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The unique lattice structure and properties of graphene have drawn tremendous interests
recently. By combining continuum and atomistic approaches, this paper investigates the
mechanical properties of single-atomic-layer graphene sheets. A theoretical framework of
nonlinear continuum mechanics is developed for graphene under both in-plane and bend-
ing deformation. Atomistic simulations are carried out to deduce the effective mechanical
properties. It is found that graphene becomes highly nonlinear and anisotropic under
finite-strain uniaxial stretch, and coupling between stretch and shear occurs except for
stretching in the zigzag and armchair directions. The theoretical strength (fracture strain
and fracture stress) of perfect graphene lattice also varies with the chiral direction of
uniaxial stretch. By rolling graphene sheets into cylindrical tubes of various radii, the
bending modulus of graphene is obtained. Buckling of graphene ribbons under uniaxial
compression is simulated and the critical strain for the onset of buckling is compared to
a linear buckling analysis.
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1. Introduction

A monolayer of carbon (C) atoms tightly packed into a two-dimensional hexagonal
lattice makes up a single-atomic-layer graphene (SALG) sheet, which is the basic
building block for bulk graphite and carbon nanotubes (CNTSs). Inspired by the
discovery of CNTs, a series of efforts have been devoted to either grow graphene
or isolate graphene from layered bulk graphite. Single and few-layered graphenes
have been grown epitaxially by chemical vapour deposition of hydrocarbons on
metal surfaces [Land et al., 1992; Nagashima et al., 1993; de Parga et al., 2008;
Sutter et al., 2008] and by thermal decomposition of silicon carbide (SiC) [Berger
et al., 2004, 2006; Forbeaux et al., 1998; Ohta et al., 2006]. Alternatively, thin
graphene layers have been separated from intercalated graphite by chemical exfo-
liation [Dresselhaus and Dresselhaus, 2002], which, however, often results in sedi-
ments consisting of restacked and scrolled multilayer sheets rather than individual
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monolayers [Horiuchi et al., 2004; Shioyama, 2001; Stankovich et al., 2006; Viculis
et al., 2003]. On the other hand, mechanical cleavage of graphite islands and thin
films has produced graphitic plates and flakes, from just a few graphene layers to
hundreds of layers [Ebbesen and Hiura, 1995; Hiura et al., 1994; Lu et al., 1999;
Novoselov et al., 2004; Roy et al., 1998; Zhang et al., 2005]. With an improved
cleavage technique, isolation of SALG was first reported in 2005 [Novoselov et al.,
2005]. Since then, graphene has drawn tremendous interests for research in physics,
materials science and engineering [Geim and Novoselov, 2007].

Many unique properties of graphene result from its two-dimensional (2D) lattice
structure. A debate, however, remains unsettled as to whether or not strictly 2D
crystals can exist in the 3D space. Earlier theories based on the standard harmonic
approximation predicted that a 2D crystal would be thermodynamically unstable
and thus could not exist at any finite temperature as thermal fluctuation in the third
dimension could destroy the long-range order [Landau et al., 1980; Mermin, 1968].
Recent experimental observations by transmission electron microscopy (TEM) and
nanobeam electron diffraction revealed folding and mesoscopic rippling of suspended
graphene sheets [Meyer et al., 2007], suggesting that the 2D graphene lattice can be
stabilised by gentle corrugation in the third dimension. Indeed, theoretical studies
of flexible membranes [Nelson et al., 2004] have led to the conclusion that anhar-
monic interactions between long-wavelength bending and stretching phonons could
in principle suppress thermal fluctuation and stabilise atomically thin 2D mem-
branes through coupled deformation in all three dimensions. However, the conti-
nuum membrane theory predicts severe buckling of large membranes, as the buckle
amplitude scales with the membrane size. On the other hand, molecular mechan-
ics (MM) simulations have shown that bending of a SALG is fundamentally dif-
ferent from bending of a continuum plate or membrane [Arroyo and Belytschko,
2004a; Huang et al., 2006]. Recently, Monte Carlo simulations of equilibrium struc-
tures of SALG at finite temperatures found that ripples spontaneously form with
a characteristic wavelength around 8 nm and the ripple amplitude is comparable
to the carbon—carbon (C-C) interatomic distance (~0.142nm) even for very large
graphene sheets [Fasolino et al., 2007]. The intrinsic ripples are believed to be essen-
tial for the structural stability of the 2D graphene lattice and may have major
impacts on the electronic and mechanical properties of graphene.

As a new class of material, graphene offers a rich spectrum of physical prop-
erties and potential applications [Geim and Novoselov, 2007]. This paper focuses
on the mechanical properties of graphene. From the micromechanical cleavage
technique for isolating graphene sheets to the structural stability of the ripple
morphology, the mechanical behaviour of graphene has played an important role.
Potential applications of graphene directly related to its mechanical properties
include graphene-based composite materials [Stankovich et al., 2006] and nanoelec-
tromechanical resonators [Bunch et al., 2007; Garcia-Sanchez et al., 2008]. More
broadly, development of graphene-based electronics [Berger et al., 2004; Geim and
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Novoselov, 2007; Novoselov et al., 2004; de Parga et al., 2008; Zhang et al., 2005]
may eventually require good understanding of the mechanical properties and their
impacts on the performance and reliability of the devices.

