substrate surface.

Z(X)=h+ 6, sin(%) , (25)

where h is the mean separation (or thickness) between the
substrate and monolayer, and &, is the corrugation amplitude
of the monolayer. Unlike Eq. (6), here the mean separation
(h) does not necessarily equal hy. Instead, both /2 and §,
depend on the wavelength (\) and amplitude (5,) of the sur-
face corrugation, which are to be determined by minimizing
the total free energy of the system, including contributions
from both the van der Waals interaction and the elastic de-
formation of the supported graphene.

As given in Eq. (7), the elastic strain energy per unit area
of graphene (Ug), consisting of bending and in-plane com-
ponents, is independent of the mean separation (/). The van
der Waals interaction energy between the corrugated mono-
layer and the substrate is obtained by integrating Eq. (16)
over one wavelength of the periodic corrugation. To the lead-
ing order of the corrugation amplitudes, the monolayer-
surface interaction energy (per unit area) is

_ A
U,aw(h,8,) = %f W(x,z4(x))dx = Uyqw(h) + U, (h)
0

2 2
X[<§§> + (%) }+ Uz(h)ézg, (26)

hO 0 0
where
9T, ho)S 5<h0)” hy
U,(h) = > {_<h +2 h = 4kvdw(h), (27)
h 2mh\  whl! 27h
U,(h)=97°T —OK<—>— "kl =—]].
2( ) O|:)\3h2 3 )\ 24h5)\6 6 )\

(28)

We note that the leading order perturbation to the monolayer-
surface interaction energy is quadratic with respect to the
corrugation amplitudes (&, and 8,), including a coupling term
(~8,8,). The second-order effect in Eq. (16) is thus essential
for the consideration of monolayer-substrate interaction. The
total free energy of the corrugated monolayer-substrate sys-
tem is then

Usgiat(h, 8) = Uyaw(h, 8,) + U, (5,). (29)

First consider two limiting cases, respectively, by assum-
ing the monolayer to be perfectly flat (i.e., §,=0) and to be
fully conformal to the substrate surface (i.e., J,=3,). For
each case, the total free energy is a function of A, which can
be easily minimized. Given an amplitude of the substrate
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FIG. 5. (Color online) Comparison of the total free energies for the two
limiting cases of the graphene morphology (flat vs conformal) on a corru-
gated surface.

surface corrugation (&), the free energy for a flat monolayer
is independent of the wavelength (\), while the free energy
for the conformal monolayer increases as the wavelength de-
creases. A comparison of the minimum energy between these
two cases (Fig. 5) shows that the flat monolayer is energeti-
cally more favorable at small wavelengths while the confor-
mal monolayer is favorable at long wavelengths. The critical
wavelength for the cross-over depends on the surface corru-
gation amplitude (&;). This comparison suggests a transition
from fully conformal to flat morphology for the monolayer
as the wavelength decreases. In general, the monolayer is
likely to be partly conformal to the surface corrugation with
a corrugation amplitude in between of the two limits (i.e.,
0<6,<6,). Here we have set the mismatch strain (g) to be
zero, postponing discussions of its effect till Sec. III C.

We now determine the equilibrium mean thickness (/)
and the corrugation amplitude (&,) simultaneously for the
graphene monolayer, by minimizing the total free energy in
Eq. (29) with specific parameters for the substrate surface

corrugation (&8, and \). First, by setting 0510&11/ 36,=0, we
obtain that

5 _ - Us(h)
O, D (2mhy\* Ce(2mhy\?
2U,(h) + — +—|—
2hg\ A 2 A
_f(ﬁ.A D C_) (30)
I\ By hy' Tghd’ Ty )
By setting af]ml/ahzo, we obtain that
, 5,\* [6,\? L 0,0
ayaw(h) + Ul(M{(f) + (h_) ] + Uz(h)_gT =0,
0 0 hy

31)

where a prime indicates derivative with respect to 4. By sub-
stituting Eq. (30) into Eq. (31), we obtain a nonlinear equa-
tion for the mean thickness 4, which is then solved numeri-
cally. The result can be written in a dimensionless form,
namely
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FIG. 6. (Color online) (a) Equilibrium mean thickness of monolayer
graphene on a corrugated substrate surface, as a function of the corrugation
wavelength for different corrugation amplitudes; and (b) the ratio of the
corrugation amplitudes between the graphene and the substrate surface.

h ( N 6 D cs>
T ) (32)
hy hy Tohy T
which is plotted in Fig. 6(a). The corresponding corrugation
amplitude of the monolayer is then calculated by inserting
Eq. (32) into Eq. (30), as plotted in Fig. 6(b). Here the di-
mensionless parameter D/(I'jh3)=6.94 and the mismatch
strain e=0. Limited by the leading-order approximations in
the free energy function, relatively small corrugation ampli-
tudes (e.g., 8,/hy<<0.5) are considered.

