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a b s t r a c t

Stress-induced surface instability and evolution of epitaxial thin films leads to formation of a variety of
self-assembled surface patterns with feature sizes at micro- and nanoscales. The anisotropy in both the
surface and bulk properties of the film and substrate has profound effects on the nonlinear dynamics of
surface evolution and pattern formation. Experimentally it has been demonstrated that the effect of
anisotropy strongly depends on the crystal orientation of the substrate surface on which the film grows
epitaxially. In this paper we develop a nonlinear model for surface evolution of epitaxial thin films on
generally anisotropic crystal substrates. Specifically, the effect of bulk elastic anisotropy of the substrate
on epitaxial surface pattern evolution is investigated for cubic germanium (Ge) and SiGe films on silicon
(Si) substrates with four different surface orientations: Si(001), Si(111), Si(110), and Si(113). Both linear
analysis and nonlinear numerical simulations suggest that, with surface anisotropy neglected, ordered
surface patterns form under the influence of the elastic anisotropy, and these surface patterns clearly
reflect the symmetry of the underlying crystal structures of the substrate. It is concluded that consider-
ation of anisotropic elasticity reveals a much richer dynamics of surface pattern evolution as compared to
isotropic models.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A large variety of surface patterns have been observed in epitax-
ially grown crystal thin films. In the most common growth mode,
Stranski–Krastanov (SK) mode, a transition from two-dimensional
(2D) growth of a nominally flat film to three-dimensional (3D)
growth of coherent islands occurs above a critical mean film thick-
ness (Eaglesham and Cerullo, 1990). The transition has been under-
stood as a result of stress induced surface instability of the
epitaxial film. In general, a macroscopically planar surface of a
stressed solid is thermodynamically unstable, with a tendency to
relax the elastic strain energy by surface roughening (Asaro and
Tiller, 1972; Grinfeld, 1986; Srolovitz, 1989). An epitaxial film is
inherently stressed due to mismatch of crystal lattices between
the film and the substrate, thus unstable. The critical thickness
for the 2D–3D transition during the SK growth has been predicted
by introducing a wetting potential in competition with the strain
energy and surface energy (Tekalign and Spencer, 2004; Pang and
Huang, 2006). Subsequent growth of 3D islands exhibits intrigu-
ingly rich dynamics with shape transition and self-organization
(Medeiros-Ribeiro et al., 1998; Floro et al., 1999; Ross et al.,
1999). The potential to grow nanoscale islands (quantum dots or

nanocrystals) by self-assembly has motivated extensive studies
since early 1990s, with an objective to develop novel applications
in optoelectronics and nanoelectronics (Brunner, 2002). Practical
applications often require controllable synthesis of ordered surface
structures with uniform feature sizes and long-range spatial orga-
nizations. Despite tremendous efforts with both experimental and
modeling progresses in recent years, many questions remain open
for the growth and evolution dynamics of epitaxial surfaces, in par-
ticular, regarding the conditions under which ordered surface pat-
terns form as well as the underlying mechanisms that control the
size and ordering of self-assembled surface structures (e.g., quan-
tum dots and nanowires).

In complement with experimental investigations, modeling and
simulations have significantly enhanced understanding of the sur-
face evolution dynamics and the underlying mechanisms. Different
modeling approaches have been developed to simulate surface
evolution and self-assembly of quantum dots, such as kinetic
Monte Carlo simulations (Meixner et al., 2001; Lam et al., 2002;
Zhu et al., 2007) and phase-field modeling (Kassner et al., 2001;
Ni et al., 2005; Seol et al., 2005). Surface differential equation based
approaches have been developed for theoretical studies (Spencer
et al., 1993; Chiu, 1999; Zhang and Bower, 1999; Shenoy and Fre-
und, 2002), with well-posed foundation in relevant surface physics
(e.g., thermodynamics, kinetics, and mechanics), relatively simple
mathematical form, and yet nontrivial nonlinear solutions. Derived
from a general framework of nonequilibrium thermodynamics, the
governing equation for the surface morphology of an epitaxial thin
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film is typically written with the time evolution of the local film
thickness on one side and a surface Laplacian of the chemical
potential on the other; a flux term may be included to simulate
growth during deposition, but often ignored for surface evolution
during annealing. The chemical potential of a solid surface in gen-
eral includes contributions from surface energy and elastic strain
energy. For epitaxial thin films (thickness typically less than
100 nm), a thickness-dependent potential term is added to account
for the interfacial interaction that leads to the 2D–3D transition
and the formation of a thin wetting layer during the SK growth
(Spencer, 1999). The competition among the three energy terms
defines a thermodynamic configurational force that drives evolu-
tion of surface morphology and formation of self-assembled pat-
terns, a dynamic process kinetically facilitated by atomic
diffusion on the surface at elevated temperatures during deposi-
tion or annealing.

Most of the previous studies have assumed isotropic elasticity
for the film and the substrate. This assumption, however, contra-
dicts the crystalline nature in essentially all epitaxial systems.
While the anisotropic elasticity may not be critically important
for the basic understanding of the surface instability, it is ex-
pected to play a significant role in the ordering of surface pat-
terns over long term evolution (Meixner et al., 2001; Ni et al.,
2005; Liu et al., 2006). Previously, Shenoy and Freund (2002)
developed an anisotropic solution to the first order of the surface
slope, by using an elastic half-space Green’s function. In the pres-
ent study, a nonlinear solution is obtained by the method of Fou-
rier transform for a generally anisotropic half space, to the
second order of the surface slope. With this solution, the effect
of elastic anisotropy of the substrate on surface pattern evolution
can be theoretically investigated for both the linear and nonlin-
ear regimes.

A large number of modeling works have assumed isotropic
surface energy for epitaxial surface evolution. While more com-
plex forms of surface energy accounting for crystal surface
anisotropy and surface stress have been developed in order to
understand the size and shape of self-assembled islands (e.g.,
Chiu, 1999; Zhang and Bower, 2001; Shenoy and Freund, 2002;
Savina et al., 2003, 2004), their applications have been hindered
by the very limited knowledge of the additional parameters from
either experiments or first-principle models. To focus on the ef-
fect of bulk elastic anisotropy, in the present study we take the
surface energy to be isotropic and independent of strain, leaving
combination and competition of various anisotropy effects for fu-
ture studies.

The characteristic 2D–3D transition of Stranski–Krastanov
growth along with the presence of a thin wetting layer underlying
self-assembled islands at the later stage suggests that a critical
thickness exists, below which the flat film surface is stabilized. Dif-
ferent physical origins and modeling approaches of the critical
thickness have been proposed (e.g., Kukta and Freund, 1997; Spen-
cer, 1999). A general discussion on the effect of the wetting poten-
tial on surface instability and pattern evolution dynamics was
presented by Golovin et al. (2003). For the present study, we adopt
the wetting potential derived from a surface energy transition-
layer model (Spencer, 1999).

