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Numerical Analysis of Circular
Graphene Bubbles
Pressurized graphene bubbles have been observed in experiments, which can be used to
determine the mechanical and adhesive properties of graphene. A nonlinear plate theory
is adapted to describe the deformation of a graphene monolayer subject to lateral loads,
where the bending moduli of monolayer graphene are independent of the in-plane
Young’s modulus and Poisson’s ratio. A numerical method is developed to solve the
nonlinear equations for circular graphene bubbles, and the results are compared to
approximate solutions by analytical methods. Molecular dynamics simulations of nano-
scale graphene bubbles are performed, and it is found that the continuum plate theory is
suitable only within the limit of linear elasticity. Moreover, the effect of van der Waals
interactions between graphene and its underlying substrate is analyzed, including large-
scale interaction for nanoscale graphene bubbles subject to relatively low pressures.
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1 Introduction

Nanoscale graphene bubbles were observed when mechanically
exfoliated graphene flakes were deposited on a SiO2/Si substrate
and subjected to irradiation of energetic protons [1]. Much larger
graphene bubbles were observed when the graphene flakes were
exposed to vapors of hydrofluoric acid (HF) and water (H2O). In
both cases, gas molecules were released from the substrate and
trapped underneath the impermeable graphene membranes, result-
ing in the formation of the nano-to-microscale bubbles. A recent
study reported that graphene bubbles are regularly found in large
graphene flakes obtained by mechanical cleavage and placed on
SiO2/Si substrates [2]. The observed graphene bubbles have diam-
eters ranging from tens of nanometers to tens of microns, with a
variety of shapes (circular, triangular, and diamond). Bubbles
have also been observed for graphene grown on metals, such as
Pt (111) [3] and Ru (0001) [4]. While the formation of graphene
bubbles may depend on the material systems and experimental
conditions, several potential applications of the graphene bubbles
have been proposed. For example, the use of graphene nanobub-
bles has been suggested as a viable method for strain engineering
to manipulate the electronic properties of graphene [3,4]. Control-
lable curvature of graphene bubbles has been demonstrated by
applying an external electric field [2], potentially allowing their
use as optical lenses with variable focal length. Microscale gra-
phene bubbles have been used to study the Raman spectrum of
graphene under biaxial strain [5]. Pressurized graphene bubbles
on patterned substrates were used to demonstrate the imperme-
ability of graphene to gas molecules [6], to measure elastic prop-
erties of graphene and the adhesion energy between graphene and
silicon oxide [7].

In a previous study [8], analytical methods were employed to
deduce the interfacial adhesion energy from measurements of the
bubble size (diameter and height). It was found that membrane
theory is sufficient for relatively large bubbles of monolayer gra-
phene, where the bending stiffness can be neglected. However, an
accurate solution to the nonlinear membrane equations can only
be obtained numerically [9]. Moreover, for nanoscale graphene
bubbles, the effect of bending stiffness may not be negligible, and
the van der Waals interactions between graphene and the substrate

have to be accounted for explicitly. In the present study, we pres-
ent a nonlinear plate theory, adapted for the in-plane and bending
properties of monolayer graphene. A numerical method is then
developed to solve the nonlinear equations for circular graphene
bubbles, subjected to gas pressure and van der Waals interactions.
The numerical results are compared to the approximate solutions
obtained by analytical methods and to molecular dynamics
simulations.

The remainder of this paper is organized as follows: Sec. 2
presents the nonlinear plate theory and the axisymmetric formula-
tion for circular graphene bubbles. Section 3 briefly reviews the
approximate solutions from analytical methods. The numerical
method based on a finite difference scheme is presented in Sec. 4,
followed by a description of the molecular dynamics simulation
methodology in Sec. 5. The results are discussed in Sec. 6 and
summarized in Sec. 7.

2 A Nonlinear Plate Theory for Monolayer Graphene

2.1 General Formulation. The mechanical behavior of a
graphene monolayer can be described by a mixed continuum
mechanics formulation mapping a two-dimensional (2D) plane to
a three-dimensional (3D) space [10]. The kinematics of deforma-
tion is described by an in-plane Green–Lagrange strain tensor and
a curvature tensor, both defined with respect to a reference state in
2D (i.e., the ground state of graphene). Under the assumption of
relatively small deformation but with moderately large deflection,
the in-plane strain and curvature are approximately

eij ¼
1

2

@ui

@xj
þ @uj

@xi
þ @w

@xi

@w

@xj

� �
(2.1)

jij ¼
@2w

@xi@xj
(2.2)

where the Latin subscripts (i or j) take values 1 or 2 for the
in-plane coordinates, u1 and u2 are the in-plane displacements,
and w is the lateral deflection.

