IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 53, NO. 2, FEBRUARY 2006

349

Torsional Vibrations of Circular Elastic Plates
with Thickness Steps

Min K. Kang, Rui Huang, and Terence Knowles, Member, IEEE

Abstract—This paper presents a theoretical study of tor-
sional vibrations in isotropic elastic plates. The exact solu-
tions for torsional vibrations in circular and annular plates
are first reviewed. Then, an approximate method is de-
veloped to analyze torsional vibrations of circular plates
with thickness steps. The method is based on an approx-
imate plate theory for torsional vibrations derived from
the variational principle following Mindlin’s series expan-
sion method. Approximate solutions for the zeroth- and
first-order torsional modes in the circular plate with one
thickness step are presented. It is found that, within a nar-
row frequency range, the first-order torsional modes can
be trapped in the inner region where the thickness exceeds
that of the outer region. The mode shapes clearly show
that both the displacement and the stress amplitudes decay
exponentially away from the thickness step. The existence
and the number of the trapped first-order torsional modes
in a circular mesa on an infinite plate are determined as
functions of the normalized geometric parameters, which
may serve as a guide for designing distributed torsional-
mode resonators for sensing applications. Comparisons be-
tween the theoretical predictions and experimental mea-
surements show close agreements in the resonance frequen-
cies of trapped torsional modes.

I. INTRODUCTION

ORSIONAL vibrations of circular plates and cylindrical
Trods have been studied for many years. Recent devel-
opments of torsional-mode sensors and actuators in micro-
and nanoelectromechanical systems have renewed interests
in this topic [1]-[5]. Previous studies of torsional vibra-
tions have focused largely on cylindrical rods or shafts,
for which a one-dimensional mathematical model based on
the “strength-of-materials” approach [6] has been widely
used in practice. However, it has been shown that the
one-dimensional model is only accurate at low frequen-
cies, and three-dimensional analysis is required at high
frequencies [7]. In particular, shafts with stepped cross
sections are common in engineering structures. Several
three-dimensional methods have been developed to ana-
lyze torsional vibrations of stepped shafts [7]-[11]. Johnson
et al. [11] showed that, within a certain frequency range,
torsional modes can be trapped in the central section of
stepped solid cylinders with a slightly larger diameter such
that the vibration amplitude decays exponentially with the
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distance from the central section. Such trapped modes may
find interesting applications in the design of resonators,
transducers, and sensors.

In a parallel development, trapped vibrations in plates
have been studied for many decades to improve the per-
formance of quartz crystal resonators. By mass loading of
quartz crystal plates with electrodes, thickness-shear vi-
brations can be trapped under the electrodes with ampli-
tude decreasing exponentially away from the electrodes in
the unplated region [12]-[16]. It also has been observed
that, by decreasing the plate thickness from center to edge
or contouring, the thickness-shear vibrations can be con-
fined in the center portion of the plate, which improves
the resonator performance by reducing edge leakage due to
boundary mismatch and mode conversion [17]-[19]. Much
less attention has been paid to torsional vibrations of
plates. By using Love’s thin plate theory [20], Onoe [21] an-
alyzed the contour vibrations of circular plates, including
torsional modes (Onoe used the term “tangential modes”).
The result was used by Meitzler [22] in an ultrasonic tech-
nique for determining elastic constants of glass wafers. For
thick plates (thickness comparable to radius), exact solu-
tions are available for both solid circular plates and an-
nular plates, which are essentially the same as the exact
solutions to the classical Pochhammer equation for cylin-
drical rods and hollow cylinders [23], [24]. For plates with
nonuniform thickness, an exact analytical solution gener-
ally is not possible [25]. This paper develops an approx-
imate method for analyzing torsional vibrations of circu-
lar plates with thickness varying in the radial direction
as steps [Fig. 1(c)]. Such plates are of interest because
torsional vibrations may be trapped near the steps, sim-
ilar to that in stepped solid cylinders [11] and trapping
of thickness-shear vibrations in contoured plates [17]-[19].
Recent experiments by Knowles et al. [26] have observed
trapped torsional modes in both stepped and contoured
aluminum plates, which may be used to design sensors
with improved performance in the presence of liquids.