Figure 6 shows clearly the transition from a long-
wavelength limit to a short-wavelength limit for both the
mean separation (/1) and the surface-induced corrugation am-
plitude (6,) of the supported graphene monolayer. At the
limit of long wavelengths (e.g., N/ hy>15), the mean thick-
ness approaches h, and the corrugation amplitude of
graphene approaches that of the substrate surface (J,/6;
—1). Thus, the monolayer morphology is completely con-
formal to the surface. However, as the corrugation wave-
length decreases, the mean separation increases and ap-
proaches a plateau at the short-wavelength limit that depends
on the surface corrugation amplitude. Meanwhile, the corru-
gation amplitude of graphene decreases and approaches zero
(8,/ 8,— 0). Therefore, the graphene tends to be partly con-
formal to the surface corrugation for intermediate wave-
lengths and becomes completely nonconformal (flat) for
short wavelengths. The transition process is increasingly
abrupt as the surface corrugation amplitude increases, and a
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snap-through instability20 is predicted for relatively large am-
plitudes (not shown in Fig. 6). As a quantitative example, for
a surface amplitude §,=0.24 nm (8,/hy=0.4), the transition
wavelength is about 4 nm (A/hy~7) and the supported
graphene monolayer becomes almost completely conformal
to the surface corrugation for wavelengths longer than 9 nm
(N hy>15).

Corrugation of monolayer graphene supported on SiO,
has been probed experimentally.“_6 Compared to the bare
oxide surface, the supported graphene was found to have a
smaller root-mean-square roughness and a longer correlation
length,4 both of which can be qualitatively understood based
on the theoretical results in the present study. As shown in
Fig. 6(b), the amplitude ratio (6,/ ;) is less than 1 in general,
suggesting a flatter morphology for the supported graphene.
One may consider a randomly corrugated substrate surface
consisting of many Fourier components with statistically dis-
tributed wavelengths and amplitudes, on top of which the
graphene corrugates partly conformal to the long-wavelength
Fourier modes; the short-wavelength modes of surface cor-
rugation are filtered out. Consequently, the average corruga-
tion wavelength in graphene is longer than that for the bare
substrate surface, and the root-mean-square amplitude is
smaller. Similar results were reported in a previous study,20
where the van der Waals interaction energy was calculated
numerically based on a Monte Carlo method. There, the cor-
rugation amplitude of the substrate surface was set to a fixed
value (0.5 nm), and the amplitude ratio and the equilibrium
separation were determined as functions of the ratio, N/ J,,
for different values of the adhesion energy. By the dimen-
sional consideration in Egs. (30) and (32), we emphasize that
the morphology of graphene depends on both the corrugation
amplitude and the wavelength of the substrate surface, as
shown clearly in Fig. 6.

In addition to the effects on the morphology, we find that
the effective adhesion energy between a graphene monolayer
and an oxide substrate also depends on the surface corruga-

tion. The magnitude of the total free energy (ﬁtolal) corre-
sponding to the equilibrium mean separation and the equilib-
rium corrugation amplitude gives a measure of the effective
adhesion energy, which includes the contributions from both
the van der Waals interaction and the elastic strain energy in
the corrugated graphene monolayer. Figure 7 shows the nor-
malized adhesion energy as a function of the corrugation
wavelength for different amplitudes of the substrate surface
corrugation. The adhesion energy approaches I';, at the long-
wavelength limit, but decreases as the wavelength decreases,
approaching a plateau at the short-wavelength limit. The ad-
hesion energy decreases with increasing amplitude of the
substrate surface corrugation. For &,/hy=0.4, the adhesion
energy drops nearly 20% from long-wavelength to short-
wavelength corrugations. Since the graphene monolayer is
predicted to be nearly flat at the short-wavelength limit, the
substrate surface may be considered effectively flat, but the
larger equilibrium separation (h>h) leads to a lower adhe-
sion energy. Interestingly, a previous study based on a per-
turbation theory and molecular dynamics simulations pre-
dicted a similar dependence of friction between a substrate
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FIG. 7. (Color online) Effective adhesion energy for a graphene monolayer
on a corrugated substrate surface, as a function of the corrugation wave-
length for different corrugation amplitudes.

and an absorbed monolayer on the surface corrugation,31
suggesting an intimate relationship between adhesion and
friction.

C. Effect of mismatch strain

As shown in Sec II B, a compressive mismatch strain
can cause a supported graphene monolayer to corrugate even
on a perfectly flat substrate surface as a result of strain-
induced instability. On a corrugated substrate surface, the
morphology of the supported graphene depends on both the
surface corrugation and the mismatch strain. By minimizing
the total free energy in Eq. (29) with a tensile (¢>0) or
compressive (& <0) mismatch strain, the effect of mismatch
strain is analyzed. As predicted by Egs. (30) and (32), the
mean separation and the corrugation amplitude of graphene
depends on the mismatch strain through the dimensionless
group, Ce/T’. In general, a tensile strain tends to flatten the
supported graphene and a compressive strain tends to in-
crease the corrugation amplitude. As shown in Fig. 8(a), for
a given corrugation wavelength (e.g., N/hy=10), the ampli-
tude ratio decreases with the increasing tensile strain. For the
case of &,/hy=0.4, a snap-through occurs at € ~0.004, be-
yond which the graphene becomes flat (3,=0). Under a com-
pressive strain, the amplitude ratio increases until a critical
compressive strain, beyond which the strain-induced instabil-
ity dominates and a higher-order analysis is required to pre-
dict the corrugation amplitude for the graphene. The critical
compressive strain is determined as a function of the surface
corrugation wavelength (\) for different corrugation ampli-
tudes (8,) in Fig. 9. On a flat substrate surface (5,=0), the
critical strain is obtained from Eq. (10) by setting the right-
hand side to be zero, which has a minimum (e,) at the criti-
cal wavelength (\,) as given in Egs. (14) and (13), respec-
tively. On a corrugated substrate surface, the critical
compressive strain decreases as the corrugation amplitude
increases, and the corrugation wavelength for the minimum
critical strain increases. It is thus predicted that the substrate
surface corrugation promotes onset of the strain-induced in-
stability at a lower compressive strain and a longer wave-
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(a) Strain (%)

