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Abstract—Thickness-shear mode quartz crystal microbalance 
(QCM) has been widely used as liquid-phase sensors, such as 
viscometers and bio-detectors. However, due to coupling 
between the in-plane shear motion and the out-of-plane 
flexure, when used in contact with or immersed in a liquid, the 
out-of-plane motion generates compressional waves in the 
liquid that reflect off the liquid surface and return to the 
crystal. This interference effect causes depth-sensitive 
perturbations in the sensor response, often undesirable. In this 
study, we show that torsional-mode resonators may be used for 
liquid sensing without the depth effect. Samples in form of 
stepped plates, circular decals, and convex contoured faces are 
machined in elastic plates (e.g., cast aluminum, stainless steel, 
and brass). A non-contact electromagnetic acoustic transducer 
(EMAT) was employed to drive torsional-mode vibrations. 
Efficient energy trapping was observed for first-order 
torsional modes, leading to high quality factors. When placed 
in contact with water, the resonance frequency of the torsional 
mode was found to be independent of the water depth, in 
contrast to depth-dependent frequency oscillation for the 
thickness-shear mode. Finite element analyses are conducted to 
understand the torsional-mode vibrations as well as the effect 
of material anisotropy. 

I. INTRODUCTION  
Used as a liquid-phase sensor, the resonance frequency of 

a thickness-shear mode (TSM) quartz crystal resonator 
changes as a function of the liquid properties [1-5]. The 
frequency change is proportional to the square root of the 
liquid density-viscosity product, assuming that a simple 
thickness-shear mode operates in the crystal plate and the 
motion is uniform across the crystal surface so that only a 
shear wave is generated in the viscous liquid. However, it 
has been observed that the frequency change in a TSM 
resonator oscillates periodically as a function of the liquid 
thickness [6-8]. It was found that, in a finite-sized crystal 
plate, the shear motion is non-uniform and typically couples 
to the out-of-plane motion of flexure, which generates a 
compressional wave in the liquid. Unlike the shear wave, the 

compressional wave (i.e., sound waves) propagates in the 
viscous liquid with much less decaying. Consequently, it 
reflects from the liquid surface and back to the crystal, 
causing interference with the resonator. By coupling 
thickness-shear vibrations of a finite crystal plates and wave 
propagations in a Newtonian liquid (linearly viscous and 
compressive), Lee and Huang [9] developed a refined 
formula for the frequency change that effectively accounts 
for the depth-dependent frequency oscillation observed in 
experiments.  

In practice, it is often undesirable to have the sensor 
response dependent upon the liquid thickness. To eliminate 
this effect, we propose to use torsional-mode resonators for 
liquid-phase sensing. In an elastically isotropic plate, 
torsional-mode vibrations do not coupled with flexural mode, 
thus no out-of-plane motion at the surface. Consequently, no 
compressional waves are generated in the adjacent liquid, 
and the sensor response can be related to the liquid properties 
without concerning the liquid thickness. Previously we have 
demonstrated that energy-trapping torsional-mode vibrations 
can be excited in elastic plates by using an electromagnetic 
acoustic transducer (EMAT) [10,11]. In this paper, 
experiments are conducted to study effect of liquid thickness 
on the torsional-mode resonators, in comparison with 
thickness-shear mode. 

II. EXPERIMENTAL METHOD 
To achieve energy trapping, elastic plate samples with 

stepped thickness, attached decals, and convex contoured 
faces were used in this study, as illustrated in Fig. 1. First, 
the samples are made from cast aluminum, as an example of 
elastically isotropic materials. In this case, the stepped or 
contoured samples (A and C in Fig. 1) were machined in a 
6000 series cast aluminum by removing the metal in the 
form of a moat, and for sample B a circular aluminum decal 
is bonded on top of an aluminum plate of uniform thickness. 
To study the effect of material anisotropy, stainless steel and 
brass samples were also used in the experiments. 
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Fig. 2 schematically shows the experimental set-up for 
a torsional-mode resonator. An EMAT, consisting of two 
permanent magnets and a spiral coil, was employed to set 
the samples into vibrations. A function generator was used 
to control the frequency of excitation signal. Upon 
termination of the excitation waveform, an oscilloscope read 
the decay of output voltage. From the initial voltage 
amplitude and its decay envelop, the resonance frequency 
and the quality factor of the resonator can be determined. 

 
The working principle of EMAT is depicted in Fig. 3. 