This paper is organized as follows. Section II reviews
the general three-dimensional theory and exact solutions
for torsional vibrations of circular and annular plates with
uniform thickness [Fig. 1(a) and (b)]. Section III develops
an approximate plate theory from variational principle. In
Section IV, an approximate method is developed for tor-
sional vibrations of plates with thickness steps [Fig. 1(c)],
and approximate solutions are obtained for the zeroth- and
first-order modes. Trapped first-order modes are identified.
A diagram is constructed predicting the existence and the
number of trapped torsional modes in a circular mesa on
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Fig. 1. Schematics of the plates. (a) A uniform circular plate. (b) An
annular plate. (¢) A circular plate with a thickness step.

an infinite plate. The theoretical results are compared to
experimental measurements. Section V concludes with re-
marks on potential applications of the theoretical results.

II. GENERAL THEORY AND EXACT SOLUTIONS

Fig. 1 illustrates the geometries of the plates consid-
ered in this paper. Assuming axisymmetric motion and
isotropic, linear elastic materials, the momentum equation
for the torsional motion is:

82u€
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where 7, 0, z are the cylindrical coordinates as defined in
Fig. 1, t is the time, ugy is the torsional displacement, p is
the mass density, and p is the shear modulus.

The stress associated with the torsional motion has two
nonzero shear components, which relate to the torsional
displacement by:
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For plates with uniform thickness, (1) can be solved
by separation of variables. Assume a harmonic solution,
namely:

ug(r, z,t) = P(r)Q(z)e™*, (4)

where w is the angular frequency of vibration. Substitution
of (4) into (1) leads to:

d?P 1dP 5 1
el _—\p=
dr? = r dr <ﬂ 7“2) 0, (5)
d?Q 9
where:
pw?

For 83, k # 0, the general solutions to (5) and (6) are:

P(r) = AJy(Br) + BY1(Br), (8)
Q(z) = Csin(kz) + D cos(kz), 9)

where J; and Y; are the first-order Bessel functions of the
first and second kinds, respectively, and the coefficients A,
B, C, D must be determined from boundary conditions.
An alternative form of the solution (8) is:

P(r) = AH"M (6r) + B HP (5r), (10)
where H fl) and H f2) are the first-order Hankel functions
of the first and second kinds. Due to their asymptotic be-
havior, the Hankel functions sometimes offer convenience
for physical interpretations of the solution.

When 5 = 0, the solution (8) is replaced by a special
solution:

B*

r .

P(r) = A*r +

(11)
Similarly, when k = 0, the solution (9) is replaced by:

Q(z) =C*"z+ D". (12)

A complete solution for free vibrations can be obtained
by a superposition of all possible solutions in the form of
(4) with the value of 3 or k determined from the boundary
condition. For forced vibrations, a particular solution sat-
isfying the forcing boundary conditions must be included
in the superposition. This paper focuses on free vibrations
only.
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A. Free Vibrations of a Circular Plate

First consider a circular plate of radius a and thickness
h with traction-free boundaries at all surfaces and edges
[Fig. 1(a)]. The boundary condition requires that:

dP P
W_?_O at r = a, (13)
%:0 at z =0 and h. (14)

In addition, it is implied that the displacement at the
center of the plate (r = 0) is finite. Consequently, any
singular terms with respect to r must be discarded from
the solution. Therefore, the solutions become:

A =0
Pr(r)=4°" " SENE)
AmJl (6mr) m:172a"'
where 5, = smn/a and s, is the mth nonzero root to
Ja(s) =0, and:
Qn(z) = D, cos (knz) ) (16)

where k, = (nm/h) for n=0,1,2,....
Combining (15) and (16), one obtains the complete so-
lution for torsional vibrations of the circular plate, namely:

o0
ug(r, z,t) = Z
n=0

+ Z BunJ1 (Bmr) cos (knz) ei“’"""t] ,  (17)

Aprcos (knz) elwnt

m=1
where:
Wy, = n%r %, (18)
2. 2 2
w(n°m 54,
mn — - — |- 19
? ¢0(W +ﬁ) 49

Solution (17) consists of all the possible torsional modes
that satisfy the boundary conditions for the circular plate,
where (18) and (19) give the corresponding resonant fre-
quency of each mode.

