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ABSTRACT 
 
Interfacial delamination has been a major reliability issue for 
both BEoL and packaging systems. The failure is often due to 
poor adhesion of interfaces. Thus characterization of 
interfacial properties is critical for material selection and 
process control. Conventional methods for interfacial adhesion 
and fracture toughness measurements are generally based on 
linear elastic fracture mechanics. More detailed local 
measurements are required to fully characterize the interfaces 
based on a nonlinear cohesive interface model. With the 
experimentally determined interfacial properties, cohesive 
interface modeling can be set up to predict the initiation and 
evolution of interfacial failure in chip-package systems. In this 
study, two model systems are considered by approaches of 
both linear elastic fracture mechanics (LEFM) and cohesive 
interface modeling (CIM). First, for a brittle thin film on a 
compliant substrate, the initiation and propagation of 
delamination from the root of a channel crack is simulated. 
The effects of the cohesive strength and fracture toughness of 
the interface on channel cracking of thin films on compliant 
substrates are analyzed. Second, a four-point bend test is 
considered, in comparison with experimental measurements of 
the local crack opening displacements.  
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NOMENCLATURE 
 

D damage parameter (dimensionless) 
E elastic modulus (N/m2) 
G energy release rate (J/m2) 
K interface stiffness (N/m3) 
d delamination width (m) 
h thickness (m)  
 
Greek symbols 
Γ  fracture toughness (J/m2) 
α  first Dundurs parameter (dimensionless) 
β  second Dundurs parameter (dimensionless) 
δ  opening displacement (m) 
ψ  phase angle of mode mix (radian) 

ν  Poisson’s ratio (dimensionless) 
σ  stress (N/m2) 
τ shear stress (N/m2) 
 
Subscripts 
f film 
s substrate 
ss steady state 
 
 

INTRODUCTION 
 
Continuous scaling of devices and performance requires 
innovations in materials, processes, and designs for both back-
end-of-line (BEoL) interconnects and packaging structures. 
Mechanical reliability has been a limiting factor for 
implementation of new materials and processes. In particular, 
interfacial delamination has been observed as a major 
reliability issue for both BEoL and packaging systems [1-2]. 
Two approaches are commonly used for interfacial failure 
analyses. One is based on stresses acting on the interfaces, 
typically obtained from finite element analyses (FEA). A 
comparison of the stress values with interfacial strengths for 
different material and geometric designs can be used to make 
some engineering judgments on the design and reliability. The 
other approach is based on the principle of linear elastic 
fracture mechanics (LEFM), where stress intensity factors or 
energy release rates are calculated as the driving force of 
delamination and the failure criterion is established by 
comparing the driving force with the interface toughness. 
Neither approach can model crack nucleation, which is 
critically important for the reliability analysis of chip-package 
systems. In this paper we develop a nonlinear cohesive 
interface model that is capable of modeling both nucleation 
and growth of interfacial delamination in a unified manner.  

The cohesive interface model does not require any pre-
assumption of the initial crack size or location. Under a 
specific thermo-mechanical loading, each interface behaves 
like a nonlinear material, undergoing damage initiation and 
evolution as described by a nonlinear traction-separation law. 
Therefore, crack nucleation at critical interfaces can be 
predicted [3]. As a nonlinear fracture mechanics approach, the 
cohesive interface model can be used to simulate progressive 
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failure under cyclic loadings (e.g., fatigue), and other 
nonlinear material properties (e.g., nonlinear viscoelastic and 
elastic-plastic) can be incorporated consistently and 
efficiently.  