First, the input oscillatory current in the spiral coil generates 
a magnetic field around the coil. This magnetic field is time 
variant and therefore generates eddy currents in the 
conductive sample plate (metals for the present study). By 
Lenz’s law, the direction of the eddy currents flow in the 
opposite direction to the input current in the coil. 
Meanwhile, the two permanent magnets are placed directly 
under the coil such that the direction of their magnetic field 
flips 180° from one side to the other. Under such a 
permanent magnetic field and the eddy currents, the sample 
is subjected to the Lorentz force and thus vibrates in the 
same frequency as the input current. The direction of the 
resultant force depends on the relative placement of two 
magnets. By changing the direction and the location of 
EMAT, various vibration modes can be excited. Of interest 
in the present study are torsional modes and thickness-shear 
modes. The former is excited by placing the EMAT away 
from the center of circular plate samples and orienting to 
produce a resultant force in the circumferential direction. 

The latter is excited by placing the EMAT right at the center 
of circular plates, thus completely eliminating 
circumferential component. In a previous study [12], by 
using one permanent magnet, radially symmetric thickness-
shear modes were excited in copper-coated silicon 
membrane resonators.  

 
A series of tests were conducted to measure the surface 

motion at resonances in order to distinguish between 
torsional modes and thickness-shear modes. First, taking 
advantage of its non-contact property, the EMAT-induced 
traction was shifted along an arbitrary radial line of the 
sample, and we observed that the initial voltage amplitude 
varied with one or more peaks. For torsional modes, the 
peaks occur at radially symmetric locations corresponding to 
displacement maxima of the mode contour. Next, a stylus 
tipped with an absorbing material was used to probe the plate 
surface. We observed a sharp minimum in the output 
amplitude when the stylus touched the surface at locations 
with displacement maxima. When the stylus probe was 
moved along a set of radial lines through 360 degrees, the 
radial distances of the displacement maxima did not change, 
indicating radially symmetric motion which is characteristic 
of torsional modes. On the other hand, probing the surface 
outside the stepped or contoured region has no effect on the 
amplitude, confirming that the motion is trapped. The 
absorbing stylus technique, though useful, cannot measure 
the direction and relative amplitudes of the displacement. We 

 
(a) Sample A, a stepped cast aluminum plate 

 
(b) Sample B, a uniform cast aluminum plate with a circular decal 

 
(c) Sample C, a contoured cast aluminum plate 

Fig. 1: Schematic illustration of aluminum sample plates (cross 
sectional view, with dimensions in inches). 

 
Fig. 2: Schematic of the experimental set-up. 

  

Fig. 3: The working principle of EMAT. 
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used a pick-up coil to probe the direction. Vibration of the 
metal plate in the presence of a magnetic field will induce 
electrical currents normal to the displacement direction. A 
small pick-up coil with windings adjacent and parallel to the 
top surface of the sample will have an induced voltage 
proportional to the current in the plate. The maximum 
voltage occurs when the coil windings are aligned along the 
current direction (normal to the displacement direction) and 
positioned at a displacement maximum. Torsional modes 
have circumferential displacements in the plane of the plate. 
These modes were confirmed as the pick-up coil had 
maximum output when it was aligned in a radial direction 
(normal to the motion), and the amplitude and phase of the 
coil output were independent of the radial angle. For 
thickness-shear modes, the displacement maximum occurs at 
the center, and the radial symmetry is lost. 

The effect of liquid was measured for both torsional and 
thickness-shear modes. The test fixture system is illustrated 
in Fig. 4. For the present study, distilled water is used as the 
liquid. The thickness of water is defined by the distance 
between the sample surface and a parallel reflector plate. By 
revolving the handle, the support beam of the reflector 
moves vertically to change the water thickness. One 
revolution of the handle corresponds to 317.5 µm. 
Measurements were made at every 30° of revolution, which 
is equivalent to a resolution of 26.5 µm for the water 
thickness. Note that the wavelength of compressional wave 
in water is about 3 mm at 500 kHz and 1.5 mm at 1MHz at 
room temperature [9]. Within this frequency range, the 
resolution is sufficient to reveal the effect of compressional 
waves in the water. Instead of directly measuring the change 
of resonant frequency due to water, we measured the output 
amplitude as a function of the water thickness while keep 
frequency fixed at the resonance of dry state. The amplitude 
change indirectly reflects the change of resonant frequency. 