The remainder of this paper is organized as follows. Section 2
presents a general formula of nonlinear, anisotropic evolution
equation. Section 3 develops a solution procedure for the generally
anisotropic elasticity problem, up to the second order of the surface
slope. Section 4 performs a linear analysis of the surface evolution,
and Section 5 describes the numerical method for nonlinear simu-
lations. In Section 6, results for specific epitaxial systems are pre-
sented, and the effect of elastic anisotropy on surface pattern
evolution is discussed. Section 7 concludes with a remark on the
extension of the present model.

2. Anisotropic, nonlinear evolution equation

Previously, we developed a nonlinear equation for surface evo-
lution assuming isotropy in both bulk elasticity and surface prop-
erties (Pang and Huang, 2006). Here, we extend the model for
epitaxial systems with general elastic anisotropy. Due to the nature
of crystalline structures, real epitaxial systems are all anisotropic,
and the effect of anisotropy varies with the type of the crystal
structure as well as the crystal orientation of the surface.

Fig. 1 schematically illustrates an epitaxial system, with a sin-
gle-crystal thin film on a thick crystal substrate. The film is
stressed due to mismatch in the crystal lattices between the film
and the substrate, and the rough film surface is described by a
thickness profile function, x3 ¼ hðx1; x2; tÞ, with h0 being the mean
film thickness. An epitaxial coordinates are set up such that
x3 ¼ 0 at the film/substrate interface. On the other hand, the natu-
ral crystal coordinates, denoted by x01; x

0
2; x

0
3

� �
, may or may not align

with the epitaxial coordinates, depending on the surface orienta-
tion of the substrate.

Following the variational analysis by Freund and Jonsdottir
(1993), the chemical potential at the film surface is defined as

l ¼ XðUE þ US þ UWÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hbhb

q
; ð1Þ

where X is the atomic volume, hb ¼ oh=oxb is the local surface slope,
and UE; US; and UW stand for energetic contributions from elastic
strain energy, surface energy, and a wetting potential, respectively.
The Greek indices (e.g., a, b, v) take values 1 and 2 for the coordi-
nates parallel to the film/substrate interface as illustrated in
Fig. 1; a repeated Greek index implies summation over 1 and 2.
Note that, in Eq. (1), the chemical potential is a nominal quantity
with respect to the flat surface at the reference state.

The gradient of the surface chemical potential drives surface
diffusion. Assuming a linear kinetic law, the surface diffusion flux
is

Ja ¼ �Mab
ol
oxb

; ð2Þ

where Mab represents a generally anisotropic surface mobility.
Assuming isotropic surface diffusion for the present study, we have
Mab ¼ M0dab, where M0 is a constant mobility and dab is the Kro-
necker delta.

By mass conservation, the divergence of the surface flux leads to
change of the local thickness, namely

oh
ot
¼ X2Mab

o2

oxaoxb
ðUE þ US þ UWÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hvhv

qh i
: ð3Þ

Eq. (3) is a general form of anisotropic, nonlinear evolution equa-
tion. The elastic strain energy density at the surface, UE, is to be

Epitaxial film

Crystal substrate

x3 

x1 

h(x1, x2, t) h0

x2

1'x

2'x

3'x

Fig. 1. Schematic illustration of an epitaxial film on a crystal substrate.
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determined by solving an anisotropic boundary value problem (see
Section 3). In general, the contribution from surface energy, US, is
anisotropic and depends on the surface deformation through sur-
face stresses (e.g., Chiu, 1999; Zhang and Bower, 2001; Shenoy
and Freund, 2002). For the present study, to focus on the effect of
bulk elastic anisotropy, we assume an isotropic surface energy inde-
pendent of the surface deformation, and thus

US ¼ �jc; ð4Þ

where c is the surface energy density and j is the local mean cur-
vature of the surface, i.e.,

j ¼ ð1þ hahaÞhbb � hahbhab

ð1þ hahaÞ3=2 : ð5Þ

To account for the wetting interaction, Spencer (1999) proposed
a thickness-dependent surface energy:

cðhÞ ¼ 1
2
ðcs þ cf Þ �

1
p
ðcs � cf Þ arctan

h
b

� �
; ð6Þ

where cf and cs are the surface energy density constants of the film
and the substrate, respectively, and b is a parameter controlling the
thickness of the transition layer at the interface. The transition-
layer model naturally leads to an isotropic wetting potential

UW ¼ �
cs � cfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ haha

p b

pðb2 þ h2Þ
: ð7Þ

It has been shown that the wetting potential plays a critical role in
the surface evolution for ultrathin films and the formation of a wet-
ting layer (Savina et al., 2004; Levine et al., 2007).

3. Anisotropic elasticity solution

The stress field in the epitaxial system, rij, satisfies the traction-
free boundary condition at the film surface ðx3 ¼ hÞ:

rijnj ¼ 0; ð8Þ

with a unit vector of the surface normal given by

na ¼
�haffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ hbhb

p ; n3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ hbhb

p : ð9Þ

The undulating surface of the film leads to a nonlinear boundary va-
lue problem, whereas the materials (film and substrate) are subject
to infinitesimal deformation and regarded as linearly elastic.

Consider a reference state with a film of uniform thickness,
h ¼ h0. The stress field at the reference state is uniform, with non-
zero in-plane components in the film: rð0Þ11 ; rð0Þ12 and rð0Þ22 , and
rð0Þ33 ¼ rð0Þ31 ¼ rð0Þ32 ¼ 0, while the substrate is stress free. The magni-
tude of the film stress depends on the lattice mismatch and the
elastic moduli of the film; both can be anisotropic in general. The
strain energy density at the flat surface of the reference state is a
constant:

Uð0ÞE ¼
1
2
rð0Þab e

ð0Þ
ab ; ð10Þ

where eð0Þab is the in-plane strain in the epitaxial film due to lattice
mismatch. The relationship between the mismatch strain and the
mismatch stress is given by Hooke’s law and depends on the crystal
orientation of the epitaxial system (Caro and Tapfer, 1993). It is of-
ten convenient to set up the in-plane coordinates to align with the
principal directions of the mismatch stress so that the shear compo-
nent rð0Þ12 ¼ 0.

As the film surface evolves, the stress field changes along with
the surface morphology, dictated by the boundary condition. Due
to the moving boundary and the nonlinearity of the surface nor-
mal, the elasticity problem can only be solved numerically. Previ-

ously, an asymptotic approach was developed for isotropic
systems (Pang and Huang, 2006). Here we extend the approach
for generally anisotropic systems. First, the stress field is expressed
in form of a series expansion:

rij ¼ rð0Þij þ rð1Þij þ rð2Þij þ � � � ; ð11Þ

where rð0Þij is the stress at the reference state, rð1Þij represents a linear
perturbation, and rð2Þij is the leading nonlinear term of the stress
field (second-order perturbation). In principle, successively higher
order terms can be included.

