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Abstract

A flat, compressed elastic film on a viscous layer is unstable. The film can form wrinkles to reduce the elastic energy.

A linear perturbation analysis is performed to determine the critical wave number and the growth rate of the unstable

modes. While the viscous layer has no effect on the critical wave number, its viscosity and thickness set the time scale for

the growth of the perturbations. The fastest growing wave number and the corresponding growth rate are obtained as

functions of the compressive strain and the thickness ratio between the viscous layer and the elastic film. The present

analysis is valid for all thickness range of the viscous layer. In the limits of infinitely thick and thin viscous layers, the

results reduce to those obtained in the previous studies. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many film/substrate systems, the film is in a state of biaxial compression. Some remarkable instability
and failure modes of such systems have been observed. A film with a large unbonded flaw can buckle away
from the substrate under the compressive stress and the buckle then causes the flaw to spread if the
compressive stress is large enough (Evans and Hutchinson, 1984; Hutchinson and Suo, 1992). For an oxide
scale on an aluminum-containing alloy, the interface initially remains bonded, but the oxidation-induced
compressive stress causes wrinkling at high temperatures (Suo, 1995; Tolpygo and Clarke, 1998a,b). The
instability of the thermally grown oxide controls the durability of thermal barrier coatings (Evans et al.,
2001; Mumm et al., 2001). It has also been observed that a thin film of gold deposited on the surface of an
elastomer can form aligned buckles to relieve the compressive stress caused by the shrinkage of the sub-
strate on cooling (Bowden et al., 1998; Huck et al., 2000).

In this paper, we study the instability of a compressed elastic film on a viscous layer. The system was
formed by transferring a compressively strained heteroepitaxial SiGe film to a Si substrate coated with a
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layer of glass (Hobart et al., 2000; Yin et al., 2001). Upon annealing above the glass transition temperature,
the glass flows like a viscous liquid and the SiGe film forms wrinkles, as shown in Fig. 1. The instability was
previously studied by Sridhar et al. (2001), in which the shear traction along the interface was assumed to be
zero and the displacement parallel to the interface was ignored. In this paper, we show that such simpli-
fications are incorrect when the thickness of the viscous layer is small. Recently, we studied the wrinkling
process of this system by using the lubrication theory for the viscous flow and the non-linear plate theory
for the elastic film (Huang and Suo, 2002). The lubrication theory enabled us to do simulations beyond the
linear stability analysis. However, the assumption made in the lubrication theory requires that the thickness
of the viscous layer be small compared to the wavelength, and thus the analysis is not valid when the
thickness of the viscous layer is large. This paper presents a more rigorous analysis in that it is valid for all
thickness range of the viscous layer. In the limits of infinitely thick and thin viscous layers, the results from
the present analysis reduce to those from the previous studies.

The plan of this paper is as follows. In Section 2, we first consider the linear perturbations of the viscous
flow and the elastic deformation separately, and then couple them to study the stability of the perturba-
tions. In Section 3, we discuss the results and compare with the previous studies. Section 4 gives the
concluding remarks.

2. Formulation and solution

As shown in Fig. 1, we consider an elastic film on a viscous layer, which in turn lies on a rigid substrate.
The viscous flow and the elastic deformation are coupled through the interface, where the displacements
and the tractions are assumed to be continuous.

2.1. Flow in a viscous layer

The flow is assumed to be slow such that the inertia can be neglected. The equation of motion reduces to
the equilibrium equation, i.e.,

rij;j ¼ 0; ð1Þ
where rij is the stress tensor. The material of the layer is assumed to be linear viscous. Thus the stress
components relate to the velocities by

rij ¼ gðvi;j þ vj;iÞ � pdij; ð2Þ
where g is the viscosity, vi is the velocity, and p is the pressure. The viscous layer is also assumed to be
incompressible, so that

vi;i ¼ 0; ð3Þ

Fig. 1. A wrinkled elastic film on a viscous layer.
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and

p ¼ �1
3
rii: ð4Þ

Under the above assumptions, the flow is referred to as the ‘‘Stokes flow’’ or the ‘‘creeping flow’’.
A trivial solution to Eqs. (1)–(4) corresponds to an infinite viscous layer on a rigid substrate with