Fig. 2 shows the spectrum for torsional vibrations of cir-
cular plates, where the frequency is normalized by the first
cut-off frequency, w1 = (7/h)+\/1/p, and plotted against
the ratio between the thickness and the radius of the plate.
The spectrum includes two limiting cases. To the right end
of the spectrum, the first several modes with the lowest
frequencies correspond to the case with # = 0. In this
case, the displacement is proportional to the r-coordinate
as given by the first term in the bracket of (17), and the
resonance frequencies (w,,) are independent of the radius
of the plate. These modes are identical to those predicted
by the one-dimensional model for long cylindrical rods. To
the left end of the spectrum, the first several modes with
the lowest frequencies now correspond to the case with
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Fig. 2. Spectrum for torsional vibrations of uniform circular plates.
The circles are numerical results from Zhou et al. [27].

k=0 (n =0), for which the displacement is independent
of z and the resonance frequency is independent of the
thickness h. These modes are identical to those predicted
by Onoe [21] for thin circular plates (h/a < 1). Between
the two limits, the frequencies from different groups are
interwoven. The spectrum clearly shows when the one-
dimensional model or the thin-plate approximations can
be used and when the exact three-dimensional analysis
is required. Zhou et al. [27] recently conducted a three-
dimensional vibration analysis using the Chebyshev-Ritz
method and predicted the first 10 resonance frequencies for
a circular plate with thickness ratio h/a = 0.4, as shown
by the circles in Fig. 2. The excellent agreement confirms
the accuracy of the Chebyshev-Ritz method.

B. Free Vibrations of Annular Plates

Next consider an annular plate with outer radius a, in-
ner radius b, and thickness h [Fig. 1(b)]. Both inner and
outer edges are traction free. In addition to the boundary
conditions (13) and (14), the traction-free condition at the
inner edge requires that:

dP P
— ——=0atr=0

dr r (20)

Consequently, (15) becomes:

A()T’
Am | Y2 (ﬁma) J1 (ﬁm'r) ’
T2 (Bna) Vi (Bur) | m =12, (2

m =0

P,(r) =

where 8,, = sm/a with s, being the mth root to the

following equation:
J2(5)Ya(ns) — Ja2(ns)Yz(s) = 0, (22)

and 77 = b/a. When the inner radius b = 0, (21) recovers
(15).
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Fig. 3. Radial wave number for torsional vibrations of annular plates
versus the ratio between inner and outer radius.

With (16) unchanged, the complete solution for tor-
sional vibrations of the annular plate is:

oo

=

n=0

0o
+ Z an Y2 6ma) Ji (ﬁmr)
m=1

(ryz,t) A1 cos (kyz) e nt

—

— J2 (Bma) Y1 (Bmr) ) cos (kpz) e@mnt| (23)
where the frequencies w,, and w,,, take the same form as
n (18) and (19).

The frequency spectrum for the annular plates is similar
to Fig. 2, but the radial wave number 3, varies with 7,
the ratio between the inner radius and the outer radius.
Fig. 3 shows the first five radial wave numbers obtained
from (22) as functions of the ratio. The left end of the
figure corresponds to the case of solid circular plates (n =
0). Toward the right end, the wave numbers rise rapidly,
which correspond to thin-walled tubes. A similar result
was obtained by Clark [23] for hollow cylinders.

Following similar procedures, exact solutions for tor-
sional vibrations of circular and annular plates with other
boundary conditions can be obtained. For plates with
nonuniform thickness, however, exact solutions generally
are not available [25]. Consider a circular plate with a
thickness step [Fig. 1(c)], which has thickness hq at the
inner region (0 < r < b) and thickness hy (he # hi) at
the outer region (b < r < a). The general solution for
torsional vibrations of such plates should consist of two
parts. For the inner region, the displacement takes the
form of (17); for the outer region, the displacement takes
the form of (23). The two parts are coupled through the
joint boundary at r = b, where the continuity conditions
for the displacement and the shear traction have to be ap-
plied. However, exact solutions satisfying the continuity
conditions cannot be obtained analytically. The remain-
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der of this paper develops an approximate plate theory,
from which approximate solutions to torsional vibrations
of circular plates with thickness steps are obtained.