Standard implementations of cohesive interface elements 
are available in several commercial FEA packages (e.g., 
ABAQUS and ANSYS). However, practical applications of 
this method require sufficient knowledge of the interfacial 
material parameters including both toughness and strength. 
Accurate characterization of specific material interfaces with 
detailed traction-separation laws has only been accomplished 
on a limited scale. This is due to the fact that local observables 
such as crack opening displacements must be measured, and 
the increasingly small length scales in the chip-package 
systems present grand challenges for such measurements. 
Previously, an iterative method to determine the traction-
separation laws for sapphire/epoxy interfaces by measuring 
the local crack opening displacement with crack-opening 
interferometry was developed [4]. A direct method combining 
global measurement of J-integral (energy release rate) and 
local measurements of crack-opening displacements by digital 
image correlation has also been developed for steel/polyurea 
interfaces with rate-dependent traction-separation laws [5].  

In this paper, the cohesive interface modeling 
methodology is developed to simulate nucleation and 
propagation of interfacial delamination in two model systems. 
First, for a brittle thin film on a compliant substrate, fracture 
of the thin film occurs by channel cracking, which may be 
accompanied by interfacial delamination. As an example, a 
SiN thin film on Kapton is considered. Second, a four-point 
bend test structure with a Si bilayer on a carrier beam is 
considered to illustrate the necessity of local measurements for 
characterization of the interfacial properties. 

 
GENERAL DESCRIPTION OF COHESIVE ZONE 

MODEL 

In his study of nonlinear fracture mechanics, Dugdale [6] 
observed that the plastic zone ahead of a crack tip in a thin 
sheet of mild steel was primarily a narrow strip of height 
comparable to the sheet thickness (localized plastic 
deformation, or necking), while the length of the strip was 
much longer. The elastic-plastic fracture problem was then 
modeled by an elastic plane-stress problem with a strip of 
plastic zone ahead of each crack tip. Barenblatt [7] generalized 
the plastic strip model to a cohesive zone model (CZM) in 
which the stress in the cohesive zone ahead of the crack is a 
function of the separation rather than a constant yield stress. 
Cottrell [8] put forward the concept of crack bridging as a 
unifying theory for fracture at various length scales, from 
atomic bond breaking in monolithic ceramics to fiber pull-out 
in composite materials. In each case, the microscopic 
mechanism of fracture and associated inelastic processes are 
represented by a bridging law that relates the face tractions in 
the bridging zone (or cohesive zone) to the relative separation 
displacements, as illustrated in Fig. 1. The essential features of 
crack bridging were reviewed by Bao and Suo [9], 
emphasizing their implications for strength and fracture 
resistance of ceramic matrix composites. The concept has also 
been widely used for modeling interfaces between elastic-

plastic materials [10]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Examples for the traction-separation relationship as the 
bridging law for the cohesive zone modeling: (a) constant 
traction for perfect plasticity [6]; (b) smooth nonlinear [11]; 
(c) trapezoidal [12, 13]; (d) bilinear or triangular [14]. 

Unlike LEFM where the microscopic mechanisms of 
fracture are essentially ignored (all material aspects are 
lumped into one parameter, fracture toughness), the bridging 
law or the traction-separation relation in the cohesive zone 
model depends on the material and the associated fracture 
mechanism. For example, in an ideally brittle material, 
fracture occurs by atomic bond breaking, for which a bridging 
law may be derived from an interatomic bond potential. For 
metals, however, the fracture mechanism is different, with 
large plastic deformation (local necking) and void nucleation, 
growth, and coalescence ahead of the crack tip. The bridging 
law, σ(δ), may be derived from detailed micromechanics 
models or may be determined experimentally [11, 12]. On the 
other hand, relatively simple bridging laws are often used in 
theoretical and numerical analyses. For example, the Dugdale 
model assumes a constant traction in the bridging zone [6]. A 
triangular or trapezoidal shaped traction-separation curve is 
frequently used in practice [12-14]. In any case, the maximum 
stress σ0 and the critical displacement δc are the two most 
important parameters that characterize the traction-separation 
relation. Given a traction-separation law, the fracture 
toughness (i.e., energy dissipation per unit area of the crack) 
can be obtained as 
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than the surface energy. 

