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Abstract Traction-separation relations have been
used to represent the adhesive interactions at bimate-
rial interfaces for contact and fracture analyses. There
are a variety of methods for determining these rela-
tions, which are broadly sorted into iterative and direct
methods. Here we compare the traction-separation rela-
tions for a silicon/epoxy interface extracted by two such
methods. Interferometric measurements of the normal
crack opening displacements near the crack front in a
double-cantilever beam specimen were exploited along
with an augmented analytical solution for J-integral as
an illustration of the direct method. As an example of
the iterative method, we relied on comparisons of mea-
sured crack length and normal crack opening displace-
ments with numerical simulations obtained from two
types of candidate traction-separation relations. It was
found that the shape of the traction-separation relation,
in addition to the interfacial toughness and strength,
was needed to bring the numerical solutions into opti-
mal registration with the measurements. On the other
hand, the direct method lived up to its name in terms
of ease of parameter extraction while providing a rea-
sonable set of parameters.
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1 Introduction

Laminated structures are ubiquitous in several indus-
tries including aerospace, naval, automobile and
microelectronics. Technological advances have led to
the introduction of new materials and processes with
particularly short lead times. At the same time, mechan-
ical reliability is paramount, and durability predic-
tion is an attractive alternative to extensive testing.
The current approach to characterizing the durabil-
ity of the interfaces in layered structures is often by
way of linear elastic fracture mechanics (Hutchinson
and Suo 1991). However, limitations to this approach
can arise, especially for interfaces between thin lay-
ers and materials with inelastic properties. The cohe-
sive zone model, first proposed by Dugdale (1960)
and Barenblatt (1962) in order to describe the near
crack tip behavior, has gained popularity in recent
years for modeling crack nucleation and propagation.
Cohesive zone models have been effective in mod-
eling not only interfacial delamination as shown by
many groups (Feraren and Jensen 2004; Parmigiani and
Thouless 2007; Li et al. 2005; Valoroso and Cham-
paney 2006), but also a plethora of other interface
problems such as crack nucleation at bi-material cor-
ners (Mohammed and Liechti 2000), plastic dissipation
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in thin debonding films (Shirani and Liechti 1998),
and delamination of composites (Li and Thouless 2006;
Moroni and Pirondi 2011; Sgrensen and Jacobsen
2003; Li et al. 2005). However, cohesive zone mod-
els require specific material parameters in order to
make meaningful predictions. In addition, the criteria
for mixed-mode damage initiation and fracture must be
determined, which may then be used to simulate mode-
dependent fracture processes (Hogberg et al. 2007; Li
and Thouless 2006; Parmigiani and Thouless 2007;
Zhu et al. 2009).

In order to obtain the material parameters required
for the cohesive zone model, one of the most com-
monly used specimens is the double cantilever beam
(DCB) specimen (Kanninen 1973; Williams 1989;
Swadener et al. 1999; Zhu et al. 2009). The main advan-
tage of using the DCB specimen is that a nominally
mode-I loading can be applied to the crack, which
allows the mode-I toughness of the interface to be
measured. However, the DCB specimen can also be
used with an uneven bending moment or loaded in
an asymmetric manner in order to measure mixed-
mode fracture properties (Sgrensen and Kirkegaard
2006).

No matter which specimen is used, a local measure-
ment such as the crack opening displacement near the
crack tip is required for extracting the traction-sepa-
ration relation in the cohesive zone model. Interfer-
ometry has been widely used to characterize crack tip
behavior in glass/adhesive systems (Chai and Liechti
1992; Mello and Liechti 2006) and in thin film blister
tests (Shirani and Liechti 1998). Naturally, the use of
interferometry is restricted to the materials transpar-
ent to the light source. In this work, the silicon/epoxy
system was characterized using interferometry with
infrared (IR) light because of the IR transparency of
silicon.

The extraction of traction-separation relations is
generally approached in one of the two ways: a direct
method and an iterative method. The direct method, as
demonstrated by many groups (Sgrensen and Jacobsen
2003; Sorensen et al. 2008; Zhu et al. 2009), delivers
results based mainly on measured displacements with-
out recourse to extensive numerical analysis. However,
the extraction of traction-separation relations through
the direct method can be constrained by resolution
issues in locating the crack front and measuring the
crack opening displacements. The iterative method, on
the other hand, determines parameters by comparing
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numerical solutions and measurements, which has been
frequently employed in the past (Cox and Marshall
1991; Li et al. 2005; Mello and Liechti 2006; Sorensen
et al. 2008).

This paper explores the determination of the trac-
tion-separation relations of the silicon/epoxy inter-
face using both methods. The direct method combined
infra-red crack opening interferometry (IR-COI) mea-
surements with an augmented analytical solution for
J-integral to extract the traction-separation relation.
Next, an iterative method was adopted to compare the
same measurements with finite element simulations
using two types of candidate traction-separation rela-
tions. The results from the two methods are compared
to conclude with remarks on their effectiveness and
limitations.

2 Experiment

In this section, we describe the procedures that were
developed to fabricate DCB specimens and then frac-
ture them in a wedge test configuration while making
measurements of normal crack opening displacements
(NCOD) using IR-COI.

2.1 Sample preparation

A schematic of specimen geometry and apparatus is
shown in Fig. 1. The specimen consists of two silicon
strips joined by a layer of epoxy. The n-type Si (111)
wafers used here were polished on both sides to allow
the use of IR-COI and were obtained from WRS Mate-
rials. The wafers were 50 mm in diameter and nom-
inally 280 pwm in thickness. Although silicon wafers
can be cut in various directions, the Si (111) is pre-
ferred because the (111) plane has the smoothest sur-
face and presents the most dense arrangement of atoms
on the surface. An automatic dicer (Disco, model DAD
321) was used to cut the silicon wafers into 45 x 5 mm
strips, which were cleaned individually by ultrasoni-
cation in de-ionized water to remove any particles that
may have accumulated during dicing. The top adher-
end was coated with an Au/Pd thin film from one end
of the strip to a length of 15 mm. The adhesion energy
between the Au/Pd coating and the epoxy was fairly
small (~0.07 J/mz), which allowed an initial crack to
form with minimal or no damage ahead of the crack
front upon application of the load.
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Fig. 1 Schematic of the DCB specimen and apparatus

The epoxy that was used in the experiments was pre-
pared by mixing a resin (modified bisphenol-A epoxy,
Araldite® GY502) and a hardener (polyamidoamine,
Aradur®955) thoroughly in a 100:45 ratio by weight.
This mixture was then degassed in a chamber to remove
the bubbles in the epoxy. To prepare the specimen, a sili-
con strip was laidon a Teflon® tape with a 27 wm-thick
shim at either end to control the thickness of the epoxy
layer. A bead of the degassed epoxy was dropped on
the silicon surface and spread out with a spatula. Then
the silicon adherend with the partial Au/Pd coating was
pressed on the bead with a weight to spread epoxy into
a layer between the two silicon strips. The specimen
was cured for 3 h at 65°C and then allowed to cool
slowly.

2.2 Infrared crack opening interferometry

In order to measure the NCOD, we exploited the trans-
parency of silicon to infra-red and classical crack open-
ing interferometry (Liechti 1993), which essentially
uses the interference between the two rays reflected
from the crack surfaces to determine the distance
between them. The experiments were performed using
an infrared microscope (Olympus BH2-UMA) that was
fitted with an internal beam splitter and an IR fil-
ter (1,040 & 15 nm) to provide the normal incident
beam (Fig. 1). A digital camera (Lumenera Corpora-
tion, Infinity 3) with aresolution of 1,392 x 1,040 pixels
captured the images (Fig. 2a). These were processed to
determine the location of the crack front and the NCOD.
For the normal incidence provided by the microscope,
each transition from a dark to a bright fringe or vice
versa indicates an increment in NCOD correspond-
ing to a quarter of the IR wavelength (A = 260 nm).
Swadener and Liechti (1998) developed a method to
determine the NCOD (§) between fringes by measur-

100 pm

Fig.2 A typical interferogram of the crack-front with the fringes
due to crack opening and the dark area representing the bonded
region of the silicon/epoxy interface. a A grayscale image and b
a red-green colored image

ing the light intensity / relative to the peak to peak
intensity /,, through:

I 1 477 |8]
E =3 [il F cos (—k )] N

This improved the resolution by almost an order of
magnitude, bringing it down to approximately 20 nm
for the NCOD measurement.