The elastic property of graphene is nonlinear and anisotropic in
general [11,12]. Under the condition of small deformation, it is
taken approximately as linear and transversely isotropic. In this
case, a strain energy density function can be written as

U ¼ Ue eð Þ þ Uj jð Þ (2.3)
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where Ue eð Þ is the strain energy due to in-plane strain and Uj jð Þ
is due to curvature; both are measured per unit area of the gra-
phene monolayer at the ground state (unit: J/m2) as opposed to
energy per unit volume (unit: J/m3) for a 3D solid.

The linear elastic strain energy density function due to the in-
plane strain is

Ue ¼
E2D

2ð1þ �Þ eijeij þ
�

1� � eiiejj

� �
¼ 1

2
Nijeij (2.4)

where Nij is the in-plane membrane force (or 2D stress)

Nij ¼
@Ue

@eij
¼ E2D

1þ � eij þ
�

1� � ekkdij

� �
(2.5)

Here we have used the 2D Young’s modulus E2D and Poisson’s
ratio � defined under the condition of uniaxial stress [12,13]. The
summation convention is implied for the repeated subscripts, and
dij is the Kronecker d.

The strain energy density due to curvature can be written as a
function of the two invariants of the curvature tensor [14],

Uj ¼
1

2
DI2

j � DGIIj ¼
D� DG

2
jiijjj þ

DG

2
jijjij (2.6)

where the invariants Ij ¼ jii and IIj ¼ jiijjj � jijjij

� �
=2, D

and DG are the two bending moduli corresponding to the mean
curvature (jm ¼ jii=2) and the Gaussian curvature (jG ¼ IIj),
respectively. The bending and twisting moments are then obtained
as the work conjugates with respect to the curvature components,

Mij ¼
@Uj

@jij
¼ D� DGð Þjkkdij þ DGjij (2.7)

Unlike classical plate theory [15], the bending moduli of mono-
layer graphene are not directly related to the in-plane Young’s
modulus and Poisson’s ratio. Instead, they are determined from
atomistic modeling as independent properties [16–20]. As dis-
cussed in a previous study [19], the physical origin of the bending
moduli of the monolayer graphene is fundamentally different
from that in classical plate theory.

With the strain energy density functions, the equilibrium equa-
tions and boundary conditions can be developed by the principle
of virtual displacements, similar to classical plate theory [15]. The
in-plane force equilibrium requires that (assuming no body force)

@Nij

@xj
¼ 0 (2.8)

and moment equilibrium requires that

@2Mij

@xi@xj
� Nij

@2w

@xi@xj
¼ q (2.9)

where q is the lateral loading intensity (e.g., pressure). Substitu-
tion of Eq. (2.7) into Eq. (2.9) leads to

Dr4w� Nij
@2w

@xi@xj
¼ q (2.10)

Therefore, under the condition of small in-plane strain and
moderately large deflection, a set of nonlinear equations can be
used to describe the mechanical behavior of monolayer graphene,
which closely resemble the von Karman equations for an isotropic
elastic thin plate [15]. The only notable difference lies in the
bending moduli of graphene. In particular, we note that it is
unnecessary to define a thickness for the graphene monolayer in
the 2D continuum formulation. The four basic elastic properties
of monolayer graphene have been determined by first-principle
calculations and atomistic modeling, as listed in Table 1.

Note that the ratio between the two bending moduli of graphene is
DG/D¼ 0.435 [20], not (1� �) as in classical plate theory.

2.2 Axisymmetric Formulation. Consider a circular gra-
phene membrane subjected to axisymmetric loading. The dis-
placements expressed in the polar coordinates are ur ¼ uðrÞ,
uh ¼ 0, and w ¼ wðrÞ, where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
. The corresponding

in-plane strain components are

er ¼
du

dr
þ 1

2

dw

dr

� �2

(2.11)

eh ¼
u

r
(2.12)

and erh ¼ 0. The curvature components are

jr ¼
d2w

dr2
(2.13)

jh ¼
1

r

dw

dr
(2.14)

and jrh ¼ 0.
From Eq. (2.5), the radial and circumferential membrane forces

are

Nr ¼
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1� �2
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þ � u
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2

dw
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� �2
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(2.15)

Nh ¼
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1� �2
�

du

dr
þ u

r
þ �

2

dw
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� �2
 !