Cohesive zone modeling is particularly suitable for 
adhesion and debonding of interfaces between two dissimilar 
materials [10], where the constituent materials can be either 
linear elastic or elastic-plastic. Depending on the material 
systems, the maximum stress of the interfacial bridging law σ0 
can be either small or large compared to the yield stresses of 
the constituent materials. When σ0 is greater than the yield 
stress, plastic deformation in the constituent material occurs 
during interfacial fracture, and the total energy of fracture is 
greater than the intrinsic fracture energy of the interface (Γ ~ 
σ0δc). Therefore, the effect of plasticity can be analyzed by 
coupling the bridging law for the interface with continuum 
elastic-plastic models for the constituent materials [15]. 

    
Fig. 2: A schematic of cohesive zone and R-curve (small-scale 
bridging model [9]). 

Small-scale bridging. The size of the cohesive zone ahead of 
the crack tip may be estimated under the condition of small 
scale bridging (similar to the small-scaling yielding condition 
in LEFM). Assume that the cohesive zone size is small 
compared to the crack size, L << a. In this case, the external 
load can be represented by the stress intensity factor K or 
energy release rate G, ignoring the details in the cohesive zone. 
The crack starts to grow when G = Γ0, where Γ0 is the fracture 
energy for crack initiation. As the crack front advances, a 
cohesive zone develops (see Fig. 2). An application of the J-
integral along a contour at the boundary of the cohesive zone 
gives that 
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where tδ  is the opening displacement at the end of the 

cohesive zone and tipG  is the energy release rate at the crack 
tip. While fracture at the tip of the bridging zone occurs with 
Gtip = Γ0, the energy dissipation in the cohesive zone requires 
a larger energy release rate G > Γ0, as the size of the cohesive 
zone increases. The length L increases as the applied load 
increases, until a steady state is reached when the separation at 
the end of the cohesive zone reaches the critical value, δt = δc. 
Subsequently, the cohesive zone size remains a constant, L = 
LSS, as the crack grows. The required energy release rate for 
the steady state crack growth is thus:  
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The so-called resistance curve (R-curve) is obtained by 
plotting the energy release rate as a function of the crack 

extension, in which G increases from Γ0 to GSS (Fig. 2). To 
determine the R-curve and the steady state cohesive zone size, 
a boundary value problem has to be solved. Within the 
cohesive zone, the face traction is related to the opening 
displacement by the traction-separation law. The outer 
boundary condition is given by the K field corresponding to 
the applied energy release rate G, under the condition of 
small-scale bridging. A dimensional analysis [9] leads to a 
scaling law for the steady-state cohesive zone size: 

2
0
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σ

SS
SS
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The small scale bridging condition is satisfied when the crack 
size a >> LSS.  
 
Large-scale bridging. The small scale bridging condition is 
rarely satisfied in practice for composites and interfaces. 
When large scale bridging occurs, the R-curve depends 
sensitively on the specimen geometry and thus cannot be used 
to predict the strength and load carrying capacity of 
components of different sizes and geometry. A full stress 
analysis coupling the specimen geometry and the bridging law 
must be carried out to predict the mechanical properties 
including the resistance to fracture [9]. In the case of 
interfacial fracture, the traction-separation relation must be 
experimentally characterized and then incorporated in the 
stress analysis as part of the material properties to analyze the 
interfacial reliability. 

 

IMPLEMENTATION OF COHESIVE ZONE MODEL 

The cohesive zone model has been implemented in the 
commercial finite element package, ABAQUS [16]. In 
particular, cohesive elements are defined along the potential 
paths of crack growth (e.g., a bimaterial interface). The 
constitutive properties of the cohesive elements are specified 
in terms of the traction-separation law. Several types of 
traction-separation laws have been implemented, and self-
developed user subroutines may be incorporated for the 
cohesive elements with non-standard traction-separation laws. 
In this study, we adopt the bilinear traction-separation law 
(Fig. 3) for interfacial fracture. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Illustration of the bilinear traction-separation law in 
ABAQUS. 

