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Abstract—We have observed that torsional vibrations can be 
trapped in elastic plates with circular regions of slightly 
thicker steps or with smooth convex contoured surfaces. An 
electromagnetic acoustic transducer (EMAT) was used to 
generate oscillatory surface traction. The resonant frequencies 
and Q-values were measured. It was found that these trapped 
torsional modes have Q-values exceeding 100,000 with pure in-
plane motion, which is of practical importance for acoustic 
sensor applications. 

In this paper, a set of approximate two-dimensional 
equations is developed to study vibrations in axisymmetrically 
contoured or stepped elastic plates. By assuming 
circumferentially independent motion, the first-order 
equations are decoupled into four groups, with torsional modes 
uncoupled from flexural and extensional modes. Analytical 
solutions for torsional modes are obtained for stepped and 
linearly contoured circular plates. It is found that the first-
order torsional modes can be trapped in an infinite plate with a 
stepped or contoured region if critical conditions for the 
geometrical parameters are met. The analytical results are 
compared to experiments and finite element analyses with good 
agreements. 

I. INTRODUCTION 
Mechanical resonators with energy trapping typically 

have low losses and hence high quality factors, and are 
therefore sensitive to surface loading. An example of this is 
the thickness-shear mode quartz crystal microbalance 
(QCM), which has found broad applications as detectors for 
mass deposition, for chemical and biochemical absorption, 
and for liquid phase sensing [1-3]. Energy trapping in QCM 
is usually achieved by confining thickness-shear mode 
vibrations under a thin-film electrode deposited on part of 
crystal surface, which eliminates crystal edges and mounting 
structures as sources of energy loss. The quartz plate can be 
regarded as an acoustic waveguide, with the electrode acting 
as a mass load. The mass reduces the cut-off frequency and 
results in a frequency band, within which at least one trapped 
resonance exists [4,5]. To eliminate undesirable overtones, 
the upper limit of the ratio between the electrode size and the 
quartz thickness is set by Bechmann’s number, as given by 
Mindlin and Lee [6] and others [7-9]. 

 (a) 

      (b) 
Fig. 1: (a) A circular plate with a thickness step; (b) An axisymmetrically 
contoured plate (cross-sectional view). 

A well-known problem with the thickness-shear mode 
QCM is that in-plane shear motion intrinsically couples to 
out-of-plane flexure. When used in contact with liquids, the 
out-of-plane motion generates compressional waves that 
reflect off the liquid surface and return to the crystal. This 
interference effect causes depth-sensitive perturbations in the 
sensor responses [10,11]. Recently, we have discovered that 
torsional vibrations can be trapped in elastic plates with 
circular regions of slightly thicker steps or with smooth 
convex contoured surfaces [12]. In an elastically isotropic 
plate, torsional modes do not couple to flexural modes, have 
no out-of-plane motions, and hence no interference effect in 
contact with liquids, allowing an improved sensor response 
compared to thickness-shear-mode resonators. An electro-
magnetic acoustic transducer (EMAT) was used to generate 
oscillatory surface tractions that drive torsional vibrations of 
the plate. A similar method was previously used to generate 
trapped torsional waves in stepped cylinders [13]. 

This paper presents a theoretical study of torsional 
vibrations of isotropic elastic plates. First, a set of 
approximate equations is developed for vibrations of 
axisymmetrically contoured elastic plates, from which the 
governing equations for torsional modes are separated from 
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flexural and extensional modes. Approximate solutions are 
then obtained for torsional vibrations of circular plates with 
thickness steps (Fig. 1a) and with linearly contoured faces 
(Fig. 1b). Energy trapping is predicted in an infinite plate 
with a stepped or contoured region, given that the 
geometrical parameters of the step or contour satisfy a 
critical condition. The theoretical results are compared to 
experiments and finite element analyses. 

II. TWO-DIMENSIONAL PLATE EQUATIONS 
A general procedure for deducing approximate equations 

for elastic plates from the three-dimensional theory of linear 
elasticity was first introduced by Mindlin [14] based on the 
series expansion methods and the variational principle. The 
procedure has been used to derive approximate plate theories 
for both elastic and piezoelectric crystal plates with uniform 
[15-17] and nonuniform thickness [18-21]. Following the 
same procedure, we derive a set of approximate equations 
for axisymmetrically contoured elastic plates in this section, 
and develop analytical solutions for torsional vibrations in 
stepped and linearly contoured circular plates in Sections III 
and IV, respectively. 

