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A Variational Approach and Finite
Element Implementation for
Swelling of Polymeric Hydrogels
Under Geometric Constraints
A hydrogel consists of a cross-linked polymer network and solvent molecules. Depending
on its chemical and mechanical environment, the polymer network may undergo enor-
mous volume change. The present work develops a general formulation based on a
variational approach, which leads to a set of governing equations coupling mechanical
and chemical equilibrium conditions along with proper boundary conditions. A specific
material model is employed in a finite element implementation, for which the nonlinear
constitutive behavior is derived from a free energy function, with explicit formula for the
true stress and tangent modulus at the current state of deformation and chemical poten-
tial. Such implementation enables numerical simulations of hydrogels swelling under
various constraints. Several examples are presented, with both homogeneous and inho-
mogeneous swelling deformation. In particular, the effect of geometric constraint is em-
phasized for the inhomogeneous swelling of surface-attached hydrogel lines of rectangu-
lar cross sections, which depends on the width-to-height aspect ratio of the line. The
present numerical simulations show that, beyond a critical aspect ratio, creaselike sur-
face instability occurs upon swelling. �DOI: 10.1115/1.4001715�

Keywords: hydrogel, swelling, large deformation, surface instability
Introduction
An aggregate of a polymer network and small molecules �e.g.,

ater� forms a polymeric hydrogel. In response to various envi-
onmental stimuli �e.g., temperature, vapor pressure, pH, and elec-
ric field�, a hydrogel can swell or shrink dramatically by absorb-
ng or desorbing the solvent molecules. The stimuli-responsive
roperties of hydrogels along with their degree of flexibility simi-
ar to natural tissues have led to a wide range of applications in
iotechnology and medicine �1–4�, including drug delivery, tissue
ngineering, biosensors, as well as other microdevices �5–7�.

The complex material behavior of hydrogels with large, revers-
ble deformation, and various instability patterns have been ob-
erved in experiments �8–17�, which have motivated a large body
f theoretical and numerical studies �18–30�. Recently, following
he classical works by Gibbs �31� and Biot �32,33�, Hong et al.
27� formulated a nonlinear field theory coupling diffusion of sol-
ent molecules and large deformation of polymeric gels. With a
pecific material model, such a theory enables analyses of
welling-induced deformation phenomena in hydrogels under
arious physical and geometrical constraints �28–30�.

In an effort to study the effects of constraint on the swelling of
olymeric thin films and nanolines �4,9–17�, the present paper
eformulates the theory by Hong et al. �30� in a general variational
orm and develops an alternative method for a finite element
nalysis of equilibrium states of polymeric hydrogels swollen un-
er constraints. The remainder of this paper is organized as fol-
ows. Section 2 presents the general statements of the variational
rinciple and derives the equilibrium equations along with bound-
ry conditions for the coupled mechanical and chemical fields.
ection 3 develops a finite element method for numerical simula-

ions using the user-defined material �UMAT� feature of the com-
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mercial package ABAQUS. Analytical and numerical solutions are
presented in Sec. 4 for the homogeneous and inhomogeneous
swelling of hydrogels, where the effects of geometric constraints
are emphasized.

2 Theory: A Variational Approach

2.1 General Statements. Consider a hydrogel body �current
state� of volume � enclosed by a surface �, subjected to a dis-
tributed body force bi and surface traction ti. In addition, the hy-
drogel is immersed in a solvent environment of chemical potential
�̂ �per solvent molecule�, and the transport of the solvent mol-
ecules occurs within the hydrogel body and across the surface �.
As illustrated in Fig. 1, part of the surface � may be mechanically
constrained �e.g., attached to a rigid surface� and/or chemically
isolated from the solvent.

With an infinitesimal variation to the current state in terms of
both mechanical displacement and molecular transport, the total
work done to the hydrogel includes the mechanical work by the
body force and the surface traction and the chemical work via
absorption of solvent molecules, namely,

�W =�
�

bi�xidV +�
�

ti�xidS −�
�

�̂nk�ikdS �1�

where �xi is the variation of the current position and �ik is the
variation of the molecular flux, defined as the number of solvent
molecules across per unit area of a surface element with the sur-
face normal in the direction xk. The vector product −nk�ik gives
the number of solvent molecules entering the gel across per unit
area of its surface, where nk is the unit normal vector on the
surface �positive outwards�. We ignore the injection of solvent
molecules by distributed pump that was included in the theory by
Hong et al. �27�. Additional terms may be added in Eq. �1� to

include works done by other fields �e.g., temperature and electric
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eld�, which are beyond the scope of the present study.
Assuming a free energy density function for the hydrogel u, the

ariation of the total free energy of the hydrogel is

�� = ���
�

udV� �2�

he functional form of u determines the constitutive behavior of
he hydrogel, which will be discussed later with a specific material

odel.
The variation of the free energy for the thermodynamic system

ncluding the hydrogel and its mechanical/chemical environment
s

�G = �� − �W �3�

or all thermodynamically permissible variations, �G�0 �34�. If
he current state is a thermodynamically equilibrium state, �G
0 for any arbitrary variation. Otherwise, the system evolves to

educe its free energy ��G�0�.
Furthermore, mass conservation of the solvent molecules re-

uires that

���
�

cdV� = −�
�

nk�ikdS �4�

here c is the concentration of the solvent molecule in the hydro-
el �i.e., number of molecules per unit volume at the current
tate�. Equation �4� simply states that the total number of solvent
olecules in the gel changes only as the molecules enter or leave

he gel through its boundary ���, assuming no sources or distrib-
ted pumps inside the body ���. We emphasize that this statement
oes not assume incompressibility of the solvent molecules or the
olymer network.

The left-hand side of Eq. �4� can be decomposed into two parts,
amely,

���
�

cdV� =�
�

�cdV +�
�

c�xk,kdV �5�

here the second term on the right-hand side of Eq. �5� represents
he contribution from the volume change in the gel, with �xk,k
eing the linear volumetric strain for an infinitesimal variation
rom the current state.