 
First, consider opening mode (mode I) fracture of an 

interface. Figure 3 shows the parameters required to define the 
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interfacial elements: an initial elastic stiffness K0, a cohesive 
strength 0σ , and a critical separation cδ . Subject to an 
opening stress σ , the interface first opens elastically with the 
initial stiffness until the stress reaches the cohesive strength of 
the interface ( 0σσ = ), at which point damage initiation 
occurs. A damage parameter D is used to describe the state of 
the interface, which evolves from 0 to 1 based on a damage 
evolution rule: 
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where 000 / Kσδ =  is the critical separation for damage 

initiation and maxδ  is the maximum separation for the 
interface element over the entire loading history. When the 
interface element is partly damaged (0 < D < 1), the opening 
stress is related to the opening displacement linearly as 

δσ 0)1( KD−= .   (6) 

Eq. (6) applies for both loading and unloading. During 
loading, δδ =max , and thus the damage parameter D 
increases as the opening displacement increases. Combining 
Eq. (5) and (6) gives that the stress decreases linearly with the 
displacement δ  ( cδδδ ≤≤0 ): 
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When cδδ ≥ , D = 1 and 0=σ , indicating that the interface 
element is fully fractured. During unloading (e.g., from B in 
Fig. 3), maxδ  remains as a constant and so does D. Therefore, 
the stress decreases linearly as the opening displacement 
decreases, with the slope 0)1( KDK −=  as illustrated by the 
dashed line in Fig. 3. 

For interfacial delamination between two dissimilar 
materials, mode mix is commonly observed. In ABAQUS, the 
traction-separation laws for the opening and shearing fracture 
modes (modes I, II, and III) can be defined separately, each 
with a set of similar parameters as the opening mode. Under a 
mixed mode condition, however, the criteria for damage 
initiation and final failure must be specified taking into 
account the effect of mode mix. Several different criteria have 
been implemented in ABAQUS. For the present study, we 
adopt an elliptic form for the damage initiation criterion, 
namely 
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where 0τ  is the shear strength of the interface, σσ =  if 

0>σ  (tension) and 0=σ  otherwise. By using the 
Macauley bracket we assume that compression does not cause 
damage. As a result of the mixed-mode damage initiation 
criterion, the critical magnitude of the traction vector depends 

on the ratio between the shear and normal tractions. Define a 
phase angle for the local mode mix as 

σ
τψ =tan .    (9) 

The magnitude of the effective traction vector is 

ψ
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By Eqs. (8)-(10), the critical traction magnitude for damage 
initiation is 
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To describe evolution of the damage parameter D under a 
combination of normal and shear deformation across the 
interface, an effective displacement is defined as: 

22
snm δδδ +〉〈= ,   (12) 

where nδ  and sδ  are normal and shear displacement, 
respectively. The damage parameter is then determined by an 
evolution rule similar to Eq. (5): 
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where mcδ  is the critical effective displacement, depending on 
the mode mix and the final failure criterion. In the present 
study, we adopt the energy-based failure criterion: 
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where IΓ  and IIΓ  are the fracture toughness under pure mode 
I (opening) and mode II (shearing) conditions, respectively, 

IG  and IIG  are the work done by the tractions in normal and 
shear directions, namely 
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Similar to Eq. (6) for the opening mode, the shear traction 
is related to the shear displacement as 

sKD δτ 0)1( −= ,   (17) 

where the initial stiffness (K0) is assumed to be identical for 
the normal and shear deformation [14]. Thus, the ratio 
between the two tractions is identical to the corresponding 
ratio between the two displacements, and by Eq. (12) we have 
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Substitution of Eq. (18) into Eq. (13) leads to 
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Inserting Eq. (19) into Eq. (6) and Eq. (17), we obtain the 
tractions 
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both of which decrease linearly with the corresponding 
displacement components. At the point of final failure, 