A reference image was subtracted from every image
in order to reduce the effect of the background signal.
Figure 2b shows an example of the resulting image.
Then, the intensity profiles along 15 adjacent pixel
rows were extracted using the ImagelJ (1.42q) software
and averaged over these pixel rows in order to pro-
vide some smoothing of the raw data. This was then
input to MATLAB® for curve fitting, typically using
high order Gaussian curves that provided the best fit to
the intensity profile plots (Fig. 3). The crack front was
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Fig. 3 An intensity profile and the curve fit to the data along
with the 95th percentile bounds and the second derivative of the
fit

identified by tracking the change in the slope of the
intensity profile (i.e. the second derivative of the fit)
and noting the location at which this change reached
the first peak from the bonded region (dark area). This
was also taken to be the location of the zero order fringe
so that subsequent peaks and valleys corresponded to
the locations of bright and dark fringes. The NCOD
values were extracted between fringes using the fitted
intensity values in Eq. (1). The average deviation of
the data from the fit was used to arrive at the 20 nm
uncertainty in the NCOD measurement.

2.3 Procedure

The experiment, a nominally mode-I DCB wedge test
configuration, was conducted using a screw-driven
wedge that could be inserted and removed under dis-
placement control. The axial load was applied man-
ually in 0.1 mm steps using a micrometer screw and
was reacted at the un-cracked end of the specimen.
The initial crack in the specimen was created when
the 83.8 wm-thick wedge (h,,) was inserted into the
specimen at the edge where the Au/Pd coating had
been applied. The low adhesion between the Au/Pd
film and the epoxy gave rise to immediate delamina-
tion at the interface upon insertion of the wedge. This
initial delamination arrested precisely at the end of

@ Springer

the Au/Pd film, beyond which the silicon/epoxy inter-
face was undamaged. The Au/Pd coating thus provided
good control over the initial crack length and the dam-
age state of the interface.

Prior to crack growth, the wedge insertion was
applied in 0.1 mm steps with a 120 s interval between
them. At least one image of the crack front region was
recorded at each step. As the onset of crack growth
was anticipated, each loading step was maintained for
10 minutes while a time-lapse feature was used to allow
interferograms to be taken at 5-s intervals in the crack-
front region.

2.4 Measurements

The crack length a is defined as the distance between
the wedge and the crack front (Fig. 1), which was
determined by two measurements: the displacement of
wedge insertion u,, and the distance A that the crack
front advanced from the initial position. Thus,

a=ag+ A —uy 2

where ag is the initial crack length. The fact that inter-
ference fringes remained visible throughout growth
indicates that crack growth was predominantly inter-
facial in nature. This does not rule out the possibility
of nanometer sized epoxy islands or ligament traces
on the silicon side of the interface. Figure 4 shows the
measured crack length with respect to the insertion dis-
placement of the wedge. As can be seen, with the inser-
tion of the wedge, the crack length decreased linearly
to the point when the crack front began to advance and
became nearly a constant as the crack growth reached a
steady state. An interesting observation from the mea-
surements is that the crack growth seems to exhibit
a damped stick-slip behavior. The crack length first
increased rapidly and arrested, and then the initial lin-
ear behavior resumed as the wedge was inserted further
into the specimen until crack front advanced again. The
increase in the crack length after the first 2-3 major
advances reduced and eventually the crack growth did
reach a steady state.

Figure 5 sketches the crack tip region and the cohe-
sive zone, defining the coordinate systems used in the
present study. The origin x = 0 is the location of the
initial crack front, and r = 0 defines the moving crack
front. The NCOD at the initial crack front (x = 0) is
denoted §*. A cohesive zone ahead of the crack front
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Fig.4 Measurement of crack length with respect to wedge inser-
tion, in comparison with numerical simulations with: a different
interfacial toughness values and b different strength values

(x > 0) is indicated by the interfacial tractions act-
ing to close the opening of the interface. A typical
set of NCOD profiles measured during crack opening
and growth is displayed in Fig. 6. As can be observed,
the crack front first remained stationary as the crack
opened. Once the crack front began to move forward,
the NCOD profiles seemed to retain their shapes, an
indication of steady state. Interestingly, the NCOD pro-
files exhibit a knee-shaped kink close to the crack front.
As will be discussed later, the significance of the kink
is partly attributed to the presence of the epoxy layer
in the DCB specimen.

\I/ Sl
e

g C

a

Fig. 5 A schematic of the crack front geometry and cohesive
zone

3 Modeling and simulations

Two modeling approaches were taken to understand the
interfacial crack growth in the DCB wedge tests. The
first was an analytical approach by combining a cohe-
sive zone model with simple beam theory. The second
was a numerical model using the finite element method
in ABAQUS® that accounted for the two silicon strips,
the epoxy layer, and the adhesive interactions across the
silicon/epoxy interface.

3.1 Cohesive zone models

The approach of cohesive zone modeling is particu-
larly suitable for adhesion and debonding of interfaces
between dissimilar materials (Hutchinson and Evans
2000). Typically, a nonlinear traction-separation rela-
tion is used to simulate crack opening and growth at
an interface. Previous studies (Tvergaard and Hutchin-
son 1992; Feraren and Jensen 2004; Li et al. 2005;
Parmigiani and Thouless 2007) have suggested that
the strength and toughness are the two most important
parameters, and that the shape of the traction-separation
relation is secondary. In the present study, two types of
traction-separation relations were used, one with linear
softening and the other with exponential softening, as
illustrated in Fig. 7. Subject to an opening stress o, the
interface first opens elastically in both cases with the
initial stiffness (K¢) until the stress reaches the strength
of the interface (o = 0y), at which point damage initia-
tion occurs. A damage parameter D is used to describe
the state of the interface, which evolves from 0 to 1
based on a damage evolution rule:
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Fig. 6 The normal crack a (mm)
opening displacement ! ! ! ] 8.624
(NCOD) measured by 0.8} 4 |——8.324
IR-COI as a function of the ] 7.724
distance from the initial 1 7.225
crack front (x = 0) 0.7 | . 7.125
] 6.925
——6.626
0.6 1|—e6526
——6.326
—6.227
] 5.929
]|—5.83
——5.834
5.736
1|—5743
——5.652
] 5.66
1|—s567
A\ }|—>5.70
X ]
1|—5.723
\ 1 5.757
——5.816
1|—5.823
J|—5.834
1|—5.801
1|—5.721
oba A PO L TP R | 1 | A 5.728
-300 -200 -100 0 100 200 300
X (um)
8¢ (B — 60) (a) o
= 3) e
Om (8¢ — d0) A Damage Initiation
————g
for the linear softening and o
83
80 1 —exp (—a—aﬁag)
D=1- 5 1-— 7 —a) “4)
—exp (—« . ;
" P Final failure
for the exponential softening. Here, 8o = 09/ Ky is the >
critical separation for damage initiation, §. is the crit- )
ical separation for fracture, and §,, is the maximum
separation experienced by the interface element over A Damage Initiation
the entire loading history. The parameter o controls ol==== '
. . [y
the shape of the exponential softening.
Once §,,, > Jp, the damage parameter D increases as al
the opening displacement increases (0 < D < 1), and B
the opening stress is related to the opening displace- K wt Final failure
ment as ' = Z—0-DIK,
e - =D & c
o = (1 — D)Koy, (5) 0 5 5 0

For the case with the linear softening, when §¢p < §,, <
d¢, the stress decreases linearly:

e — 3§
0 =00—nr (6)
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Fig. 7 Two types of traction-separation relation: a a bilinear
model, and b a linearly elastic relation followed by exponential
softening. The quantity 3,, in Eqs. (3)—(7) equals § during loading
(crack opening) but remains a constant during unloading (crack
closing)
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For the exponential softening, this portion of the trac-
tion-separation relation follows

1 —exp (—a (‘fs'f’__gg))
1 _ c

1 —exp(—w)

)

o = 0y

In both cases, when §,, = 6., D = l and o = 0
indicating that the interface element is fully fractured.
During any unloading prior to fracture, the damage
parameter remains constant (irrecoverable) and the
stress decreases linearly as the opening displacement
decreases, with the slope K = (1 — D) Ky, as illus-
trated in Fig. 7. Any subsequent reloading follows this
slope until the softening part of the traction-separation
relation is again encountered.