I1I. APPROXIMATE PLATE THEORY

A general procedure for deducing approximate equa-
tions for elastic plates from the three-dimensional theory
of elasticity was first introduced by Mindlin [28] based on
the series expansion methods and the variational method.
The procedure has been used to derive approximate plate
theories for both elastic and piezoelectric crystal plates
with uniform [29]-[31] and nonuniform thickness [18], [19],
[32]. Here we follow the same procedure to derive approxi-
mate equations for torsional vibrations of isotropic elastic
plates. The approximate equations then will be used to
deduce an approximate solution to torsional vibrations of
circular plates with thickness steps in the next section.

Considering torsional motion of a linear elastic contin-
uum of volume V' bounded by a surface S, the variational
principle leads to:

2
/dt/ (&m 8(;29 4 2000 _ p%?) SugdV =0,
/dt/ (tg —NypOprg — TLZO'ZQ) dugdS =0, (25)
S

where tg is the traction at boundary S, and n is the
outward normal at the boundary. For a circular plate
[Fig. 1(a)], the boundary S consists of two surfaces at
z = 0 and h and the edge face at r = a. For an annu-
lar plate [Fig. 1(b)], another edge at r = b adds to the
boundary.

Following Mindlin [28], the displacement may be ex-
panded into a series of functions of the thickness coor-
dinate. Various function series have been used to develop
approximate plate theories. For torsional vibrations, notic-
ing the form of exact solutions in (17) and (23), we expand
the displacement into a cosine series:

t) t) 2
(r, z, Zue T, cos(mrh) (26)
The orthogonality of the cosine series leads to:
2 — 6y
uén) (r,t) = TO/ ug(r, z,t) COS( h) dz,
0 (27)

where 6,,, = 1 if m =n and §,,,,, = 0 otherwise.
Substituting (26) into (24) and integrating over the
thickness of the plate, we obtain that:

fof $

1 (n) 1+ dno
+ hFe 5

(n) 2() nT_(n)
TZT n+h ZZ

piis™ | sulMdA =0, (28)
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where A is a plane parallel to the surface of the plate, and:

Jm 1"
a9 = h/o O'TQCOS< h) dz, (29)
h
=m _ 1 ,~ d
T,y = h/o 049 sin (mrh) dz, (30)
Fy" = (=1)"0.4(h) — 020(0). (31)

In a similar manner, substituting (26) into (25), we ob-
tain that:

/ dt / Z t(") ,affg’} sulds =0,  (32)
n=0
where C is the contour of the plate edge(s), and:
m_1 "
té ) = —/ tg cos (mr ) dz. (33)
h Jo

In deriving (32), the integral over the two surfaces of the
plate has been set zero as the surface traction is specified
through the definition of Fe(") in (31).

For (28) and (32) to be true for arbitrary variations, we
have, in A:

7(3)7” _|_ (n) + h7T (n) + hF(n) 5 Opuén)’
(34)
and the boundary condition on C":
tén) = nraﬁz) or ué") ﬁén), (35)

where ﬂén) is any specified displacement at the edge.

As a result, the three-dimensional problem described by
(24) and (25) has been transformed to a system of two-
dimensional equations. The variables, uén), aﬁz), Eiz),
Fén), té") are the nth-order, two-dimensional components
of displacement, shear stresses, face traction, and edge
traction, respectively.

By inserting (26) into (2) and (3) and then into (29)
and (30), we obtain that:

(n) (n)
(n) 1+ dno 8“9 Uy
oo =TT or ro|’ (36)
—(n) nm uén)
T = Mo (37)
Substitution of (36) and (37) into (34) leads to:
P rouy
or? r or r?
n\2 ) 27 0n0 pn) _ ()
_M(T) Ug +TF0 = piiy’,  (38)

which is the nth-order displacement equation of torsional
motion.
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Each specific term in the infinite series expansion of the
displacement in (26) can be obtained by solving (38) with
associated boundary conditions at the edge(s) given by
(35). For circular plates and annular plates with traction-
free surfaces (Fe(n) = 0), the infinite series expansion is
identical to the exact solutions in (17) and (23). For circu-
lar plates with thickness steps [Fig. 1(c)], specific displace-
ment terms for the inner and outer regions can be obtained
from (38) separately, and the continuity condition at the
step can be approximated by (35). The procedure is pre-
sented in Section IV.