1.2 : . . . !

1.1}

h/h0

1.05¢
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FIG. 8. (Color online) Effects of in-plane mismatch strain on (a) the corru-
gation amplitude and (b) the mean thickness of monolayer graphene on a
corrugated substrate surface with N/hy=10. The vertical dashed line indi-
cates the critical strain (g.=—-0.0074) for strain-induced instability on a per-
fectly flat substrate surface (5,=0).

length. In addition, Fig. 8(b) shows that the mismatch strain,
either tensile or compressive, tends to increase the mean
thickness of the supported graphene monolayer on a corru-
gated substrate surface, which can be attributed to the strain-

3 ‘
5.=0
S
25} —a—08/hy =011 ]
]
o 58/h0=0.2

Critical compressive strain (%)
&

0 5 10 15 20
Corrugation wavelength, A/h

FIG. 9. (Color online) Critical compressive strain for strain-induced insta-
bility of a supported graphene monolayer.
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induced change in the corrugation amplitude of graphene. In
contrast, on a perfectly flat substrate surface (8,=0), the
mean thickness is independent of the mismatch strain. Thus,
the effect of mismatch strain is intimately coupled with the
effect of substrate surface corrugation.

IV. CONCLUDING REMARKS

In the present study, the effects of substrate surface cor-
rugation and mismatch strain on the morphology of a
graphene monolayer supported on an oxide substrate are
theoretically analyzed. An analytical approach is presented to
explicitly relate the van der Waals interaction energy to the
substrate surface corrugation, based on which a transition
from conformal to nonconformal morphology is predicted
for the supported graphene monolayer. In addition, strain-
induced instability is predicted such that a compressive mis-
match strain can cause a supported graphene monolayer to
corrugate even on a perfectly flat substrate surface. By con-
sidering both the substrate surface corrugation and the mis-
match strain, it is found that, while a tensile mismatch strain
reduces the corrugation amplitude of graphene, a corrugated
substrate surface promotes strain-induced instability under a
compressive strain.

The implications of the present theoretical results may
be taken twofold. On one hand, it suggests that an ultraflat
graphene monolayer may be achieved either on an ultraflat
substrate surface®® or by imposing a tensile mismatch strain.
The ultraflat substrate surface could have long-wavelength,

J. Appl. Phys. 107, 123531 (2010)

small-amplitude corrugations or ultrashort-wavelength corru-
gations, while a relatively small tensile mismatch strain
could be sufficient to flatten the supported graphene. On the
other hand, periodically corrugated graphene monolayers can
be obtained with tunable wavelength and amplitude by either
substrate surface patteming20 or strain-induced instability.
Sophisticated strain engineering approaches may be devised
to achieve various morphological textures in partly supported
graphene14 and on mechanically flexible substrates.>*
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APPENDIX
We calculate the interaction energy between an atom and
a corrugated surface of the substrate [Fig. 3(a)] as follows:

) Z_y(x) ©
W(xg,20) = f J f Wii(r)pydydzdx,

where Wi (r) is given in Eq. (1)
=/(x=x0)2+y*+(z—20)* and z,(x)= 8, sin(2mmx/\).
First, integrating with respect to y, we obtain that

= aW 37C, 637C,
W(xg,20) = Ps _$+W dzdx, (A2)

where a=1/(x—x¢)*+(z—20)%

Next, integrating with respect to z leads to

(A1)

with r

3wc1< z
8

21 821

2Z1 2 )
+ +—
3b2(z%+b2)3/2 3b4(z%+b2)1/2 3b4

4821

W(xO’ Z0) = f Ps

256 192z,

+ +
63wC,| 96 (1 +b%)°%  63b*(z7+ Y  315%(z7 + b?)?

(A3)

384z, 384

where b*=(x-x,)* and z,= 8, sin(2mx/\) -z,

Finally, assuming &, << z,, we integrate Eq. (A3) to obtain
Eq. (16) as the second-order approximation. To reach the
final form of Egs. (17)—(20), we have used the integral form
of the modified Bessel function of the second kind (Basset
function):

F(n + %)(ZZ)” ”
Kn(z) = /—

N

COS X

dx. (A4)

0 (Z2+x2)n+l/2
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