For each traction-separation relation, the fracture
toughness is obtained as

Sc

r— / o (8)ds 8)

0
For the linear softening model, I" = %0056. For the
exponential softening, I'= %U()(SC)/ (g—?, a), with
y(x,a)=x+2(1 —x) &l

To account for the effz(cets c1>i“ mode mix, the trac-
tion-separation relations can be defined separately for
the opening and shearing modes (modes I, II, and III),
each with a set of similar parameters as the opening
mode. In general, both the criteria for damage initia-
tion and final fracture depend on mode mix (Mei et al.
2010). In the present study, the effect of mode mix is
ignored, considering predominantly mode I fracture in

the DCB specimen.

3.2 Analytical approaches

From simple beam theory, the energy release rate
(or J-integral) for the crack growth in a symmetric DCB
specimen (Fig. 8a) is
12P%a®  3Eh*d? 0

- ERb> l6a* ©)
where P is the applied force, d is the crack opening
at the loading point, E is the Young’s modulus of the
beam, 4 is the thickness, and b is the width. Eq. (9) is
obtained under several assumptions: (1) the effect of
transverse shear is negligible; (2) rotation of the beam
section at the crack tip (i.e., root rotation) is negligible;

(b)

deI wedge |

q = bo(x)

Fig.8 Schematics of DCB models. a A simple beam model with
zero root rotation; b part of a Timoshenko beam model near the
crack tip with an angle of root rotation; ¢ the upper beam in a
wedge-loaded DCB specimen with cohesive interactions ahead
of the crack tip

(3) the size of the cohesive zone ahead of the crack
tip is negligibly small. These assumptions are typically
justified when a > h.

A large number of authors have suggested correc-
tions to Eq. (9) (Gillis and Gilman 1964; Wiederhorn
et al. 1968; Kanninen 1973; Chow et al. 1979; Fichter
1983; Williams 1989; Williams and Hadavinia 2002;
Li et al. 2004). By including the effect of transverse
shear, Li et al. (2004) obtained

J o 2P gl (10)
~ ERp? Ta

which is in close agreement with the result obtained by
using the Timoshenko beam theory (Gillis and Gilman
1964; Wiederhorn et al. 1968). The effect of root rota-
tion was discussed by Li et al. (2004), who concluded
that root rotation should not be considered as an inde-
pendent contributor to the energy release rate. Root
rotation may occur as a result of the shear effect and
the elastic deformation ahead of the crack tip. “Appen-
dix A” presents a DCB analysis with the shear effect
and root rotation (Fig. 8b), which leads to a formula
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for the energy release rate in terms of the opening dis-
placement:

3Eh3d? h h?
J= 1 —2.691— +4.485— (11)
16a* a a?

Moreover, the effect of the cohesive zone was found
to be significant when the interfacial properties satisfy
the condition, % > 0.4, in the regime of large-scale

bridging (Bao and Suo 1992; Li et al. 2004). In partic-
ular, elastic foundation models have been used to ana-
lyze the effect of elastic interactions across the inter-
face (Kanninen 1973; Chow et al. 1979; Williams 1989;
Williams and Hadavinia 2002). Here we extended the
elastic foundation model to include the softening part
of the traction-separation relation as an augmented ana-
lytical approach for the DCB specimen (Fig. 8c). The
details are presented in “Appendix B”, with the key
results summarized as follows.

Start with an initial crack in the DCB specimen,
where the interface ahead of the crack tip is undam-
aged (D = 0). As the crack opens up, the interface
opens elastically until the crack tip opening displace-
ment (CTOD, §*) reaches the critical value (§p) for
damage initiation. When §* < §, the interface ahead
of the crack tip behaves like an elastic foundation, and
the energy release rate is obtained as

P P (12)
~ Eb?h3 a

1
where § = (ﬁ) " Incidentally, Eq. (12) is similar
to Eq. (10) in spite of the different physical models. In

2
2
_______ . —Eqgn. 9
e —Eqgn. 13
318 Do-
15 K] oo —Eqgn. 14 E

817 © .

E O FEA (bilinear)

 ° O FEA (0.=5)

J-integral (J/m2)

05}

Fig. 9 J-integral as a function of the crack length, comparing
the results from different models. The inset shows the close-up
view near the fracture toughness I' = 1.8 J/m?
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terms of the loading displacement, the energy release
rate is

, 3R 1+l ’ 13
16a* \ 14368 436215 115630

when § < %, Egs. (12) and (13) recover the simple

solution in Eq. (9).

When §* > §p, a damage zone of length ¢ devel-
ops ahead of the crack tip. Within the damage zone
(0 < x < ¢),thedamage parameter D varies between O
and 1 and the interface is in the softening phase. Ahead
of the damage zone x > c, the interface is undamaged
(D = 0) and elastic interactions are active. For a given
traction-separation relation, we solve the beam equa-
tion in different parts and determine the damage zone
size as well as the CTOD. The energy release rate is
then calculated by the J-integral over a contour around
the crack tip and enclosing the entire cohesive zone
(both damaged and undamaged parts). The result how-
ever depends on the traction-separation relation. For
the bilinear model (Fig. 7a), we obtain that

* *2 2
g =L %) o (672 = %) + 1c7080 (14)
dc — 8o 2(8: — do) 2
where §* is obtained implicitly as a function of the crack
length a and the opening d. For the DCB specimen in
the wedge test (Fig. 1), d = hy, and §* is a function
of a (see “Appendix B”, Fig. A3). The analytical solu-
tion is only valid when §* < §.. When §* reaches 4.,
J = T and the crack front advances. Subsequently,
the crack grows under steady state conditions with a
constant crack length (a = ays) and a constant damage
zone size (¢ = css).

The calculation of the J-integral is critical for deter-
mination of the interfacial traction-separation relation.
In the analytical approaches being considered here,
the J-integral depends on the interfacial properties and
cannot be determined precisely without knowing the
traction-separation relation a priori. Figure 9 plots the
J-integral for the wedge-loaded DCB specimen as a
function of the crack length, comparing the three dif-
ferent formulae with the numerical results from finite
element models. Using Eq. (13), the interaction across
the interface is purely elastic, which predicts an energy
release rate slightly lower than Eq. (9). Using Eq. (14),
the interfacial interaction includes a damage zone.
However, the predicted J-integral is nearly identical to
Eq. (13), except for the prediction of steady-state crack
growth when J = I'. Therefore, Eq. (13) may be used
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as an approximation for the J-integral, which agrees
more closely with the finite element simulations than
Eq. (9). Moreover, Eq. (11) is very close to Eq. (13),
but without the need to assume a stiffness for the elastic
interaction.

3.3 Finite element simulations

To simulate interfacial delamination of the wedge-
loaded DCB specimen, we developed a two-dimen-
sional, tri-layer finite element model in ABAQUS, with
a layer of cohesive elements (COH2D4) for the inter-
face between the top silicon beam and the epoxy layer.