ψδδ cosmcn =〉〈  and ψδδ sinmcs = . Moreover, the work 
done by the tractions are simply 
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By the mixed-mode failure criterion in (14), we obtain that 
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 (24) 
The total mixed-mode fracture energy (per unit area) is then 
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Therefore, under a mixed-mode loading, both the strength 
(Eq. 11) and toughness (Eq. 25) depend on the phase angle of 
mode mix. In addition, the mixed-mode interface strength 
depends on the normal and shear strength, and the mixed-
mode interface toughness depends on the mode-I and mode-II 
toughness. Together, at least five parameters are needed to 
describe the interfacial fracture: one stiffness (K0), two 
strengths ( 0σ  and 0τ ), and two toughnesses ( IΓ  and IIΓ ). 

It shall be noted that the phase angle for mode mix as 
defined in Eq. (9) can be different from the phase angle 
defined in LEFM. In particular, for an interfacial crack in 
LEFM, due to the oscillatory singularity at the crack tip, an 
arbitrary length scale must be specified to define the phase 
angle [17, 18], except for the cases when the index of 
oscillatory singularity is zero (e.g., when the two materials 
across the interface have identical elastic properties). In the 
cohesive zone model, the phase angle is defined locally at 
each point or for each interface element in the finite element 
analysis. Therefore, the mode mix may vary along the 
interface (from element to element) and may change during 
the loading process. For clarity, we call the mode mix of each 
interface element the local mode mix and the mode mix by 

LEFM the global mode mix. Furthermore, the energy release 
rates in Eq. (15-16) and the failure criterion in Eq. (14) are all 
defined locally for each interface element.  

 
 
 

 
 

CHANNEL CRACKING WITH DELAMINATION 

As illustrated in Fig. 4a, assuming no interfacial delamination, 
the energy release rate for steady-state growth of a channel 
crack in an elastic film bonded to a thick elastic substrate is  
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where fσ is the tensile stress in the film, fh is the film 

thickness, and ( )21/ fff EE ν−=  is the plane-strain modulus of 

the film with Young’s modulus fE and Poisson’s ratio fν . 
The dimensionless coefficient Z depends on the elastic 
mismatch between the film and the substrate, through the 
Dundurs parameters 
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When the film and the substrate have identical elastic 
moduli, we have 0== βα  and 976.1=Z . The value of Z 
increases rapidly for a stiff film on a relatively compliant 
substrate ( sf EE >  and 0>α ). For a SiN film ( 310=fE
GPa, 27.0=fν ) on Kapton ( 5=sE GPa, 32.0=sν ), we 

have 9672.0=α  and 64.17=Z . Consequently, the driving 
force for channel cracking can be significantly higher when 
the film is bonded to a more compliant substrate. 

Now consider an interfacial crack emanating from the 
root of a channel crack, as shown in Fig. 4b. For a long, 
straight channel crack, we assume a steady state far behind the 
channel front, where the interfacial crack has a finite width d . 
The energy release rate for the interfacial crack takes the form 
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Fig. 4: (a) A channel crack with no interfacial 
delamination; (b) A channel crack with stable 
interfacial delamination of width d on both sides. 



where dZ  is a dimensionless function that can be determined 
from a two-dimensional finite element model [19,20]. 
Depending on the elastic mismatch and the interface 
toughness, there can be no interfacial delamination, stable 
delamination or unstable delamination, which has been 
summarized in a diagram [20]. For a stiff film on a compliant 
substrate, it was found that delamination always occurs by the 
LEFM criterion. Stable delamination with a finite width d is 
predicted when the interface toughness is greater than a 
critical value, ( )fffi Eh 22σ>Γ . With the stable 
delamination, the effective driving force for the growth of 
channel cracks is further enhanced. To account for the 
influence of interfacial delamination on both the fracture 
driving force and the fracture resistance, an effective energy 
release rate for channel cracking is defined as [20] 
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where the dimensionless coefficient Zeff depends on the 
normalized interface toughness, ( )ffifi hE 2σΓ=Γ , in 
addition to the Dundurs parameters for the elastic mismatch. 
Using the effective energy release rate, the condition for the 
steady-state channel cracking is simply a comparison between 

eff
ssG  and the film toughness fΓ , the latter being a constant 

independent of the interface. 
 