(2.16)

The in-plane force equilibrium equation in (2.8) reduces to

dNr

dr
þ Nr � Nh

r
¼ 0 (2.17)

Substitution of Eqs. (2.15) and (2.16) into Eq. (2.17) leads to a
nonlinear displacement equation

d2u

dr2
þ 1

r

du

dr
� u

r2
¼ � 1� �

2r

dw

dr

� �2

� dw

dr

d2w

dr2
(2.18)

From Eq. (2.7), the bending moments are

Mr ¼ D
d2w

dr2
þ D� DGð Þ 1

r

dw

dr
(2.19)

Mh ¼ D� DGð Þ d
2w

dr2
þ D

r

dw

dr
(2.20)

Table 1 Elastic properties of monolayer graphene (DFT, den-
sity functional theory; DF-TB, density functional tight-binding;
MM, molecular mechanics; REBO, reactive empirical bond-
order potential [21]; REBO-2, second-generation REBO poten-
tial [22]; AIREBO, adaptive intermolecular REBO potential [23])

Method and reference E2D (N/m) � D (eV) DG (eV)

DFT [16] 345 0.149 1.5 � � �
DFT [12] 348 0.169 � � � � � �
DF-TB [20] � � � � � � 1.61 0.70
MM (REBO) [17,18] 236 0.412 0.83 � � �
MM (REBO-2) [10,19] 243 0.397 1.4 � � �
MM (AIREBO)a 277 0.366 1.0 � � �
Experiments [11,25] 342 0.165 � � � � � �

aBased on calculations using LAMMPS [24].
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The moment equilibrium equation in (2.10) is integrated once
with respect to r, yielding another nonlinear displacement
equation

D
d3w

dr3
þ 1

r

d2w

dr2
� 1

r2

dw

dr

� �
� E2D

1� �2

dw

dr

du

dr
þ � u

r
þ 1

2

dw

dr

� �2
 !

¼ 1

r

ðr

0

qrdr (2.21)

Therefore, the axisymmetric problem is to solve the two nonlin-
ear equations in Eqs. (2.18) and (2.21) with prescribed boundary
conditions at the edge (r¼ a). In the present study, the lateral load
intensity q consists of a constant pressure (p) and the van der
Waals (vdW) force between graphene and the substrate, i.e.,
q ¼ p� rvdW, where rvdW > 0 for attractive force. By a simple
model of vdW interactions [26], the vdW force is written as a
function of deflection,

rvdWðwÞ ¼
9C
2d0

d0

wþ d0

� �4

� d0

wþ d0

� �10
" #

(2.22)

where d0 is the equilibrium separation and C is the interfacial
adhesion energy. For monolayer graphene on SiO2, experimental
measurements have reported values from 0.4 to 0.9 nm for d0

[27–29] and from 0.09 to 0.45 J/m2 for the adhesion energy
C [7,8,30]. In the present study, we take d0 ¼ 0:6 nm and C ¼ 0:1
J/m2 as typical values and treat the substrate as a rigid surface.

3 Analytical Methods

Several approximate solutions for graphene bubbles were pre-
sented in a previous study [8]. They are briefly reviewed here for
comparison with the numerical results.

3.1 Linear Plate Solution. For the linear plate analysis, the
in-plane strain is assumed to be negligible, and Eq. (2.21) reduces
to

D
d3w

dr3
þ 1

r

d2w

dr2
� 1

r2

dw

dr

� �
¼ 1

r

ðr

0

qrdr (3.1)

Subjected to a uniform lateral load (q ¼ p) and clamped bound-
ary condition at the edge (i.e., w¼ dw/dr¼ 0 at r¼ a), Eq. (3.1)
can be solved analytically by

w ¼ h 1� r2

a2

� �2

(3.2)

where a is the bubble radius and h ¼ pa4=64D is the center deflec-
tion (bubble height).

3.2 An Approximate Membrane Solution. For a membrane
analysis, it is assumed that the bending stiffness is negligible.
Thus, the equilibrium equation in (2.21) becomes

E2D

1� �2

dw

dr

du

dr
þ � u

r
þ 1

2

dw

dr

� �2
 !

¼ � 1

2
pr (3.3)

The two nonlinear membrane equations, (3.3) and (2.18), are
coupled and cannot be solved analytically. An approximate solu-
tion was developed by the energy method assuming the displace-
ments [8],

w ¼ h 1� r2

a2

� �
(3.4)

u ¼ u0

r

a
1� r

a

� �
(3.5)

where h ¼ /ð�Þpa4=E2D½ �1=3
and u0 ¼ wð�Þp2a5=E2

2D

	 
1=3
, with

/ð�Þ ¼ 75ð1� �2Þ
8ð23þ 18� � 3�2Þ

and

wð�Þ ¼ 45ð3� �Þ3ð1� �2Þ2

8ð23þ 18� � 3�2Þ2

A more accurate membrane analysis was developed by Hencky
[9], which included seven terms in the polynomial expansion of
the deflection profile (as opposed to the two terms in Eq. (3.4))
with the coefficients determined numerically for specific Pois-
son’s ratios. In particular, for �¼ 0.16, the center deflection by
Hencky’s solution is h ¼ 0:687 pa4=E2Dð Þ1=3

.