(a) 2

3 (um)

02 03 04 05

0
-05 -04 -03 -02 -01 0 01

X (mm)
() 0.25
a (mm)
0.2} ——8.66| -
——7.66
—6.76
__0.15F —6.02|
€ —5.75
= 5.70
%} —_—
01l 570| ]
0.05} ]
0 , , ;
60 40 20 0 -20 -40 -60
r (um)

Both silicon beams and the epoxy layer were mod-
eled by plane-strain quadrilateral elements (CPESR),
with linear elastic properties (Young’s modulus: Eg; =
170 GPa and E, = 2.03 GPa; Poisson’s ratio: vs; =
0.22 and v, = 0.36). The wedge was modeled as arigid
body with frictionless, hard contact with the surface
of each silicon beam. The traction-separation relation
with either linear or exponential softening was used
for the cohesive elements. As was shown in Fig. 7, the
following parameters are required to define the bilin-
ear traction-separation relation: the initial elastic stiff-
ness Ky, the interfacial strength og, and the interface
toughness I'. For the exponential softening, a shape
parameter « is required in addition to the other three
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Fig. 10 Numerical results from a finite element simulation with the cohesive interface model (I' = 1.8 J/m2, op = 18 MPa, and
a = 1): a NCOD, b damage evolution, ¢ NCOD near the crack tip, and d normal traction along the interface
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parameters. It was found that the initial stiffness (Ko)
plays a secondary role compared to the other parame-
ters. In the present study, we fixed the interface stiffness
as Kgp =2x 1015 N/m3, but varied the strength, tough-
ness and « to compare with the experiments.

The simulation was conducted in two steps. First,
the silicon beams were given an opening displacement
at the fractured end to the point that the wedge could be
inserted. Next, with the wedge in between, the beams
were further separated by displacing the wedge in the
x-direction (Fig. 1). Figure 10 shows the numerical
results from a finite element simulation using the trac-
tion-separation relation with ' = 1.8 J/m?2, oy =
18 MPa, and o = 1 for exponential softening. In Fig.
10a, the NCOD is plotted as a function of x withx = 0
atthe initial crack tip. As the wedge was inserted toward
the crack tip, the crack opened up and a cohesive zone
developed ahead of the initial crack tip. In the finite
element model, the location of the crack tip can be
identified by the damage parameter D, which equals
1 to the left of the crack tip but is less than 1 to the
right of the crack tip. As shown in Fig. 10b, for each
interface element (x > 0), D increased from 0 to 1
and crack growth started when the damage parame-
ter of the first interface element reached 1. However,
in an experiment, it may not be possible to precisely
determine the location of the crack tip since the dam-
age cannot be measured directly. On the other hand,
the minimum NCOD that could be measured by the
IR-COI technique is about 20 nm. Thus we defined the
experimental crack tip at the location with §, = 20 nm.
The crack lengths (a) in Fig. 10 were then calculated
by Eq. (2) with A being the distance between the exper-
imental crack tip and the initial crack tip. In Fig. 10c,
the NCOD is plotted as a function of r, with r = 0 at
the location of the experimental crack tip that moved
as the crack grew. The scale has been magnified in Fig.
10c in order to bring out the development of the cohe-
sive zone near the crack tip. The horizontal line cor-
responds to § = 20nm that was used to determine
the location of the crack tip. By this definition, crack
growth started at a crack length of approximately 6.02
mm and reached a steady state at 5.70 mm. The NCOD
profiles converged onto the steady state as expected.
We note that the critical separation (6, = 237.5nm)
for the traction-separation relation used in this simula-
tion is much larger than 20 nm. Consequently, normal
traction is expected to act along part of the crack sur-
faces (r > 0), which would decrease the crack opening
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compared to the traction-free crack surfaces. Prior to
the steady state growth, the cohesive zone was not fully
developed, and thus the NCOD close to the crack tip
were larger than the steady state NCOD. The order was
reversed further away from the crack tip.
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Fig. 11 a Steady-state damage zone size as a function of inter-
facial strength. b Stress distribution near the crack tip for small-
scale bridging (o9 = 40 MPa and ¢ = 21.7 wm) and large-scale
bridging (o9 = 10 MPa and ¢ = 439.2 um)
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The distribution of the normal traction along the
interface ahead of the initial crack tip is shown in
Fig. 10d. The traction was tensile within the damage
zone (0 < D < 1). Beyond the damage zone, the inter-
action across the interface was elastic with a transition
from tensile to compressive, which is characteristic of
the elastic foundation behavior. The peak traction cor-
responded to the interfacial strength (o9 = 18 MPa).
To its right, the traction was lower because it had not
reached the strength (thus no damage). To its left, the
traction was lower because the interface had been dam-
aged and thus was softening.

The cohesive zone in the present model consisted
of a damage zone and an elastic zone. The size of the
elastic zone, which depends on the interfacial stiffness
Ky, is typically much larger than the damage zone.
The size of damage zone on the other hand depends
on the interfacial strength and toughness. Figure 11a
shows the steady-state damage zone size as a func-
tion of the interfacial strength for a constant toughness
(I' = 1.8 J/m?). In general, the steady-state damage
zone size decreases as the interfacial strength increases,
following roughly the scaling ¢ ~ o, 2 as indicated by
the two parallel lines. Moreover, it is found that the
damage zone size depends on the shape of the traction-
separation relation, with a larger damage zone for expo-
nential softening than for linear softening, although the
dependence is relatively weak. In all cases, the dam-
age zone size became insensitive to the strength for
relatively high strength values, where the condition
of small-scale bridging prevails. The vertical line in

Fig. 11aindicates the condition % = 0.4 as suggested
0

by Li et al. (2004). To its left, % > 0.4, large-scale
0

bridging occurs and the damage zone size increases

sharply with decreasing strength. Figure 11b shows two

examples by the finite element simulations, for small-

scale and large-scale bridging, respectively.

4 Results and discussion

As indicated in the Introduction, two methods can be
used to extract the traction-separation relations: the
direct and iterative methods. The former relies on dif-
ferentiating the J-integral with respect to the measured
NCOD at the initial crack tip, while the latter involves
comparison of the numerical simulations with the mea-
surements to determine the key parameters of the

traction-separation relation. The results from both
methods are presented and compared in this section.

4.1 Direct method

The direct method considered here relied on calculating
the J-integral with the measured crack length and taking
its derivative with respect to the measured NCOD at the
initial crack tip (Sgrensen and Jacobsen 2003; Sgrensen
and Kirkegaard 2006; Hogberg et al. 2007; Zhu et al.
2009). Alternatively, with simultaneous measurements
of the force and opening displacement at the loading
point along with the NCOD at the crack tip, it is possi-
ble to determine the traction-separation relation experi-
mentally without using the analytical model (Stigh and
Andersson 2000). In the present work, the force by
wedge loading was not measured, and we calculated the
J-integral based on the analytical approaches in Sect.
3.2, namely
3Esi (hw —he)*h [ a

J = 16a3 v (E) (15)
where hy,, h, and h; are the thicknesses of the wedge,
epoxy layer and silicon strip, respectively. The dimen-
sionless function ¥ may take different forms depending
on the analytical model. Here we take Eq. (13) based on
the elastic foundation model, which is a better approx-
imation than Eq. (9) in comparison with finite element
simulations (Fig. 9). The Young’s modulus of the sili-
con (Eg; = 170 GPa) (Brantley 1973) was determined
in a separate three point bending test. At each load-
ing step, the J-integral was calculated using the mea-
sured crack length (Fig. 4) and linked with the measured
NCOD (Fig. 6). In particular, the NCOD at the initial
crack tip (x = 0) was denoted as §* (Fig. 5). As aresult,
the J-integral was obtained as a function of §* shown
in Fig. 12. For comparison, the J-integral obtained by
Eq. (9) is also plotted along with two analytical results
for the bilinear and exponential softening models. The
parameters for the analytical models were determined
from the iterative method in Sect. 4.2.