 
 

 
Fig. 5: (a) Normalized energy release rate of interfacial 
delamination as a function of the normalized delamination 
width. (b) Effective energy release rate for channel cracking as 
a function of the normalized interface toughness. 

 
Specifically, for a SiN film deposited on Kapton, Fig. 5a 

plots the normalized energy release rate dZ  as a function of 
the delamination width, and Fig. 5b plots the normalized 
effective energy release rate, ( )βα ,ZZeff , as a function of 
the normalized interface toughness. The effective driving 
force increases as the normalized interface toughness 
deceases. At the limit of high interface toughness ( ∞→Γi ), 

the delamination width 0→d  and 1/ →ZZeff , recovering 
the case of channel cracking with no delamination. 

 
 
 
 
 
 
 
 
 
 

 
Next we simulate the initiation and propagation of the 

interface crack using the cohesive interface model in 
ABAQUS. As shown in Fig. 6, a layer of cohesive elements is 
used to model the interface between the film and the substrate, 
using the triangular traction-separation law (Fig. 3). For 
simplicity, we ignore the effect of mode mix in the present 
study by taking 00 τσ =  and Γ=Γ=Γ III .  

 

 
 

Fig. 7: Critical stress for interfacial crack initiation as a 
function of the interface strength. 

 
Figure 7 shows the critical stress for initiation of an 

interfacial crack from the root of a channel crack as a function 
of the normalized interface strength, fE0σ , for different 
values of the interface toughness. By LEFM, as the energy 
release rate for interface delamination approaches infinity as 
the interface crack length 0→d  (Fig. 5a), the critical stress 
for the crack initiation is essentially zero. However, by the 
cohesive interface model, the critical stress for delamination 
crack initiation is a finite value that depends on both the 
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interface toughness and strength. As expected, the critical 
stress increases as the interface toughness increases. The effect 
of interface strength however is two-fold. First, the criterion 
for damage initiation of the cohesive elements requires that the 
stress at the interface reaches the strength. Thus, the critical 
stress for the damage initiation increases with the interface 
strength, similar to the strength criterion. On the other hand, to 
initiate an interfacial crack, the first cohesive element must be 
fully damaged and meanwhile a cohesive zone must be 
developed ahead of the crack tip. The total energy required for 
the crack initiation thus includes that for the crack (equals the 
fracture toughness Γ ) and that dissipated in the cohesive zone. 
Therefore, the critical stress for the crack initiation also 
depends on the size of the cohesive zone, which scales with 

2
0σΓfE  [13]. For the same toughness, the cohesive zone size 

decreases as the interface strength increases. As shown in Fig. 
7, when the interface strength is relatively low, the cohesive 
zone size is large (large-scale bridging) and the critical stress 
for crack initiation decreases as the strength increases for the 
same toughness. The trend seems to be reversed when the 
interface strength is high, where the cohesive zone size 
approaches the limit of small-scale bridging. Under the 
condition of small-scale bridging, the results should approach 
the LEFM predictions (toughness criterion), which is 
independent of the interface strength. The slight increase of 
the critical stress may be attributed to the increase of the 
damage initiation stress. 

 

 
Fig. 8: Arrested delamination width as a function of the film 
stress. 
 