constant thickness and free top surface. Now consider a perturbation along the surface to the trivial so-
lution. Since the viscous layer is isotropic in the plane of its surface, the wave vector of the perturbation in
any direction is equivalent. We choose the direction to coincide with the x-direction of the coordinate, as
shown in Fig. 1. Consequently, the perturbed viscous layer is in a state of plane strain deformation in the
x–z plane, i.e., vx ¼ vxðx; z; tÞ, vz ¼ vzðx; z; tÞ, and vy ¼ 0. Because the surface of the viscous layer is infinite,
the perturbed field has the translational symmetry along the surface such that the location of the origin of
the x-coordinate is arbitrary. To simplify writing, we choose the origin such that the tractions at the surface
take the form:

rzzðz ¼ HÞ ¼ q0ðtÞ sinðkxÞ; ð5Þ

rzxðz ¼ HÞ ¼ s0ðtÞ cosðkxÞ; ð6Þ
where H is the thickness of the viscous layer, k is the wave number of the perturbation, q0ðtÞ and s0ðtÞ are
the time-dependent amplitudes of the surface tractions. The velocities at the bottom of the viscous layer are
set to be zero. Under these boundary conditions, a set of exact solutions to Eqs. (1)–(4) is obtained in
Appendix A. Of relevance to the present study are the velocities at the top surface, taking the form:

vzðz ¼ HÞ ¼ �vvzðtÞ sinðkxÞ; ð7Þ

vxðz ¼ HÞ ¼ �vvxðtÞ cosðkxÞ: ð8Þ
The amplitudes of velocities, �vvzðtÞ and �vvxðtÞ, are linearly related to the amplitudes of the surface tractions.
Dimensional considerations dictate that

�vvzðtÞ ¼
1

2gk
c11q0ðtÞð þ c12s0ðtÞÞ; ð9Þ

�vvxðtÞ ¼
1

2gk
c21q0ðtÞð þ c22s0ðtÞÞ; ð10Þ

where the dimensionless coefficients are (see Appendix A for details)

c11 ¼
1

2

sinhð2kHÞ � 2kH

ðkHÞ2 þ cosh2ðkHÞ
; ð11Þ

c22 ¼
1

2

sinhð2kHÞ þ 2kH

ðkHÞ2 þ cosh2ðkHÞ
; ð12Þ

c12 ¼ c21 ¼
ðkHÞ2

ðkHÞ2 þ cosh2ðkHÞ
: ð13Þ

We can compare the present solution with three previous studies. In Sridhar et al. (2001), the shear
traction at the surface (s0) was assumed to be zero and the shear velocity at the surface (�vvx) was ignored.
However, from the above exact solution, both the shear traction and the shear velocity are not zero, and
even when the amplitude of shear traction s0 is zero the shear velocity amplitude �vvx is not zero due to the
non-uniform normal traction (Eq. 10). When the thickness of the viscous layer is large compared to the
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wavelength (kH � 1), we have c21 � c11 and thus �vvx � �vvz if s0 ¼ 0. In the limit of an infinitely thick viscous
layer (kH ! 1), c21 ! 0 and �vvx ! 0 if s0 ¼ 0. Therefore, the analysis in Sridhar et al. (2001) is approxi-
mately correct for a thick viscous layer and approaches to the exact solution as the thickness approaches
infinity.

Recently we derived a set of equations that relate the velocities at the surface of a viscous layer to the
pressure and the shear tractions at the surface by using the lubrication theory (Huang and Suo, 2002). The
lubrication theory assumes that the thickness of the viscous layer is small compared to the characteristic
lengths in the lateral directions, i.e., kH � 1. Here we show that the above exact solution reduces to the so-
lution from the lubrication theory in the limit of a thin viscous layer. Retaining only the leading order of kH
in Eqs. (11)–(13), we have c11 ¼ ð2=3ÞðkHÞ3, c22 ¼ 2kH , and c12 ¼ c21 ¼ ðkHÞ2. Thus, Eqs. (9) and (10) become

�vvzðtÞ ¼
H 3

3g
k2q0ðtÞ þ

H 2

2g
ks0ðtÞ; ð14Þ

�vvxðtÞ ¼
H 2

2g
kq0ðtÞ þ

H
g

s0ðtÞ; ð15Þ

which are equivalent to those obtained from the lubrication theory in our previous study. Comparing Eqs.
(14) and (15) with Eqs. (9) and (10), the difference between the two solutions is the dimensionless coeffi-
cients, c11, c22, c12, and c21, and the solution from the lubrication theory is correct only when kH � 1.