Within the resolution of the NCOD measurements
by IR-COI, there was an initial rise in the value of the
J-integral up to 0.66 J/m? before §* became measure-
able. The increase in J-integral thereafter was still quite
steep and reached the maximum of 1.88 J/m? before
it was stabilized. As shown in Fig. 4, the crack front
advanced in a stick-slip fashion, leading to the J-inte-
gral values oscillating at or below 1.88 J/m?, which
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Fig. 12 J-integral as a function of the opening displacement at
the initial crack tip

was deemed the toughness of the silicon/epoxy inter-
face. A polynomial function was used to fit the rising
portion of the data in Fig. 12 followed by the constant
value (I' = 1.88 J/m?) for the steady state, disregard-
ing the oscillation due to stick-slip.

As shown in Fig. 5, with a cohesive zone and §* as
the opening at the initial crack tip, a contour integral
enclosing the cohesive zone gives the J-integral as

6*
Jz/o@w, (16)
0

where the traction o (§) acts across the interface over
the cohesive zone. By the path independence of the
J-integral, it can also be calculated from Eq. (15). Con-
sequently, the traction-separation relation under mode
I conditions can be determined by taking the deriva-
tive of the J-integral with respect to §* (Sgrensen and
Jacobsen 2003; Sgrensen and Kirkegaard 2006)

o(8*) = d—J 17

ds*

Note that although this is a mode I dominant case,
the elastic mismatch across the silicon/epoxy inter-
face does give rise to small tangential component for
the crack opening displacements. Nonetheless, since
the normal crack opening displacements were the only
ones measured with IR-COI, only the normal tractions
were determined by Eq. (17). In the present study, we
have not pursued the measurement of the tangential dis-
placements for the general mixed-mode traction-sepa-
ration relation.
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Fig. 13 Traction-separation relations obtained from the direct
method, in comparison with the bilinear and exponential soften-
ing models used in the iterative method

The derivative of the polynomial fit to the data
in Fig. 12 was taken, thereby obtaining the traction-
separation relation for the silicon/epoxy interface
(Fig. 13). The traction-separation relations with linear
and exponential softening used in the finite element
simulations are plotted alongside. The traction-separa-
tion relation obtained via the direct method rises steeply
to a strength of 22 MPa. The softening that follows is
relatively sharp and terminated at the critical value of
the NCOD, §. ~ 0.18 wm. The area underneath the
curve gives the interface toughness, I' = 1.88 J/m?.
"ghese values give rise to the dimensionless parameter

Si

_hscr(l); = 2.35, which places it in the large-scale bridging

regime (Li et al. 2004).

4.2 Iterative method

The iterative method assumes a particular form of the
traction-separation relation with the key parameters
determined by comparing numerical simulations with
experimental measurements. For the bilinear traction-
separation relation (Fig. 7a), three parameters are to
be determined; the toughness I', the strength o, and
the stiffness K¢. For exponential softening (Fig. 7b),
an additional parameter « is needed. For the pres-
ent study, we took Ko = 2 X 105 N/m? and deter-
mined the other three parameters in three steps to obtain
a traction-separation relation that resulted in NCOD
that were in good agreement with the measured val-
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ues near the crack tip. In short, the toughness was
first determined by comparing the steady-state crack
length of the finite element model with the experi-
ment, considering that the other two parameters have
less effect on the crack length. Next, the interfacial
strength was varied to compare the steady-state NCOD
from the numerical simulations with the measurements,
and the strength value that yielded the best fit was
taken in the second step. Finally, the exponential soft-
ening with a particular shape parameter was used to
bring the NCOD into better agreement than the linear
softening.

As shown in Fig. 4, the steady-state crack length
obtained from the numerical simulations depends sen-
sitively on the interface toughness. As the first step, a
toughness of 1.8 J/m? was determined to provide the
best agreement with the measured steady-state crack
length. The same toughness was obtained for both the
bilinear and exponential softening. On the other hand, it
was found that the dependence of the steady-state crack
length on the interfacial strength was much weaker
(Fig. 4b).

Figure 14 shows the effect of the interfacial strength
on the NCOD during steady state growth using the trac-
tion-separation relation with the interface toughness
I' = 1.8 J/m? and o = 5 for exponential softening.
With » = 0 defining the location of the moving crack
tip, we compared the numerical results with the mea-
surements and found that the strength of 18 MPa pro-
vided the best agreement. As noted in Fig. 6, a knee
was present in the measured NCOD. Similar features
are also apparent in the numerical results for relatively
large strengths (09 > 15 MPa) in Fig. 14. This knee
may be attributed to two factors: the presence of the
epoxy layer and the interfacial strength. When numer-
ical simulations were conducted with a bilayer model
without the epoxy (Mei 2011), the knee was absent.
The epoxy layer is relatively soft with moderately
large deformation near the crack tip as illustrated in
Fig. 11b. In addition, the knee disappeared as the inter-
facial strength was low (e.g. o9 = 10 MPa). In this case,
the large—scale bridging reduced the stress intensity at
the crack tip, resulting in a nearly linear NCOD profile.

It was found that the steady-state NCOD near
the crack tip depended slightly on the shape of the
traction-separation relation. The comparison is made
(Fig. 15) using the linear softening and exponential
softening with different values of «, with the fixed val-
ues for the toughness and strength. For @ < 5 there was
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Fig. 14 Effect of interfacial strength on steady state NCOD,
in comparison with the experimental data. The value of oq that
provided best fit to the data was 18 MPa
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Fig. 15 Effect of the shape parameter « on steady state NCOD,
in comparison with the experimental data. The values of « that
provided best fit to the data were 5 and above

a noticeable difference in the numerical results for the
NCOD, but the results converged for « > 5. In com-
parison with the measured NCOD, o = 5 was chosen
for the best fit. On the other hand, without the shape
parameter, the bilinear traction-separation relation can-
not achieve the same level of agreement. Consequently,
this iterative method yielded a traction-separation rela-
tion for the silicon/epoxy interface with I' = 1.8 J/m?,
oo = 18 MPaand @ = 5.

To summarize, the parameters for the traction-
separation relation of the silicon/epoxy interface are
listed in Table 1. The toughness and the strength
obtained via the direct method were respectively 4.4
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Table 1 Key parameters for the traction-separation relation of
a silicon/epoxy interface extracted from the direct and iterative
methods

Method I U/m?)  og(MPa) & (nm)
Direct 1.88 22.0 176
Iterative (bilinear) 1.8 18.0 200
Iterative (exponential) 1.8 18.0 450

and 22 % higher than the values obtained by the
iterative method. The difference in the toughness val-
ues is attributed to the use of the approximate solu-
tion for the J-integral in the direct method. As elabo-
rated in Fig. 9, the analytical solution typically over-
estimates the J-integral compared to the finite element
model. The difference decreases as the crack length
increases and diminishes for long cracks. The discrep-
ancy in the obtained strength values is larger, partly due
to the fact that the strength by the direct method was
obtained by differentiating the overestimated J-integral
with respect to the opening displacement §*. Therefore,
it is concluded that the accuracy of the direct method
relies on the calculation of the J-integral, which may
be improved by using the augmented analytical models
as discussed in Sect. 3.2.

