Fracture of Brittle Thin Films on Compliant Substrates: Effect of substrate constraint and loss of the constraint

Rui Huang

Center for Mechanics of Solids, Structures and Materials

Department of Aerospace Engineering and Engineering Mechanics

The University of Texas at Austin

July 16, 2009

Acknowledgments

- Princeton: Z. Suo, J.H. Prevost, J. Liang, M. Huang,
 Z.Y. Huang
- UT Austin: P.S. Ho, H. Mei, Y. Pang
- Part of the work has been supported by National Science Foundation, Semiconductor Research Corporation, and Intel Corporation.

Fracture without and with constraint

Film on elastic substrate

$$G \sim \frac{\sigma^2}{E} h$$
 $K \sim \sigma \sqrt{h}$

- Without constraint, the energy release rate as the driving force for crack growth scales with the crack length and is unbounded;
- Constrained by an elastic substrate, the energy release rate scales with the film thickness and is bounded for a long crack (steady state).

Channel cracks in thin films

Cross section:

Top view:

Courtesy of Jun He of Intel Corp.

He et al., Proc. of the 7th Int. Workshop on Stress-Induced Phenomena in Metallization (2004), pp. 3-14.

Fracture of low-k dielectrics

Tsui et al., J. Mater. Res. 20, 2266-2273 (2005).

Mechanics of channel cracking

The crack reaches a <u>steady</u> state when the crack length exceeds a few times the film thickness.

Steady-state energy Release Rate:

Hutchinson and Suo, 1992. Nakamura and Kamath, 1992. Xia and Hutchinson, 2000. Ambrico and Begley, 2002. Liang et al., 2003.

Effect of Elastic Mismatch

Beuth, IJSS 29, 1657-1675 (1992). Huang et al., Engineering Fracture Mech. 70, 2513-2526 (2003).

Very large crack driving force on compliant substrates!

The more compliant the substrate, the weaker the constraint effect.

$$\alpha = \frac{\overline{E}_f - \overline{E}_s}{\overline{E}_f + \overline{E}_s} \qquad \beta = \frac{\overline{E}_f (1 - \nu_f)(1 - 2\nu_s) - \overline{E}_s (1 - \nu_s)(1 - 2\nu_f)}{2(1 - \nu_f)(1 - \nu_s)(\overline{E}_f + \overline{E}_s)}$$

Loss of constraint on film cracking

- On *elastic* substrates:
 - Interfacial delamination
 - Substrate cracking
- On viscoelastic substrates:
 - Substrate creep
- On elastoplastic substrates:
 - Substrate plasticity
 - Substrate ratcheting under cyclic temperatures

Film cracking with delamination

1μm SiN on Si (Courtesy of Q. Ma, Intel Corp.)

Tsui et al., JMR, 20, 2266 (2005).

- Under what conditions would interfacial delamination occur?
- If it occurs, how would interfacial delamination affect the fracture driving force?

Fracture of SiN thin films on compliant substrates

On Kapton: SiN film cracks with interfacial delamination.

On clear plastic: SiN film cracks with substrate fracture.

Kattamis et al., Mat. Res. Soc. Sym. Proc. 2008.

Stress singularity at the channel root

Zak and Williams, 1963. Hutchinson and Suo, 1992. Beuth, 1992. Vlassak, 2003. Huang et al., 2003.

A power law for crack deflection

Delamination driving force

$$G_d = Z_d \left(\frac{d}{h}, \alpha, \beta\right) \frac{\sigma_0^2 h}{\overline{E}_f}$$

- (i) $\alpha > 0$: Z_d decreases monotonically; $Z_d \to \infty$ as $d/h_f \to 0$.
- (ii) $\alpha = 0$: Z_d decreases monotonically; $Z_d \to 0.99$ as $d/h_f \to 0$.
- (iii) $0 > \alpha > -0.89$: max(Z_d) > 0.5; $Z_d \to 0$ as $d/h_f \to 0$.
- (iv) $\alpha < -0.89$: max(Z_d) < 0.5; $Z_d \to 0$ as d/h_f $\to 0$.

A "phase diagram" for delamination

Mei, Pang, and Huang, Int. J. Fracture 148, 331 (2007).

Initiation of delamination by cohesive zone modeling (CZM)

Critical stress for interfacial delamination

SiN film on Kapton substrate: $\alpha = 0.9672, \beta = 0.2552$

- ► Small-scale bridging (SSB): L/h_f << 1, $\sigma_{cr} \rightarrow 0$ (LEFM);
- ➤ Large-scale bridging (LSB): a cohesive zone develops before crack initiation

Critical stress for substrate cracking

- ► Small-scale bridging (SSB): L/h_f << 1, $\sigma_{cr} \rightarrow 0$ (LEFM);
- ➤ Large-scale bridging (LSB): a cohesive zone develops before crack initiation

Delamination or Penetration?

- > LEFM: energy based criterion (He and Hutchinson, 1992).
- > CZM: combined strength and toughness criterion (Parmigiani and Thouless, 2006).

CZM simulations with competing crack paths

Two layers of cohesive elements are assigned along the competing crack paths.