By substituting Eq. �5� into Eq. �4� and applying the divergence
heorem on the right-hand side, we obtain that

�
�

��c + c�xk,k�dV = −�
�

�ik,kdV �6�

or Eq. �6� to hold everywhere inside the gel, it necessarily re-

ig. 1 Schematic illustration of the reference state „dry… and
he equilibrium state „swollen… of a hydrogel, along with an aux-
liary initial state used in numerical simulations
uires that
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�c = − �ik,k − c�xk,k in � �7�

Therefore, the general statements of the variational principle for
the hydrogel include one for the variation of free energy �Eq. �3��
and one for the mass conservation �Eq. �4� or Eq. �7��.

2.2 Nominal Quantities. It is often convenient to use nomi-
nal quantities referring to a reference configuration with fixed vol-
ume �0 and surface �0. As illustrated in Fig. 1, a deformation
gradient tensor F maps the reference configuration to the current
state, namely,

dxi = FiKdXK and FiK =
�xi

�XK
�8�

where XK refers to the fixed coordinates at the reference state.
While the choice of the reference state is arbitrary in general, we
choose the dry state of the hydrogel as the reference state in the
present study. As will be discussed later, such a choice is neces-
sary for the use of a specific free energy function. On the other
hand, it poses a numerical challenge that has to be circumvented
in finite element analyses.

The differential volume and surface area at the current state are
related to those in the reference state by

dV = JdV0 and nidS = AiJNJdS0 �9�

where NJ is the unit normal of the surface at the reference state,
and

J = det�F�, AiJ = 1
2eijkeJKLFjKFkL �10�

Thus, the nominal quantities �in upper cases� can be defined as
follows:

• nominal body force B: BidV0=bidV
• nominal surface traction T: TidS0= tidS
• nominal molecular flux I: NK�IKdS0=nk�ikdS
• nominal free energy density U: UdV0=udV
• nominal molecular concentration C: CdV0=cdV

In terms of the nominal quantities, the variational statements in
Eqs. �1�, �2�, and �4� are recast as follows:

�W =�
�0

Bi�xidV0 +�
�0

Ti�xidS0 −�
�0

�̂NK�IKdS0 �11�

�� =�
�0

�UdV0 �12�

�
�0

�CdV0 = −�
�0

NK�IKdS0 �13�

Applying the divergence theorem to Eq. �13� leads to

�C = −
�

�XK
��IK� in �0 �14�

2.3 Equilibrium Equations. At the equilibrium state, �G
=��−�W=0, and thus

�
�0

�UdV0 =�
�0

Bi�xidV0 +�
�0

Ti�xidS0 −�
�0

�̂NK�IKdS0

�15�

Assume a general form of the nominal free energy density func-
tion, U�F ,C�. The variation of the free energy at the left-hand side

of Eq. �15� can be carried out as follows:
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�
�0

�UdV0 =�
�0

�U

�FiK
�FiKdV0 +�

�0

�U

�C
�CdV0

=�
�0

�U

�FiK

�

�XK
��xi�dV0 −�

�0

�U

�C

�

�XK
��IK�dV0

�16�

y applying the divergence theorem, we obtain that

�
�0

�UdV0 =�
�0

�U

�FiK
NK�xidS0 −�

�0

�

�XK
� �U

�FiK
��xidV0

−�
�0

�U

�C
NK�IKdS0 +�

�0

�

�XK
� �U

�C
��IKdV0

�17�

hus, the equilibrium condition in Eq. �15� becomes

�
�0

� �U

�FiK
NK − Ti��xidS0 −�

�0

	 �

�XK
� �U

�FiK
� + Bi
�xidV0

−�
�0

� �U

�C
− �̂�NK�IKdS0 +�

�0

�

�XK
� �U

�C
��IKdV0 = 0

�18�

or Eq. �18� to hold for any arbitrary variations, it necessarily
equires that

�

�XK
� �U

�FiK
� + Bi = 0 in �0

�

�XK
� �U

�C
� = 0 in �0 �19�

nd

�U

�FiK
NK = Ti or �xi = 0 on �0

�U

�C
= �̂ or NK�IK = 0 on �0 �20�

he governing equations for the equilibrium state of the hydrogel
re thus established in Eq. �19�, along with the boundary condi-
ions in Eq. �20�. It is noted that, in the variational analysis, the
eformation gradient �F� and the concentration �C� have been
aken as the state variables in the definition of the free energy
unction �U�, while the mechanical displacement of the polymer
etwork ��xi� and molecular flux of the solvent ��IK� are the
hysical processes that change the current state of the hydrogel.
t the equilibrium state, the free energy G is minimized with

espect to any arbitrary variations in both the displacement and
ux.
Now we may define the nominal stress and chemical potential

s work conjugates of the deformation gradient and solvent con-
entration, respectively, as follows:

siK =
�U

�FiK
and � =

�U

�C
�21�

he equilibrium equations and the boundary conditions are then
ewritten as

�siK + Bi = 0 in �0
�XK

ournal of Applied Mechanics
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��

�XK
= 0 in �0 �22�

and

siKNK = Ti or �xi = 0 on �0

� = �̂ or NK�IK = 0 on �0 �23�

We note that in addition to the familiar boundary conditions for
the mechanical traction �natural� and displacement �essential�, the
chemical boundary condition can be specified either by the chemi-
cal potential of the external solvent or by zero flux �e.g., surface
isolated or blocked from the solvent�. It is also possible to have
mixed boundary conditions.

The two field equations in Eq. �22� appear to be uncoupled.
However, both the nominal stress siK and the chemical potential �
are derived from the same free energy density function U, which
are coupled in general through the constitutive behavior of the
hydrogel. The second equation �chemical equilibrium� dictates
that the chemical potential to be a constant at the equilibrium state
�if it exists�. This is only possible when the hydrogel is in contact
with a homogeneous solvent of a constant chemical potential, i.e.,
�= �̂=const. The constant chemical potential in the hydrogel as
an equilibrium condition is analogous to the constant temperature
as an equilibrium condition for heat transfer.