By substituting Eq. (11) into the boundary condition (8) and
keeping only the first-order terms, we obtain the reduced bound-
ary condition for the first-order stress field:

rð1Þ3a ¼ rð0Þab hb and rð1Þ33 ¼ 0: ð12Þ

Similarly, for the second-order stress field, the boundary conditions
are:

rð2Þ3a ¼ rð1Þab hb and rð2Þ33 ¼ rð0Þab hahb: ð13Þ

Both the reduced boundary conditions should be applied at the
film surface, i.e., x3 ¼ h (Fig. 1). A couple of approximations are
adopted here to solve the boundary value problems. First, it is as-
sumed that the film thickness has relatively slow variation along
the in-plane directions and the boundary conditions on the undu-
lating surface can be approximated by those on a flat surface with
the mean film thickness (i.e., x3 ¼ h0). As will be shown later from
numerical simulations, the surface pattern usually has a character-
istic length (e.g., wavelength for a periodic pattern) much greater
than the undulation amplitude. From experimental observations,
the diameter of self-assembled quantum dots is typically 1–2 or-
ders of magnitude greater than their height, thus justifying the
small-slope approximation. The second approximation is to take
the film and the substrate together as a homogeneous half space.
When the elastic properties for the film and the substrate are sim-
ilar, such as a SiGe film on a Si substrate, the substrate property is
used for the half space as a reasonable approximation. It has also
been shown that, at the limit of very thin films, the elastic defor-
mation at the film surface is predominantly controlled by the sub-
strate elasticity (Tekalign and Spencer, 2004). Therefore, in the
following, the surface displacements corresponding to the first
and second-order stress fields are determined approximately by
solving respective homogeneous half-space problems with the
boundary conditions (12) and (13). Here, the effect of substrate
elasticity is taken into account in the calculation of the surface dis-
placement and strain, while the elastic property of the film is used
in calculating the film stresses (e.g., rð0Þab ). As a result, two origins of
the elastic anisotropy can be identified, one due to the mismatch
stress as related to the elastic anisotropy of the film and the other
due to the anisotropic substrate.

The generally anisotropic, linear elastic half-space problem is
solved by a Fourier transform method as detailed in Appendix A.
The solution gives a relationship between the surface tractions as
specified in the reduced boundary conditions and the surface dis-
placements, in terms of their Fourier transforms, namely

ûðnÞj ðk1; k2Þ ¼ Qjiðk1; k2Þr̂ðnÞ3i ; ð14Þ

where k1, k2 are the coordinates in the Fourier space (i.e., compo-
nents of the wave vector), Qji is a compliance matrix that depends
on the elastic property of the substrate as given in Eq. (A.13), and
n ¼ 1;2 for the first and second-order solutions, respectively.

With the series expansion of the stress field in Eq. (11), the
strain energy density at the film surface can be expressed in a sim-
ilar form:

2824 Y. Pang, R. Huang / International Journal of Solids and Structures 46 (2009) 2822–2833
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UE ¼ Uð0ÞE þ Uð1ÞE þ Uð2ÞE þ � � � ; ð15Þ

where Uð0ÞE is the strain energy density at the reference state as
given in Eq. (10), and

Uð1ÞE ¼ rð0Þab

ouð1Þa

oxb
; ð16Þ

Uð2ÞE ¼ rð0Þab

ouð2Þa

oxb
þ 1

2
rð1Þab

ouð1Þa

oxb
þ rð0Þab hb

ouð1Þ3

oxa
þ ouð1Þa

ox3

 !
: ð17Þ

The term Uð1ÞE is to the first order of surface undulation, and Uð2ÞE is to
the second order as the leading nonlinear term; the higher order
terms for the strain energy density are truncated for the present
study.

4. Linear analysis

Substitution of Eqs. (4), (7) and (15) into Eq. (3) leads to a non-
linear evolution equation. By keeping the first-order terms only, a
linearized form of the evolution equation is obtained:

oh
ot
¼ X2M0

o2

oxjoxj
rð0Þab

ouð1Þa

oxb
� c0haa þ

2h0bðcs � cf Þ

p b2 þ h2
0

� �2 h

264
375; ð18Þ

where c0 ¼ cðh0Þ is the surface energy density at the mean film
thickness.

Fourier transform of Eq. (18) leads to

oĥ
ot
¼ sðk1; k2Þĥ; ð19Þ

where

sðk1; k2Þ ¼ X2M0k2 kakbQvjrð0Þavr
ð0Þ
bj � c0k2 �

2h0bðcs � cf Þ
pðb2 þ h2

0Þ
2

" #
: ð20Þ

Integration of Eq. (19) over time gives that

ĥðk1; k2; tÞ ¼ A0 exp½sðk1; k2Þt�; ð21Þ

where A0 is the initial amplitude of the Fourier component, and s is
the growth rate. The dependence of the growth rate on the wave
numbers dictates the growth dynamics at the early stage of surface
evolution, as shown in Fig. 2 for specific epitaxial systems. Discus-
sions of the evolution dynamics are postponed till Section 6.

For an isotropic system with an equi-biaxial mismatch stress
(i.e., rð0Þ11 ¼ rð0Þ22 ¼ r0 and rð0Þ12 ¼ 0), the growth rate becomes

sðk1; k2Þ ¼ X2M0k2 2ð1� m2
s Þ

Es
r2

0k� c0k2 �
2h0bðcs � cf Þ

p b2 þ h2
0

� �2

264
375; ð22Þ

where Es and ms are Young’s modulus and Poisson’s ratio of the iso-
tropic substrate. The first two terms in the bracket of Eq. (22) rep-
resent a competition between the elastic strain energy and the

surface energy: the former drives growth of surface undulation
and the latter drives negative growth or flattening of the surface.
This competition defines a length scale and a time scale (Pang and
Huang, 2006):

L ¼
cf Es

2 1� m2
s

� �
r2

0

and s ¼
c3

f E4
s

16 1� m2
s

� �4
X2M0r8

0

: ð23Þ

Similar length and time scales can be defined for generally
anisotropic systems. For the present study, we set

L ¼
cf Es

2 eEf �em

� �2 and s ¼
c3

f E4
s

16X2M0
eEf �em

� �8 ; ð24Þ

where �em ¼ 1
2 eð0Þ11 þ eð0Þ22

� �
is the mean mismatch strain,

E ¼ C11 � C2
12=C11 is the effective plane-strain modulus, andeE ¼ C11 þ C12 � 2C2

12=C11 the effective biaxial modulus. The sub-
scripts s and f denote the substrate and film, respectively. The effec-
tive moduli are defined such that the scales in Eq. (24) recover those
in Eq. (23) for an isotropic system.