Direct measurement of mechanical properties of SALG has been challenging. An
atomic force microscope (AFM) was used in static deflection tests to measure the
effective spring constants of multilayered graphene sheets (less than five layers) sus-
pended over lithographically defined trenches, from which a Young’s modulus and
residual tension were extracted [Frank et al., 2007]. A similar approach was used
to probe graphene sheets (no less than eight layers) suspended over circular holes,
which yielded the bending rigidity and tension by comparing the experimental data
to a continuum plate model [Poot and van der Zant, 2008]. More recently, nonlinear
elastic properties and intrinsic breaking strength of SALG sheets were measured
by AFM indentation tests [Lee et al., 2008]. On the other hand, theoretical stud-
ies on mechanical properties of graphene have started much earlier. Even before
the success of isolating and observing SALG, elastic properties of graphene have
been predicted based on the C-C bond properties [Arroyo and Belytschko, 2004a;
Huang et al., 2006; Kudin et al., 2001; Sanchez-Portal et al., 1999; Van Lier et al.,
2000; Wang, 2004], often serving as a reference for the properties of single-walled
carbon nanotubes (SWCNTSs). Indeed, SWCNTs are essentially SALG rolled into
cylindrical tubes, for which the mechanical properties have been studied extensively.
However, the intrinsically nonlinear atomistic interactions and noncentrosymmet-
ric hexagonal lattice of graphene dictate that mechanical properties of graphene
differ from those of SWCNTs. Moreover, due to the unique 2D lattice structure,
mechanical properties of graphene cannot be derived directly from its 3D form —
bulk graphite. As different as they are, both CNTs and bulk graphite are made up
of graphene, and thus their mechanical properties are physically related. Several
recent studies have focused on mechanical properties of graphene [Caillerie et al.,
2006; Khare et al., 2007; Liu et al., 2007; Reddy et al., 2006; Zhang et al., 2006;
Zhou and Huang, 2008].

In the present study, we first develop a theoretical framework for deformation
of 2D graphene sheets based on nonlinear continuum mechanics in Sec. 2. Section
3 describes a MM approach to simulate mechanical behaviour of graphene and to
extract its mechanical properties defined by the nonlinear continuum mechanics.
Uniaxial stretch of SALG sheets is considered in Sec. 4, and cylindrical bending of
SALG is discussed in Sec. 5. In Sec. 6, buckling of finite-width graphene ribbons is
simulated and compared to a linear buckling analysis. Section 7 concludes with a
summary of findings from the present study and remarks on future works.

2. Continuum Mechanics of Two-Dimensional Sheets

Common mechanical properties of materials such as Young’s modulus, Poisson’s
ratio, flexural rigidity and fracture strength are all concepts of continuum mechan-
ics. Specifically for graphene, these properties are derived from its unique 2D lattice
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structure. Before establishing the connection between the atomistic structure and
the mechanical properties, a theoretical framework of nonlinear continuum mechan-
ics is developed in this section to properly define the effective mechanical properties
for the 2D graphene sheets.

2.1. Kinematics: stretch and curvature

Take a planar graphene sheet as the reference state. The deformation of the sheet
is described by a deformation gradient tensor F that maps an infinitesimal segment
dX at the reference state to the corresponding segment dx at the deformed state
(Fig. 1), i.e.
ox;

= (1)
00Xy
For convenience, we set up the coordinates such that X3 = 0 for the graphene sheet
at the reference state and thus the vector dX has only two in-plane components

(J =1,2). On the other hand, dx has three components (i = 1,2, 3) in general.
As a measure of the deformation, the Green—Lagrange strain tensor is defined as

dx =FdX and F;;=

1
Ejx = §(FiJFiK — 0K ), (2)

where 6 ;i is the Kronecker delta. The deformation induces a stretch of the infinites-
imal segment, namely,

|dx|
A=—=+/1+2FE;kN;N, 3
aX| V9I+20;k Ny NE, (3)

where N; = dX;/|dX] is the unit vector in the direction of dX.

Note that, for a 2D sheet, the Green—Lagrange strain is a symmetric second-
order tensor in the 2D space of the reference state, which may be decomposed into
two parts:

Ejk = Ejx + Elx, (4)

where the first term is due to in-plane displacements and the second term is
due to out-of-plane rotation, as can be written in terms of the displacement

Fig. 1. Schematic illustration of a 2D graphene sheet before and after deformation.
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components (u = x — X):

1 8UJ 8uK 8u1 8u1 8’LL2 aUQ
Ebe ==
K= (8XK T ox, T ox, oxx T 0xX, 8XK> : ®)
1 8’U,3 8u3
R —_ - —_—
Ejk = 20X, 00X (6)

Under an infinitesimal deformation, the nonlinear terms in the in-plane Green—
Lagrange strain can be neglected, reducing to the linear strain components:

aUJ 8uK
Xk 0X,;)°

1
EfKNEJK=§<

(7)

The nonlinear terms EX. may be retained for large rotation, similar to the treatment
of membrane strains in the nonlinear von Karman plate theory [Timoshenko and
Woinowsky-Krieger, 1987].