The interfacial properties of this epoxy have been
studied previously when bonded to glass (Swadener
and Liechti 1998; Swadener et al. 1999) and sapphire
(Mello and Liechti 2006). The mode-I toughness lev-
els of the epoxy when bonded with glass and sapphire
were 1.8 J/m? and 1.5 J/m?, respectively, similar to
the toughness measured here. The interfacial strength
however shows a stark difference compared to the cases
using glass and sapphire adherends. First, we note that
the strengths (Table 1) obtained for this silicon/epoxy
interface are significantly less than the plateau stress
of the epoxy, which was estimated using bulk mate-
rial properties by Swadener et al. (1999) to be 60 MPa.
The glass/epoxy interface (Swadener and Liechti 1998;
Swadener et al. 1999) displayed a strength value of
approximately 94 MPa, which is about 1.5 times the
plateau stress of the epoxy, whereas the sapphire/epoxy
interface (Mello and Liechti 2006) had a higher value
of approximately 120 MPa. As a result, the critical
NCODs obtained here for the silicon/epoxy interface
(Table 1) are much larger than the corresponding val-
ues for the glass/epoxy and sapphire/epoxy interfaces,
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which were 35 and 28 nm, respectively. The reasons
for the differences in the strength and critical opening
displacement are beyond the scope of this paper but
may be brought out subsequently in fractographic and
spectroscopic analyses (Swadener et al. 1999; Mello
and Liechti 2006). Furthermore, because the interfa-
cial strength of the silicon/epoxy interface was much
lower than the plateau strength of the epoxy, we do
not expect the toughness of this interface to display
much mode-mix dependence. This expectation has yet
to be borne out by mixed-mode experiments. Both the
interfacial traction-separation relations obtained for the
glass/epoxy and the sapphire/epoxy interfaces were
bilinear in form, which was not the case for the directly
determined traction-separation relation here. Further-
more, the best result from the iterative approach was
exponential in form.

5 Conclusions

Crack opening interferometry provided valuable insig-
hts into the direct and iterative methods of extracting
interfacial traction-separation relations. The mode-I
traction-separation relation of an epoxy/silicon inter-
face was first extracted via the direct method by mak-
ing use of interferometric measurements of the local
crack opening displacements in a wedge test along with
an analytical solution of the J-integral. As an exam-
ple of the iterative approach, we compared measured
values of crack length and crack opening displace-
ments with numerical solutions obtained from a series
of candidate traction-separation relations. A three-step
procedure was used to determine the three key param-
eters for the traction-separation relation that resulted
in close agreement with the interferometric measure-
ments. The traction-separation relations extracted by
the two methods compared reasonably well. The direct
method yielded the most accurate results when the
J-integral was calculated based on a beam on elastic
foundation model. In exploring the iterative method,
which made use of finite element simulations that
incorporated the candidate traction-separation rela-
tions with linear and exponential softening, it was
found that the shape of the traction-separation rela-
tion, in addition to the interfacial toughness and
strength, was needed to bring solutions for NCOD
into optimal registration with measured values. On
the other hand, the direct method retained its prom-
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ise of ease of parameter extraction with little cost in
accuracy.
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Appendix A: DCB analysis with shear effect
and root rotation

The static Timoshenko beam theory (Fig. 8b) takes into

account the shear effect so that the angle of rotation of

each cross section of the beam consists of two parts:
dw Vv

0 =—— — A.l
dx KkuA A1)

where w is the deflection, V is the shear force, w is the
shear modulus, A is the area of the cross-section, and «
is the shear coefficient. The shear coefficient depends
on the shape of the cross section. For arectangular cross
section, x = 0.833 (Graff 1975).

The governing equation for the deflection is

dw M 1 av

_— = - ——— (A2)
dx? EI  kuA dx

where M is the bending moment, E is the Young’s
modulus, and I = bh3/ 12 for a beam of thickness &
and width b.

For a DCB specimen, consider the top beam only,
with x = 0 at the crack tip (Fig. 8b). The shear force is
a constant between the loading point and the crack tip
(—a <x<0):V=Pand M = P(x+a).The bound-
ary conditions at the crack tip are: (1) w(x = 0) = 0;
(2) 6(x = 0) = 6, where 6; is the angle of root rota-
tion. Solving Eq. (A.2) with the boundary conditions,
we obtain that

0= o (¢ +3ax?) — (o +8) 5 A3)
W)= \¥ ax A ;) x. (A
Assuming linear elasticity, the angle of the root rota-
tion depends linearly on the shear force and bending
moment at x = 0:

P Pa
O = T e
where ¢ and ¢, are dimensionless coefficients. Using
a finite element method (Yu and Hutchinson 2002; Mei
etal.2011), we calculated the coefficients and obtained:
c1 = 2.6033 and ¢, = 8.0743.

(A4)

By (A.3), the opening of the DCB specimen at the
loading point (x = —a) is

d =2w(x = —a)

_2Pa3 1+62/’l+ 1+v+cl n\?
T 3EI 4 q 2% 4 ) \a

(A.5)
The elastic strain energy in the DCB specimen is
1
U(a) = -Pd
(a) 3
_Pza3 1+czh+ 1+v+cl n\?2
- 3EI 4a 2k 4)\a) |’

(A.6)

The energy release rate for the crack growth is then
obtained as

1dU
J=-—

b da

_12P2a2 1+czh+ l+v+cl n\>2
T ER3D? 6 a 6k 12) \a

(A7)

With v = 0.22 for silicon, Eq. (A.7) becomes

12P24? h n\?
J=——=—1+4+1346— + 0461 | - A8
Eh3b? ( + a * (a) (A.8)
which compares closely with Eq. (10). With (A.5), we
obtained the energy release rate in terms of the opening
displacement at the loading point as given in Eq. (11).
‘We note that, if the angle of root rotation is taken to

be zero by setting c; = ¢» = 0, the energy release rate
in (A.7) becomes

P RS YL : (A9)
- ER%p? 6 a '
A comparison between (A.7) and (A.9) suggests that

the effect of root rotation (scaling with % /a) is more
significant than the effect of shear.

Appendix B: An analytical model for DCB
specimen

An analytical approach is presented here by combining
simple beam theory (neglecting the shear effect) with
a cohesive zone model, which is similar to a previous
work by Stigh (1988) but is specifically formulated for
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the wedge-loaded DCB test. By symmetry, only the
top beam is considered (Fig. 8c). The deflection of the
beam is governed by the simple beam equation,

d*w .
=
where g is the intensity of the distributed load (force per
unit length) acting on the beam. As shown in Fig. 8c,
for a DCB specimen with a crack of length a (measured
from the loading point to the crack tip), the interfacial
load intensity can be specified in two regions. First, for
x < 0, where the interface has been fully fractured,
we have zero load intensity (¢ = 0) except at the load-
ing point (x = —a). Ahead of the crack tip (x > 0), a
cohesive zone develops as the crack opens up, where
the load intensity depends on the traction-separation
relation of the interface, i.e., ¢ = bo (8), noting that
8 = 2w for DCB.

To be specific, we consider the bilinear traction-
separation law as sketched in Fig. 7a. The problem is
solved in two steps. First, starting from a virgin DCB
specimen with an initial crack, as the crack opens up,
the interface opens elastically until the crack tip open-
ing displacement (CTOD) reaches the critical value
(80) for damage initiation. The CTOD is simply twice
the deflection at x = 0, i.e., §* = 2w (0). Next, when
8* > 8o, a damage zone develops ahead of the crack
tip. For the wedge-loaded DCB specimen, the crack
length a first decreases as the wedge is pushed towards
the crack tip, until the CTOD reaches §.. Subsequently,
as the wedge is advanced further, the crack grows in a
steady state manner with a constant crack length.