The third term in the bracket of Eq. (20) or (22) represents the
effect of wetting on the initial growth, which sets a critical thick-
ness. For an isotropic system, we obtained that (Pang and Huang,
2006)

hc ¼ 2L
ðcs � cf Þb

pcf L

 !1=3

; ð25Þ

where cs > cf has been assumed as a necessary condition for the
film to wet the substrate surface. If the mean film thickness,
h0 < hc , the surface is stable without roughening, while the surface
becomes unstable when h0 > hc . This is consistent with the well-
known 2D–3D transition in the Stranski–Krastanov growth of
epitaxial films. Similarly, the critical thickness for an anisotropic
system can be determined, taking the form

hc ¼ gL
ðcs � cf Þb

pcf L

 !1=3

; ð26Þ

where the coefficient g depends on the elastic anisotropy of the
substrate and will be discussed in Section 6.

5. Numerical simulations

By keeping up to the second-order terms for the elastic strain
energy and surface curvature, we obtain a nonlinear evolution
equation

oh
ot
¼ X2M0

� o2

oxjoxj
rð0Þab

ouð1Þa

oxb
þ Uð2ÞE þ

1
2

Uð0ÞE haha � chaa �
bðcs � cf Þ
pðb2 þ h2Þ

" #
:

ð27Þ

Fig. 2. Contour plots of the initial growth rate for surface evolution of epitaxial Ge films ðh0 ¼ 0:2LÞ on Si substrates of different surface orientations: (a) Si(001), (b) Si(111),
(c) Si(110), and (d) Si(113).
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A spectral method is employed for numerical simulations, sim-
ilar to the previous study for isotropic systems (Pang and Huang,
2006). Briefly, Fourier transform of Eq. (27) takes the generic form

oĥ
ot
¼ sðk1; k2ÞĥþUðĥÞ; ð28Þ

where UðĥÞ represents the combination of all the nonlinear terms. A
semi-implicit algorithm is then used to integrate Eq. (28) over time,
namely

ĥðk1; k2; t þ DtÞ ¼ ĥðk1; k2; tÞ þUðĥ; k1; k2; tÞDt
1� sðk1; k2ÞDt

; ð29Þ

where Dt is the time increment at each step. Similar numerical
methods have been developed for simulations of self-assembled
surface monolayers (Lu and Suo, 2002) and evolution of wrinkle
patterns (Huang and Im, 2006).

A brief description of the simulation procedures follows. For a
given epitaxial system, the mean film thickness and the mismatch
strain are specified. With the anisotropic elastic moduli of the sub-
strate, the compliance matrix, Q ij, is calculated following the steps
in Appendix A. Then, taking a randomly generated perturbation of
small amplitude to the mean film thickness as the initial condition,
the surface evolution is simulated by updating the thickness profile
over a number of time steps. For each time step, we compute the
Fourier transform of the current thickness profile, ĥðk1; k2; tÞ, by
the fast Fourier transform (FFT) method. In the reciprocal
Fourier space, the linear quantities (e.g., ikaĥ; ûð1Þi ¼
ikbQiar

ð0Þ
ab ĥ; and ikbûð1Þi ) are computed by simple multiplications

at each grid point (Fourier component). Next, we obtain corre-
sponding quantities in the real space (e.g., ha; uð1Þi ; and

ouð1Þ
i

oxb
) by in-

verse FFT (IFFT), and compute the nonlinear terms, such as
rð2Þ3a ¼ rð1Þab hb; rð2Þ33 ¼ rð0Þab hahb; rð1Þab

ouð1Þa
oxb

; haha; and chaa, by simple
multiplications at each grid point of the physical space. Then, we
transform the nonlinear terms back into the Fourier space and up-
date the Fourier transform of the thickness profile with
ĥðk1; k2; t þ DtÞ by Eq. (29). The final thickness profile in the phys-
ical space is obtained by IFFT at the end of the simulation.

6. Results and discussions

Our previous study (Pang and Huang, 2006) has shown that the
nonlinear evolution equation for isotropic systems predicts surface
evolution and formation of randomly located circular islands on
top of a thin wetting layer. By considering anisotropic mismatch
stresses in an otherwise isotropic system, we have revealed a sym-
metry breaking and bifurcation of surface patterns (Pang and
Huang, 2007). In the present study, to elucidate the effect of elastic
anisotropy, we consider specific epitaxial systems with anisotropic
elastic properties for both the films and the substrates. Cubic Ge
and SiGe films on Si substrates of various surface orientations are
studied in detail, and the effects of film thickness and Ge concen-
tration are discussed.

6.1. Ge/SiGe films on Si

Both Si and Ge have cubic crystalline structures, and they form
completely miscible solid solution, SiGe, over the entire range of Ge
concentration (Fitzgerald, 1995). The elastic moduli of Si and Ge
are listed in Table 1, referring to their natural crystal coordinates
(Freund and Suresh, 2003). By the rule of transformation for the
elasticity tensor as outlined in Appendix B, the elastic constants
with respect to the epitaxial coordinate for an arbitrary surface ori-
entation (see Fig. 1) can be obtained. The values of surface energy
density for Si and Ge are also listed in Table 1, for four surface ori-
entations: (001), (111), (110), and (113). We note quite a scatter-

ing in the reported surface energy values obtained from
experiments and theoretical calculations, which vary significantly
with specific surface conditions such as surface relaxation, recon-
struction, and hydrogenation (Stekolnikov et al., 2002, 2003). For
simplicity, we use the values of unrelaxed surfaces in the present
study.

The elastic moduli of a SiGe alloy are obtained by a linear inter-
polation between those of Si and Ge (Fitzgerald, 1995), namely

CSiGe
ijkl ¼ ð1� xÞCSi

ijkl þ xCGe
ijkl; ð30Þ

where x is Ge concentration ð0 6 x 6 1Þ. Similarly, we take the sur-
face energy density of SiGe as

cSiGe ¼ ð1� xÞcSi þ xcGe: ð31Þ

Experiments have shown that the lattice constant of SiGe is clo-
sely matched with a simple linear interpolation between Si and Ge
(Fitzgerald, 1995), i.e.,

aSiGe ¼ ð1� xÞaSi þ xaGe; ð32Þ

where aSi ¼ 0:5428 nm and aGe ¼ 0:5658 nm. Consequently, the
lattice mismatch between an epitaxial SiGe film and its Si substrate
induces an equi-biaxial compressive strain in the film:

eð0Þ11 ¼ eð0Þ22 ¼ em ¼
aSi � aSiGe

aSiGe
� �0:042x: ð33Þ

Note that the mismatch strain is independent of either the crystal
orientation of the epitaxial surface or the selection of the in-plane
coordinate axes. On the other hand, the mismatch stress in general
varies with both due to anisotropy in the elastic moduli.