Effect of substrate constraint on film cracking

- On *elastic* substrates:
 - Weak constraint by a compliant substrate
 - Loss of constraint by interfacial delamination or substrate cracking
- On viscoelastic substrates:
 - Substrate creep
- On elastoplastic substrates:
 - Substrate plasticity
 - Substrate ratcheting under cyclic temperatures

On a viscoelastic layer

- Two elastic limits: glassy and rubbery, with different constraint.
- In between: viscoelastic deformation leads to gradual loss of constraint over time; stress relaxes in the wake of the channel crack, but intensifies at the crack front.

Suo et al., J. Mech. Phys. Solids 51, 2169 (2003).

A Shear Lag Model

Elastic film:

$$\sigma_{\alpha\beta,\beta} = \tau_{\alpha}/h$$

$$\sigma_{\alpha\beta} = \sigma \delta_{\alpha\beta} + \overline{E} \left[(1 - v) \varepsilon_{\alpha\beta} + v \varepsilon_{\gamma\gamma} \delta_{\alpha\beta} \right]$$

$$\varepsilon_{\alpha\beta} = \frac{1}{2} \left(u_{\alpha,\beta} + u_{\beta,\alpha} \right)$$

Viscous underlayer:
$$\tau_{\alpha} = \frac{\eta}{H} \frac{\partial u_{\alpha}}{\partial t}$$

Effective diffusivity: $D = \overline{E}Hh/\eta$

Elsasser, 1969. Rice, 1980. Huang et al., 2001.

Stationary long crack in a blanket film

Length scale = $(Dt)^{1/2}$

Dimensional consideration: $K \propto \sigma(Dt)^{1/4}$

Analytical solution: (Laplace transform)

$$K(t) = 1.103 \sqrt{1 - v^2} \sigma (Dt)^{1/4}$$

Gradual loss of constraint:

- When t = 0, K = 0
- When $t \to \infty$, $K \to \infty$
- Delayed growth when $K(t) = K_c$

Huang et al., Acta Mater 50, 4137 (2002).

Viscoelastic underlayer with elastic limits

Viscoelastic underlayer, finite crack length

A finite crack in the film may grow after a delay time, due to loss of constraint by viscoelastic deformation of the underlayer.

Creep-modulated crack growth

Crack growth criterion: $K = K_c$

Length scale:
$$\Lambda = \left(\frac{K_c}{\sigma}\right)^2$$

Time scale:

$$t_0 = \frac{\Lambda^2}{D} = \left(\frac{K_c}{\sigma}\right)^4 \frac{\eta}{Hh\overline{E}}$$

Representative values

$$K_c = 1 MPa \sqrt{m}$$
 σ = 500 MPa

$$E=10^{11}N/m^2,\,\eta=10^{10}~sN/m^2,\,h=0.1~\mu m,$$
 and $H=1~\mu m$

$$\Lambda = 4 \mu m, t_0 = 16 s$$

Steady-State Crack Velocity

Slow growth: K increases, as the underlayer creeps

Fast growth: K decreases, as the fresh crack opening is constrained

Steady-state velocity:

$$V_{ss} = \chi(v) \frac{\Lambda}{t_0} = 0.5 \frac{\overline{E} H h \sigma^2}{\eta K_c^2}$$

Numerical simulation of crack growth

Scaling for power-law creep

For steady-state crack growth:

$$V_{SS} \sim \frac{\sigma^{3n-1}}{B^n K_c^{2n}}$$

Effect of substrate constraint on film cracking

- On *elastic* substrates:
 - Weak constraint by a compliant substrate
 - Loss of constraint by interfacial delamination or substrate cracking
- On viscoelastic substrates:
 - Loss of constraint over time by substrate creep
 - delayed fracture
 - steady-state creep-modulated crack growth
- On elastoplastic substrates:
 - Substrate plasticity
 - Substrate ratcheting under cyclic temperatures

On plastically deformable substrates

As the substrate deforms plastically, the elastic constraint on film cracking is partially lost and the crack driving force increases.

Ratcheting-Induced Cracking under cyclic temperatures

SiN film on Al Huang, Suo, Ma, J. Mech. Phys. Solids **50**, 1079 (2002)

Metal Film Crawling by Ratcheting

Ratcheting-induced crack growth

Stress intensity factor of a stationary long crack:

$$K(N) = 1.103\sqrt{1 - v^2}\sigma \left(\frac{\overline{E}hH}{\eta_R}N\right)^{1/4}$$

Steady state growth rate:

$$\frac{da}{dN} = 0.5 \frac{\overline{E}Hh\sigma^2}{\eta_R K_c^2}$$

Summary: Effects of substrate constraint on fracture of elastic films

- On *elastic* substrates:
 - Weak constraint by a compliant substrate
 - Loss of constraint by interfacial delamination or substrate cracking
- On viscoelastic substrates:
 - Loss of constraint over time by substrate creep
 - delayed fracture
 - steady-state creep-modulated crack growth
- On elastoplastic substrates:
 - Loss of constraint due to plastic deformation of substrate
 - Plastic ratcheting induced crack growth under cyclic temperatures