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Fracture without and with constraint
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e Without constraint, the energy release rate as the driving force
for crack growth scales with the crack length and is unbounded;

e Constrained by an elastic substrate, the energy release rate scales
with the film thickness and is bounded for a long crack (steady
state).




Channel cracks in thin films

Cross section: Top view:

Si substrate

Courtesy of Jun He of Intel Corp.

He et al., Proc. of the 7th Int. Workshop on Stress-Induced
Phenomena in Metallization (2004), pp. 3-14.



Fracture of low-k dielectrics

Channel crack
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Tsui et al., J. Mater. Res. 20, 2266-2273 (2005).



Mechanics of channel cracking
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Hutchinson and Suo, 1992.

Nakamura and Kamath, 1992.

Xia and Hutchinson, 2000.
Ambrico and Begley, 2002.
Liang et al., 2003.

The crack reaches a steady
state when the crack length

exceeds a few times the film
thickness.

Steady-state energy Release Rate:
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Dimensionless energy release rate, (%SEl*)/(G

Effect of Elastic Mismatch

Beuth, 1JSS 29, 1657-1675 (1992).
Huang et al., Engineering Fracture Mech. 70, 2513-2526 (2003).
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Loss of constraint on film cracking

e On elastic substrates:
— Interfacial delamination
— Substrate cracking

e On viscoelastic substrates:

— Substrate creep

e On elastoplastic substrates:
— Substrate plasticity
— Substrate ratcheting under cyclic temperatures



Film cracking with delamination
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Silicon I

lum SiN on Si (Courtesy of Q. Ma, Tsui et al., JMR, 20, 2266 (2005).
Intel Corp.)

e Under what conditions would interfacial delamination occur?

e |fit occurs, how would interfacial delamination affect the fracture
driving force?



Fracture of SIN thin films on
compliant substrates

Kapton® E

On clear plastic: SiN film cracks with substrate fracture.
Kattamis et al., Mat. Res. Soc. Sym. Proc. 2008.



Stress singularity at the channel root
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Zak and Williams, 1963.
Hutchinson and Suo, 1992.

Beuth, 1992.
Viassak, 2003.

Huang et al., 2003.
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A power law for crack deflection
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d/h, Mei, Pang, and Huang, Int. J. Fracture 148, 331 (2007).



Delamination driving force

film
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(i) a>0:Z, decreases monotonically; Z; —o0 as d/h; — 0.

(i) o= 0: Z, decreases monotonically; Z; — 0.99 as d/h;— 0.
(1) 0>a>-0.89: max(Zy) > 0.5;Z;— 0 as d/h; — 0.
(iv) a<-0.89: max(Z,) <0.5;Z;— 0 as d/hy— 0.

Mei, Pang, and Huang, Int. J. Fracture 148, 331 (2007).



A “phase diagram” for delamination

I: No delamination
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Initiation of delamination by cohesive zone
modeling (CZM)
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Critical stress for interfacial delamination
SiN film on Kapton substrate: o« =0.9672, 8=0.2552
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» Small-scale bridging (SSB): L/h;<< 1, 6., — 0 (LEFM);

» Large-scale bridging (LSB): a cohesive zone develops before crack
Initiation



Critical stress for substrate cracking
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» Small-scale bridging (SSB): L/h;<< 1, 6., — 0 (LEFM);

» Large-scale bridging (LSB): a cohesive zone develops before crack
initiation



Delamination or Penetration?

» LEFM: energy based criterion (He and Hutchinson, 1992).
» CZM: combined strength and toughness criterion (Parmigiani and Thouless,

2000).
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CZM simulations with competing crack paths

[eacmeseier | Two layers of cohesive elements are
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Effect of substrate constraint on film cracking

e On elastic substrates:

— Weak constraint by a compliant substrate

— Loss of constraint by interfacial delamination or
substrate cracking

e On viscoelastic substrates:
— Substrate creep

e On elastoplastic substrates:
— Substrate plasticity
— Substrate ratcheting under cyclic temperatures



On a viscoelastic layer

cross-linked polymer
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e Two elastic limits: glassy and G(t )

rubbery, with different constraint. viscoelastic

rubbery

deformation leads to gradual loss of
constraint over time; stress relaxes
in the wake of the channel crack, RS

e In between: viscoelastic
glassy

v

but intensifies at the crack front. days weeks years

Suo et al., J. Mech. Phys. Solids 51, 2169 (2003).
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A Shear Lag Model

Elastic film:
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Elsasser, 1969.