Eqs. (14) and (15) can be further reduced by keeping only the first order of H when the thickness of the
viscous layer approaches zero (H ! 0), and we have �vvz ! 0 and �vvx ¼ ðH=gÞs0, which is the solution from
the shear lag model (Freund and Nix, unpublished; Yin et al., 2001). When the viscous layer is very thin, the
normal velocity �vvz is negligible and the surface of the viscous layer remains flat.

While the thickness of the viscous layer is either assumed to be small or limited to large in the previous
studies, there is no assumption about the thickness in the present study. As shown above, the present
solution is exact and can be easily reduced to the previous solutions under certain conditions.

2.2. Deformation in an elastic film

Next we turn our attention to the elastic film. The plate theory has been used to model the elastic de-
formation in thin films for many years. Although the non-linear plate theory is generally required for
problems involving large deflections compared to the thickness of the film (Hutchinson and Suo, 1992;
Finot and Suresh, 1996; Huang and Suo, 2002), it is sufficient to use the classical linear plate theory for
linear perturbation analyses (Sridhar et al., 2001), as in the present study. The film under consideration is
subject to the in-plane membrane force (N), the normal (q) and the shear tractions (s) at the bottom surface,
as shown in Fig. 1. Under the plane strain conditions, the equilibrium equations of the linear plate theory
(Timoshenko and Woinowsky-Krieger, 1987) leads to

q ¼ � Eh3

12ð1� m2Þ
o4w
ox4

þ N
o2w
ox2

þ s
ow
ox

; ð16Þ

s ¼ oN
ox

; ð17Þ

where w is the deflection of the film, h is the thickness, E is Young’s modulus, and m is Poisson’s ratio. The
membrane force N relates to the in-plane displacement in the x direction, u, by Hooke’s law. Considering
that the film is initially compressed with a biaxial strain e0 and the in-plane displacement is set to be zero at
the initial state, we obtain that

N ¼ Ee0h
1� m

þ Eh
1� m2

ou
ox

: ð18Þ
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Perturb the displacements as

wðx; tÞ ¼ AðtÞ sinðkxÞ; ð19Þ

uðx; tÞ ¼ BðtÞ cosðkxÞ; ð20Þ
where A and B are small amplitudes. Substituting Eqs. (19) and (20) into Eqs. (18), (17) and (16), and
keeping only the first order terms in A and B, we obtain that

N ¼ Ee0h
1� m

� Ehk
1� m2

B sinðkxÞ; ð21Þ

s ¼ � Ehk2

1� m2
B cosðkxÞ; ð22Þ

q ¼ Ehk2

12ð1� m2Þ ð�12ð1þ mÞe0 � ðkhÞ2ÞA sinðkxÞ: ð23Þ

Therefore, within the range of small perturbations, the surface tractions, s and q, are linearly related to
the in-plane displacement u and the deflection w, respectively.

2.3. Coupled viscous flow and elastic deformation

Now we put together the viscous layer and the elastic film and assume that the tractions and dis-
placements are continuous across the interface. Given the displacements of the elastic film in Eqs. (19) and
(20), the amplitudes of the velocities at the surface of the viscous layer are