The Hamilton’s principle of three-dimensional linear 
elasticity [22] can be written as: 
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where V is the volume of the solid bounded by the surface S, 
ijσ  is the stress tensor, jt  the surface traction, ju  the 

displacement, ρ  the mass density, and jn  the normal vector 
of the surface. 

Consider an axisymmetrically contoured plate as shown 
in Fig. 1b. The top and bottom surfaces of the plate are 
symmetrically located at )(rbz ±= , with the thickness 

)(2 rb  varying as a function of the radial coordinate 
measured from the center. Assuming a small surface gradient, 
the displacement can be expanded into a trigonometric series 
similar to that for a uniform plate [15,16], namely 
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where )(/ rbz=ψ . 

By substituting the series expansion (2) into the 
variational statement (1) and integrating over the thickness of 
the plate, we obtain a set of two-dimensional (2D) field 
equations and the corresponding boundary conditions. In 
cylindrical coordinates, the nth-order 2D equations of motion 
are 
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where 
dr
dbb =' , and 1=mnδ  if nm =  but 0 otherwise. 

Similar equations have been obtained previously for 
contoured crystal strips in rectangular coordinates [20]. The 
2D components of the stress and the face traction are 
defined by 
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The corresponding boundary conditions at the edge of 

the plate are: 
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edge displacements. 
 

Associated with the series expansion of displacement in 
(2), the strain components can be obtained in form of similar 
expansions of 2D components. Then, applying Hooke’s law 
of linear elasticity and integrating the stresses with respect 
to the plate thickness in (4), we obtain the 2D stress-strain 
relations. For the interest of space, only the first-order 
relations are given below. 

 
For the first-order 2D equations, we apply a truncation 

procedure, assuming that 
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It is a common practice to retain a second-order term, )2(
zu , 

in deducing the first-order equations. The extra term is 
eliminated from the equations later by setting 0)1( =zzσ  and 

0)2( =zu  [14].  
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In terms of stresses, the first-order 2D equations of 
motion are obtained from (3) with n = 0 and 1, for the zeroth 
and first-order modes, respectively. The first-order 2D 
stress-strain relations include: 
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where λ  and µ  are the Lame constants of the elastic 
material. 

Substituting (7), (8), and (9) into (3) leads to the first-
order 2D displacement equations of motion. By assuming 
circumferentially independent motion (i.e., 0/ =∂∂ θ ), the 
equations can be separated into four uncoupled groups as 
follows.  

First, the zeroth-order radial extension and the first-
order thickness-stretch are governed by 
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(10) 
Second, for the flexure and the first-order thickness-

shear modes, the equations of motion are 
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   (11) 
The two remaining equations are for the zeroth-order 

and the first-order circumferential motion, which are 
uncoupled from each other: 
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The remainder of this paper focuses on the 

circumferential motion, corresponding to torsional modes in 
the elastic plates [23]. The uncoupling of torsional modes 
from flexural modes allows pure in-plane motion of the 
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resonator, which is advantageous for applications requiring 
immersion in or in contact with liquids [12]. It is evident 
from Eq. (12) that the zeroth-order torsional motion is 
independent of contouring. This dictates that, under the 
assumption of small-gradient axisymmetric contouring, the 
zeroth-order torsional modes have the same solution as for a 
uniform plate. On the other hand, the first-order torsional 
motion in Eq. (13) depends on surface contouring, which 
makes it possible for energy trapping. Previous studies of 
straight-crested waves in rectangular plates have shown that 
two correction factors must be introduced to improve the 
lowest flexural and extensional branches of the dispersion 
curves [15,16,20]. For the torsional modes governed by Eqs. 
(12) and (13), however, no correction factor is needed.  

 

III. TORSIONAL VIBRATIONS OF STEPPED PLATES 
For a stepped circular plate as shown in Fig. 1(a), we 

develop an approximate method to analyze the torsional 
vibrations by coupling two uniform plates of different 
thicknesses for the inner and outer regions through a mixed 
boundary condition at the junction [23]. By setting b to be a 
constant (i.e., 0"' == bb ) in Eqs. (12) and (13) for a circular 
plate of uniform thickness, the 2D displacement equations of 
torsional motion can be written as 
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where 1,0=n , and bh 2=  is the plate thickness. These 2D 
equations yield the exact solutions for zeroth- and first-order 
torsional modes in uniform plates without any correction 
factors [23]. 