3.3 An Approximate Nonlinear Plate Solution. An energy
method was used to develop an approximate solution to the non-
linear plate equations by assuming a deflection profile in form of
Eq. (3.2) along with the radial displacement [8]

u ¼ r a� rð Þ c1 þ c2rð Þ (3.6)

Minimization of the potential energy leads to

c1 ¼
179� 89�

126

h2

a3
(3.7)

c2 ¼
13� � 79

42

h2

a4
(3.8)

p ¼ 64gð�ÞE2Dh3

a4
þ 64

Dh

a4
(3.9)

where

gð�Þ ¼ 7505þ 4250� � 2791�2

211680ð1� �2Þ

It was shown that the approximate solution converges to the linear
plate solution when the bubble height is small (h< 0.1 nm) but
considerably underestimates the pressure when h> 1 nm [8].

4 A Numerical Method

In this section we present a numerical method to solve the
coupled nonlinear equations, (2.18) and (2.21). For convenience

we define an effective thickness, he ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� �2ÞD=E2D

p
, and

normalize the equations using the dimensionless quantities,

�r ¼ r=he, �a ¼ a=he, �u ¼ u=he, �w ¼ w=he, and �q ¼ qh3
e=D. In addi-

tion, we replace the deflection w with the angle of rotation,
h ¼ dw=dr, and rewrite the equations as

g ¼ d2 �u

d�r2
þ 1

�r

d�u

d�r
� �u

�r2
þ 1� �

2�r
h2 þ h

dh
d�r
¼ 0 (4.1)

f ¼ d2h
d�r2
þ 1

�r

dh
d�r
� h

�r2
� 12h

d�u

d�r
þ � �u

�r
þ h2

2

� �
� 1

�r

ð�r

0

�q�rd�r ¼ 0

(4.2)

Next we discretize the equations by the finite difference method
with D�r ¼ �a=n and �rk ¼ kD�r for k¼ 0 to n. At each internal node
(k¼ 1 to n�1), we have
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gk ¼
n2

�a2
1þ 1

2k

� �
�ukþ1 �
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2þ 1

k2
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�uk þ
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1� 1
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2�a
hk hkþ1 � hk�1ð Þ (4.3)

fk ¼
n2

�a2
1þ 1

2k

� �
hkþ1 �

n2

�a2
2þ 1

k2

� �
hk þ

n2

�a2
1� 1

2k

� �
hk�1

� 6n

�a
hkð�ukþ1 � �uk�1Þ �

12�n

k�a
hk �uk � 6h3

k � nk (4.4)

where nk ¼ �a=2nkð Þð
Pk�1

m¼1 2m�qm þ k�qkÞ. When q is a constant,
nk ¼ k�a=2nð Þ�q. In addition, we have the boundary conditions,
h0 ¼ hn ¼ 0 and �u0 ¼ �un ¼ 0.

The Newton–Raphson method is employed to solve the nonlin-
ear equations. We start with the linear plate solution,

hð0Þk ¼
�qk

16n

k2

n2
� 1

� �

and �u
ð0Þ
k ¼ 0, and iterate until a convergence condition is satisfied.

At each iteration, the residuals are calculated by Eqs. (4.3) and
(4.4) at each node (k¼ 1 to n�1), and a correction vector is calcu-
lated as

Dh

D�u

� �
¼ �

@f

@h

@f

@�u

@g

@h

@g

@�u

2
664

3
775
�1

f

g

� �
(4.5)

where Dh is a vector of n�1 components (Dhk, k¼ 1 to n�1) and
the same for Du, f, and g. The Jacobian matrix on the right-hand
side of Eq. (4.5) consists of four square blocks, each with a rank
of n�1. This matrix can be readily constructed from Eqs. (4.3)
and (4.4). For the convergence criterion, we require that the L2-
norm of the relative correction vector is smaller than a specified
tolerance, namely

Rj j ¼
Xn�1

k¼1

Dh2
k=h

2
k þ Du2

k=u2
k

� �" #1=2

< s � 10�4 (4.6)

If not satisfied, the iteration procedure then repeats with a new

approximation, hðiþ1Þ
k ¼ hðiÞk þ Dhk and �u

ðiþ1Þ
k ¼ �u

ðiÞ
k þ Duk.

Subsequently, noting that �wn ¼ 0 by the boundary condition,
we calculate the deflection at each node by numerical integration,

�wk ¼ �
�a

2n

Xn�1

m¼k

hm þ hmþ1ð Þ (4.7)

for k¼ 0 to n�1, and the center deflection is then obtained as
h ¼ w0. Moreover, we calculate the strain components at each
node according to Eqs. (2.11) and (2.12),

erð Þk¼
n

2�a
�ukþ1 � �uk�1ð Þ þ 1

2
h2

k and ehð Þk¼
n�uk

k�a
(4.8)

for k¼ 1 to n�1. At the center (r¼ 0), we have erð Þ0¼ ehð Þ0
¼ n�u1=a. At the edge (r¼ a), we have erð Þn¼ �n�un�1= 2�að Þ and
ehð Þn¼ 0.