A 2D sheet remains planar under a homogeneous deformation with a constant
deformation gradient F. An inhomogeneous deformation may induce bending and
twisting of the sheet into a corrugated surface in the 3D space. The curvature of
the deformed sheet can be obtained from the first and second fundamental forms of
the surface in 3D [Arroyo and Belytschko, 2004b]. Following standard procedures
of differential geometry [do Carmo, 1976], we define a curvature tensor

8Fi1 82:,Ci

K =n; =n; ) 8
T=Nex T M axX,0X, (8)

where the unit normal vector of the deformed surface is

n; = Cijk L' j1L k2 ) (9)
V(1 +2E1)(1 4 2Ex) — 4E%,

For an arbitrary line segment dX at the reference state, the normal curvature
at the deformed state is given by

_ KiyNiNy

. (10)

a7}
where N; = dX;/|dX]| is the unit vector in the direction of dX and the stretch
A is defined in Eq. (3). By solving a generalised eigenvalue problem [Arroyo and
Belytschko, 2004a,b], two principal curvatures at each point can be obtained, from
which the mean curvature and Gaussian curvature can be determined. We note that
by Eq. (8) nonzero curvature occurs only under inhomogeneous deformation with
nonzero gradients of the deformation gradient tensor (strain gradient).
For infinitesimal bending curvature, the unit normal is approximately (0, 0, 1)
and the curvature reduces to the familiar form: K;; = 8)??%, where ugz is the
lateral displacement normal to the plane of the sheet.
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2.2. Stress and moment tensors

Within the theoretical framework of nonlinear hyperelasticity [Marsden and Hughes,
1983], the material property is derived from a strain energy density function that
depends on the deformation gradient: ®(F'), under the assumption of homogeneous
deformation. For a 2D sheet, we write the strain energy density as a function of the
2D Green—Lagrange strain and the curvature: ® = ®(E, K). Note that the energy
density for the 2D sheet has a unit of J/m? or N/m, different from that for a 3D
solid.

The 2D membrane stress (force per unit length) and moment intensity (moment
per unit length) are defined as the work conjugates of the 2D Green—Lagrange strain
and the curvature, respectively:

o0 o0
J OEL an J 0K 1y

(11)
The stress tensor Syy is analogous to the second Piola—Kirchhoff stress tensor in 3D,
while the moment tensor Mj; represents a higher order quantity associated with
the curvature.

The nominal stress acting on the 2D sheet is defined as the force at the deformed
state per unit length of a line segment at the reference state, which can be obtained
as the work conjugate of the deformation gradient F, namely

0
- OFy’

Py (12)

The nominal stress is analogous to the first Piola—Kirchhoff stress in 3D. Using
the chain rule, the nominal stress can be related to the second Piola—Kirchhoff
membrane stress and moment by

oM
Mg = Fy1Spy — ni—2%

0K
Py =FiSiy+ K m

OF,, ik

0

1
—(F; M, 13
aXK( g1 IK)? ( )
where an inverse mapping is defined by F; JF]kl = §;z and thus dX = F~ldx.
The differential relationship has a form similar to the relationship between bend-
ing moments and shear forces for continuum plates and shells [Timoshenko and
Woinowsky-Krieger, 1987].

2.3. Tangent modulus

The nonlinear elastic properties of the 2D sheet can be described in terms of tangent
modulus for stretch and bending. Using the 2D second Piola—Kirchhoff membrane
stress and the 2D Green—Lagrange strain, the material tangent modulus for in-plane
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deformation is defined as

oSy e
Cure = OFk;,  O0E0EkL’ (14)

Similarly, the tangent bending modulus of the sheet is

OM;y;y 9%
D = = . 1
VLT 9Kk 0K 0K gy (15)

In addition, there may exist a cross-term modulus for the coupling of in-plane and
bending deformation:

0Sy  OMgkr 0?°®

— = . 1
OK k1, 0Er;  O0EpOKkr (16)

Ayrr =

Noting the symmetry in the 2D stress, stain, moment and curvature tensors, the
modulus can be written in an abbreviated matrix form by Voigt’s notation, and an
incremental relationship is obtained as follows:

dS1 [C11 Cia Chis dE1 Ain Az Agg dK11
dSy | = |Ca1 Caa Cog| | dE22 |+ |[A2r Az Aoz | dKop |, (17)
dSi2 [C31 C32 Cs3] \2dE12 Az1 Azz Asz] \2dKi2
dMny (D11 D1z D3 dK11 Ain Ao Az dE1
dMay | = [ D21 D2y Daz| | dKaz | + [A12 Age Asza| | dEa2 | . (18)
dMi2 [ D31 D32 Dss] \2dKi2 A1z Aoz Asz] \2dEq

Equations (17) and (18) describe a generally nonlinear and anisotropic elastic
behaviour of a 2D sheet. Note that the coupling modulus Ajjx;, does not possess
the major symmetry and thus the A-matrix is not symmetric, while both the C-
and D-matrices are symmetric.

Under the assumption of infinitesimal deformation, Eqs. (17) and (18) reduce
to linear elastic relations. For isotropic, linear elastic materials, Young’s modulus
and Poisson’s ratio can be obtained as: Y = C1; — C%/C1; and v = Co1/C1y,
respectively.