�vvzðtÞ ¼
dA
dt

and �vvxðtÞ ¼
dB
dt

: ð24Þ

Comparing the surface tractions of the viscous layer in Eqs. (5) and (6) with the tractions at the bottom
of the elastic film in Eqs. (22) and (23), we obtain that

s0ðtÞ ¼ � Ehk2

1� m2
BðtÞ; ð25Þ

q0ðtÞ ¼
Ehk2

12ð1� m2Þ ð�12ð1þ mÞe0 � ðkhÞ2ÞAðtÞ: ð26Þ

Substituting Eqs. (24)–(26) into Eqs. (9) and (10), we obtain that

dA
dt

¼ aA� c12
c22

bB; ð27Þ

dB
dt

¼ c21
c11

aA� bB; ð28Þ

where

a ¼ Ekh
24gð1� m2Þ ð�12e0ð1þ mÞ � ðkhÞ2Þc11; ð29Þ

b ¼ Ekh
2gð1� m2Þ c22; ð30Þ

and c11, c22, and c12 ¼ c21 are functions of kH as defined in Eqs. (11)–(13).
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Eqs. (27) and (28) are two coupled linear ordinary differential equations. The solution takes the form

AðtÞ ¼ A1 expðs1tÞ þ A2 expðs2tÞ; ð31Þ

BðtÞ ¼ B1 expðs1tÞ þ B2 expðs2tÞ; ð32Þ
where s1 and s2 are two eigenvalues of Eqs. (27) and (28):

s1 ¼
1

2
ða

 
� bÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � bÞ2 þ 4ab 1� c212

c11c22

� �s !
; ð33Þ

s2 ¼
1

2
ða

 
� bÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � bÞ2 þ 4ab 1� c212

c11c22

� �s !
; ð34Þ

and the corresponding eigenvectors give that

B1

A1

¼ ða � s1Þc22
bc12

;
B2

A2

¼ ða � s2Þc22
bc12

: ð35Þ

Let the initial amplitudes be Að0Þ ¼ A0 and Bð0Þ ¼ B0, so that

A1 ¼
a � s2
s1 � s2

A0 �
bc12

ðs1 � s2Þc22
B0; ð36Þ

A2 ¼
a � s1
s2 � s1

A0 �
bc12

ðs2 � s1Þc22
B0; ð37Þ

and B1, B2 can be obtained from Eq. (35).

3. Analyses and discussion

The amplitudes of the perturbations in displacements are obtained in Eqs. (31) and (32) as functions of
time. The stability of the unperturbed, flat film depends on the rates, s1 and s2, given in Eqs. (33) and (34). It
can be shown that, for any wave number k, s2 is negative. Consequently, the s2-mode in Eqs. (31) and (32)
always decays exponentially with time. For the s1-mode, however, there exists a critical wave number:

kch ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�12e0ð1þ mÞ

p
: ð38Þ

When k > kc, s1 < 0 and the perturbations decay. When k < kc, s1 > 0 and the perturbations grow. Fig. 2
shows the normalized growth rate, ðs1gÞ=E, as a function of the normalized wave number, kh, for
e0 ¼ �0:012, m ¼ 0:3, and various values of H=h, the thickness ratio between the viscous layer and the
elastic film.

The critical wave number in Eq. (38) is a positive real number only when e0 < 0, i.e., when the film is
initially compressed. In the other words, if the film is stress free (e0 ¼ 0) or under tension (e0 > 0), both s1-
and s2-modes decay and the flat film is stable. For a film under compression, the critical wave number is the
result of the compromise between the energy reduction associated with in-plane expansion of the film and
the energy addition associated with bending. At the critical wave number (k ¼ kc), the bending energy is in
balance with the in-plane energy reduction, and the growth rate is zero (s1 ¼ 0). For perturbations with
large wave number (k > kc, short wavelength), the bending energy dominates and causes the perturbations
to decay (s1 < 0). For perturbations with small wave number (k < kc, long wavelength), the reduction in the
energy corresponding to compression overcomes the bending energy and drives the perturbations to grow
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(s1 > 0). As the wave number approaches zero, the wavelength is so long that the driving force to grow the
perturbations, the energy reduction associated with the growth, is very small, and meanwhile the viscous
matter under the film has to be transported over a long distance for the perturbations to grow. Conse-
quently, the growth rate approaches zero (s1 ! 0) when k ! 0.