To study the effect of the van der Waals force, we normalize
Eq. (2.22) as

�rvdW �wð Þ ¼ �C
�d0

�wþ �d0

� �4

�
�d0

�wþ �d0

� �10
" #

(4.9)

where �rvdW ¼ rvdWh3
e=D, �d0 ¼ d0=he, and �C ¼ 9Ch3

e=ð2d0DÞ.
After discretization, we have

�qk ¼ �p� �rvdW �wkð Þ (4.10)

where �p ¼ ph3
e=D and the deflection �wk is given by Eq. (4.7) in

terms of the angles hm (m¼ k to n�1). Thus, the last term on the
right-hand side of Eq. (4.4) becomes a nonlinear function of
the angles, which leads to a dense matrix @f=@h. Despite the
increased nonlinearity and computational cost, the problem can be
solved by the same iterative procedures described above.

In the present study, we focus on monolayer graphene bubbles.
Using E2D¼ 345 N/m, �¼ 0.16, and D¼ 1.5 eV (or equivalently,
0.238 nN nm), we obtain he ¼ 0:09 nm. The radii of the graphene
bubbles ranges from 10 to 1000 nm, and n¼ 1000 is used for the
finite difference discretization. For each bubble radius, the dis-
placements u and w are calculated as the pressure increases.

5 Molecular Dynamics Simulations

A molecular dynamics (MD) method is developed to simulate
graphene bubbles using a pressure-transmitting gas. The method
is similar to that proposed by Martoňák et al. [31] for pressure-
induced structural transformation. Here, gas molecules are
inserted between two graphene sheets, as shown in Fig. 1. The
carbon atoms of the graphene sheets are fixed except for those
inside a circle of a specific radius (e.g., a¼ 10 nm) at the center of
the upper graphene sheet, whereas the lower graphene sheet is
used to simulate a rigid surface as the substrate. The molecular
interactions between the gas and carbon atoms transmit a pressure
that pushes up the carbon atoms to form a circular bubble. The
separation between the two graphene sheets is sufficiently large
(5 nm) so that the interaction between them is negligible. Periodic
boundary conditions are applied in the in-plane directions. In the
lateral direction, sufficient empty spaces are included in the simu-
lation box, both below the lower graphene sheet and above the
upper sheet. The typical size of the simulation box is
24.5� 24.5� 15 nm3. MD simulations are performed in canonical
ensemble (NVT) using LAMMPS [24]. We use the Nose–Hoover
thermostat to control the temperature and the time step is 0.1 fs.

The carbon-carbon interatomic interaction is described by the
second-generation reactive empirical bond-order (REBO-2)
potential [22]. The interaction between two gas molecules is
described by a repulsive soft-sphere potential energy function
[32],

Fig. 1 Molecular dynamics simulation of a graphene bubble
(gas molecules are green, fixed carbon atoms are cyan, and
mobile carbon atoms are orange). The bubble radius is 10 nm,
Ng 5 225,000, and T 5 300 K; the pressure is calculated to be
307.4 MPa. The inset shows the deflection profile of graphene
along one diameter.
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Ug�gðrÞ ¼ n
rg�g

r

� �12

(5.1)

where r is the separation between two gas molecules and the two
parameters are set as n ¼ 1 eV and rg�g ¼ 0:35 Å. According to
the virial theorem [33], the pressure inside a gas can be calculated
as

p ¼ NgkBT

Vg
þ

XNg

i¼1

ri � fg�g
i

� �
3Vg

(5.2)

where Ng is the total number of the gas molecules, Vg is the vol-
ume, kB is the Boltzmann’s constant, T is the temperature, ri is the
position vector of gas molecule i, f

g�g
i is the molecular force vec-

tor acting on the molecule i by the other gas molecules, and �h i
represents the time average of the enclosed quantity. The molecu-
lar force f

g�g
i is calculated from the potential function Ug�gðrÞ.

The first term on the right-hand side of Eq. (5.2) is the ideal gas
law, while the second term takes into account the intermolecular
potential energy. We used argon (Ar) as the gas molecules in the
MD simulations.

The interaction between a gas molecule and a carbon atom
in graphene is also described by a repulsive potential energy

function, Ug�cðrÞ ¼ n rg�c=r
� �12

, where we set n ¼ 1 eV and

rg�c ¼ 1:39 Å. These values are chosen so that sufficient pressure
can be transmitted onto graphene while no gas molecules pene-
trate the graphene sheets.