The chemical potential of the external solvent, either in a liquid
or in a gaseous state, is given by �27�

�̂ = � �p − p0�v if p � p0

kBT log�p/p0� if p � p0
� �24�

where p is the pressure in the solvent, p0 is the equilibrium vapor
pressure, v is the volume per solvent molecule, T is the absolute
temperature, and kB is the Boltzmann constant. At the equilibrium
vapor pressure �p= p0�, the external chemical potential �̂=0.

At a nonequilibrium state, the solvent molecules migrate within
the gel and the polymer network deforms to reduce the free energy
G, i.e., �G�0. Assuming self-diffusion as the dominant kinetic
process, Hong et al. �27� developed a kinetic model, based on
which a finite element method was developed for a transient
analysis of swelling polymeric gels �30�. The present study fo-
cuses on the analysis of equilibrium states only.

2.4 A Free Energy Function for Hydrogel. In addition to the
governing equations, a specific functional form of the free energy
density U�F ,C� is needed for the analysis of the swelling defor-
mation of hydrogels. Following the approach of Flory �35�, we
adopted a free energy function that consists of two parts, one for
elastic deformation of the polymer network and the other for mix-
ing of the solvent molecules with the polymer chains, namely,

U�F,C� = Ue�F� + Um�C� �25�

Based on a statistical mechanics model of rubber elasticity, the
elastic free energy density was obtained by Flory �35,36� as fol-
lows:

Ue�F� = 1
2NkBT�	1

2 + 	2
2 + 	3

2 − 3 − ln�	1	2	3�� �26�

where 	1, 	2, and 	3 are the principal stretches in the principal
directions of the deformation gradient tensor F, and N is the ef-
fective number of polymer chains per unit volume of the hydrogel
at the dry state, which is related to the cross-link density of the
polymer network. It is well known that NkBT defines the initial
shear modulus of an elastomer �37�. When the deformation does
not change the volume �i.e., 	1	2	3=1�, Eq. �26� reduces to the
familiar strain energy density function for incompressible neo-
Hookean materials �38�. For the swelling deformation of a hydro-
gel, however, the volume changes dramatically. The last term in
the bracket of Eq. �26�, resulting from the entropy change associ-
ated with the volume change, is, however, problematic from a

mechanic’s consideration �37,39�. To account for the volume
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hange in rubber elasticity, many other forms of the free energy
unction have been suggested �37,39–42�. In the present study,
ollowing Hong et al. �27�, we take the elastic free energy function
s follows:

Ue�F� = 1
2NkBT�	1

2 + 	2
2 + 	3

2 − 3 − 2 ln�	1	2	3��

= 1
2NkBT�FiKFiK − 3 − 2 ln J� �27�

hich differs from Eq. �26� by a factor of 2 in the volumetric
erm. The same functional form was suggested by others from

athematical considerations �39� as well as a statistical mechanics
odel �43,44�. Note that the principal stretches and deformation

radient in Eq. �27� are defined with respect to the dry state as the
eference, which is assumed to be isotropic. The functional form
hould be modified accordingly if a different reference state is
sed.

Based on the Flory–Huggins polymer solution theory �35,45�,
he free energy change due to mixing of pure solvent with a poly-

er network was obtained as


Fm = kBT�n1 ln � + �n1�1 − ��� �28�

here n1 is the number of solvent molecules, � is the volume
raction of the solvent, and � is a dimensionless quantity that
haracterizes the interaction energy between the solvent and the
olymer. The first term on the right-hand side of Eq. �28� comes
rom the entropy of mixing, and the second term from the heat of
ixing �enthalpy�.
By the assumption of molecular incompressibility, the volume

welling ratio of the hydrogel is

J =
V

V0
= 1 + vC �29�

t then follows that n1=V0C and �=vC / �1+vC�. Thus, the free
nergy of mixing per unit volume is as follows:

Um�C� =

Fm

V0
=

kBT

v
�vC ln

vC

1 + vC
+

�vC

1 + vC
� �30�

quation �30� differs slightly from that given by Hong et al. �27�
y a constant, which is insignificant for swelling deformation. At
he dry state, we have C=0 and Um=0. The tendency to increase
he entropy of mixing �thus to decrease the free energy� drives the
olvent molecules to enter the polymer network. This tendency to
ix may be either opposed ���0� or enhanced ���0� by the

eat of mixing, depending on the sign of �. Furthermore, as the
rocess of absorption proceeds, the elastic energy of the network
ncreases as a penalty of swelling. Ultimately, a state of equilib-
ium swelling may be obtained, in which the total free energy
eaches a minimum.

In search for the equilibrium swelling state, the condition of
olecular incompressibility in Eq. �29� can be imposed as a con-

traint that relates the solvent concentration C to the deformation
f the polymer network. In the cases of homogeneous swelling, a
erm with a Lagrange multiplier for the constraint can be added to
he free energy function, namely,

U�F,C� = Ue�F� + Um�C� + 
�1 + �C − J� �31�

s defined in Eq. �21�, the principal nominal stresses are obtained
s

s1 =
�U

�	1
= NkBT�	1 −

1

	1
� − 
	2	3

s2 =
�U

= NkBT�	2 −
1 � − 
	1	3
�	2 	2

61004-4 / Vol. 77, NOVEMBER 2010
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s3 =
�U

�	3
= NkBT�	3 −

1

	3
� − 
	1	2 �32�

In Eq. �32�, the Lagrange multiplier 
 represents the osmotic
pressure, resulting from the condition of molecular incompress-
ibility. For free, isotropic swelling, we have s1=s2=s3=0 and 	1
=	2=	3=	, which lead to an osmotic pressure 
=NkBT�1 /	
− �1 /	3��. As expected, the osmotic pressure is zero at the unde-
formed dry state �	=1�. The predicted osmotic pressure at the dry
state would not vanish if the elastic free energy function in Eq.
�26� instead of Eq. �27� was used.

The chemical potential in the swollen hydrogel is obtained from
Eq. �31� as

� =
�U

�C
= kBT	ln

�C

1 + �C
+

1

1 + �C
+

�

�1 + �C�2 + N�� 1

	
−

1

	3�

�33�

The last term in the bracket of Eq. �33� represents a modification
to the chemical potential due to the elastic reaction of the polymer
network. A similar formula for the chemical potential was ob-
tained by Flory �35�, with a factor of 2 difference in the last term.
The difference results from the different forms of the elastic free
energy function in Eqs. �26� and �27�.