III. EXPERIMENTAL RESULTS 
Resonant frequencies were determined by adjusting the 

pulse train frequency for peak initial amplitude as observed 
with the oscilloscope across the EMAT coil. Figure 5 shows 

an example of the measured initial amplitude as a function of 
frequency for stepped aluminum sample, which gives a 
resonance frequency at 923.1 kHz. Probing of the 
displacement maxima and directions confirmed that it was a 
torsional mode. For cast aluminum samples sketched in Fig. 
1, with the EMAT placed at different locations, both 
torsional and thickness-shear modes were detected, and the 
measured resonance frequencies are listed in Table I. Note 
that all the frequencies are close to the corresponding cut-off 
frequencies of the first-order thickness modes, with 
frequencies of the torsional modes consistently higher than 
those of thickness-shear modes. 

TABLE I.  MEASURED RESONANCE FREQUENCIES FOR ALUMINUM 
SAMPLES SKETCHED IN FIG. 1 

Samples 
Mode Types 

A B C 

Torsional 506 kHz 810 kHz 933 kHz 

Thickness-shear 503 KHz 808 kHz 904 kHz 

 

The quality factors (Q-factor) of the resonators can be 
determined from the half width of the measured spectra such 
as that shown in Fig. 5. However, the frequency resolution of 
the equipment we had on hand limited us to relatively low Q. 
For this reason, a small section of absorbing tape on the 
sample was used in this measurement to suppress Q, with 
negligible effect on the resonance frequency. The Q-factor in 
this case is 12,300. Much higher Q-factors can be determined 
from the decay envelope observed in the oscilloscope upon 
termination of the excitation waveform at resonance 
frequencies. Figure 6 shows the decay curves for thickness-
shear mode and torsional mode of an identical sample plate. 
The Q-factor is determined by fitting the envelop with a 
function, )/exp(0 QftVV π−= ,  where f is the resonance 
frequency and t is the time. For the thickness-shear mode in 
Fig. 6(a), the resonance frequency is 931 kHz, and the Q is 
determined to be 46,416. For the torsional mode in Fig. 6(b), 
the resonance frequency is 960 kHz and the Q is 104,425, 
much higher than the thickness-shear mode. For all tested 

 
Fig. 4: Set-up for liquid effect experiments. 
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Fig. 5: Measured initial voltage amplitude as a function of frequency, 
with a resonance at 923.1 kHz for a torsional mode in a stepped 
aluminum sample. 
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samples in this study, the Q-factors of torsional modes are 
higher than that of thickness-shear mode. As will be 
discussed later, the high-Q of the torsional modes is a result 
of better energy trapping in the axisymmetric samples. 

The measured effect of water thickness is shown in Fig. 
7 for the cast aluminum samples. For each sample, effects on 
both thickness-shear mode and torsional mode were 
measured for comparison. The resonance frequencies were 
first determined at the dry condition, as described earlier. 
Then, each sample was brought in contact with water as 
illustrated in Fig. 4. With the frequency fixed at the 
corresponding resonances, the initial output magnitude was 
recorded as the water thickness increases. The initial gap 
between the sample surface and the reflector was not 
measured to a sufficient accuracy, and thus not reported. 
Rather, the relative change of the amplitude with respect to 
the water thickness was plotted in terms of revolutions. For 
all three samples, the amplitude changes periodically for 
thickness-shear modes, reflecting the periodical change in 
resonance frequencies. On the other hand, the amplitude of 
torsional modes is essentially independent of the water 

thickness, indicating thickness-insensitive resonance 
frequencies for torsional-mode resonators. As discussed 
earlier, the difference between thickness-shear mode and 
torsional mode in responses to water thickness is attributed 
to the effect of compressional waves in the liquid. The 
thickness-shear mode couples with flexural motion, thus 
strongly affected by compressional waves. The period in the 
amplitude changes in Fig. 7 roughly equals the half 
wavelength of the compressional wave in water at the given 
frequency, in agreement with theoretical predictions [9]. For 
torsional modes, the effect of compressional wave is 
negligible due to pure in-plane surface motion of the plate. 
We also observed double peaks in the responses of 
thickness-shear modes. The distance between these two 
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(a) Thickness-shear mode at 931 kHz. 
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(b) Torsional mode at 960 kHz.  