The only parameter that remains to be determined in the pres-
ent model is the thickness b for the transition of surface energy at
the film/substrate interface. It is noted that the critical thickness as
predicted from the linear analysis in Eq. (26) explicitly depends on
b and can be compared with experimentally determined critical
thickness as a way to estimate the value of b. For epitaxial growth
of Ge on Si(001), experimental observations suggested that the
critical thickness for the 2D–3D transition is around 0.7–1.0 nm
(3–5 monolayers) (Eaglesham and Cerullo, 1990; Abstreiter et al.,
1996). By taking hc ¼ 0:7 nm, we obtain b ¼ 0:02 nm for Ge on
Si(001). For SiGe films, both the critical thickness and the transi-
tion layer thickness may vary with the substrate orientation and
Ge concentration. In the present study, we use the same transition
layer thickness for different substrate orientations, but increase the
thickness b for SiGe films as the Ge concentration decreases.

In the numerical simulations presented below, we normalize
the evolution equation using the length and time scales defined
in Eq. (24) and discretize the computational cell of size
100 � 100 into a 128 by 128 grid with a periodic boundary condi-
tion. To compare the results for different crystal orientations, the
length scale on the Si(001) substrate is used for all calculations.
For a pure Ge film ðx ¼ 1Þ, the length scale is: L ¼ 3:83 nm. The
length scale increases dramatically for SiGe films as the Ge concen-
tration decreases.

Table 1
Elastic moduli and surface energy density of Si and Ge.

Si Ge

Elastic moduli (GPa) C11 166.2 128.4
C12 64.4 48.2
C44 79.8 66.7

Surface energy density (J/m2) (001) 2.39 1.71
(111) 1.82 1.32
(110) 2.04 1.51
(113) 2.21 1.61
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6.2. Early-stage evolution

Starting from a nearly flat film surface, the evolution dynamics
at the early stage can be understood based on the linear analysis
presented in Section 4. First, the growth rate of each Fourier com-
ponent as a function of its wave vector, as given in Eq. (20), dictates
the stability and the fastest growing modes. Fig. 2 plots the con-
tours of the growth rate in the plane of ðk1; k2Þ for Ge films of a
mean thickness, h0 ¼ 0:2L, on Si substrates; only positive growth
rates are shown in the contours. For the Ge/Si(001) epitaxy
(Fig. 2a), the growth rate is positive in a diamond shaped region,
with four peaks symmetrically located on the k1 and k2 axes. This
predicts the fastest growing modes at the early stage, with the
wave vectors along the [100] and [010] directions. Apparently,
the elastic anisotropy of the cubic crystal breaks the rotational
symmetry that is characteristic of surface evolution in isotropic
systems (Pang and Huang, 2006). As will be shown later by numer-
ical simulations, the break of symmetry eventually leads to ordered
surface patterns as opposed to the lack of ordering in the isotropic
systems.

While the Si(001) has been the most commonly used substrate,
here we show that the surface evolution dynamics can be drasti-
cally different for epitaxial films on other orientations of Si. For
Ge/Si(111) epitaxy (Fig. 2b), the contours of the growth rate are
nearly concentric circles, similar to that for isotropic systems. This
is not surprising as we notice that the triangular lattice structure
on the Si(111) plane indeed leads to macroscopically isotropic
in-plane elastic properties. As a result, the early-stage surface evo-
lution on Si(111) resembles that in an isotropic system, with no
preferred directions for the fastest growing modes. For Ge/
Si(110) epitaxy (Fig. 2c), the contour plot shows two peaks of
the growth rate on the axis parallel to the ½�110� direction. This pre-
dicts growth of stripe patterns parallel to the [001] direction on
the (110) surface. For Ge/Si(113) epitaxy (Fig. 2d), there are four
peaks in the growth rate contour, corresponding to wave vectors
in two directions with angles ±31� off the ½�3 �32� direction on the
(113) surface. This is similar to the bifurcation of the growth mode
due to anisotropic mismatch stresses in an otherwise isotropic sys-
tem (Pang and Huang, 2007). Here, however, the bifurcation is a re-
sult of the combined effect due to anisotropic mismatch stress and
anisotropic substrate elasticity.

Fig. 3 plots the peak growth rate and the corresponding wave-
length ðk ¼ 2p=kÞ versus the mean film thickness for Ge on Si sub-
strates. For each substrate orientation, there exists a critical
thickness, below which the maximum growth rate is negative
and thus the film is stable with a flat surface. The critical thickness
varies slightly with the substrate orientation. For Ge on Si(001),
hc ¼ 0:18L � 0:7 nm, which is about five monolayers thick. Using
the same transition layer thickness b = 0.02 nm, the predicted crit-

ical thicknesses for the other orientations are smaller:
hc ¼ 0:10L � 0:4 nm for both Si(111) and Si(110), and
hc ¼ 0:14L � 0:55 nm for Si(113). For a film with the mean thick-
ness greater than the critical thickness, the maximum growth rate
becomes positive and the flat film surface is unstable. The growth
rate increases with the mean film thickness, and saturates for rel-
atively thick films. Similar behavior was predicted for isotropic sys-
tems (Pang and Huang, 2006), as a result of the wetting effect: the
wetting potential suppresses the surface instability for ultrathin
films, but has little effect on the early-stage evolution for relatively
thick films. Fig. 3b shows the similar trend for the wavelength of
the fastest growing mode at the early stage. Only beyond the crit-
ical thickness, does there exist a dominant wavelength, which de-
creases with the mean film thickness and saturates for relatively
thick films.

Comparison of the normalized growth rates and wavelengths
for different crystal orientations of the Si substrates shows an
interesting trend. With same mean film thicknesses, the Ge/
Si(001) epitaxial system is the most stable among the four orien-
tations, with the lowest growth rate and the longest wavelength.
The epitaxial surfaces are increasingly unstable in the order of
Ge/Si(113), Ge/Si(111), and Ge/Si(110). Remarkably, while the
(111) surfaces of both Si and Ge have the lowest surface energy,
the epitaxial Ge(111) surface on Si(111) substrate is less stable
compared to the (001) and (113) surfaces. Apparently, the stabil-
ity of an epitaxial surface is not solely controlled by the surface en-
ergy. It should be noted that the time scale s used to normalize the
growth rate may vary with the surface orientation through the
anisotropic surface energy cf and diffusivity M0; s � c3

f =M0, as de-
fined in Eq. (24). Moreover, the surface diffusivity is also sensitive
to the temperature as well as other growth conditions. Experimen-
tal observations showed that the growth rates of Ge islands on Si
substrates at 700 �C varied with the substrate orientations, increas-
ing in the order of Si(111), Si(110) and Si(001) (Vescan, 2002).