As shown in Fig. 2, the critical wave number is independent of the thickness ratio between the viscous
layer and the elastic film. Actually, the critical wave number is the same as that for Euler buckling of a free-
standing film subject to a compressive stress. Since the critical wave number is purely determined by the
energetic of the expansion and bending of the elastic film, the viscous layer has no effect on the critical wave
number. The flow of the viscous layer, however, sets the time scale for the growth of the unstable modes.
The growth rate, s1, is inversely proportional to the viscosity, g. For k < kc, the normalized growth rate,
ðs1gÞ=E, increases as the thickness ratio, H=h, increases, i.e., the thicker the viscous layer, the more readily
it flows.

In the limit of an infinitely thick viscous layer (H=h ! 1), the growth rate s1 becomes

s1 ¼
Ekh

24gð1� m2Þ ð�12e0ð1þ mÞ � ðkhÞ2Þ; ð39Þ

which is the same as that obtained in Sridhar et al. (2001). In the other limit, when the thickness of the
viscous layer is small (H=h ! 0), the growth rate is

s1 ¼
EkhðkHÞ3

144gð1� m2Þ ð�12e0ð1þ mÞ � ðkhÞ2Þ; ð40Þ

which is the same as that obtained in Huang and Suo (2002), but is only one-quarter of that obtained in
Sridhar et al. (2001).

Since the growth rate is zero at the critical wave number and approaches to zero in the limit of zero wave
number, there must exist a wave number in between that maximizes the growth rate. The fastest growing
wave number, km, is found by setting os1=ok ¼ 0. Fig. 3a shows the normalized fastest growing wave
number, kmh, as a function of the initial compressive strain, e0, for various thickness ratios, and Fig. 3b
shows the normalized growth rate, ðsmgÞ=E, corresponding to km. Both the wave number and the growth
rate increase as the compressive strain increases. As the thickness ratio increases, the fastest growing wave
number decreases, but the corresponding growth rate increases.

Fig. 2. Normalized growth rate of the linear perturbations vs the normalized wave number for various thickness ratios.
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Fig. 4 compares the growth rate from the present study (solid lines) with the previous studies for two
different thickness ratios. The dashed lines are the growth rate from Sridhar et al. (2001), and the dotted
lines from Huang and Suo (2002). Both studies obtain the same critical wave number as in the present
study, but the growth rates for the unstable modes are different. In Sridhar et al. (2001), the shear traction
at the interface was assumed to be zero and the displacement parallel to the interface was ignored. As we
discussed before, the analysis is approximately correct for a thick viscous layer. In Huang and Suo (2002),
the lubrication theory was used and the thickness of the viscous layer was assumed to be small compared to
the wavelength. The present study does not make assumptions about the thickness of the viscous layer. Fig.
4a shows that, for a thin viscous layer ðH=h ¼ 2Þ, the result from Sridhar et al. (2001) is not good compared
to the more rigorous result from the present study, but the result from Huang and Suo (2002) is better in
agreement. The situation is reversed for a thick viscous layer, as shown in Fig. 4b for H=h ¼ 5.

Fig. 5a shows the fastest growing wave number as a function of the thickness ratio for e0 ¼ �0:012 and
m ¼ 0:3, and Fig. 5b shows the corresponding growth rate. The results from the previous studies are also
plotted for comparisons. In the limit of an infinitely thick viscous layer (H=h ! 1), the fastest growing
wave number is

kmh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4e0ð1þ mÞ

p
; ð41Þ

Fig. 3. The fastest growing wave number and the corresponding growth rate vs the compressive strain for various thickness ratios.

Fig. 4. Comparisons of the growth rate from the present study with those from the previous studies for two different thickness ratios:

(a) H=h ¼ 2; (b) H=h ¼ 5.
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and the corresponding growth rate is

sm ¼ E
12gð1� m2Þ ð�4e0ð1þ mÞÞ3=2: ð42Þ

As shown in Fig. 5, the result from Sridhar et al. (2001) agrees closely with the present study for large
thickness ratios (H=h > 10) and is exactly the same in the limit of an infinitely thick viscous layer. For
smaller thickness ratios, the agreement is poor. In the limit of small thickness ratio (H=h ! 0), the fastest
growing wave number is

kmh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8e0ð1þ mÞ

p
; ð43Þ

and the corresponding growth rate is

sm ¼ 16E
9gð1� m2Þ

�
� e0ð1þ mÞH

h

�3

: ð44Þ

Eqs. (43) and (44) are the same as the results from Huang and Suo (2002). Fig. 5 shows that the agreement
between the dotted line and the solid line is good for H=h < 3, but becomes increasingly poor for both the
fastest wave number and the growth rate as the thickness ratio increases. In the same limit, H=h ! 0, the
fastest growing wave number from Sridhar et al. (2001) approaches Eq. (43), but the corresponding growth
rate is four times of Eq. (44). The difference between the solid line and the dashed line in Fig. 5b at small
thickness ratio is not obvious because they both approach zero as H=h ! 0.

4. Concluding remarks

The stability of a flat, compressed elastic film on a viscous layer is studied by a linear perturbation
analysis. The critical wave number is the same as that for Euler buckling of a free-standing film subject to a
compressive stress. The viscous layer has no effect on the instability condition. The flow of the viscous layer
only sets the time scale for the growth of the unstable modes. The fastest growing wave number and the
corresponding growth rate are obtained as functions of the compressive strain and the thickness ratio
between the elastic film and the viscous layer. Comparing to the previous studies, the present analysis is
more rigorous in the sense that it does not make any assumptions about the thickness of the viscous layer
and thus is valid for all thickness range. In the limits of infinitely thick (H ! 1) and thin (H ! 0) viscous
layer, the results from the present study reduce to those from the previous studies.

Fig. 5. Comparisons of the fastest growing wave number and the corresponding growth rate from the present study with those from the

previous studies.
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One must note that the result from the linear perturbation analysis in the present study is only valid for a
short time. As the perturbation amplitude grows, the non-linear plate theory for large deflection has to be
used, and some approximation of the flow in the viscous layer has to be made. Nevertheless, the growth rate
from the linear perturbation analysis provides an estimate of the time scale for wrinkling, and the fastest
growing wave number may be compared to the observed wave number in experiments. However, no effort
has been made in the present study to compare with experiments, because the comparisons will only make
senses with more details of experiments and other models, which will be presented elsewhere.
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Appendix A. Exact solution for two-dimensional flow in a viscous layer

The governing equations for the Stokes flow, Eqs. (1)–(4), are reduced by assuming a two-dimensional
flow under the plane strain conditions, i.e., vx ¼ vxðx; zÞ, vz ¼ vzðx; zÞ, and vy ¼ 0. The equilibrium equation,
Eq. (1), becomes

orxx

ox
þ orxz

oz
¼ 0 and

orxz

ox
þ orzz

oz
¼ 0: ðA:1Þ

The stress components are

rxx ¼ 2g
ovx
ox

� p; ðA:2Þ

rzz ¼ 2g
ovz
oz

� p; ðA:3Þ

rxz ¼ g
ovx
oz

�
þ ovz

ox

�
; ðA:4Þ

and

p ¼ �1
2
ðrxx þ rzzÞ: ðA:5Þ

The continuity equation, Eq. (3), becomes

ovx
ox

þ ovz
oz

¼ 0: ðA:6Þ

The stresses and velocities can be represented by two potentials, Uðx; zÞ and vðx; zÞ, as below:

rxx ¼
o2U
oz2

; rzz ¼
o2U
ox2

; rxz ¼ � o2U
oxoz

; ðA:7Þ

vx ¼
1

2g

�
� oU

ox
þ 2

ov
oz

�
; vz ¼

1

2g

�
� oU

oz
þ 2

ov
ox

�
: ðA:8Þ

The equilibrium equation, Eq. (A.1), is automatically satisfied by Eq. (A.7). Eqs. (A.2)–(A.6) are satisfied
by requiring that

o2v
ox2

þ o2v
oz2

¼ 0 and
o2U
ox2

þ o2U
oz2

¼ 4
o2v
oxoz

: ðA:9Þ
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A set of exact solutions to the equations in (A.9) gives that