Solving Eq. (14) for the inner region of the stepped plate 
( br < ), we obtain that 
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For the outer region ( arb << ), we have 
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The corresponding shear stresses are 
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Fig. 2: Frequency spectrum of the zeroth-order trosional vibrations of 
circular plates with a thickness step ( 10/,1.1/ 221 == hahh ).  
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For h1 > h2, both the displacement and the traction are 
required to be continuous at the junction (r = b) for 

20 hz << . In addition, part of the edge of the inner plate 
( 12 hzh << ) is traction free with unspecified displacement. 
Based on the series expansion of the displacement and the 
integral definition of the 2D tractions, an approximation of 
the mixed boundary condition is given by [23] 
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In addition, a traction-free condition at the outer edge (r = a) 
requires that 
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A. Zeroth-order torsional modes 
For the zeroth-order modes, we take 0== nm  for the 

inner and outer regions of the stepped plate. The resonance 
frequencies and mode shapes are determined from Eqs. (21) 
and (22). Figure 2 shows the first three resonance 
frequencies of the zeroth-order modes varying with the 
radius ratio b/a for a fixed thickness ratio, 1.1/ 21 =hh . The 
normalized outer radius is 10/ 2 =ha . The frequencies are 
normalized by the first cut-off frequency of the inner plate, 

ρ
µπω

1
1 h

= . At both ends of the plot, with the radius ratio 

b/a being 0 or 1, the stepped plate recovers uniform circular 
plates with thickness h2 and h1, respectively. The resonance 

43



frequencies of the zeroth-order modes in a uniform circular 
plate are labeled in Fig. 2 as open squares. It is interesting to 
note that, while the resonance frequencies of zeroth-order 
torsional modes are independent of the thickness for a 
uniform circular plate, the frequencies in the stepped plate 
oscillate slightly as the radius ratio b/a varies, possibly due 
to scattering at the stepped boundary. 

B. First-order torsional modes 
For the first-order modes, we take 1=n  for the inner 

region and m = 0 and 1 for the outer region. Figure 3 shows 
the frequency spectrum for the first-order torsional vibrations 
with 1.1/ 21 =hh  and 10/ 2 =ha . The left end of the plot 
corresponds to a uniform circular plate of thickness h2, which 

has a higher cut-off frequency, 
ρ
µπω

2
2 h

= , compared to 

the cut-off frequency 1ω  for a uniform plate of thickness h1 
at the right end. In between, the resonance frequencies 
change continuously. No first-order modes can be found 
below the cut-off frequency 1ω . Between the two cut-off 
frequencies, the first-order modes in the inner plate are 
coupled with the zeroth-order modes in the outer plate, while 
the first-order modes in the outer plate are non-propagating.  

IV. TORSIONAL VIBRATIONS OF LINEARLY CONTOURED 
PLATES  

Consider a linearly contoured circular plate (Fig. 1b) with 
rbrb ξ−= 0)( , where 0b  is the half-thickness at the center 

and ξ  is the slope of the contour from the center to the edge 
( 1<<ξ  by the small gradient assumption). For free 
vibrations in the first-order torsional modes, by setting 

0)1( =θF  and tieruu ω
θ )()1( =  in Eq. (13), we obtain that 
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where 
ρ
µπω

0
0 2b

=  is the cut-off frequency for the first-

order torsional mode in a uniform plate of thickness 
02b . For 

a uniform plate ( 0=ξ ), Eq. (23) reduces to a Bessel 
equation with solutions in the form of Bessel functions. For a 
contoured plate, Eq. (23) can be solved by the Frobenius 
method [20,21].  
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Figure 3: Frequency spectrum of the first-order torsional vibrations of 
circular plates with a thickness step ( 10/,1.1/ 221 == hahh ). 

Substituting (24) into (23), we obtain that 
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where 0brr =  and 0/ωω=Ω . The left hand side of (25) 
is a polynomial function of r . First, for the lowest power of 
the polynomial (i.e., 0=m ), we have 
 

( ) 01 0
2 =− Cα .   (26) 

For a non-trivial solution, 0C  must not be zero, which leads 
to 1±=α . Furthermore, the displacement must be finite at 
the center of the plate ( 0=r ), which requires that 1=α . 

By setting all the coefficients of the polynomial at the 
left hand side of (25) to zero, we obtain the recurrence 
relations for mC :  
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and for 3>m  
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Fig. 4: Frequency spectrum of the first-order torsional modes of linearly 
contoured elastic plates ( 20/ 0 == baη ). 