2.4. Uniaxial stretch

As an example, consider homogeneous deformation of a 2D sheet by a uniaxial
stretch in X;-direction, i.e Fi; = A and Fy, = 1, while the other components of
the deformation gradient are all zero. The 2D Green—Lagrange strain components
are then: By = %()\2 — 1) and Ey = Ej2 = 0, and the curvature components are
all zero. Using the tangent modulus, the increments of the second Piola—Kirchhoff
membrane stresses are: dSll = ClldEll, dSQQ = CQldEll and dSu = CgldEll.



450 Q. Lu & R. Huang

By Eq. (13), the increments in the nominal stresses are:

dPyy = (F3C11 + S11)dFi1

dPay = (F11Ca1)dF1y

dPyy = (F3Cs1 + S12)dF1y . (19)
dPy; = (F11Cs1)dF11

APy = dPsy = 0

The nominal strain in X;-direction is € = A — 1. Therefore, the tangent modulus for
the nominal stress—strain is: C1; = A2C11+S11. Only under an infinitesimal nominal
strain (¢ — 0), we have C1; ~ C71. The nominal shear stresses (Pjo and Py ) exist
when the sheet is anisotropic with nonzero Cs;, which leads to the coupling between
stretch and shear.

2.5. Cylindrical bending

Consider rolling of a 2D sheet into a cylindrical tube with a mapping X — x:
X X
x1 = Rsin (27r71> , 2 =Xs, and xz3= R — Rcos (27r71> , (20)

where L is the width of the sheet before rolling and R is the tube radius. The
deformation gradient in this case is

2 X
WTR cos (27r71) 0

F = 0 1. (21)

The corresponding 2D Green—Lagrange strain components are: Fy; = %[(%)2 —1]

and Foy = FE15 = 0. Therefore, the stretch in the circumferential direction of the
tube is: A = %. In addition, by definition in Eq. (8), the curvature tensor has
47%R

the components: K11 = 7+ and Kz = Kjz = 0. The normal curvature for a
. ) . . . . . ter _ K11 _ l .
line segment in the circumferential direction is then, k, = 7 oET < T Thus, a

variation in the tube radius simultaneously changes the stretch and the curvature:
dEy1 = (3£)*RdR and dK1;, = (2£)%dR.

The strain energy density of the tube can be written as: & = P(R) =
®(E11,Kq1). The membrane stress in the circumferential direction and the bend-
ing moment can then be obtained as: S1; = 0®/0FE1; and My, = 09/0K11. By
Egs. (17) and (18), the increments of the membrane stresses and moments are:
dS11 = Ciy1dEy1 + A1dKy1 and dMyy = Dq1dKq1 + Aj1dEq1. Note that, while
S11 and Mj; can be obtained directly from the strain energy density function of
the tube, other stress and moment components in the tube have to be evaluated
separately.
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3. Atomistic Simulations of Graphene

Atomistic simulations based on empirical potentials can be used to predict mechan-
ical properties of materials. In the present study, we adopt a MM approach to sim-
ulate SALG sheets subjected to uniaxial stretch, cylindrical bending and buckling
instability. The MM simulations are used to determine the static equilibrium state of
graphene by minimising the total potential energy with respect to the atomic posi-
tions. The strain energy density as well as virial stresses can be obtained directly
from the MM simulations, with which the effective mechanical properties (e.g. tan-
gent modulus) can be deduced based on the continuum mechanics theory.

The MM simulations follow the standard procedures with a few exceptions as
pointed out in the subsequent sections for specific examples. For completeness, the
empirical potential used in the MM simulations is presented in this section, along
with the method for virial stress calculations.

3.1. Empsirical potential

Several empirical potential functions describing C—C atomic interactions have been
developed [Brenner, 1990; Brenner et al., 2002], which have enabled both large-
scale atomistic simulations [Khare et al., 2007; Reddy et al., 2006; Terdalkar et al.,
2008] and closed-form predictions of the elastic properties of graphene [Arroyo and
Belytschko, 2004a; Huang et al., 2006; Zhou and Huang, 2008]. In particular, the
second-generation reactive empirical bond-order (REBO) potential energy for solid
carbon and hydrocarbon molecules allows for covalent bond breaking and forming
with appropriate changes in atomic hybridisation, which has been shown to be a
reliable potential function for simultaneously predicting bond energy, bond length,
surface energy and bulk elastic properties of diamond [Brenner et al., 2002]. The
REBO potential is used in the present study for MM simulations of graphene.
The chemical binding energy between two carbon atoms is written in the form

Vij = V(rij) = Ve(ri;) — bVa(rij), (22)

where 7;; is the interatomic distance, Vz and V4 are the repulsive and attractive
terms, respectively, as given by

Vi) = £:0) (14 ) e 29
3
Va(r) = Julr) Y Bae ™, en
n=1

and f. is a smooth cutoff function that limits the range of the covalent interactions
within the nearest neighbours, namely

1, r < D,

1 (r—Dy)7
(r)=<=(1 A A D D, - 25
f() 2<+COS{D2—D1:|)7 1 <r < Da, ( )

0, r > Do
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In addition to the pair potential terms, b is an empirical bond-order function,

which is a sum of three terms:

b= 05 05T+ 0T, (26)
where the first two terms depend on the local coordination and bond angles, and
the third term, b7, = Hf}c + b%H, represents the influence of radical energetics and
m-bond conjugation as well as the dihedral angle for C—C double bonds. Together,
the function b characterises the local bonding environment so that the potential can
to some extent describe multiple bonding states. As given by Brenner et al. [2002],
the analytical forms of these functions are complicated and thus omitted here for
brevity.