The gas pressure can be controlled by the number of gas mole-
cules Ng and the temperature T according to Eq. (5.2). When the
pressure is relatively low, the ideal gas law offers a good approxi-
mation. However, to simulate graphene nanobubbles, high pres-
sure is often required. Moreover, since the gas volume Vg changes
as the graphene sheet deforms, the pressure cannot be directly
computed by Eq. (5.2). Instead, we compute the pressure from the
interaction forces between gas molecules and carbon atoms,
namely

p ¼ 1

A

XNg

i¼1

XNc

j¼1

Fij

* +
(5.3)

where

Fij ¼ �
@Ug�cðrijÞ

@rij
� ez

is the force component in the lateral direction between gas
molecule i and carbon atom j, ez is the unit vector in the lateral
direction, NC is the number of carbon atoms in one of the
graphene sheets, and A is the area of the graphene sheet. In the
equilibrium state, the pressure is uniform in the gas phase and can
be evaluated by Eq. (5.3) using either the upper or lower graphene
sheet. For the upper graphene sheet, the projected area in the
x1�x2 plane is used in accordance with the force component in
the z-direction, which is independent of the bubble deformation.
In the present study, we use Nc ¼ 23; 200 and Ng ¼ 225; 000 to
simulate graphene nanobubbles with a¼ 10 nm, while varying the
temperature (T¼ 10–300 K) to achieve different pressure levels. It
is assumed that the mechanical properties of graphene are insensi-
tive to the temperature within this range [34]. Both graphene
sheets are relaxed at the ground state (T¼ 0 K) before each simu-
lation. Thermal fluctuation at a finite temperature results in a ten-
sile residual stress (�0.08 N/m at 300 K). The effect of this
residual stress is negligible for the present study.

Figure 1 shows an example of the MD simulation. The pres-
sures on the upper and lower graphene sheets are calculated every
103 time steps by Eq. (5.3). As shown in Fig. 2(a), the two

pressures converge after initial oscillations, indicating the thermo-
dynamic equilibrium state of the system. The equilibrium pressure
is calculated by time averaging over the last 106 time steps, which
is slightly lower than the pressure estimated by the ideal gas law
in this case. The difference is largely attributed to the increase of
the gas volume under the graphene bubble, whereas the contribu-
tion of the potential energy in Eq. (5.2) is relatively small. Figure
2(b) shows the center deflection of the graphene bubble, which
also reaches a thermodynamic equilibrium level after about 106

time steps. The equilibrium deflection is calculated by time aver-
aging over the last 106 time steps.

6 Results and Discussions

6.1 Comparison With Analytical Solutions. Using the
numerical method in Sec. 4, we calculated the deflection profiles,
w(r), for graphene bubbles of various radii. Figure 3 shows the
normalized deflection for a graphene bubble of radius a¼ 10 nm
subject to increasing pressure (without van der Waals interaction).
The deflection is normalized by the center deflection, h¼w0. In
comparison, the analytical deflection profiles in Eqs. (3.2)

Fig. 2 (a) Calculated pressure in the MD simulation of a gra-
phene bubble (a 5 10 nm and T 5 300 K); the dashed line is the
pressure estimated by the ideal gas law. (b) Center deflection of
the graphene bubble; the dashed line is the deflection calcu-
lated from the nonlinear plate theory using p 5 307.4 MPa.
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and (3.4) from the linear plate solution and the approximate
membrane analysis are both independent of the pressure after the
normalization. The numerical result agrees well with the linear
plate solution at low pressures (<105 Pa). As the pressure
increases, the deflection profile approaches the membrane solu-
tion. Apparently, Eq. (3.4) is a reasonably good approximation for
the deflection profile at high pressures (>108 Pa). A more accurate
membrane analysis [9] would yield a better approximation but
also require a numerical method. Therefore, the analytical solu-
tions in Eqs. (3.2) and (3.4) may be considered as the lower and
upper bounds for the deflection profiles.