Applying the traction-free boundary condition at the 
edge of the plate, i.e., 0)()1( == arrθσ , we obtain that 
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ξ , (31) 

 
where 0ba=η . Therefore, for given geometric parameters 
ξ  and η , the resonance frequencies of the contoured plate 
can be determined by setting ( ) 0,, =Ω ηξf . It can be 
shown that, when 0=ξ , the frequency equation reduces to 
that for uniform circular plates [23]. 

Figure 4 plots the resonant frequencies versus the 
thickness ratio, ξη−=1/ 01 bb , for the first four torsional 
modes in contoured plates with 20=η . The two dashed 
lines are plotted to denote the cut-off frequencies for the 
fundamental thickness mode in uniform plates of thickness 
2b0 (the center thickness) and 12b  (the edge thickness), 
respectively. For comparison, the exact solutions for 
uniform plates with 1/ 01 =bb  are plotted as open squares, 
and results from finite element analyses (FEA) for =01 / bb  
0.9, 0.8, 0.7, and 0.5 are plotted as open circles. 

 

V. ENERGY TRAPPING  
Energy trapping is critical for high-Q resonators. In 

thickness-shear mode quartz crystal resonators, partial 
electrodes are used to achieve energy trapping, for which the 
size of the electrodes has an upper limit given by 
Bechmann’s number in order to eliminate anharmonic 
overtones [4-9]. The effectiveness of energy trapping can be 
further improved by using contoured crystal plates with 
decreasing thickness from the center to the edges, such as 
beveled and convex plates [18-21]. It was demonstrated that 
torsional waves can be trapped in stepped elastic cylinders 
[13], in which case the torsional waves are propagating in the 
axial direction in the region with a greater diameter but non-
propagating (evanescent) in the regions with a smaller 
diameter. Similarly, in a circular plate (with a diameter much  
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Fig. 5: The resonant frequencies of energy-trapped first-order torsional 
modes in a circular stepped infinite plate ( 1.1/ 21 =hh , ∞→a ). 

 
Fig. 6: Mode shapes of the first-order torsional mode corresponding to point 
A of Fig. 5 ( 1.1/ 21 =hh , 5/ 2 =hb ), showing the characteristic of energy 
trapping. 

greater than the thickness), trapped torsional modes can be 
achieved by varying the plate thickness, such as stepped or 
contoured plates (Fig. 1). 

For a stepped plate as shown in Fig. 1a, between the two 
cut-off frequencies ( 21 ωωω << ), the first-order torsional 
modes are propagating in the inner region but non-
propagating in the outer region, implying energy trapping for 
the first-order modes. However, the situation is complicated 
by the coupling between the first-order modes of the inner 
plate and the zeroth-order modes of the outer plate (both 
propagating). Only when the coupling is weak and the first-
order mode dominates would energy trapping be effectively 
achieved. Theoretically, the zeroth-order modes are 
suppressed in an infinite plate (i.e., ∞→a ). In such cases, 
the solution to the torsional modes in the outer plate can be 
described by the first Hankel function that has an asymptote 
decaying exponentially away from the stepped region. 
Consequently, for any possible modes, energy is trapped 

A 
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within the stepped region. Figure 5 plots the resonance 
frequencies of the first-order torsional modes for thickness 
ratio, 1.1/ 21 =hh . No trapped mode can be found when the 
radius of the stepped region 7.1/ 2 <hb . For 

2.4/7.1 2 << hb , only one trapped torsional mode exists, 
with the resonance frequency decreasing as the radius-
thickness ratio increases. For 2.4/ 2 >hb , more than one 
trapped modes exist. Therefore, in addition to the upper limit 
for the step radius that is similar to the Bechmann’s number 
for thickness-shear mode quartz crystal resonators, there is a 
lower limit for the step radius in order to have just one 
trapped torsional mode. Both the upper and the lower limits 
depend on the thickness ratio, 21 / hh , as given in [23]. 
Figure 6 plots the mode shape corresponding to Point A in 
Fig. 5, showing the characteristic of trapped torsional modes. 
The displacement has a maximum at the inner region, and 
the maximum of the shear stress is near the edge of the 
stepped region. Both the displacement and the stress decay 
rapidly outside the stepped region. The mode shape also 
indicates that a finite plate of large outer radius (e.g., 

20/ 2 >ha ) can be reasonably modeled as an infinite plate. 