The parameters for the C—C pair potential terms are: @@ = 0.031346nm, A =
10953.5eV, o = 47.465nm !, By = 12388.8eV, By = 17.5674eV, By = 30.7149¢V,
B1 = 47.2045nm~ !, By = 14.332nm~!, 33 = 13.827nm~ !, D; = 0.17nm and
Dy = 0.20nm. For a planar graphene sheet, these parameters lead to an equilibrium
interatomic bond length, ro = 0.142nm.

3.2. Stresses by molecular mechanics

In a discrete atomistic model, forces, rather than stresses, are used for the mea-
sure of mechanical interactions. Evaluation of stresses may be carried out based
on the potential energy or directly from the forces. As defined in the continuum
mechanics theory in Sec. 2, the 2D membrane stress S;; and moment Mj; can
be determined by differentiation of the strain energy density function with respect
to the corresponding strain and curvature components, respectively. However, the
energy method requires variation of the specific strain and curvature components
independently. In the cases of uniaxial stretch, only one strain component (E71) is
varied, and thus only one stress component (S71) can be determined by the energy
method. To evaluate other stress components, we calculate the virial stresses based
on a generalisation of the virial theorem of Clausius [1870]. In particular, the nom-
inal stresses in a graphene sheet are calculated as the average membrane force over
a reference area A:

Piy= = > (X - xR, (27)
m#n

where Fi("m) is the interatomic force between atoms m and n at the deformed state,
and X&m) is the coordinate of the atom m at the reference state. The kinetic part
of the virial stresses has been neglected in the MM simulations.

4. Uniaxial Stretch of Graphene

A rectangular computational cell of the graphene lattice with periodic boundary
conditions is used to simulate uniaxial stretch of a SALG sheet in an arbitrary
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Fig. 2. Illustration of a rectangular unit cell of graphene lattice with a particular chiral direction.

direction. The computational cell is obtained by multiple replications of the smallest
rectangular unit cell with one side parallel to the direction of stretch. As illustrated
in Fig. 2, to simulate uniaxial stretch of graphene in the (2n,n) direction, the unit
cell contains 28 atoms in the shaded area, while the computational cell contains an
integer number of the unit cells. The direction of stretch is designated by the chiral
angle a measured counterclockwise from the zigzag direction.

Before each simulation, the graphene sheet is fully relaxed to acquire the equi-
librium at the ground state with zero strain. A uniaxial stretch is then applied in
two steps. First, all the atoms in the computational cell are displaced according
to a homogeneous deformation with the prescribed strain, and the dimension of
the computational cell is modified accordingly. Second, with the boundaries of the
computational cell fixed, the atomic positions are relaxed by internal lattice relax-
ation to minimise the total potential energy. The internal relaxation is necessary
for deformation of noncentrosymmetric lattices [Zhou and Huang, 2008]. A stan-
dard quasi-Newton algorithm called L-BFGS [Nocedal, 1980] is used for energy
minimisation.

Figure 3 shows the potential energy per atom as a function of the nominal strain
¢ for a graphene sheet under uniaxial stretch in the zigzag direction (« = 0), along
with the snapshots of the atomic structures for ¢ = 0, 0.16, 0.282 and 0.284. The
computational cell in this case contains 160 atoms, and its strain-free dimension is
2.130nm (armchair direction) by 1.968 nm (zigzag direction). The strain is applied
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-6

Energy (eV)

0 0.05 0.1 0.15 0.2 0.25 0.3
Nominal strain €

Fig. 3. Energy per atom vs nominal strain of a SALG sheet under uniaxial stretch in the zigzag
direction (o = 0), with snapshots of the equilibrium atomic structures at ¢ = 0 (A), 0.16 (B),
0.282 (C) and 0.284 (D).

with an increment of 0.002. Clearly, the potential energy increases as the strain
increases until it reaches a critical point where a sudden drop of the energy occurs.
From the snapshots, we see that the atomic lattice is stretched uniformly (with
internal relaxation) up to € = 0.282 while the lattice is fractured spontaneously at
the next strain increment. The critical strain for the bond breaking in the zigzag
direction is thus determined to be ey = 0.283, which is considered as the theoretical
limit for a perfect graphene lattice under uniaxial stretch.