IV. APPROXIMATE SOLUTION FOR STEPPED PLATES

Fig. 1(c) sketches the geometry of the plate under con-
sideration. In general, all orders of the displacement in
the series expansion must be considered for both the inner
and outer regions of the plate, which leads to an infinite
number of coupled equations. Such analysis, however, is
practically impossible. Instead, as generally understood,
at one resonance frequency, one particular displacement
component dominates the others. Consequently, it is pos-
sible to analyze a single mode approximately by neglect-
ing the coupling with the other modes. Similar approaches
have been widely used in the truncation procedures in the
development of approximate plate theories [28]-[32]. The
present study focuses on the vibration of the inner region,
which may be trapped by the step. As an approximation,
the displacement components of various orders in the in-
ner region are considered separately. The displacement of
the outer region is expanded into a series to ensure the
displacement continuity at the junction, which will be fur-
ther truncated into a finite number of terms. Therefore,
for the nth-order torsional vibration of the inner region,
the displacement of the stepped plate takes the form of
(39) (see next page).

Solving (38) for the inner and outer regions separately,
we obtain that:

ufl) = Ay (B00r) e,

(m) _

(40)

Upy = [Agm)Jl (ﬁém)r) + Bém)Yl (ﬁQm)r)} et
(41)
where:
2
(m?* _ P 2 _ (T) 42
61 M hl ’ ( )
2
(m)2 P mm
— . 43
" = L - (57) (43)
The corresponding in-plane shear stresses are:
146, ;
Gl = == a ™ gy (5077 ) e,
(44)
1+
7(32) _ +2 OM ém) [Aém)Jz ( grz)r)
(45)

+ Bénl)}é ( ém)r> }eiwt
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UG(rvzvt) = !

m=0

ugll) (r,t) cos (’I’Lﬂ'hi) ,

> Uégl)(ﬁt)cos (mwi> , b<r<aand0<z< hs.

r<band 0< z< hy;
(39)

ha

At the junction (r = b), both the displacement and
the traction are required to be continuous. In the case of
hy > ho, part of the edge of the inner region is traction
free with unspecified displacement. Thus, the continuity of
the displacement is only required for 0 < z < hg, which,
by (27), leads to:

m 2-9 h n
éQ) = 7”10/ uél) cos (mri) cos (mﬂ'—) dz.
h2 0 hl h2 (46)

However, the traction at the edge of the inner region is
fully specified by the traction-free part and the continuous
part, which requires that:

P CO R
Oro1 =

1 [he i (2 b0) (m) ( z ) ( z ) d
— —0m0) Oy cos | mm— | cos | nm— | dz.
hi Jo -0 oz ha ha (47)

Eq. (46) and (47) represent the approximate continuity
conditions at the thickness step. Substitution of (40), (41),

(44), and (45) into (46) and (47) leads to:
( b) m)+Y1( m>b) Aanl( §">b) Ag;,)
io 14 8mo) Amn 8™ ho [JQ( “’”b) AL
+2 (5"0) B | (49)

= (14 ng) B By o ( §”>b) A,

2 —dmo /h2 ( z ) ( )
cos | mm— | cos | nm— | dz.
h2 0 h2 hl (50)

In addition, a traction-free condition at the outer edge
(r = a) requires that:

12 (57 a) AV + ¥ (57a) BY — o,

Eq. (48), (49), and (51) form a linear system of infinite
degrees (m = 0,1,2,...). In practice, only a finite subset
of the equations may be used to obtain approximate solu-
tions. Let m take values from 0 to M. The linear system
takes the form:

where:

Amn =

(51)

0 -v=0, (52)

where © is a square matrix of size 2M + 1 and v is a vector
consisting of all the coefficients, Ag"), Agm), and Bém). For

nontrivial solutions, the determinant of the matrix van-
ishes, namely:

det[O] = 0, (53)

which gives the frequency equation for free vibrations of
the stepped plate. The standard procedures of linear anal-
ysis then can be used to calculate the resonance frequencies
and the corresponding mode shapes.