For a linearly contoured plate as shown in Fig. 1b, the 
coupling between first-order and zeroth-order modes are 
much weaker due to the smooth variation of thickness. 
Consequently, energy trapping can be effectively achieved 
even in a finite plate. Figure 7 shows the displacement mode 
shapes for linearly contoured plates with different thickness 
ratios, 01 / bb , for 20/ 0 =ba , corresponding to the lowest 
branch in Fig. 4. When 1/ 01 =bb , the solution recovers that 
for a uniform plate, and the displacement is linear from the 
center to the edge. As the thickness ratio decreases, the 
location of the peak displacement moves toward the center. 
The mode shape shows the character of energy trapping 
when 9.0/ 01 <bb . For comparison, FEA results are plotted 
as open circles. 

 
To further illustrate the concept of energy trapping, we 

consider an infinite plate with an axisymmetrically 
contoured region (Fig. 8). The plate thickness varies linearly 
in the contoured region but remains constant ( abb ξ−= 01 ) 
elsewhere. For this case, the solution can be developed by 
combining the previous solution for contoured circular 
plates and that for a uniform annular plate through the 
continuity condition at the junction. For the contoured 
region ( ar < ), the displacement takes the same form as 
(24), and the recurrence relations (27-30) remain valid. For 
the outer plate ( ar > ), the displacement for the first-order 
torsional motion is, 

)()( )1(
1 rDHru β= ,  (32) 

where D is a constant to be determined, )1(
1H  denotes the 

first-order Hankel function of the first kind, and 
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Fig. 7: Displacement mode shapes for linearly contoured plates with 
different thickness ratios with 20/ 0 == baη . 

 

 
Fig. 8: Schematics of an infinite plate with an axisymmetrically contoured 
region for energy trapping. 
 

 
Fig. 9: Frequency spectrum of trapped first-order torsional modes in 
infinite plates with linearly contoured region. 

 
At the junction ( ar = ), both the displacement and the 

shear traction are continuous, which requires that 
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By applying the recurrence relations in (27)-(30), Eqs. 

(34) and (35) form a linear system with two constants, C0 
and D. For non-trivial solutions, the determinant of the 
coefficient matrix vanishes, which leads to a frequency 
equation for free vibrations of the infinite plate. Figure 9 
plots the frequency spectrum for the first four branches. 
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Now that the plate is infinite in the outer region, only 
trapped modes exist, and each branch of the frequency 
spectrum is bounded by the cut-off frequency in the outer 
region. For a fixed radius-thickness ratio, 0/ ba , there exists 
an upper limit for the thickness ratio 01 / bb , below which at 
least one trapped torsional mode exist.  

 
The theoretical results from this study were compared to 

experimental measurements [12,23]. Circular steps and 
contoured regions were machined in a 6000 series cast 
aluminum plate. A non-contact electromagnetic acoustic 
transducer or EMAT was employed to generate oscillatory 
surface tractions. Torsional modes were excited when the 
traction force was applied in the circumferential direction. 
Resonant frequencies were determined by adjusting the 
pulse train frequency for peak initial amplitude as observed 
with an oscilloscope. A series of tests were conducted to 
measure the surface motion at resonances in order to 
confirm the observation of trapped torsional modes, for 
example, by using an absorbing stylus to determine the 
locations of displacement maxima and using a pick-up coil 
to confirm the circumferential motion. The agreement 
between the measured resonance frequencies and the 
theoretical results was excellent.  

 
Finite element analysis (FEA) was also conducted to 

compare with the analytical solutions. A typical FEA eigen-
value problem gives many modes that are not of interest. 
Based on the approximate analytical solutions developed in 
this paper, a relatively narrow frequency window can be 
determined to reduce the number of eigen modes, from 
which the torsional modes can be identified by examining 
the mode shapes. Commercial FEA packages, ANSYS and 
ABAQUS, were used, and the results from both compare 
closely with the analytical solutions, as shown in Figs. 4 and 
7. 

VI. SUMMARY 
In this paper, torsional vibrations of circular plates with 

stepped and contoured thickness are analyzed by using 
approximate plate equations. For stepped plates, an 
approximate method is developed to couple the torsional 
modes in the uniform regions by a mixed boundary condition 
at the junction. For axisymmetrically contoured plates with a 
linear variation in thickness, the Frobenius method is used to 
solve the equation of motion. Of practical interest is energy 
trapping of the first-order torsional modes. Both stepped and 
contoured regions can be used to achieve energy trapping of 
torsional modes if a condition for geometrical parameters is 
satisfied. The analytical results are compared to experiments 
and FEA with good agreements. 
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