Solving Eq. (B.1) for —a < x < 0 along with the
boundary conditions, we obtain the normal crack open-
ing displacement (NCOD):

3

5 (x) = 8% — 0%x + % [3 (;—C)z + (2)3] . (B2)

El —q, (B.1)

where 6* the crack-tip opening angle (CTOA), which
is twice of the angle of root rotation for each beam. The

opening displacement at the loading point (x = —a) is

thus

d—zpa3+9* e (B.3)
“3Er 7T '

We note that, while Eqgs. (B.2) and (B.3) are indepen-
dent of any specific traction-separation relation for the
interface, the CTOD (6*) and CTOA (6*) both depend
on the interfacial properties as discussed below.
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Elastic opening of the interface

When §* < §, the interface ahead of the crack tip
(x > 0) remains in the elastic regime and the load inten-
sity is simply, ¢ = 2bKow, by the bilinear traction-sep-
aration relation. The beam equation (B.1) becomes
d*w  2Kob
R + _
dx* EI
Assume that the beam is infinitely long, with zero
deflection and rotation at infinity (x — 00). Along

with the boundary conditions at the crack tip (x = 0),
we solve Eq. (B.4) and obtain that, for x > 0,

w=0. (B.4)

5 (x) = 8%e M (COS()LX) + (1 — f;) sin(kx)) ,
(B.5)

1/4
where A = (%

To find the CTOD and CTOA, we apply the continu-
ity conditions for the bending moment and shear force

at x = 0, which leads to

o* P
a2 (1 ) = 22, (B.6)
A8* EI
o* P
st (2 — = —. (B.7)
A8 EI

Solving Egs. (B.6) and (B.7) simultaneously, we obtain
that

§* = P (ha+1) (B.8)
T AEI ’ ’
P
0% = 3] (2ra + 1). (B.9)

Inserting (B.8) and (B.9) into Eq. (B.3), we obtain the
opening displacement at the loading point as

g 2P T4y b3 (B.10)
~ 3EI ra ()2 203 ) ‘

The elastic strain energy of the system (including 2
beams and the interface) equals the work done by the
load P, namely

Ula)=~ Pd Pat( 3, 3 3

a)=—— = —_— _ .

2 3EI ra  (Aa)?  2(ra)d
(B.11)

The corresponding energy release rate for crack growth
is then obtained as
1dU _ 12P%a? ( 1 )2

J=- o mha
b da Eb2h3 +ka

(B.12)
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In terms of the loading displacement, the energy release
rate is

2
3ER3d? 1+ L
J = T ( - 3*“ 3 . (B.13)
a L+ 3%+ oo + 300

(ra)?
The results in (B.12) and (B.13) are recast in Eqs. (12)
and (13).
It can be shown that
dJ
L Kos*, B.14
I 0 (B.14)

which recovers the elastic part of the bilinear traction-
separation relation for §* < §.

The critical load for damage initiation at the crack
tip is obtained by setting §* = §y, which gives that

Po(a) EIs (B.15)
a) = .
0 ha+1
and
do(@) 2)3a%8 - 3 N 3 N 3
a) = ———— T —
0 30+ 1) ra | (a)? ' 20wa)
(B.16)
Correspondingly, the critical energy release rate is
1
Jo = 50’03(), B.17)

which is the triangular area underneath the linear elastic
part of the traction-separation curve (Fig. 7a).

Crack opening with a damage zone

Next, when §* > §p, the traction along the interface
is specified in two parts. Assume a damage zone of
length ¢ ahead of the crack tip. Within the damage zone
(0 < x < ¢), the damage parameter as defined in Eq.
(3) varies between 0 and 1, and the load intensity varies
accordingly,i.e.,g = 2bKow(1— D). Beyond the dam-
age zone (x > c), the interface is undamaged (D = 0)
and remains elastic with ¢ = 2bKow. For 0 < x < c,
the beam equation becomes

d*w Kob &
dx*  EI 8. — 6
Solving Eq. (B.18), we obtain that,

w (x) = Bj cosh(kx) + By sinh(kx) + B3 cos(kx)

(8. —2w) = 0. (B.18)

S
+By sin(kx) + EC (B.19)

_ 24Kodo 4
where k = (—Eh3(56760)) .

The NCOD for x < 0 is given in Eq. (B.2). At the
crack tip (x = 0), we have the continuity conditions
for the deflection, rotation, bending moment, and shear
force, which lead to

8. 8%
By + B3 + > =5 (B.20)
9*
kBy +kBy = 5 (B.21)
1 Pd?
1 Pa’
By, — By = B3 Bl (B.23)
Solving (B.20)—(B.23), we obtain that
s
B 101 0 %
B> 11010 1 —%
=— 3 |.(B.24)
B; 2010 -10 o S
By 010 -1 |_Pa’
ka3 EI

For x > ¢, where the interface opens elastically, we
solve Eq. (B.4) and obtain that,

1)
w(x) = Eoe_’\("_c) (cosA(x —¢)

1= 2 ino
+( —r&))51n (x—c)),

where 6 is the opening angle of the interface at (x = ¢),
and the NCOD there has been set to be §p according to
the bilinear traction-separation relation.

The continuity conditions at x = ¢ require that

(B.25)

B cosh(kc) + Bj sinh(kc) + B3 cos(kc)

S 8
+Basin(ke) + 5 = 3" (B.26)
kBj sinh(kc) + kB, cosh(kc) — kB3 sin(kc)
)
1k By cos(ke) = —70, (B.27)

k* B cosh(kc) + k2 B, sinh(kc) — k2 B3 cos(kc)
2 2 6o
—k*Bysin(kc) = —2%8 (1 — — ), (B.28)
N
k3 By sinh(kc) + k> B, cosh(kc) + k> B3 sin(kc)
o

—k3 By cos(ke) = X35 (2 - —)

B.29
350 (B.29)
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Opening displacement d (mm)

~ 5.7 mm

0 0.05 0.1 0.15 0.2 0.25
Damage zone size ¢ (mm)

Fig. A1 Opening displacement at the loading point as a func-
tion of the damage zone size for different crack lengths, calcu-
lated based on the analytical model. The horizontal dashed line
indicates the opening d = 56.8 um for the wedge-loaded DCB
specimen

Inserting Eq. (B.24) into Eqgs. (B.26)—(B.29), we obtain
that

®; P2 P13 0 f;—‘f
By Dy Dp3 1/2 8* — 8¢
®31 D3 P33 —A/k 0%/ k
Dy Dgy a3 A2/KP 0o/ k

§0—0¢
0 2
= 2882 | (B.30)
20380/ k3
where
D P Pi3
Dy; Py D3
P31 D3 P33
Dyp Dgp DPy3
cosh(kc) sinh(kc) cos(kc) sin(kc)
_l sinh(kc) cosh(kc) —sin(kc) cos(kc)
2| cosh(kc) sinh(kc) —cos(kc) —sin(kc)
sinh(kc) cosh(kc) sin(kc) —cos(kc)
(B.31)
101 0 0 10
010 1 0 0 -3
10 -10 ¢ 00
010 -1 T 00

Given the material properties of the elastic beam and
the interface, we can solve Eq. (B.30) by linear algebra

@ Springer
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Fig. A2 The damage zone size as a function of the crack length
for the wedge-loaded DCB specimen with d = 56.8 pum, com-
paring the analytical solution with finite element simulation. The
horizontal lines indicate the steady-state damage zone sizes, and
the vertical line indicates the steady-state crack length

0.2 : i

—— analytical model

o numerical simulation

0.15

0.05

5 6 7 8 9 10 11 12 13 14 15

Fig. A3 CTOD as a function of the crack length for the wedge-
loaded DCB specimen with d = 56.8 wm. The two horizon-
tal lines indicate the critical separations, ) = 9 nm and §, =
200 nm, respectively

to obtain four unknown quantities: P, 3*,6*, and 6y, for
a specific crack length a and damage zone size c. The
opening displacement at the loading point can then be
obtainedasd (a, ¢) = 23?13 +6*a+58*. Figure Al plots
the opening displacement as a function of the damage
zone size c¢ for different crack lengths. As expected,
longer cracks and larger damage zones are produced

by larger applied displacements. In order to apply this
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analysis to the wedge test, the wedge thickness is taken
to be the applied displacement i.e., d (a, ¢) = hy, (see
the dashed line in Fig. A1). Then the damage zone size
for each crack length is determined by the intersec-
tions of the parametric curves with the dashed line. The
results are shown in Fig. A2. For comparison, a finite
element model of a bilayer DCB specimen was devel-
oped using cohesive elements with the bilinear trac-
tion-separation relation. The damage zone size from
the analytical model was notably larger than that from
the finite-element simulation. The discrepancy may be
attributed to the shear effect that was neglected in the
analytical model (Williams and Hadavinia 2002; Li
et al. 2004).

The CTOD §* were obtained from the same solu-
tions as a function of the crack length (Fig. A3). Inter-
estingly, the solutions are in excellent agreement, which
suggests the CTOD are insensitive to the shear effect.