By setting �= �̂ as the external chemical potential defined in
Eq. �24� and noting vC=	3−1 by molecular incompressibility, the
isotropic, homogeneous equilibrium swelling ratio can be solved
from Eq. �33� as

	 = 	� �̂

kBT
;Nv,�� �34�

where the two dimensionless quantities �Nv and �� characterize
the material system, with N for the polymer network structure, v
for the solvent molecules, and � for the solvent-polymer interac-
tion. The effect of the external environment �e.g., temperature and
vapor pressure� is accounted for in Eq. �34� via the normalized
chemical potential. As an example, at the equilibrium vapor pres-
sure, we have �̂=0 and 	=3.390 for a hydrogel with �=0.1 and
�N=10−3; the corresponding volume ratio of swelling is J=	3

=38.96.
It is noted that the first term in the bracket of Eq. �33� is un-

bounded at the dry state �when C=0�. This is consistent with the
definition of the external chemical potential in Eq. �24�, which
approaches negative infinity as the vapor pressure approaches zero
�i.e., vacuum�. However, the negative infinite chemical potential
at the dry state poses a challenge for numerical simulations of
swelling deformation under constraints from the dry state, as will
be discussed in Sec. 3.

3 Formulation of a Finite Element Method
Simple, analytical solutions can be obtained for the homoge-

neous swelling of hydrogels from the above theoretical framework
�27�. For inhomogeneous swelling with complex geometric and
physical constraints, however, numerical approaches are often
necessary �27–30�. With the variational form of the present theory,
a finite element method may be developed to solve the coupled
field equations in Eq. �22�. Alternatively, following Hong et al.
�29�, a Legendre transformation of the free energy density func-
tion leads to

Û�F,�� = U�F,C� − �C �35�
which can then be used to solve for the equilibrium swelling de-
formation with a prescribed chemical potential �. Since the
chemical potential must be a constant at the equilibrium state
��= �̂�, a standard nonlinear finite element method for hyperelas-
ticity �46� can be employed to solve for the equilibrium swelling

deformation field �F�. The concentration field �C�, which is inho-
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ogeneous in general, can then be obtained from the condition of
olecular incompressibility, i.e., C= �J−1� /v.
Substituting Eqs. �27� and �30� into the free energy function in

q. �25� and then into Eq. �35� and replacing vC with J−1, we
btain that

Û�F,�� =
1

2
NkBT�I − 3 − 2 ln J� +

kBT

�
	�J − 1�ln

J − 1

J
+ �

J − 1

J



−
�

�
�J − 1� �36�

here I=FiKFiK. At the undeformed dry state, we have J=1 and

=3 so that Û=0. However, the chemical potential at the dry state
s singular ��=−��, which cannot be accurately specified for nu-

erical simulations. To circumvent this inconvenience, an auxil-
ary configuration with a finite value of the chemical potential is
sed as the initial state in numerical simulations, as illustrated in
ig. 1. The choice of the initial state should be such that �a� the
orresponding swelling deformation is homogeneous and �b� the
ssential boundary conditions at the dry state are satisfied. Condi-
ion �a� allows the chemical potential at the initial state to be
btained analytically and condition �b� ensures that the effect of
onstraints on swelling by the essential boundary conditions is
aintained at the initial state and throughout the subsequent

welling process. In a previous study �29�, a free, isotropic swell-
ng deformation is assumed for the initial state, which does not
ecessarily satisfy condition �b� for the swelling of hydrogels un-
er geometric constraints. In the present study, we choose an ini-
ial state with swelling deformation in form of

F�1� = 
	1
�1� 0 0

0 	2
�1� 0

0 0 	3
�1� � �37�

he three principal stretches at the initial state and the correspond-
ng chemical potential ��=�1� depend on specific constraints im-
osed by the essential boundary conditions, as will be discussed in
ec. 4.
As illustrated in Fig. 1, the total swelling deformation from the

ry state is decomposed into two parts as:

F = F�2�F�1� �38�

here F�2� is the deformation gradient from the initial state ��
�1� to the final state of equilibrium ��= �̂� and is to be solved
umerically by the finite element method.

The nonlinear constitutive behavior of a hydrogel can be speci-
ed as a user-defined material in a standard finite element package
uch as ABAQUS �47�. In particular, ABAQUS offers two options for
uch implementation, with the user subroutine UHYPER or UMAT.
he former �UHYPER� is specialized for hyperelastic materials, but
ith the restriction that the initial state must be isotropic. Assum-

ng isotropic swelling at the initial state, a user subroutine with
HYPER was developed previously �29�. In the present study, with
generally anisotropic initial state as given in Eq. �37�, we de-

elop an alternative implementation for swelling of hydrogels un-
er constraints using a UMAT subroutine in ABAQUS. As a general
aterial subroutine, the procedures for UMAT implementation are

uite different from those for UHYPER. In the UHYPER subroutine,
he free energy function and its derivatives with respect to the
eviatoric strain invariants are coded �29�. The restriction of such
n implementation to an isotropic initial state results from the
ecomposition of the deformation gradient into a volumetric part
nd a deviatoric part. The present implementation using UMAT

emoves this restriction but requires a lengthy derivation of ex-
licit formula for the true �Cauchy� stress and its variation with
espect to the current state in terms of a fourth-order tangent
odulus tensor.