Fig. 6: Comparison of decay envelops and quality factors for thickness-
shear and torsional modes of an identical sample. 
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(a) Sample A, stepped aluminum plate 
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(b) Sample B, aluminum plate with decal  
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(c) Sample C, contoured aluminum plate 

Fig. 7: Effect of water thickness on thickness-shear and torsional modes 
of cast aluminum samples sketched in Fig. 1. 
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peaks is roughly the thickness change for the stepped 
samples, as a result of different reflections of the 
compressional waves due to the thickness step. To confirm 
this conjecture, the sample with a circular decal was flipped 
over so that the flat surface is now in contact with water. 
Consequently, the change of water thickness is eliminated, 
and no double peaks was observed, as shown in Fig. 7(b). 
For contoured sample in Fig. 7(c), double peaks were also 
observed. Here, the edge of the contoured region has a 
thickness step, which could be the cause for the double peaks.   

In addition to cast aluminum, which can be reasonably 
considered as elastically isotropic, anisotropic materials such 
as extruded stainless steel and brass were also used to make 
the sample plates. Figure 8 shows the effect of water 
thickness on a stepped stainless steel plate. Due to 
anisotropy, two different thickness-shear modes were 
detected at 846 kHz and 856 kHz, respectively, with the 
EMAT orientated in orthogonal directions. For both 
thickness-shear modes, the output amplitudes changed 
periodically as the water thickness increases. We also 
detected a torsional-like mode at 851 kHz. However, the 
output amplitude of this mode also changed periodically with 
respect to the water thickness, but with a relatively smaller 
magnitude compared to the two thickness-shear modes. It is 
believed that, for anisotropic materials, torsional mode in 
general couples with other modes including flexural, leading 
to cyclic responses due to the effect of compressional waves 
in the liquid. It may be possible to design the geometry of the 
step or contouring to reduce the coupling and thus the 
thickness-sensitivity. 

IV. FINITE ELEMENT ANALYSIS 
Finite element analyses (FEA) were performed for both 

torsional and thickness-shear modes. The commercial FEA 
package, ABAQUS, was used. Three-dimensional brick 
elements of quadratic order were employed in the analyses. 
Figure 9 shows displacement contours of a stepped 
aluminum plate (Sample A in Fig. 1) at its fundamental 
thickness modes. In the analysis, the shear modulus of 
aluminum was taken to be 26 GPa and the mass density is 
2700 kg/m3. The resonance frequency of the fundamental 
thickness-shear mode is found to be 503.6 kHz, and the first 
torsional mode is found at 505.6 kHz, both in close 

agreement with the measurements (Table I). The 
displacement contours illustrate the radial symmetry for the 
torsional mode as opposed to the translational motion for the 
thickness-shear mode. Figure 10 shows the cross-sectional 
view of the circumferential displacement for the torsional 
mode. The 1st order thickness variation, the location of 

(a) Thickness shear mode at 503.6 kHz. 

(b) Torsional mode at 505.6 kHz 

Fig. 9: Finite element analyses of Sample A. 

 
 Fig. 10: Cross-sectional view of the circumferential displacement for the 
torsional mode at 505.6 kHz from FEA (Sample A).  
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Fig. 8: Effect of water thickness on thickness-shear modes and torsional 
modes of a stepped plate of stainless steel. 
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displacement maximum, and the effect of energy trapping 
are clearly revealed in this mode plot. 

Furthermore, the effect of anisotropy was investigated 
by FEA. Figure 11 shows two mode plots, again, for Sample 
A, with (a) for the 1st overtone of the fundamental torsional 
mode and (b) for an anisotropic material of the sample 
dimension. The elastic properties of the anisotropic material 
were generated arbitrarily by perturbing the elastic properties 
of aluminum, for purpose of comparison. The elastic 
modulus exhibits an orthotropic type. As a result, instead of 
circular displacement contours of the torsional mode in (a), 
an oval shaped “quasi-torsional” mode was obtained in (b).  

V. SUMMARY 
In this paper, EMAT-driven, energy-trapping torsional-

mode resonators are demonstrated, with higher quality 
factors than thickness shear mode. When it is in contact with 
liquids, the responses of torsional-mode resonators show no 
dependence on the water thickness, as opposed to the cyclic 
responses for thickness-shear modes. The characteristics of 
energy-trapped torsional modes were revealed by finite 
element analyses. The effect of material anisotropy was 
investigated by both experiments and FEA. 
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(a) Isotropic material: first overtone of torsional mode. 

  
(b) Anisotropic material: oval shaped “quasi-torsional” mode. 

Fig. 11: FEA results for isotropic and anisotropic materials. 
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