U ¼ 1

k2
C1 coshðkzÞð þ C2 sinhðkzÞ þ C3kz coshðkzÞ þ C4kz sinhðkzÞÞ sinðkxÞ; ðA:10Þ

v ¼ � 1

2k2
C3 coshðkzÞð þ C4 sinhðkzÞÞ cosðkxÞ; ðA:11Þ

where k is the wave number and Cj ðj ¼ 1; . . . ; 4Þ are constants to be determined from boundary condi-
tions. Thus, from Eqs. (A.7) and (A.8), the stress components and the velocities are

rxx ¼ C1 coshðkzÞð þ C2 sinhðkzÞ þ C3 2 sinhðkzÞð þ kz coshðkzÞÞ þ C4 2 coshðkzÞð þ kz sinhðkzÞÞÞ sinðkxÞ;
ðA:12Þ

rzz ¼ � C1 coshðkzÞð þ C2 sinhðkzÞ þ C3kz coshðkzÞ þ C4kz sinhðkzÞÞ sinðkxÞ; ðA:13Þ

rxz ¼ � C1 sinhðkzÞð þ C2 coshðkzÞ þ C3 coshðkzÞð þ kz sinhðkzÞÞ þ C4 sinhðkzÞð
þ kz coshðkzÞÞÞ cosðkxÞ; ðA:14Þ

vx ¼ � 1

2gk
C1 coshðkzÞð þ C2 sinhðkzÞ þ C3 sinhðkzÞð þ kz coshðkzÞÞ þ C4 coshðkzÞð þ kz sinhðkzÞÞÞ cosðkxÞ;

ðA:15Þ

vz ¼ � 1

2gk
C1 sinhðkzÞð þ C2 coshðkzÞ þ C3kz sinhðkzÞ þ C4kz coshðkzÞÞ sinðkxÞ: ðA:16Þ

For a viscous layer as shown in Fig. 1, the boundary conditions are specified at the bottom ðz ¼ 0Þ and
the surface ðz ¼ HÞ of the layer. We assume no slip at the bottom of the viscous layer and set the velocities
there to be zero, i.e.,

vxðz ¼ 0Þ ¼ vzðz ¼ 0Þ ¼ 0: ðA:17Þ
At the surface of the viscous layer, the normal and shear tractions take the form

rzzðz ¼ HÞ ¼ q0 sinðkxÞ; ðA:18Þ

rzxðz ¼ HÞ ¼ s0 cosðkxÞ: ðA:19Þ
By applying the boundary conditions, Eqs. (A.17)–(A.19), we obtain

C1 ¼ �C4 ¼ � coshðkHÞ þ kH sinhðkHÞ
ðkHÞ2 þ cosh2ðkHÞ

q0 þ
kH coshðkHÞ

ðkHÞ2 þ cosh2ðkHÞ
s0; ðA:20Þ

C3 ¼ � kH coshðkHÞ
ðkHÞ2 þ cosh2ðkHÞ

q0 �
coshðkHÞ � kH sinhðkHÞ

ðkHÞ2 þ cosh2ðkHÞ
s0; ðA:21Þ

and C2 ¼ 0.
Substituting Eqs. (A.20) and (A.21) into Eqs. (A.15) and (A.16), we obtain the velocities at the surface of

the viscous layer as

vxðz ¼ HÞ ¼ 1

2gk
ðkHÞ2

ðkHÞ2 þ cosh2ðkHÞ
q0

 
þ 1

2

2kH þ sinhð2kHÞ
ðkHÞ2 þ cosh2ðkHÞ

s0

!
cosðkxÞ; ðA:22Þ

R. Huang, Z. Suo / International Journal of Solids and Structures 39 (2002) 1791–1802 1801



vzðz ¼ HÞ ¼ 1

2gk
1

2

sinhð2kHÞ � 2kH

ðkHÞ2 þ cosh2ðkHÞ
q0

 
þ ðkHÞ2

ðkHÞ2 þ cosh2ðkHÞ
s0

!
sinðkxÞ: ðA:23Þ

Note that the above solution is only exact for linear perturbation analysis of a viscous layer with a flat
surface. For a viscous layer with a curved surface, the curvature of the surface has to be considered when
specifying the boundary conditions.
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