First, the nominal stress is obtained as
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siK =
�Û

�FiK
=

�Û

�I

�I

�FiK
+

�Û

�J

�J

�FiK
�39�

By definition, the Kirchoff stress is

J�ij = siKFjK = � �Û

�I

�I

�FiK
+

�Û

�J

�J

�FiK
�FjK �40�

where �ij is the true stress at the current state. Using the free
energy function in Eq. �36�, we obtain that

�Û

�I
=

1

2
NkBT �41�

�Û

�J
= NkBT	−

1

J
+

1

N�
�ln

J − 1

J
+

1

J
+

�

J2 −
�

kBT
�
 �42�

Furthermore, it can be shown that

�I

�FiK
= 2FiK and

�J

�FiK
=

1

2
eijkeKQRFjQFkR �43�

Substituting Eqs. �41�–�43� into Eq. �40�, we obtain an explicit
formula for the true stress

�ij = NkBT	J−1/3B̄ij +
�ij

N�
�ln

J − 1

J
+

1 − Nv
J

+
�

J2 −
�

kBT
�


�44�

where B̄ij =J−2/3FiKFjK is the deviatoric stretch tensor and �ij is
the Kronecker delta.

Next, the variation of the Kirchoff stress gives that

��J�ij� = NkBT	2

3
J−1/3B̄ij�J + J2/3�B̄ij +

�ij

N�
�ln

J − 1

J
+

1

J − 1
−

�

J2

−
�

kBT
��J
 �45�

It can be shown that

�J = J�Dkk �46�

�B̄ij = Hijkl��Dkl −
�kl

3
�Dmm� + B̄kj�Wik − B̄ik�Wkj �47�

where

�Dij = 1
2 ��Lij + �Lji� �48�

�Wij = 1
2 ��Lij − �Lji� �49�

�Lij =
�

�xj
��ui� �50�

Hijkl = 1
2 �B̄jl�ik + B̄ik� jl + B̄jk�il + B̄il� jk� �51�

In the above equation, �ui is the variation displacement, �Dij is
the symmetric part of the deformation gradient, and �Wij is the
antisymmetric part �spin�, all of which are variational quantities
with respect to the current state.

By substituting Eqs. �46� and �47� into Eq. �45�, we obtain that

��J�ij� = JCijkl�Dkl + J��kj�Wik − �ik�Wkj� �52�

where an explicit formula for the tangent modulus tensor at the

current state is obtained as follows:
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Cijkl = NkBT	J−1/3Hijkl +
1

N�
�ln

J − 1

J
+

1

J − 1
−

�

J2 −
�

kBT
��ij�kl


�53�
he second term on the right-hand side of Eq. �52� results from

he rotation of the local coordinates, which is not needed in the
aterial subroutine �47�. The first term on the right-hand side of
q. �53� gives the tangent modulus for an incompressible, neo-
ookean material.
With Eqs. �44� and �53� for the true stress and tangent modulus,
user subroutine is coded in the format of UMAT in ABAQUS.

ollowing Hong et al. �29�, the chemical potential is mimicked by
temperaturelike quantity in the user subroutine, which is set to

e a constant in the hydrogel at the equilibrium state. Analogous
o thermally induced deformation, a change in the chemical po-
ential leads to swelling deformation of the hydrogel, and stress is
nduced if it is subject to any constraint. Several examples are
resented in Sec. 4 for homogeneous and inhomogeneous swell-
ng of hydrogels under constraints. For convenience, we normal-
zed the key quantities as follows:

Ū =
Û

NkBT
, �̄ij =

�ij

NkBT
, �̄ =

�

kBT
�54�

Analytical Solutions and Numerical Examples
In Sec. 4, we first consider three simple examples of homoge-

eous swelling of a hydrogel; one, without constraint and, two,
ith constraint. Numerical results are compared with the corre-

ponding analytical solutions as benchmarks for the finite element
mplementation. Next, inhomogeneous swelling of surface-
ttached hydrogel lines is considered to further emphasize the
ffect of geometric constraint.

4.1 Free, Isotropic Swelling. As discussed in Sec. 2, under
o constraint a hydrogel swells isotropically, for which the equi-
ibrium swelling ratio 	 can be solved analytically by setting the
hemical potential �= �̂ in Eq. �33�. Figure 2 plots the equilib-
ium swelling ratio as a function of the external chemical potential
or a hydrogel with �=0.1 and �N=10−3.

For numerical analysis by the finite element method, an isotro-
ic initial state is used for this case with an arbitrary swelling ratio

1
�1�=	2

�1�=	3
�1�=1.5. The chemical potential at the initial state is

alculated analytically from Eq. �33�. Then, the chemical potential
f the hydrogel is increased gradually as the loading parameter in
he finite element analysis until �=0, and the swelling ratio is
alculated at each increment. A single three-dimensional eight-
ode brick element is used to model the hydrogel with all bound-
ries free of traction. The numerical results are compared with the

ig. 2 Comparison between numerical results and analytical
olution for free, isotropic swelling of a hydrogel
nalytical solution in Fig. 2, showing excellent agreement. Since
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the initial state is isotropic in this case, both the UHYPER and UMAT

subroutines in ABAQUS can be used, and they produce identical
results.

4.2 Anisotropic, Homogeneous Swelling of a Hydrogel
Thin Film. Next, we consider a hydrogel thin film bonded to a
rigid substrate, which swells preferably in the thickness direction
due to the constraint in the lateral direction. For a thin film with its
thickness dimension much smaller than its lateral dimensions, the
swelling deformation is homogeneous, but anisotropic. Let 1 and
3 be the in-plane coordinates and 2 the out-of-plane coordinate.
Under the lateral constraint, the principal stretches of the hydrogel
thin film are 	1=	3=1 and 	2�1. The lateral constraint induces a
biaxial compressive stress in the film, i.e., s1=s3=s�0, while the
other principal stress is zero, i.e., s2=0, as the top surface of the
film is assumed to be traction-free. The osmotic pressure in the
hydrogel thin film is obtained from the second equation of Eq.
�32� as


 = NkBT�	2 −
1

	2
� �55�

The chemical potential is then obtained from Eq. �31� as

� =
�U

�C
= kBT	ln�1 −

1

	2
� +

1

	2
+

�

	2
2 + Nv�	2 −

1

	2
�
 �56�

where the condition of molecular incompressibility �C=	2−1 has
been incorporated. Thus, by setting �= �̂ in Eq. �56�, we can
solve for the equilibrium swelling ratio 	2 for the hydrogel film as
a function of the external chemical potential. The swelling-
induced stress in the hydrogel film is then obtained from the first
and third equations of Eq. �32� as

s1 = s3 = s = − NkBT�	2
2 − 1� �57�

The analytical solutions for the swelling ratio and the true stress
��=s /	2� are plotted in Fig. 3 for a hydrogel film with �=0.1 and
Nv=10−3. The equilibrium swelling ratio at �= �̂=0 is 	2
=7.696. Compared with the isotropic, free swelling �	=3.390 and
J=	3=38.96�, while the linear stretch in the thickness direction of
the film is larger, the volume ratio of swelling is much smaller for
the hydrogel film �J=	2=7.696� as a result of the lateral
constraint.