Similarly, for hy < hg, the continuity conditions (46)
and (47) become:

2— 6n0 e & z
gll) = / Z u92 cos (mﬂh—) cos <n7rh—> dz,

m=0 2 (54)

(m) _2=0n0 [ (n) z
Lo :—/ 0,91 €08 | nT— | cos m7r— dz.
" h2 0 hl h2 (55)

And (48) and (49

S R [0 (8578) A5 ¥ (5578) B

m=0

) become:

=1 (8"p) A", (56)

(150 7 3 () 443, (50) )

= (1 + 6n0) Kmnﬁin)hl J2 (Bin)b) Agn), (57)
where:
- 2— 0,0 (M
Amp = o / cos (mﬂi) cos (mr—) dz.
hl 0 h2 hl (58)
For h; = hs, the two types of continuity conditions

converge, and the solution reduces to that for nth-order
torsional mode in uniform circular plates.

A. Zeroth-Order Modes (n=0)

Consider first zeroth-order torsional vibrations in the
inner region of a stepped plate, for which n = 0 and the
displacement is independent of the thickness coordinate.
Such modes also are called radial modes in thin circular
plates. The displacement in the outer region in general con-
sists of an infinite series expansion as in (39) in order to
satisfy the continuity conditions at the step. Our calcula-
tions show that, for the zeroth-order modes at frequencies
below the first cut-off frequency, the first term (m = 0)
in the expansion dominates, and the effect of additional
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Fig. 4. Frequency spectrum of the zeroth-order torsional vibrations
of circular plates with a thickness step (hi/h2 = 1.1, a/ho = 10).
The open squares are the exact solutions for uniform circular plates,
independent of the plate thickness. The circle indicates an arbitrarily
selected point for the plot of mode shapes in Fig. 5.

terms is negligible. Fig. 4 shows the first three resonance
frequencies of the zeroth-order modes varying with the ra-
dius of the inner region. The frequencies are normalized
by the cut-off frequency, wq = (7/h1)\/p/p. The thick-
ness ratio is fixed as hy/he = 1.1, and the outer radius is
a/hy = 10. At both ends of the plot with the radius ra-
tio b/a being 0 or 1, the stepped plate reduces to uniform
circular plates with thickness ho and hq, respectively. The
zeroth-order resonance frequencies of a uniform circular
plate are given by (19) with n = 0 and labeled in Fig. 4 as
open squares. It is interesting to note that, although the
zeroth-order resonance frequencies of a uniform circular
plate are independent of its thickness and thus identical
at both ends of Fig. 4, the frequencies oscillate slightly in
between, with the number of oscillations increasing with
the mode number and the amplitude of oscillation depend-
ing on the thickness of the step. Such oscillation may be
caused by the interactions between the torsional waves and
the discontinuous boundary at the step.

To check the continuity conditions at the step, Fig. 5
plots the mode shape corresponding to an arbitrarily se-
lected point labeled as A (b/a = 0.2) in Fig. 4. The
zeroth-order two-dimensional components of the displace-
ment and the traction are plotted, both normalized by the
maximum absolute values. It is noted that the displace-
ment is continuous across the step, but the stress by itself
is not continuous. The error is due to the approximation of
the traction continuity condition specified by (47), which
leads to continuity of the total traction for the zeroth-order
modes, i.e., Uig)lhl = 052)2/12 at r = b. Such approximation
is reasonable for the zeroth-order modes. Also noted is that
the variations of the displacement and the stress along the
thickness direction are different for the inner and outer
regions due to the thickness step. The error, however, is
small when the thickness ratio is close to one.

Displacement

r/a

r/a

Fig. 5. Mode shapes for the zeroth-order torsional mode correspond-
ing to point A (b/a = 0.2) in Fig. 4, in a circular plate with a
thickness step (hi/h2 = 1.1, a/ho = 10). The dashed line indicates
the location of the thickness step.