Effective diffusivity: D= EHh/7 o ot ol 2001



Stationary long crack in a blanket film

Length scale = (Dt)l/2

Dimensional consideration: K oc o(Df)"

Analytical solution:

. 4,2 1/4
(Laplace transform) 0 =L 0L -7 G(Dt)

2.0

Gradual loss of constraint:
e Whent=0,K=0
e Whent —> oo, K— oo

Mormalized stress intensity factor

e Delayed growth when K(t) = K_

0.1 0.5 1.0

Huang et al., Acta Mater 50, 4137 (2002). Normalized time



Viscoelastic underlayer with elastic limits
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10° glassy : viscoelastic The effect of constraint
on film cracking reduces
from the glassy state to
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Suo et al., J. Mech. Phys. Solids 51, 2169 (2003). i



Viscoelastic underlayer, finite crack length

Delayed growth

Initial crack length, a

A finite crack in the film may grow after a delay time, due to loss of
constraint by viscoelastic deformation of the underlayer.

Suo et al., J. Mech. Phys. Solids 51, 2169 (2003).



Creep-modulated crack growth
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Liang et al., Experimental Mechanics 43, 269-279 (2003).



Steady-State Crack Velocity
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Slow growth: K increases, as the underlayer creeps

Fast growth: K decreases, as the fresh crack opening is constrained
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Liang et al., Experimental Mechanics 43, 269-279 (2003).



Numerical simulation of crack growth
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Stationary Transient Steady state
crack state growth




Scaling for power-law creep
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For steady-state crack growth: Vo ~

Liang et al., Int. J. Fracture 125, 335 (2004).



Effect of substrate constraint on film cracking

 On elastic substrates:
— Weak constraint by a compliant substrate

— Loss of constraint by interfacial delamination or
substrate cracking

* On viscoelastic substrates:
— Loss of constraint over time by substrate creep
— delayed fracture
— steady-state creep-modulated crack growth

 On elastoplastic substrates:
— Substrate plasticity
— Substrate ratcheting under cyclic temperatures




On plastically deformable substrates

O

yZ

Vi

elastoplastic

Hu and Evans, 1989.
Beuth and Klingbeil, 1996.

Ambrico and Begley, 2002.

Suo, 2003.
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As the substrate deforms plastically, the elastic constraint
on film cracking is partially lost and the crack driving force

increases.



Ratcheting-Induced Cracking
under cyclic temperatures

Cyclic temperature

SiN film on Al
Huang, Suo, Ma, J. Mech. Phys. Solids 50, 1079 (2002)



Metal Film Crawling by Ratcheting

Uni-directional shear T

[ [ [ [ [
» » » » »

v
v
v

cyclic temperature substrate

Si=

Ratcheting-creep analogy:

4K, {EmAaAT_z}_l
/ T T 1201-v,)L1-v,)Y

[
»

Strain per cycle A)/p
Huang, Suo, Ma, Acta Materialia 49, 3039-3049 (2001).



Ratcheting-induced crack growth

Cyclic temperature

Stress intensity factor of a stationary long crack:

Steady state growth rate:

Liang et al., Experimental Mechanics 43, 269-279 (2003).



Summary : Effects of substrate constraint on fracture
of elastic films

e On elastic substrates:
— Weak constraint by a compliant substrate

— Loss of constraint by interfacial delamination or substrate
cracking

e On viscoelastic substrates:
— Loss of constraint over time by substrate creep
— delayed fracture
— steady-state creep-modulated crack growth

e On elastoplastic substrates:
— Loss of constraint due to plastic deformation of substrate

— Plastic ratcheting induced crack growth under cyclic
temperatures