To apply the finite element method for the anisotropic swelling
of a hydrogel film, an anisotropic initial state is used with 	1

�1�

=	3
�1�=1 and 	2

�1�=1.5. The chemical potential at the initial state is
calculated analytically from Eq. �56�. In addition, the swelling-
induced stress at the initial state is obtained from Eq. �57� and
specified by a user subroutine SIGNI in ABAQUS �47�. Either three-
dimensional brick elements or two-dimensional plane-strain ele-
ments can be used to model the hydrogel film. The lateral con-
straint on swelling is enforced by the boundary conditions. The
numerical results are compared with the analytical solutions in
Fig. 3, with excellent agreements for both the swelling ratios and
the induced stresses as the chemical potential increases.

A similar problem was considered by Hong et al. �29� using a
UHYPER material subroutine. There, an isotropic initial state with
	1

�1�=	2
�1�=	3

�1�=1.5 was used, which relaxed the effect of the lat-
eral constraint. The corresponding chemical potential at the iso-
tropic initial state was obtained from Eq. �33� instead of Eq. �56�,
and no initial stress was induced. While the subsequent swelling
was constrained in the lateral directions, their results are different
from the present ones, as shown in Fig. 3. In particular, with the
use of an isotropic initial state, the results �both swelling ratio and
induced stress� for the subsequent swelling under the lateral con-
straint would depend on the choice of the initial state, and the
corresponding analytical solution is different from that in Eqs.
�55�–�57�. With the UMAT implementation and an anisotropic ini-
tial state, the present results are independent of the initial state.
Experimental observations of the swelling behavior of hydrogel
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hin films have shown good agreement with the theoretical predic-
ions �4,9�. However, at high degrees of swelling, the homoge-
eous deformation becomes unstable and gives way to inhomoge-
eous deformation in form of surface wrinkles or creases
9,10,12,15,16�. In the present study, a similar surface instability
s observed in numerical simulations for inhomogeneous swelling
f surface-attached hydrogel lines in Sec. 4.4.

4.3 Anisotropic, Homogeneous Swelling of a Hydrogel
ine. As another example, we consider the swelling of a hydrogel

ine. Assume that the longitudinal dimension of the line is much
arger than its lateral dimensions. The swelling of such a long line
s constrained in the longitudinal direction, and thus 	3=1. On the
ther hand, the swelling in the lateral directions is unconstrained
nd isotropic, with 	1=	2=	�1. Such a constrained swelling
nduces a compressive longitudinal stress in the line s3�0,
hereas s1=s2=0. From the first and second equations of Eq.

32�, the osmotic pressure in the hydrogel line is


 = NkBT�1 −
1

	2� �58�

he chemical potential in the hydrogel line is obtained from Eq.
31� as

� =
�U

�C
= kBT	ln�1 −

1

	2� +
1

	2 +
�

	4 + Nv�1 −
1

	2�
 �59�

here the condition of molecular incompressibility �C=	2−1 has
ˆ

ig. 3 Anisotropic swelling of a hydrogel film under lateral
onstraint: „a… the swelling ratio in the thickness direction and
b… the swelling-induced true stress in the lateral direction. Nu-
erical results from two different implementations „UMAT and

HYPER… are compared with the analytical solution in Eqs. „56…
nd „57…. Note that the results from UHYPER correspond to a
ifferent analytical solution with an isotropic initial swelling
29‡.
een applied. Thus, by setting �=� in Eq. �59�, we can solve for

ournal of Applied Mechanics
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the equilibrium swelling ratio 	 in the lateral direction for the
hydrogel line as a function of the external chemical potential. The
swelling-induced longitudinal stress in the hydrogel line is then
obtained from the third equation of Eq. �32� as

s3 = − NkBT�	2 − 1� �60�
The analytical solutions for the swelling ratio and the true stress
��3=s3 /	2� are plotted in Fig. 4 for a hydrogel line with �=0.1
and Nv=10−3. The equilibrium swelling ratio of the hydrogel line
at �= �̂=0 is 	=4.573, and the volume swelling ratio is J=	2

=20.92. Since the longitudinal constraint �1D� in the hydrogel line
is weaker than the lateral constraint �2D� in the hydrogel film, the
volume ratio of the line is greater than that of the film �J=	2
=7.696�, but still smaller than that of the unconstrained, isotropic
swelling �J=	3=38.96�.

For numerical simulations, we assume an anisotropic initial
state with 	3

�1�=1 and an arbitrary swelling ratio in the lateral
directions 	1

�1�=	2
�1�=1.5. The chemical potential at the initial state

is calculated analytically from Eq. �59�, and the swelling-induced
stress at the initial state, obtained from Eq. �60�, is specified by a
user subroutine SIGNI in ABAQUS. The longitudinal constraint on
the swelling of the line is conveniently imposed by the plane-
strain condition in the finite element analysis using the two-
dimensional four-node plane-strain elements with traction-free
boundary conditions on the side faces. As shown in Fig. 4, the
numerical results closely agree with the analytical solutions for
both the swelling ratios and the longitudinal stresses, independent
of the choice of the auxiliary initial state.