The center deflection of a graphene bubble is a function of the
pressure and the bubble radius. The linear plate solution (Sec. 3.1)
predicts that the center deflection increases linearly with pressure
(h / p). On the other hand, from the membrane analysis
(Sec. 3.2), the cube of the center deflection increases linearly with
pressure (h3 / p). The numerical results for three different bubble
radii are shown in Fig. 4(a), where the center deflection is normal-
ized by the radius and the pressure is normalized as pa=E2D. For
a¼ 10 nm, the numerical results show a transition from the linear
plate solution to the nonlinear membrane solution as the pressure
increases. For the large bubble (e.g., a¼ 1000 nm), the numerical
results are in close agreement with the membrane solution, even
at very low pressures (p� 0.1 Pa). Alternatively, we plot the cen-
ter deflection versus a dimensionless group, pa4=ðE2Dh3Þ, as
shown in Fig. 4(b). In such a plot, the numerical results for differ-
ent bubble radii collapse onto one master curve. When h> 1 nm,
the numerical results agree closely with Hencky’s membrane solu-
tion, while the simple membrane analysis in Sec. 3.2 underesti-
mates the normalized pressure. It is found that the numerical
results can be fitted by a single function that is a simple sum of
the linear plate solution and the membrane solution,

pa4

E2Dh3
¼ Að�Þ þ Bð�Þ he

h

� �2

(6.1)

where A and B are two dimensionless functions of Poisson’s ratio.
From the membrane solution in Sec. 3.2, Að�Þ ¼ 1=/ð�Þ, which
equals 2.825 for � ¼ 0:16. On the other hand, Hencky’s solution
yields Að�Þ ¼ 3:09 for � ¼ 0:16. From the linear plate solution

in Sec. 3.1, Bð�Þ ¼ 16=3ð1� �2Þ. The effective thickness,

he ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� �2ÞD=E2D

p
, defines a length scale for the mono-

layer graphene. Therefore, the transition from the linear plate

solution to the membrane solution depends on the ratio h=he. For
relatively large bubbles (e.g., a> 100 nm), since the center deflec-
tion is typically much greater than he, the second term on the
right-hand side of Eq. (6.1) is negligible and Hencky’s membrane
solution is sufficient. On the other hand, for graphene nanobubbles
with h< 1 nm such as those observed by Levy et al. [3] and Lu
et al. [4], the nonlinear plate theory should be used with more
accuracy.

The strain distribution is important for strain engineering as a
potential approach to manipulating the electronic properties of
graphene [3,4]. Figure 5 shows the strain distribution in graphene
bubbles. By the symmetry and the boundary conditions, the strain
is equibiaxial at the center (r¼ 0) and uniaxial at the edge (r¼ a).
However, the strain distribution in between is very different from
the prediction by the simple membrane analysis in Sec. 3.2. By
inserting Eqs. (3.4) and (3.5) into Eqs. (2.11) and (2.12), the cir-
cumferential strain eh would decrease linearly from the center to
the edge, while the radial strain er first decreases and then
increases [8]. Moreover, the analytical membrane solution pre-
dicts that the normalized strain distribution should be independent
of the pressure or the bubble radius. However, the numerical
results clearly demonstrate that the strain distribution (after nor-
malization) depends on both the pressure and the bubble radius.

Fig. 3 Normalized deflection profiles of a graphene bubble
(a 5 10 nm) subject to increasing pressure, comparing the
numerical results to the analytical solutions in Eqs. (3.2) and
(3.4), from the linear plate solution and the approximate
membrane analysis, respectively

Fig. 4 (a) Normalized center deflection versus pressure for
graphene bubbles; (b) normalized pressure as a function of the
center deflection. The numerical results are plotted as symbols,
and the analytical solutions as lines. The solid line is the fitting
by Eq. (6.1) with A 5 3.09 and B 5 5.47.
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The difference in the strain distribution between the numerical
and the analytical solutions can be traced back to the difference in
the deflection profiles as shown in Fig. 3. Furthermore, the in-
plane radial displacement obtained by the numerical method dif-
fers from the analytical assumption in Eq. (3.5). Notably, the ra-
dial displacement becomes negative near the edge, resulting in
compressive circumferential strain (eh < 0). Such strain distribu-
tions suggest that strain engineering with graphene bubbles is
likely to be complicated.

The equibiaxial strain at the center (er ¼ eh ¼ e0) is plotted
in Fig. 6(a) as a function of the normalized pressure. By the
membrane analysis in Sec. 3.2, we have e0 ¼ u0=a / p2=3 and
e0 / ðh=aÞ2. By the approximate nonlinear plate analysis in
Sec. 3.3, we have e0 ¼ ac1 / ðh=aÞ2, and at the limit of linear
plate, e0 / p2. The numerical results for the graphene bubble with
a¼ 10 nm shows a transition from the linear plate limit to the
membrane behavior, similar to that shown in Fig. 4(a) for the cen-
ter deflection. The numerical results for a¼ 100 and 1000 nm fol-
low the scaling, e0 / p2=3, but the magnitude is slightly lower
than the analytical membrane solution. Noting that the center
strain e0 / ðh=aÞ2 in both analytical solutions, we plot the numeri-
cal results as a function of h/a in Fig. 6(b). Indeed the numerical
results for different bubble radii collapse onto one line with the
slope 2 in the log-log plot. Therefore, the center strain may be
written as

e0 ¼ Cð�Þ h

a

� �2

(6.2)

where Cð�Þ is a dimensionless function of Poisson’s ratio. By the
membrane solution in Sec. 3.2, Cð�Þ ¼ w1=3=/2=3, which equals
1.136 for � ¼ 0:16. The numerical results can be fitted approxi-
mately by taking Cð�Þ ¼ 0:76. Therefore, the analytical mem-
brane solution overestimates the center strain considerably.