The energy release rate for the wedge-loaded DCB
specimen can be calculated by the J-integral over a
contour around the crack tip and enclosing the entire
cohesive zone, namely

(B.32)

Using the bilinear traction-separation relation, (B.32)
leads to Eq. (14).

References

Bao G, Suo Z (1992) Remarks on crack-bridging concepts. Appl
Mech Rev 45(8):355-366

Barenblatt GI (1962) The mathematical theory of equilibrium
cracks in brittle fracture. Adv Appl Mech 7:55-129

Brantley WA (1973) Calculated elastic constants for stress prob-
lems associated with semiconductor devices. J Appl Phys
44(1):534-535

Chai YS, Liechti KM (1992) Asymmetric shielding in interfacial
fracture under in-plane shear. J Appl Mech 59(2):295-304

Chow CL, Woo CW, Sykes JL (1979) On the determination
and application of COD to epoxy-bonded aluminum joints.
J Strain Anal Eng Des 14(2):37-42

Cox BN, Marshall DB (1991) The determination of crack bridg-
ing forces. Int J Frac 49(3):159-176

Dugdale DS (1960) Yielding of steel sheets containing slits.
J Mech Phys Solids 8(2):100-104

Feraren P, Jensen HM (2004) Cohesive zone modelling of inter-
face fracture near flaws in adhesive joints. Eng Fract Mech
71(15):2125-2142

Fichter WB (1983) The stress intensity factor for the double
cantilever beam. Int J Frac 22(2):133-143

Gillis PP, Gilman JJ (1964) Double-Cantilever cleavage mode
of crack propagation. J Appl Phys 35(3):647-658

GraffK (1975) Wave motion in elastic solids. Dover Publications
Inc., New York

Hutchinson JW, Evans AG (2000) Mechanics of materials: top-
down approaches to fracture. Acta Materialia 48(1):125—
135

Hutchinson JW, Suo Z (1991) Mixed mode cracking in layered
materials. Adv Appl Mech 29:64-191

Hogberg JL, Sgrensen BF, Stigh U (2007) Constitutive behav-
iour of mixed mode loaded adhesive layer. Int J Solids Struc
44(25-26):8335-8354

Kanninen MF (1973) An augmented double cantilever beam
model for studying crack propagation and arrest. Int J Frac
9(1):83-92

Li S, Thouless MD (2006) Mixed-mode cohesive-zone models
for fracture of an adhesively bonded polymer—matrix com-
posite. Eng Fract Mech 73(1):64-78

LiS, WangJ, Thouless MD (2004) The effects of shear on delam-
ination in layered materials. J Mech Phys Solids 52(1):
193-214

Li S, Thouless MD, Waas AM, Schroeder JA, Zavattieri
PD (2005) Use of mode-I cohesive-zone models to describe
the fracture of an adhesively-bonded polymer-matrix com-
posite. Compos Sci Technol 65(2):281-293

Liechti KM (1993) On the use of classical interferometry
techniques in fracture mechanics. In: Epstein JS (ed)
Experimental techniques in fracture III. VCH Publishers,
New York, pp 95-124

Mei H, Gowrishankar S, Liechti KM, Huang R (2010) Initiation
and propagation of interfacial delamination in integrated
thin-film structures. In: Proceedings of 12th IEEE intersoci-
ety conference on thermal and thermomechanical phenom-
ena in electronic systems (ITherm), pp 1-8. doi:10.1109/
ITHERM.2010.5501290

Mei H (2011) Fracture and delamination of elastic thin films
on compliant substrates: modeling and simulations. PhD
Dissertation, The University of Texas at Austin.

Mei H, Landis CM, Huang R (2011) Concomitant wrinkling and
buckle-delamination of elastic thin films on compliant sub-
strates. Mech Mater 43(11):627-642

Mello AW, Liechti KM (2006) The effect of self-assembled
monolayers on interfacial fracture. J Appl Mech 73(5):
860-870

Mohammed I, Liechti KM (2000) Cohesive zone modeling of
crack nucleation at bimaterial corners. J Mech Phys Solids
48(4):735-764

Moroni F, Pirondi A (2011) Cohesive zone model simulation of
fatigue debonding along interfaces. Proc Eng 10:1829-1834

Parmigiani JP, Thouless MD (2007) The effects of cohesive
strength and toughness on mixed-mode delamination of
beam-like geometries. Eng Fract Mech 74(17):2675-2699

Shirani A, Liechti KM (1998) A calibrated frature process zone
model for thin film blistering. Int J Fract 93:281-314

Sorensen L, Botsis J, Gmiir Th, Humbert L (2008) Bridging trac-
tions in mode I delamination: measurements and simula-
tions. Compos Sci Technol 68(12):2350-2358

Stigh U (1988) Damage and crack growth analysis of the double
cantilever beam specimen. Int J Fract 37(1):R13-R18

Stigh U, Andersson T (2000) An experimental method to deter-
mine the complete stress-elongation relation for a structural

@ Springer


http://dx.doi.org/10.1109/ITHERM.2010.5501290
http://dx.doi.org/10.1109/ITHERM.2010.5501290

128

S. Gowrishankar et al.

adhesive layerloaded in peel. In: Williams JG, Pavan A (eds)
Proceedings of the 2nd ESIS TC4 conference on the fracture
of polymers, composites and adhesives in les diablerets, vol
27, ESIS publication, Switzerland Sept 1999, pp. 297-306.

Swadener JG, Liechti KM (1998) Asymmetric shielding mecha-
nisms in the mixed-mode fracture of a glass/epoxy interface.
J Appl Mech 65(1):25-29

Swadener JG, Liechti KM, Lozanne A (1999) The intrinsic
toughness and adhesion mechanisms of a glass/epoxy inter-
face. J Mech Phys Solids 47(2):223-258

Sgrensen BF, Jacobsen TK (2003) Determination of cohe-
sive laws by the J integral approach. Eng Fract Mech
70(14):1841-1858

Sgrensen BF, Kirkegaard P (2006) Determination of mixed
mode cohesive laws. Eng Fract Mech 73(17):2642-2661

Tvergaard V, Hutchinson JW (1992) The relation between crack
growth resistance and fracture process parameters in elastic-
plastic solids. J] Mech Phys Solids 40(6):1377-1397

@ Springer

Valoroso N, Champaney L (2006) A damage-mechanics-based
approach for modelling decohesion in adhesively bonded
assemblies. Eng Fract Mech 73(18):2774-2801

Wiederhorn SM, Shorb AM, Moses RL (1968) Critical analysis
of the theory of the double cantilever method of measuring
fracture-surface energies. J Appl Phys 39(3):1569-1572

Williams JG (1989) End corrections for orthotropic DCB speci-
mens. Compos Sci Technol 35(4):367-376

Williams JG, Hadavinia H (2002) Analytical solutions for cohe-
sive zone models. J Mech Phys Solids 50(4):809-825

Yu HH, Hutchinson JW (2002) Influence of substrate compli-
ance on buckling delamination of thin films. Int J Fract
113(1):39-55

Zhu Y, Liechti KM, Ravi-Chandar K (2009) Direct extraction of
rate-dependent traction—separation laws for polyurea/steel
interfaces. Int J Solids Struct 46(1):31-51



	A comparison of direct and iterative methods  for determining traction-separation relations
	Abstract
	1 Introduction
	2 Experiment
	2.1 Sample preparation
	2.2 Infrared crack opening interferometry
	2.3 Procedure
	2.4 Measurements

	3 Modeling and simulations
	3.1 Cohesive zone models
	3.2 Analytical approaches
	3.3 Finite element simulations

	4 Results and discussion
	4.1 Direct method
	4.2 Iterative method

	5 Conclusions
	Acknowledgments
	Appendix A: DCB analysis with shear effect and root rotation
	Appendix B: An analytical model for DCB specimen
	Elastic opening of the interface
	Crack opening with a damage zone
	References