4.4 Inhomogeneous Swelling of Surface-Attached Hydro-
gel Lines. In Sec. 4.4, we consider the swelling of hydrogel lines

Fig. 4 Anisotropic swelling of a hydrogel line under longitudi-
nal constraint: „a… the swelling ratio in the lateral direction and
„b… the swelling-induced true stress in the longitudinal
direction
that are bonded to a rigid substrate. Polymer lines of this type are

NOVEMBER 2010, Vol. 77 / 061004-7
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ommonly used in lithography and imprinting processes for
icro-/nanofabrication �13,48�, where large swelling deformation

an be detrimental. Similar to Sec. 4.3, the longitudinal dimension
f the line is assumed to be much larger than its lateral dimensions
o that swelling is constrained in the longitudinal direction with
3=1. In addition, the line has a rectangular cross section at the
ry state, with one of the side faces bonded to the substrate, as
hown in Fig. 5�a�. The bonding imposes an additional constraint
n the lateral swelling of the line, and the effect of the constraint
aries with the width-to-height aspect ratio �W /H� of its cross
ection. The swelling deformation of such a surface-attached hy-
rogel line is typically inhomogeneous, which offers a model sys-
em for the study of the constraint effect between two homoge-
eous limits: �i� When W /H→�, the swelling becomes
omogenous, as discussed in Sec. 4.2, for a hydrogel thin film. �ii�
hen W /H→0, the lateral constraint by the substrate becomes

egligible, and the swelling becomes homogeneous and laterally
sotropic, as discussed in Sec. 4.3, for an unattached hydrogel line.

Except for the two limiting cases, no analytical solution is
vailable for the inhomogeneous swelling of the surface-attached
ydrogel lines. To apply the finite element method, we start from
n anisotropic initial state of homogeneous swelling with 	1

�1�

	3
�1�=1 and an arbitrarily selected swelling ratio in the height

irection of the line, e.g., 	2
�1�=2, as shown in Fig. 5�b�. Such an

nitial state is identical to that of the homogeneous swelling of a
ydrogel thin film in Sec. 4.2, for which the chemical potential
�=�1� can be analytically calculated from Eq. �56�. With 	1

�1�

	3
�1�=1, the longitudinal constraint is maintained and the essen-

ial boundary condition at the bottom face of the line is satisfied at
he initial state. However, the lateral constraint �	1

�1�=1� imposes a
ompressive stress �or pressure p� onto the side faces of the line,
s given in Eq. �57�, which apparently violates the traction-free
natural� boundary condition of the intended problem. To recover
he traction-free condition on the side faces of the line, we gradu-

ig. 5 Numerical steps to simulate inhomogeneous swelling
f a hydrogel line „W /H=1… attached to a rigid substrate: „a… the
ry state, „b… the initial state, „c… deformation after releasing the
ide pressure in „b…, and „d… equilibrium swelling at �=0, with
he dashed box as the scaled dry state
lly release the imposed side pressure in Fig. 5�b� during the first

61004-8 / Vol. 77, NOVEMBER 2010
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step of numerical simulation while keeping the chemical potential
in the hydrogel unchanged. As illustrated in Fig. 5�c�, the release
of the side pressure leads to an inhomogeneous deformation of the
hydrogel line at the initial chemical potential ��=�1�. Subse-
quently, further swelling of the hydrogel line is simulated by
gradually increasing the chemical potential until �=0, as shown
in Fig. 5�d�. We emphasize that the current implementation re-
quires a homogeneously swollen initial state, while the mechani-
cal boundary conditions may be controlled to facilitate the imple-
mentation. Due to the singularity in the chemical potential at the
dry state, a direct simulation from Fig. 5�a� to Fig. 5�d� is numeri-
cally intractable.

In all simulations of the present study, the dimensionless mate-
rial parameters, Nv and �, are set to be 0.001 and 0.1, respec-
tively. The dry-state width-to-height aspect ratio �W /H� is varied
between 0.1 and 12. A relatively fine finite-element mesh is re-
quired for simulating inhomogeneous swelling deformation, espe-
cially at locations such as the lower corners where a high strain
gradient is expected. The use of two-dimensional plane-strain el-
ements is thus warranted by both the computational efficiency and
the longitudinal constraint �	3=1�. For each model, the finite el-
ement mesh is refined until the result converges satisfactorily. The
bonding of the bottom face of the hydrogel line to the rigid sub-
strate is mimicked by applying a zero-displacement �essential�
boundary condition; debonding of the line is possible but not con-
sidered in the present study. Furthermore, the large deformation
due to swelling often results in contact of the side faces of the
hydrogel line with the substrate surface, for which hard and fric-
tionless contact properties are assumed in the numerical
simulations.

Figure 6�a� plots the average longitudinal stress as a function of

Fig. 6 Inhomogeneous swelling of surface-attached hydrogel
lines: „a… average longitudinal stress and „b… volume ratio of
swelling. The solid and dashed lines are analytical solutions for
the homogeneous limits with W /H\� and W /H\0,
respectively.
the chemical potential for two hydrogel lines with W /H=1 and
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0. The analytical solutions at the two limiting cases are also
lotted as the upper and lower bounds. At the initial state, we have

2
�1�=1.2 and the corresponding chemical potential �̄1=−0.8886.
he initial longitudinal stress is identical to that in a hydrogel film

W /H→��, which can be obtained from Eq. �57� and lies on the
olid line in Fig. 6�a�. Upon release of the side pressure at the
nitial state, the magnitude of the average longitudinal stress is
educed, while the chemical potential remains at the initial value.
rom the same initial state, the reduced stress magnitudes are
ifferent for the two hydrogel lines, higher in the line with W /H
10 than that in the line with W /H=1, due to a stronger constraint

n the line with the larger aspect ratio. Subsequently, as the chemi-
al potential increases, the magnitudes of the average longitudinal
tress in both the hydrogel lines increase. All the numerical results
ie between the two homogeneous limits, while the stress magni-
ude increases with the aspect ratio W /H at the same chemical
otential.

Figure 6�b� plots the volume ratios of swelling for the two
ydrogel lines as the chemical potential approaches �=0. The

Fig. 7 Simulated swelling deformation and long
drogel lines of different aspect ratios: „a… W /H
boxes outline the cross sections at the dry state
olume ratios increase as the chemical potential increases. The

ournal of Applied Mechanics
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difference in the volume ratios of the two lines is less appreciable
until the chemical potential is close to zero. Again, the two ana-
lytical limits set the upper and lower bounds for the volume swell-
ing ratios of the surface-attached hydrogel lines. The larger the
aspect ratio W /H, the stronger the constraint effect, and thus the
smaller the volume ratio of swelling at the same chemical
potential.