B. First-Order Modes (n=1)

Next consider the first-order modes with n = 1. The
focus is on the vibration modes near the first cut-off fre-
quency. A convergence study with up to five terms shows
that, in this case, the second term (m = 1) dominates in
the series expansion (39) for the displacement of the outer
region. Including other terms produces negligible differ-
ence in the results. Fig. 6 shows the resonance frequencies
varying with the radius ratio b/a for a fixed thickness ratio
hi/ha = 1.1 and outer radius a/hy = 10. The left end of
the plot corresponds to a uniform circular plate of thick-
ness hg, which has a cut-off frequency, wea = (7/h2)\/ 1t/ p,
and the right end corresponds to a uniform plate of thick-
ness hy with a lower cut-off frequency, we1 = (w/h1)\/pt/p
(h1 > hg). The exact solutions for the uniform circular
plates are calculated from (19) with n = 1 and labeled
as squares at both ends. In between, the resonance fre-
quencies change continuously. No first-order modes can be
found below the cut-off frequency w.y. Of particular in-
terest are the vibrational modes with frequencies between
the two cut-off frequencies. For these modes, the radial
wave number in the outer region, 651), is imaginary, and
the Bessel functions describing the distributions of the dis-
placement and the stress asymptotically reduce to those
decaying exponentially from the step. Consequently, the
vibration is trapped within the inner region. Fig. 7 plots
the mode shape associated with the point A (b/a = 0.2)
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Fig. 6. Frequency spectrum of the first-order torsional vibrations of
circular plates with a thickness step (hi/h2 = 1.1, a/ha = 10). The
open squares are the exact solutions for uniform circular plates. The
circle indicates an arbitrarily selected point for the plot of mode
shapes in Fig. 7.

in Fig. 6. From (46) and (47), the approximate conti-
nuity conditions at the step (r = b) for the first-order
modes are: uéé) = Anuéll) and Ug)lhl = A110£;)2h2, where
A1; = 0.939. Therefore, the continuity conditions are ap-
proximately satisfied. As shown in Fig. 7, both the dis-
placement and the stress decay exponentially from the
step, which confirms the existence of trapped torsional
modes in the stepped plate.

Similar analyses can be conducted for higher-order
modes (e.g., n = 2,3,...), and trapped torsional modes
are expected to exist near each cut-off frequency.

C. Trapped Torsional Modes in Infinite Plates

The existence of trapped torsional modes in stepped
plates offers possibilities to design an array of localized
energy traps (or resonant cavities) on a large plate, each
serving as a torsional-mode resonator. These resonators
are very sensitive to surface loading and may be used for a
variety of sensing applications. Each thickness step can be
a circular mesa, for example, formed by machining, etch-
ing, or bonding of a decal onto the surface of the plate. The
design parameters include the thickness and the radius of
the mesa as well as the spacing between adjacent mesas.
The frequencies of the trapped modes depend on the mesa
dimensions, and the spacing must be large enough to avoid
coupling between adjacent resonators. Each mesa thus can
be considered sitting on an infinite plate (a — o0) iso-
lated from the others. In this case, it is more convenient
to use Hankel functions to describe the displacement out-
side the mesa, and by their asymptotic behavior only the
first Hankel function remains so that the displacement
at the infinite outer boundary vanishes. Therefore, any
possible modes must be trapped near the mesa. Fig. 8
shows the resonance frequencies for the first-order modes
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Fig. 7. Mode shapes of the first-order mode corresponding to point
A of Fig. 6, showing the characteristic of a trapped torsional mode
in a circular plate with a thickness step (hi/h2 = 1.1, a/h2 = 10).
The dashed line indicates the location of the step.

varying with the mesa radius for a fixed thickness ratio
(h1/he = 1.1). It is found that, depending on the mesa
dimensions, there may exist zero, one, or multiple trapped
modes. Fig. 9 depicts a diagram for the number of trapped
first-order torsional modes in a circular mesa with the ra-
dius b/hg and the thickness ratio hy/hs as the coordinates.
The lines divide the plane into six regions, with the num-
ber of trapped modes denoted in each region. The diagram
is independent of the material properties as long as the
plate is homogeneous, isotropic, and elastic. The diagram
may be read in two ways. For a circular mesa with a given
thickness, there exists a critical radius, below which no
trapped mode exists; multiple trapped modes may exist
when the radius is large. It is often desirable to have a sin-
gle trapped mode, which requires a mesa radius within the
window bounded by the lowest two lines in Fig. 9. Alter-
natively, if the mesa radius is fixed, there exists a critical
thickness, below which no trapped modes can be found,
and a single trapped mode exists when the thickness is
within the window. Such a diagram may serve as a guide
for designing energy-trapped torsional-mode resonators.
The theoretical results from this study are compared
to experimental measurements. A brief description of the
experimental procedure follows. More details will be pre-
sented elsewhere [26]. Circular mesas were machined in a
6000 series cast aluminum plate, with the mesa perime-
ters defined by removing metal in the form of a moat.
The moat was made wide enough (typically exceeding two
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TABLE 1