For epitaxial SiGe alloy films, the evolution dynamics is similar
except for the length and time scales. As defined in Eq. (24), the
length scale depends on the mismatch strain, elastic moduli, and
surface energy density, all of which vary with the Ge concentration
x as given in Eqs. (30)–(33). The effects of concentration-dependent
elastic moduli and surface energy density on the length scale have
been neglected in previous theoretical studies (Srolovitz, 1989),
leading to a simple scaling for the length, L / 1=x2. However, as
pointed out by Dorsch et al. (1998a), this scaling has to be cor-
rected by considering the compositional dependence of the elastic
moduli among other possible causes. The length scale plays an
important role in the determination of the critical thickness and
the dominant wavelength at the early stage of surface evolution.
As given in Eq. (26), the critical thickness roughly scales with the
length L. Fig. 4 plots the critical thickness as a function of the Ge
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Fig. 3. (a) The maximum initial growth rate and (b) the corresponding wavelength versus the mean film thickness for Ge films on Si substrates of different surface
orientations.
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concentration for epitaxial SiGe films on Si substrates. Here, the
transition layer thickness is taken to be: b ¼ 0:005L, where L varies
with x. Clearly, the critical thickness increases rapidly as the Ge
concentration decreases, approaching infinity as x! 0 for stable,
homoepitaxial growth of Si. A few experimental data (Abstreiter
et al., 1996; Osten et al., 1994; Floro et al., 1999) are included in
Fig. 4 for comparison, all for SiGe films on Si(001) substrates.
The agreement between the present model prediction and the
experimental data is reasonably good for a wide range of Ge
concentration.

Fig. 5 plots the wavelength of the fastest growing mode at the
early stage of surface evolution in epitaxial SiGe films as a function
of Ge concentration. The film thickness is set to be 100 nm. As
shown in Fig. 3b, the wavelength becomes independent of the film
thickness for relatively thick films. This wavelength scales linearly
with the length scale L, but varies slightly with the crystal orienta-
tions of the substrates. It is noted that, while the wavelength is
well above 1 lm for SiGe films with low Ge concentration (e.g.,
x < 0:2), the dominant wavelength is well below 100 nm for Ge-
rich films (e.g., x > 0:8). The large variation in the length scale thus
offers a potential approach to tunable surface patterns. Experimen-
tally, surface rippling at the early-stage of evolution have been ob-
served for epitaxial SiGe films on Si(001) substrates (Cullis et al.,
1994; Jesson et al., 1997; Dorsch et al., 1998b; Gao and Nix,
1999). In particular, Dorsch et al. (1998b) presented a detailed
study on the morphological evolution of SiGe films of low Ge con-
centration ð0:05 6 x 6 0:15Þ, and their measurements for the
wavelengths of the ripple patterns at the early stage are included

in Fig. 5. It is noted that the predicted wavelength is consistently
greater than the experimental data, approximately by a factor of
two.

6.3. Long-term evolution

Beyond the linear regime, long-term evolution of epitaxial sur-
face morphology by numerical simulations are shown in Figs. 6–9,
for Ge films on Si(001), Si(111), Si(110), and Si(113) substrates,
respectively. The mean film thickness for the simulations is
h0 ¼ 1:2hc , with slightly different critical thicknesses for different
substrate orientations. All simulations start from a flat surface with
a randomly generated initial perturbation of a small amplitude,
0.0001L. As predicted by the linear analysis, surface evolution at
the early stage is dominated by the fastest growing modes. On
the Si(001) substrate (Fig. 6), the film surface first evolves into
shallow ripples in both [100] and [010] directions. The initially
interconnected ridges then break up into chains of islands. These
islands are well organized, eventually forming a cubic array, like
a macroscopic replicate of the underlying cubic crystal structure.
Apparently, the anisotropic elastic property effectively represents
the cubic crystal structure and drives the ordering of the surface
pattern. Experimentally, similar ordering of islands was observed
in SiGe films with low Ge concentrations (Dorsch et al., 1998b;
Gao and Nix, 1999), while Ge or Ge-rich SiGe islands are often
not well organized (Abstreiter et al., 1996). In particular, Dorsch
et al. (1998b) observed surface ripples aligned in the h100i direc-
tions at the early stage and a transition to islands well aligned in
the same directions, similar to the simulated evolution sequence
in Fig. 6.

For the Si(111) substrate (Fig. 7), the early-stage evolution
shows similar surface patterns as that for isotropic systems, with
shallow ridges and grooves in all directions. After a long-time evo-
lution, however, discrete islands form and self-organize into a tri-
angular array, unlike the isotropic system (Pang and Huang, 2006).
Again, the triangular lattice of the cubic crystal on the (111) plane
is replicated on the surface at a larger scale. It is noted that,
although the elastic property is isotropic in the (111) plane, the
overall elastic property is still anisotropic and the anisotropic effect
manifests over long time evolution. A few experimental studies
have reported growth of Ge islands on Si(111) (Voigtlander and
Zinner, 1993; LeGoues et al., 1996; Shklyaev et al., 1998). It was
pointed out that the nucleation and growth of Ge islands strongly
depend on the direction of surface steps on Si(111), a non-contin-
uum feature beyond the scope of the current model. Nevertheless,
the observed triangular or tetrahedral islands seem to exhibit sim-
ilar symmetry as the triangular array in Fig. 7.

Numerical simulation shows that, for Ge on Si(110) (Fig. 8), the
film surface evolves from parallel ripples to self-assembled lines in
the [001] direction, consistent with the prediction by the linear
analysis (Fig. 2c). To our knowledge, very few experimental obser-
vations have been reported for epitaxial surface evolution of SiGe
or Ge films on Si(110). Arai et al. (1997) observed large Ge islands
on Si(110), and Ferrandis and Vescan (2002) reported a monomo-
dal size distribution of dome shaped Ge islands. Due to the fact that
atoms on {110} surfaces are arranged in a rather complex manner
(Vescan, 2002), further investigations with combined modeling
and experimental efforts are necessary to understand the evolution
dynamics of epitaxial surfaces on Si(110).