The inhomogeneous swelling deformation along with the distri-
bution of the longitudinal stress at the equilibrium chemical po-
tential �=0 is plotted in Fig. 7 for three hydrogel lines with
W /H=1, 5, and 10. For each line, the cross section at the dry state
is outlined by a small rectangular box. The large swelling defor-
mation pushes the side faces of the hydrogel lines to form contact
with the rigid substrate surface. The contact length increases as
the aspect ratio increases, reaching a full contact of the side faces
for the hydrogel line with W /H=10. The stress contours show
stress concentration at the bottom corners where debonding may
occur. We note that the magnitude of the stress in Fig. 7 is nor-
malized by NkBT, which is typically in the range of 104–107 Pa

dinal stress distribution in surface-attached hy-
„b… W /H=5, and „c… W /H=10. The rectangular
itu
=1,
.

for polymeric hydrogels at the room temperature.
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To further illustrate the effect of geometric constraint on swell-
ng, Fig. 8 plots the equilibrium swelling ratio at �=0 as a func-
ion of the dry-state width-to-height aspect ratio �W /H� of the
ydrogel lines. The two analytical limits are plotted as dashed
ines. As the aspect ratio decreases, the effect of constraint by the
ubstrate diminishes, and the volume ratio approaches that for the
omogeneous swelling of a hydrogel line without any lateral con-
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ig. 8 Equilibrium volume ratio as a function of the dry-state
idth-to-height aspect ratio for inhomogeneous swelling of
urface-attached hydrogel lines

Fig. 9 Formation of surface creases in a surface
¯ ¯
cal potential increases: „a… �=−0.00075, „b… �=−0.00
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straint �upper bound�. On the other hand, as the aspect ratio in-
creases, the volume ratio decreases due to increasing constraint by
the substrate, approaching the other limit for the homogeneous
swelling of a hydrogel film �lower bound�. Therefore, the degree
of swelling can be tuned between the two homogeneous limits by
varying the geometric aspect ratio of the surface-attached hydro-
gel lines.

As the aspect ratio W /H increases beyond 10, the swelling
deformation of the hydrogel line becomes highly constrained and
induces an increasingly large compressive stress at the top sur-
face. It is found that, at a critical aspect ratio, a surface instability
develops, as shown in Fig. 9, for W /H=12. As the chemical po-
tential increases, the top surface of the hydrogel line evolves from
nearly flat to slightly undulated, and eventually forms two crease-
like foldings with self-contact. The stress contours show stress
concentration at the tip of the creases. More creases are observed
in the simulation for a hydrogel line with the aspect ratio W /H
=13. However, the numerical simulation becomes increasingly
unstable with the formation of the surface creases, posing a nu-
merical challenge for simulations of hydrogel lines with higher
aspect ratios. It is also noted that the contact of the side faces of
the hydrogel line with the substrate surface plays an important
role, giving rise to the compressive stresses in the hydrogel. In
simulations without enforcing the contact, the hydrogel line
swelled more significantly and wrapped around the bottom surface
until penetration or self-contact, while surface creases were not
observed.

tached hydrogel line with W /H=12 as the chemi-
¯

-at

03, and „c… �=0
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The formation of surface creases has been observed experimen-
ally in swelling gels �9,10,12,16� as well as in rubbers under

echanical compression �49,50�. A linear perturbation analysis by
iot �51� showed that the homogeneous deformation of a rubber
nder compression becomes unstable at a critical strain, which is
bout 0.46 under plane-strain compression and about 0.33 under
quibiaxial compression. However, the theoretical prediction for
he plane-strain compression was found to exceed the experimen-
ally determined critical strain ��0.35� for rubbers �49�. In a re-
ent experimental study of surface-attached hydrogel thin films
16�, an effective linear compressive strain of �0.33 was obtained
or the onset of creasing in laterally constrained hydrogels. While
his effective critical strain is remarkably close to Biot’s prediction
or rubbers under equibiaxial compression, the critical condition
or the onset of swell-induced creasing in hydrogels has not been
stablished theoretically. A few recent efforts are noted �52,53�.
he present study of the surface-attached hydrogel lines offers an
lternative approach. Typically for theoretical and numerical stud-
es of surface instability, it is necessary to introduce perturbations
o the reference homogeneous solution to trigger the instability. In
he present study, surface creases form automatically in the nu-

erical simulations for hydrogel lines beyond the critical aspect
atio without any perturbation. Our numerical simulations show
hat the critical aspect ratio for the onset of surface instability
epends on the external chemical potential and the material pa-
ameters of the hydrogel, i.e., �W /H�c= f��̄ ,Nv ,��. Therefore, the
ritical condition for surface instability in a laterally constrained
ydrogel film �W /H→�� can be expressed in terms of the same
arameters: If f��̄ ,Nv ,����, the film surface is unstable; other-
ise, the film surface is stable. A detailed stability analysis will be
resented elsewhere.

Summary
We have formulated a general variational approach for the equi-

ibrium analysis of swelling deformation of hydrogels. The gov-
rning equations for mechanical and chemical equilibria are ob-
ained along with the boundary conditions. A specific material

odel is adopted based on a free energy density function. A finite
lement method for numerical analysis is developed, which allows
nisotropic initial states for the study of swelling of hydrogels
nder constraints. Numerical results by the finite element method
re compared with analytical solutions for homogeneous swelling
f hydrogels, both without and with constraint. The close agree-
ent demonstrate the robustness of the present approach. The

nhomogeneous swelling of hydrogel lines attached to a rigid sub-
trate is simulated, illustrating the effect of geometric constraint
ith different width-to-height aspect ratios. Of particular interest

s the formation of swelling-induced surface creases in the hydro-
el lines beyond a critical aspect ratio. The present theoretical and
umerical methods can be used to study the complex swelling
ehavior of polymeric hydrogels under various geometric con-
traints, including buckling and creasing instabilities, as observed
n experiments �9–17�.
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