The strain energy density of the graphene sheet can be obtained as & =
(V = V) /Ao, where V is the energy per atom at the deformed state, V; is the energy
per atom at the ground state, and Ay is the area per atom at the ground state. The
nominal stress Pj; can thus be obtained from the potential energy: Pj; = %—f. Alter-
natively, the nominal stress as well as the other components (P2, P12 and Pyy) can
be calculated from the virial stresses as given in Eq. (27). Figure 4(a) shows the
nominal stress—strain curves for graphene under uniaxial stretch in the zigzag direc-
tion. The nominal stress P;; obtained from the potential energy agrees closely with
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Fig. 4. (a) Nominal stresses vs nominal strain and (b) second Piola-Kirchhoff membrane stresses
vs Green—Lagrange strain for a SALG sheet under uniaxial stretch in the zigzag direction. The
nominal stress P is calculated by both the energy method (open circles) and the virial stress
method (solid line).

the corresponding virial stress. In the perpendicular direction, the nominal stress
P55 is positive, a result of Poisson’s effect. Both the shear components of the nom-
inal stress are zero, indicating no coupling between shear and stretch in the zigzag
direction.
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With the nominal stress components known, the second Piola—Kirchhoff mem-
brane stress components are evaluated by the relationship in Eq. (13). For uniaxial
stretch, we have

Py Py
Si1 = , Sog =Py, Sip=
1 5 22 22 12 =7

Noting the symmetry, Si2 = S21, the nominal shear stresses must satisfy the rela-

, Sa1 = Por. (28)

tion, Pig = Po1(1 + €), which is required for the balance of the angular momentum.
Figure 4(b) plots the second Piola-Kirchhoff membrane stresses as a function of the
Green-Lagrange strain (B = € + €2/2), called S-E curves hereafter.

The tangent moduli C1; and Cy; are determined from the slopes of the S-E
curves, as plotted in Fig. 5. Both the tangent moduli decrease as the strain
increases, demonstrating the nonlinear elastic behaviour of graphene under the uni-
axial stretch. Recently, based on AFM indentation experiments on suspended SALG
and a nonlinear elastic membrane model, Lee et al. [2008] deduced a quadratic
stress—strain relationship for graphene under uniaxial stress

S =Y?PE, + D*PE2 (29)

where V2P = 340 + 50 N/m is the 2D Young’s modulus at infinitesimal strain and
D?P = —6904120N/m is a third-order elastic modulus. The negative value of D*P
leads to lessening of the tangent Young’s modulus (dS11/dEy, = Y?P4+2D?PE) at
increasingly tensile strain, similar to the tangent moduli shown in Fig. 5. However,
due to the nonlinearity, the tangent moduli under uniaxial stretch cannot predict
the tangent Young’s modulus under uniaxial stress. Only under infinitesimal strain,
the Young’s modulus can be obtained as Y = Ci; — 0221/011. As noted in the

350

Tangent modulus (N/m)
@
=)

100}
501
0
CS1

0 0.05 0.1 0.15 0.2 0.25 0.3
Green Lagrange strain £,

Fig. 5. Tangent elastic moduli of a SALG sheet under uniaxial stretch in the zigzag direction.
The dashed line is the tangent Young’s modulus from Eq. (29) as suggested by Lee et al. [2008].
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Table 1. Comparison of elastic moduli of SALG under infinitesimal deformation (Young’s
modulus Y = Cq11 — 0221 /C11 and Poisson’s ratio v = C21/C11).

Ci11 (N/m) C21 (N/m) Y (N/m) v D(nNnm)

Present study (MM) 288.8 114.9 243 0.398 0.225
Arroyo and Belytschko [2004a] 288 114.5 243 0.397 0.11
Ab initio [Kudin et al., 2001] 353 52.6 345 0.149 0.238

previous studies [Arroyo and Belytschko, 2004a; Zhou and Huang, 2008], Young’s
modulus of graphene predicted by Brenner’s potential (see Table 1) is considerably
lower than that predicted by ab initio models [Kudin et al., 2001]; the latter is close
to the experimentally measured Y22,

The nonlinear finite deformation of the graphene sheet breaks the hexago-
nal symmetry of the un-deformed lattice, leading to an anisotropic mechanical
behaviour. As shown in Fig. 6 for graphene sheets under uniaxial stretch in four
different directions, both the tangent modulus and the fracture stress—strain vary
with the direction of stretch. The tangent moduli for the four directions are plotted
in Fig. 7 as functions of the Green-Lagrange strain. Only at infinitesimal strain
(E11 — 0) the graphene is isotropic, with C17 = 288.8 N/m, Cy; = 114.9N/m and
Cs31 = 0. These values agree closely with analytical results from previous studies
using the same empirical potential [Arroyo and Belytschko, 2004a; Huang et al.,
2006]. For uniaxial stretch in all directions, Cy; and Co; decrease with increas-
ing strain and become negative before the lattice is fractured spontaneously. This
may seem to be surprising, but it is understood that the condition for spontaneous
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Fig. 6. Nominal stress vs nominal strain for SALG sheets under uniaxial stretch along different
chiral directions.
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Fig. 7. Tangent elastic moduli C71, C21 and C31 of SALG sheets under uniaxial stretch along
different chiral directions.

fracture of the graphene sheet is zero slope in the nominal stress—strain curves. As
discussed in Sec. 2.4, the tangent modulus for the nominal stress—strain under uni-
axial stretch is C11 = A2Cy1 + Si1, where A = 1 + . Setting C1; = 0 leads to a
negative tangent modulus C7; at the point of spontaneous fracture.
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Figure 7(c) shows that the tangent modulus C3; becomes nonzero under finite
stretch in a direction other than zigzag (o = 0) or armchair (o« = 30°). Consequently,
a shear stress has to be applied to the graphene sheet in order to maintain uniaxial
stretch in the chiral direction (0 < « < 30°). The stretch-shear coupling of the
planar graphene sheet may have contributed to the previously reported tension—
torsion coupling of single-walled CNTs [Gartstein et al., 2003; Liang and Upmanyu,
2006]. Indeed, only CNTs with chirality other than zigzag or armchair were found
to exhibit the coupling between tension and torsion.