To further explore the anisotropic effect, high-index Si sub-
strates have been used to grow Ge nanostructures (Omi and Ogino,
1999; Zhu et al., 1999). In particular, Si(113) surface belongs to a
group of high-index surfaces with a rather small surface energy
and was found to be thermally stable (Vescan, 2002). Fig. 9 shows
the simulated surface evolution process of Ge on Si(113). As pre-
dicted by the linear analysis (Fig. 2d), the ripples at the early stage
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are aligned along two equivalent directions with angles ±31� off
the ½�110� direction. The surface ripples then evolve into discrete is-
lands well organized in a diamond pattern. Due to the fact that the
(113) plane is anisotropic, each island has an elliptic base as op-
posed to the circular islands on Si(001) and Si(111). Experimental
observation of similarly elongated Ge islands on Si(113) was re-
ported (Zhu et al., 1999).

Furthermore, it is found that the surface pattern depends on the
mean film thickness. Fig. 10 shows the surface patterns from
numerical simulations after long-time evolution of Ge films on
Si(001) substrates. When the mean film thickness is slightly above
the critical thickness ðh0 ¼ 1:1hcÞ, the islands form a cubic array. As
the film thickness increases, the island array first becomes denser
ðh0 ¼ 1:2hcÞ and then forms connected ridges ðh0 ¼ 1:4hcÞ. Further

Fig. 6. Simulated evolution of surface pattern for an epitaxial Ge film on a Si(001) substrate. First row: t = 0, 100, 500; second row: t = 1000, 2000, 10,000.

Fig. 7. Simulated evolution of surface pattern for an epitaxial Ge film on a Si(111) substrate. First row: t = 0, 50, 80; second row: t = 100, 500, 10,000.

Y. Pang, R. Huang / International Journal of Solids and Structures 46 (2009) 2822–2833 2829



Author's personal copy

increase of the mean film thickness leads to a surface pattern with
perpendicular lines in the h100i directions ðh0 ¼ 1:5hcÞ. Similar
transition of the surface pattern from dots to lines has been ob-
served experimentally (Gray et al., 2005). Similarly, on Si(113)
substrates, increasing the mean film thickness leads to a transition
from the organized island array to a line-shaped pattern (Fig. 11). A

few experiments have observed wire-shaped Ge islands on Si(113)
(Omi and Ogino, 1999). However, the observed Ge islands are elon-
gated along the ½�3 �32� direction, while the simulated line patterns
in Fig. 11 are aligned along two directions of angles ±31� off the
½�110� direction. The discrepancy in the alignment suggests that,
in addition to the elastic anisotropy, possible contributions on

Fig. 8. Simulated evolution of surface pattern for an epitaxial Ge film on a Si(110) substrate. First row: t = 0, 10, 50; second row: t = 100, 500, 1000.

Fig. 9. Simulated evolution of surface pattern for an epitaxial Ge film on a Si(113) substrate. First row: t = 0, 100, 200; second row: t = 500, 5000, 10,000.
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the pattern evolution dynamics from other physical origins (e.g.,
surface steps) not accounted for in the present model may be
important for the high-index surfaces.

7. Concluding remarks

In summary, we have developed a nonlinear model for surface
evolution of epitaxial thin films on generally anisotropic crystal
substrates. The effects of elastic anisotropy on surface patterns
are elucidated by considering specific epitaxial systems, namely,
Ge or SiGe films on Si substrates with four different surface orien-
tations. Both the early-stage evolution as predicted by a linear
analysis and the long-time evolution by numerical simulations
clearly show specific ordering of the surface patterns under the
influence of elastic anisotropy, contrasting the predictions by the
isotropic models.

In addition to the elastic anisotropy considered in the present
study, surface anisotropy can be important for understanding the
dynamics of surface evolution. The present model can be readily
extended to account for the effects of anisotropic surface diffusion
and anisotropic surface energy. Furthermore, discrete surface steps
play important roles for epitaxial growth on some substrate sur-
faces, e.g., Si(111) and Si(113). Further studies may adopt a con-
tinuum description of the stepped crystal surfaces (Shenoy and
Freund, 2002) or incorporate dynamics of discrete steps (Yoon
et al., 2007).
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Appendix A. Solution to generally anisotropic, linear elastic
half-space problems

Consider a semi-infinite half space subject to arbitrary tractions
on the planar surface. For isotropic, linear elastic solids, the solu-
tion can be derived from the solutions to the classical Cerruti’s
and Boussinesq’s problems (Pang and Huang, 2006). For a generally
anisotropic elastic solid, the following procedures are used in the
present study to obtain a semi-analytical solution. Similar proce-
dures have been used previously for cubic crystals (e.g., Lu and
Suo, 2002).

In terms of displacements, the equilibrium equation for a linear
elastic solid can be written as

Cijkluk;jl ¼ 0; ðA:1Þ

where Cijkl is the elastic moduli and uk the displacements, with the
subscripts taking values from 1 to 3 for the Cartesian coordinates.

For the half-space problem with the x3 axis normal to the sur-
face, taking a Fourier transform of Eq. (A.1) with respect to the
x1 and x2 coordinates, we obtain that

Lij
o2ûj

ox2
3

þ ikMij
oûj

ox3
� k2Nijûj ¼ 0; ðA:2Þ

where

ûjðx3; k1; k2Þ ¼
1

2p

Z 1

�1

Z 1

�1
ujðx1; x2; x3Þ expðik1x1 þ ik2x2Þdx1 dx2;

ðA:3Þ

½Lij� ¼
C55 C45 C35

C45 C44 C34

C35 C34 C33

264
375; ðA:4Þ

Fig. 10. Transition of surface patterns for epitaxial Ge films on Si(001) substrates, with increasing mean film thickness. From left to right:
h0 ¼ 1:1hc ; h0 ¼ 1:2hc ; h0 ¼ 1:4hc ; and h0 ¼ 1:5hc .

Fig. 11. Transition of surface patterns for epitaxial Ge films on Si(113) substrates, with increasing mean film thickness. From left to right:
h0 ¼ 1:05hc ; h0 ¼ 1:1hc ; h0 ¼ 1:3hc ; and h0 ¼ 1:5hc .
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½Mij� ¼
1
k

2ðk1C15 þ k2C56Þ k1ðC56 þ C14Þ þ k2ðC25 þ C46Þ k1ðC13 þ C55Þ þ k2ðC45 þ C36Þ
2ðk1C46 þ k2C24Þ k1ðC36 þ C45Þ þ k2ðC23 þ C44Þ

sym 2ðk1C35 þ k2C34Þ

264
375; ðA:5Þ

½Nij� ¼
1

k2

k2
1C11 þ 2k1k2C16 þ k2

2C66 k2
1C16 þ k1k2ðC12 þ C66Þ þ k2

2C26 k2
1C15 þ k1k2ðC14 þ C56Þ þ k2

2C46

k2
1C66 þ 2k1k2C26 þ k2

2C22 k2
1C56 þ k1k2ðC25 þ C46Þ þ k2

2C24

sym k2
1C55 þ 2k1k2C45 þ k2

2C44

2664
3775; ðA:6Þ

and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ k2
2

q
. The Voigt’s abbreviated notation for the elastic

moduli has been used in Eqs. (A.4)–(A.6).
The solution to Eq. (A.2) takes the general form