DIMENSIONS OF SiX SAMPLES USED IN EXPERIMENTAL MEASUREMENTS.

A B C D E F
Diameter, 2b (mm) 37.668 37.846 37.719 25.908 25.654 25.654
Thickness, h1 (mm) 3.1369 3.0683 3.0607 3.1679 3.1496  3.1242
Thickness, ha (mm) 2.9464 2.6416 3.0226 2.6797  2.9972 2.8702
Thickness ratio, hi/ha 1.06 1.16 1.01 1.18 1.05 1.09
Ratio b/ho 6.39 7.16 6.24 4.83 4.28 4.47
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Fig. 8. The resonant frequencies of trapped first-order torsional
modes in a circular mesa on an infinite plate (h1/h2 = 1.1).
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Fig. 9. A diagram for the number of trapped first-order torsional

modes in a circular mesa on an infinite plate. The circles correspond
to the samples A-F used in experiments.

Fig. 10. Comparison of resonance frequencies of trapped torsional
modes between experiments (solid lines) and predictions (dashed
lines). The dimensions of the samples A-F are listed in Table I and
indicated in Fig. 9.

or more wavelengths) so that the displacement, which de-
cayed exponentially away from the mesa perimeter, was
negligible at the outer edge of the moat and hence each
mesa was isolated acoustically. A noncontact electromag-
netic acoustic transducer (EMAT) was used to generate
oscillatory surface tractions. Torsional modes were excited
when the traction force was applied in the circumferen-
tial direction. Resonant frequencies were determined by
adjusting the pulse train frequency for peak initial ampli-
tude as observed with an oscilloscope. The system error
of this measurement is estimated to be 5%. A series of
tests were conducted to measure the surface motion at
resonances in order to confirm the observation of trapped
torsional modes, for example, by using an absorbing sty-
lus to determine the locations of displacement maxima and
using a pick-up coil to confirm the circumferential motion.
Table I lists the dimensions of six circular mesas used in
experiments. These samples correspond to the points A-F
labeled in Fig. 9. The diagram predicts that samples C and
E have a single trapped torsional mode. Samples A, D, and
F have two trapped modes. Sample B has three trapped
modes. Fig. 10 shows the measured resonance frequencies
in comparison with the predictions by the approximate
method developed in this paper. In calculating the fre-
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quencies, the shear modulus and the mass density of the
cast aluminum are taken to be 26 GPa and 2700 kg/m?, re-
spectively. The agreement between the measurements and
the predictions is excellent, except for Sample B, in which
only two trapped modes were observed but three were pre-
dicted by the theory. It was noted in experiments that spu-
rious modes were generated and not trapped when the step
thickness was relatively large and the frequency was high.
The validity of the approximate theory is thus limited to
small step thickness with frequencies close to the cut-off
frequency.

V. CONCLUSIONS

This paper presents a theoretical study of torsional vi-
brations in isotropic elastic plates. In particular, an ap-
proximate method is developed to analyze torsional vi-
brations in circular plates with thickness steps. Approxi-
mate solutions are presented for the zeroth- and first-order
torsional modes. Of practical interest is the trapped first-
order mode, which is theoretically predicted and confirmed
by the mode shapes. The number of trapped first-order tor-
sional modes in a circular mesa on an infinite plate is de-
termined as a function of the normalized geometric param-
eters, which may serve as a guide for designing distributed
torsional-mode resonators for sensing applications. Com-
parisons between the theoretical predictions and experi-
mental measurements show close agreements in the reso-
nance frequencies of trapped torsional modes.
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