Figure 8 plots the nominal fracture strain and fracture stress of graphene under
uniaxial stretch versus the chiral angle of stretch. It is noted that, while the nominal
fracture strain varies significantly from 0.178 to 0.283, the nominal fracture stress
varies slightly from 30.5 to 35.6 N/m. The MM simulations show that a perfect
graphene lattice has the maximum fracture strain and fracture stress in the zigzag
direction (o = 0). A minimum fracture strength seems to exist in a direction between
a =19.11° and o = 30° (armchair). The intrinsic strength of the suspended SALG
sheets as determined by Lee et al., [2008] based on AFM indentation experiments
and a nonlinear membrane model was 42 N/m, with an isotropic fracture strain at
0.25. While the fracture stress is noticeably higher, the fracture strain is well within
the range of the present MM results. The relatively lower fracture stresses in Fig. 8
can be expected as a result of the relatively lower elastic modulus predicted by
Brenner’s potential.

5. Cylindrical Bending of Graphene Sheets

It has been found that bending of SALG sheets is fundamentally different from
the classical theory of plates or shells [Arroyo and Belytschko, 2004a; Huang et al.,
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2006]. Since the thickness of the graphene sheet is essentially zero, the bending
modulus would be zero by the classical theory. However, at the atomistic scale,
the bond-angle effect on the interatomic interactions results in a finite bending
modulus of graphene. For infinitesimal bending curvature (x — 0), the bending
modulus of planar graphene was predicted to be [Arroyo and Belytschko, 2004a;
Huang et al., 2000]

o V3 OV

Dy = -9
o VA(TO)aeijk 2 0cos eijk ’ o

where V;; is the interatomic potential as given in Eq. (22), Va(ro) is the attractive
part of the potential at the ground state, b is the bond-order function given by
Eq. (26) and 6, is the angle between two atomic bonds i—j and i-k(k # i,7).
For the 2nd generation Brenner potential, the bending modulus was found to be
1.8eV A% /atom or equivalently, 0.11 nNnm [Arroyo and Belytschko, 2004a).

In the present study, we simulate bending of graphene by rolling planar graphene
sheets into cylindrical tubes of different radii. Similar to the uniaxial stretch sim-
ulations, a rectangular computation cell with periodic boundary conditions is first
selected and then rolled into a tube according to the deformation gradient in
Eq. (21). As discussed in Sec. 2.5, for a particular computational cell of size L,
changing of the tube radius simultaneously changes the bending curvature and the
stretch in the circumferential direction. To uncouple the bending and stretch, we
set the tube radius R = L/27 and use different computational cells with varying
L to get different radii and bending curvatures. In each simulation, the atoms are
first displaced according to the deformation gradient in Eq. (21). Then, the total
potential energy is minimised under the constraint that the tube radius does not
change. To enforce this constraint, the atomic positions in one of the two sublat-
tices of the graphene are fixed, while the atoms of the other sublattice are allowed
to relax. In this way, the tube radius does not change during the energy minimi-
sation step. Consequently, all the 2D Green—Lagrange strain components are zero,
and the normal curvature in the rolling direction is simply: x, = K1 = %. The
bending moment is then calculated by differentiating the strain energy density with
respect to the curvature, and the tangent bending modulus is determined by the
incremental relationship: dM;; = D11dKy1. We note that several previous stud-
ies (e.g. [Arroyo and Belytschko, 2004a]) calculated strain energy of fully relaxed
CNTs, which potentially included contributions from both bending and stretching.
By applying the no-stretch constraint, the strain energy in the present study is
purely bending relative to the planar graphene sheets at the ground state.

Figure 9 plots the strain energy per atom as a function of the bending curvature
for graphene sheets rolled in the zigzag direction. The obtained bending moment vs
curvature is plotted in Fig. 10. The bending moment increases almost linearly as the
curvature increases in the range between 0.1 and 2nm~!, with slight nonlinearity
at large curvatures. By a linear fitting with the first 10 data points, the bending
modulus of graphene is obtained as D1 = 0.225nN nm. The same bending modulus
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Fig. 10. Bending moment vs curvature for cylindrical bending of SALG sheets in the zigzag and
armchair directions.

is obtained for rolling of graphene in the armchair direction. The bending modulus
obtained from the present study is about twice of the bending modulus reported in
the previous studies [Arroyo and Belytschko, 2004a; Huang et al., 2006]. It turns
out that, in the previous studies [Arroyo and Belytschko, 2004a; Huang et al., 2006],
the contribution of the dihedral term bj}'" in the Brenner potential (see Eq. (26))



462 Q. Lu & R. Huang

to the bending modulus was ignored. However, we found that the derivative of the
dihedral term with respect to the bond angle does not vanish even at the ground
state [Lu et al., 2009], leading to a noticeably higher bending modulus than that
predicted by the first generation Brenner potential (no dihedral term). The bending
modulus from the present study compares closely with that predicted by an ab initio
calculation [Kudin et al., 2001], as listed in Table 1.