ûj ¼ v jðk1; k2Þ expðkkx3Þ: ðA:7Þ

Substituting (A.7) into Eq. (A.2) leads to

k2Lij þ ikMij � Nij
� �

v j ¼ 0: ðA:8Þ

Therefore, v jðk1; k2Þ can be determined as the eigenvector from Eq.
(A.8) corresponding to the eigenvalue k, which can be solved by set-
ting the determinant of the coefficient matrix in (A.8) to be zero. In
general, there exist six eigenvalues. For the half-space problem
ðx3 < 0Þ, however, the displacement necessarily vanishes as
x3 ! �1. Thus, the three eigenvalues with negative real part are
discarded. With the remaining three eigenvalues, the complete
solution takes the form

ûj ¼
X3

n¼1

Anv ðnÞj expðknkx3Þ: ðA:9Þ

Next, the boundary condition at the surface ðx3 ¼ 0Þ is specified
to determine the coefficients An. Using the displacement in (A.9),
the strain and stress are obtained. Then, the surface tractions,
Tiðx1; x2Þ ¼ r3iðx1; x2;0Þ, are obtained in terms of their Fourier
transforms

bT i ¼
X3

n¼1

DðnÞi An; ðA:10Þ

where

DðnÞi ¼ Pij þ kknLij
� �

v ðnÞj ; ðA:11Þ

and

½Pij� ¼
ik1C15 þ ik2C56 ik1C56 þ ik2C25 ik1C55 þ ik2C45

ik1C14 þ ik2C46 ik1C46 þ ik2C24 ik1C45 þ ik2C44

ik1C13 þ ik2C36 ik1C36 þ ik2C23 ik1C35 þ ik2C34

264
375:
ðA:12Þ

Given the surface tractions, the coefficients An are then deter-
mined by Eq. (A.10). The Fourier transform of the surface displace-
ment is then related to the surface traction by setting x3 ¼ 0 in Eq.
(A.9), taking the form

ûjðx3 ¼ 0; k1; k2Þ ¼ Qjiðk1; k2ÞbT i; ðA:13Þ

where the coefficient matrix Qjiðk1; k2Þ ¼
P3

n¼1v
ðnÞ
j DðnÞi , and DðnÞi is

the inverse of DðnÞi by the definition
P3

n¼1DðnÞi DðnÞj ¼ dij. Consequently,
the matrix Qjiðk1; k2Þ characterizes the compliance of the elastic half
space, independent of the surface traction.

By the kinematic relation between displacement and strain, we
obtain the Fourier transforms of the strain components

êab ¼
1
2

ikaûb þ ikbûa
� �

¼ 1
2

X3

n¼1

ikav ðnÞb þ ikbv ðnÞa

� �
An expðknkx3Þ; ðA:14Þ

ê3a ¼
1
2

ikaû3 þ
oûa

ox3

� �
¼ 1

2

X3

n¼1

ikav ðnÞ3 þ knkv ðnÞa

� �
An expðknkx3Þ; ðA:15Þ

ê33 ¼
oû3

ox3
¼
X3

n¼1

Anknkv ðnÞ3 expðknkx3Þ: ðA:16Þ

Finally, the stress components are obtained by Hooke’s law:

r̂ij ¼ ikbCijabûa þ Cija3
oûa

ox3
þ ikaû3

� �
þ Cij33

oû3

ox3
: ðA:17Þ

As a special case for the general solution, consider a half space
of a cubic crystal with its surface parallel to the (001) plane. In this
case, the eigenvalue problem in (A.8) reduces to that in Lu and Suo
(2002). The eigenvalues can then be obtained by solving a cubic
algebraic equation of k2:

k6 þ d1k
4 þ d2k

2 þ d3 ¼ 0; ðA:18Þ

where

d1 ¼ �
R2 þ RSþ S2 � 1

RS
; ðA:19Þ

d2 ¼
R2 þ RSþ S2 � 1

RS
þ S3 � 2RS2 þ R2S� 3Sþ 2Rþ 2

R2S

� k2
1k2

2

k4 ; ðA:20Þ

d3 ¼ �
ðR� SÞ2 � 1

RS
k2

1k2
2

k4 � 1; ðA:21Þ

with R ¼ C44=ðC12 þ C44Þ and S ¼ C11=ðC12 þ C44Þ.
Furthermore, for an isotropic solid, we have S� R ¼ 1, by which

Eq. (A.18) becomes

ðk2 � 1Þ3 ¼ 0: ðA:22Þ

This is a degenerated eigenvalue problem, with only one eigenvalue
as the triple root: k ¼ 1. This would cause difficulty in the above
solution procedure as we cannot find three linearly independent
eigenvectors. The difficulty can be resolved by considering a differ-
ent form of the solution instead of (A.7), namely

ûj ¼ ðAj þ Bjkx3Þ expðkx3Þ: ðA:23Þ

Substituting (A.23) into Eq. (A.2) together with the isotropic elastic
moduli (E and m for the Young’s modulus and Poisson’s ratio, respec-
tively), we obtain that

B1

k1
¼ B2

k2
; ðA:24Þ

A3 ¼
1
k
�ik1A1 � ik2A2 � ð3� 4mÞ k2

ik1
B1

 !
; ðA:25Þ
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B3 ¼ �
ik
k1

B1: ðA:26Þ

Applying the boundary condition at the surface leads to three more
equations that complete the solution. It is confirmed that this ap-
proach recovers the relationship between the surface tractions,bT iðk1; k2Þ, and the surface displacements, ûjðx3 ¼ 0; k1; k2Þ, obtained
previously (Pang and Huang, 2006) by integrating the solutions to
the classical Cerruti’s and Boussinesq’s problems for an isotropic,
linear elastic half space.

Appendix B. Transformation of anisotropic elastic moduli

Let Cijkl be the elastic moduli at the natural crystalline coordi-
nate (x0i in Fig. 1). In an arbitrarily rotated coordinates (e.g., xi in
Fig. 1 for the epitaxial system), the elastic moduli eCijkl can be ob-
tained by transformationeC ijkl ¼ TimTjnTkpTlqCmnpq; ðB:1Þ

where Tij is the rotation matrix from the reference coordinates x0i to
the epitaxial coordinates xi. For cubic crystals such as Si and Ge, the
transformation equation reduces to

eC ijkl ¼ Cijkl � C0

X3

n¼1

TinTjnTknT ln � dijdkldik

" #
; ðB:2Þ

where C0 ¼ C11 � C12 � 2C44 and no summation is implied for indi-
ces i and k.
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