After initiation, the interfacial crack grows stably as the 
film stress increases. Figure 8 compares the delamination 
length from the LEFM and the cohesive interface models. By 
LEFM, the critical stress is zero and the crack length increases 
immediately as the film stress increases. By the cohesive 
interface model, the interfacial crack length remains zero until 
the film stress reaches the critical value, beyond which the 
crack length increases with the film stress. For the same 
interface toughness, the crack length increases as the interface 
strength increases, which again can be attributed to the effect 
of the interface strength on the cohesive zone size. With larger 
cohesive strength and consequently smaller cohesive zone, the 
results from the cohesive interface model compare more 
closely to the LEFM results. Thus, the growth of the 
interfacial crack depends on both the toughness and strength 
of the interface. 

 
FOUR-POINT CARRIER BEND TEST 

A schematic of the four-point bend test with a steel carrier 
beam is shown in Fig. 9. A bilayer Si specimen was bonded to 
the carrier beam using a double-sided carbon tape. The 
thickness of the carrier beam is h1, and that of each Si layer is 
hs. An initial crack of length a0 was introduced along the 
interface between the two Si layers. 

 
 
 
 
 
 
 

 
A finite element model was developed to simulate the 

carrier bend testing, with a layer of cohesive interface 
elements tied in between of the two Si beams. The geometric 
parameters of the model are: hs = 0.32 mm, h1 = 4 mm, Ls = 40 
mm, L1 = 84 mm, and L = 11.5 mm. The width of the beams is 
b = 5 mm. Linear elastic material properties are assumed for 
both the Si and steel, with ESi = 168 GPa, Esteel = 210 GPa, νSi 
= 0.22, and νsteel = 0.27. The parameters specified for the 
interface elements are: K0 = 107 MPa/mm, 0σ  = 0τ  = 20 
MPa, IΓ  = IIΓ  = 0.5 J/m2. The effect of mode mix is 
neglected here by setting the shear strength and toughness 
identical to those for the opening mode. 

 
Fig. 10: Evolution of the opening displacement along the Si-Si 
interface for a simulated 4-point carrier bend test. The initial 
crack tip is at x = 10 mm (vertical dashed line), and the 
horizontal dashed line indicates the critical opening 
displacement ( 4105.0 −×=cδ mm). 
 

Figure 10 plots the opening displacements of the interface 
near the initial crack tip (x = a0 = 10 mm, measured from the 
left end of the sandwich specimen in Fig. 9) as the loading 
displacement Δ increases. Upon loading, the crack opens up 
along with the interface elements ahead of the crack tip (x > 
10 mm). Following the bilinear traction-separation law, the 
interface opens elastically until it reaches the critical 
displacement, 4

000 1002.0/ −×== Kσδ mm. Beyond 0δ , the 
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Fig. 9: Schematic of four-point carrier bend test. 



damage parameter (D) of the interface element evolves from 0 
to 1, until it is fully damaged (D = 1). The critical opening 
displacement for a fully damaged interface element is, 

4
0 105.0/2 −×=Γ= σδ Ic mm. As shown in Fig. 10, the 

opening displacement of the first interface element at x = 10 
mm reaches cδ  at Δ = 0.0264 mm, at which point the initial 
crack tip advances by one interface element. Ahead of the 
crack tip is a cohesive zone with partially damaged interface 
elements. Subsequently, as Δ increases, the crack grows with a 
steady-state cohesive zone. At each loading displacement, the 
crack grows stably and arrests at a crack length depending on 
both the toughness and strength of the interface. An infrared 
crack-opening interferometry (IR-COI) has been developed to 
measure the crack opening displacements near the crack tip, 
from which the traction-separation law of the interface can be 
deduced. 
 

SUMMARY 
 
This paper presents a nonlinear cohesive interface model to 
simulate initiation and propagation of interfacial delamination, 
which is applicable for the integrated thin-film structures in 
the chip-package systems. The method is demonstrated by two 
examples. The results show that in general both the strength 
and toughness play important roles in crack initiation and 
growth along an interface. Therefore, it is essential to develop 
experimental methods to characterize the detailed traction-
separation laws of specific interfaces. 
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