6. Buckling of Graphene Ribbons

A thin sheet tends to buckle under compression. In this section we simulate buckling
of SALG ribbons under uniaxial compression. Similar to the MM simulations for
uniaxial stretch, rectangular computational cells with periodic boundary conditions
are used. Instead of the tensile strain (A = 1 + ¢), uniaxial compressive strains
(A =1—¢) are applied. An initial perturbation with out-of-plane displacements of
the atoms is introduced to trigger the buckling instability. It should be noted that
the intrinsic rippling of the 2D graphene lattice [Fasolino et al., 2007] is not taken
into account in the present simulations.

Figure 11(a) shows the potential energy per atom as a function of the compres-
sive strain in the zigzag direction for a graphene ribbon of width L = 1.97 nm. Two
curves are shown for comparison, one with initial perturbation and the other with
in-plane deformation only. The two curves overlap each other at small strains but
deviate from each other beyond a critical strain. The bifurcation due to buckling
leads to a lower potential energy. Figure 11(b) plots the buckling amplitude (the
maximum out-of-plane displacement) as a function of the compressive strain, from
which the critical strain for the onset of buckling is clearly identified: ¢, = 0.0068.
The graphene ribbon remains planar before the critical strain, despite the initial
perturbation. Beyond the critical strain, the buckling amplitude increases with the
compressive strain. A snapshot of the deformed graphene ribbon at e = 0.01 (com-
pressive) shows a nearly sinusoidal buckling profile (inset of Fig. 11(b)).

MM simulations are performed for graphene ribbons of various widths under
uniaxial compression in different chiral directions. The critical strains for the onset of
buckling are plotted in Fig. 12 for compression in the zigzag and armchair directions.
It is found that the critical strain for buckling is insensitive to the chiral direction,
but depends on the width of the graphene ribbon. The dependence is similar to that
for the classical Euler buckling of thin plates [Timoshenko and Woinowsky-Krieger,
1987], i.e. e ~ L~2. Noting that the critical strain for buckling is relatively small
for the graphene ribbons considered in the present study, an isotropic, linear elastic
behaviour may be assumed for the buckling analysis. Similar to the classical Euler
buckling [Timoshenko and Woinowsky-Krieger, 1987], a linear analysis predicts that
the critical load (force per unit length along the edge) for buckling of a graphene
ribbon is
- 47%D

PC - L2 Y (31)
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Fig. 11. (a) Energy per atom and (b) buckling amplitude vs nominal compressive strain for a
SALG ribbon (L = 1.97 nm). For comparison, the dashed line in (a) shows the energy for in-plane
deformation only. The inset in (b) shows a buckled graphene ribbon at € = 0.01.

where D is the bending modulus and L is the ribbon width. The critical nominal
strain . for the onset of buckling is then

P. 472D
Cii CnL?
where C7; is taken to be the in-plane elastic modulus of graphene at infinitesimal
strain. For comparison, we plot in Fig. 12 the predictions of the linear analysis

Ee = (32)
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Fig. 12. Critical strain for onset of buckling for SALG ribbons under uniaxial compression in
the zigzag and armchair directions by molecular mechanics simulations, in comparison with the
predictions by a linear buckling analysis using the elastic moduli listed in Table 1.

using three sets of the elastic modulus and bending modulus of graphene listed in
Table 1. The in-plane elastic modulus and bending modulus obtained in Secs. 4 and 5
of the present study give a prediction (linear analysis-1) that slightly overestimates
the MM results. However, using the bending modulus from Arroyo and Belytschko
[2004a], the second line (linear analysis-2) significantly underestimates the critical
strain. Interestingly, the third line (linear analysis-3) predicted by using the moduli
from the ab initio study [Kudin et al., 2001] agrees closely with the MM results for
buckling despite the differences in Young’s modulus and Poisson’s ratio.

7. Summary

A theoretical framework of nonlinear continuum mechanics is developed for two-
dimensional graphene sheets under both in-plane and bending deformation. Atom-
istic simulations by MM are carried out for SALG sheets under uniaxial stretch,
cylindrical bending, and buckling instability. It is found that graphene becomes
highly nonlinear and anisotropic under finite-strain uniaxial stretch, and coupling
between stretch and shear occurs except for stretching in the zigzag and armchair
directions. The theoretical strength (nominal fracture strain and nominal fracture
stress) of perfect graphene lattice also varies with the chiral direction of uniaxial
stretch. By rolling graphene sheets into cylindrical tubes of various radii, the bend-
ing modulus of graphene is obtained, which differs from a previous prediction by a
factor of 2. Buckling of graphene ribbons under uniaxial compression is simulated
and the critical strain for the onset of buckling is compared to a linear stability
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analysis. Future studies will investigate graphene sheets under combined bending
and stretching as well as the effects of finite temperatures on the morphology and
mechanical properties of graphene.
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