6.2 Comparison With MD Simulations. As shown in
Fig. 1, a circular graphene bubble is simulated by the molecular
dynamics method (Sec. 5). In the present study, only a small bub-
ble radius (a¼ 10 nm) is considered. MD simulations of larger
bubbles are computationally more demanding. By varying the
temperature in the MD simulations, we calculate the deflection
profiles and the corresponding pressure. Figure 7 shows the
equilibrium bubble profiles, comparing the MD results with the
numerical solutions to the nonlinear plate equations. For this com-
parison, we have used E2D ¼ 243 N/m, D ¼ 1:4 eV (or equiva-
lently, 0.225 nN nm), and � ¼ 0:397 in the nonlinear plate
equations to match the prediction by the REBO-2 potential used
in the MD simulations [10,19]. Apparently, the MD results agree
closely with the nonlinear plate theory when the pressure is rela-
tively low. At a higher pressure, the deflection from the MD simu-
lations is higher than the prediction by the nonlinear plate theory.
The center deflection as a function of the pressure is shown in
Fig. 8. The discrepancy between the MD simulations and the
nonlinear plate theory may be attributed to the assumption of the
linear elastic properties of graphene in the continuum theory. As
shown in previous studies [10–13], the elastic modulus of gra-
phene decreases as the in-plane strain increases. As the pressure
increases, the strain of graphene increases and the elastic modulus
decreases in the MD simulations, resulting in larger deflections
than the linear elastic model. Moreover, thermal rippling of the
graphene membrane could lead to the elastic modulus at a finite
temperature which is lower than the theoretical value at T¼ 0 K
[35] and hence larger deflections at the higher temperatures that
are used to achieve higher pressures in MD simulations. A
detailed study on the effects of nonlinear elasticity and thermal
rippling will be left for future work.

6.3 Effect of van der Waals Interaction. Figure 9(a) shows
the deflection profiles of a graphene bubble (a¼ 10 nm) under the
effect of vdW interaction. When the pressure is relatively low, the

Fig. 5 Strain distributions in graphene bubbles subject to
increasing pressure (a) a 5 10 nm and (b) a 5 1000 nm

Fig. 6 (a) Center strain as a function of the normalized
pressure; (b) center strain versus h/a

Journal of Applied Mechanics JULY 2013, Vol. 80 / 040905-7

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 07/01/2013 Terms of Use: http://asme.org/terms



deflection is reduced considerably by the attractive vdW force. On
the other hand, when the pressure is high, the effect of vdW force
on the deflection is negligible. As shown in Fig. 9(b), the distribu-
tion of vdW force is nonuniform and depends on the pressure. In
the spirit of nonlinear fracture mechanics [36], we may define
an interaction zone where the vdW force is appreciable in compari-
son with the pressure, e.g., rvdW > p=10. Subject to a low pressure,
the interaction zone spans the entire area underneath the bubble,
indicating large-scale bridging from a fracture mechanics perspec-
tive. At a higher pressure level, the interaction zone is much
smaller, where the condition of small-scale bridging prevails.

Figure 10 shows the effect of vdW interaction on the center
deflection of the graphene bubble. In the presence of vdW
interactions, the numerical method did not converge when the
pressure is lower than a critical value (�140 MPa). This suggests
the possibility of snap-in instability, similar to snap transitions
predicted for a spherical cap adhered to a rigid substrate [37].
Computationally, the Jacobian matrix in Eq. (4.5) has to be posi-
tive definite in order to converge. A more robust numerical
method may be developed to further study this instability. When
converged, the center deflection at a given pressure level is lower

Fig. 7 Comparison of the deflection profiles for a graphene
bubble (a 5 10 nm). MD results in symbols and the numerical
results from the nonlinear plate theory in solid lines.

Fig. 8 Pressure versus center deflection from MD simulations
of a graphene bubble (a 5 10 nm), in comparison with the
numerical solutions based on the nonlinear plate theory

Fig. 9 (a) Effect of the vdW interaction on the deflection profile
of a graphene bubble (a 5 10 nm); (b) distributions of the vdW
force intensity

Fig. 10 Effect of the vdW interaction on center deflection of a
graphene bubble (a 5 10 nm)
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in the presence of vdW interactions. As expected, the effect of
vdW interactions deceases as the pressure increases and becomes
negligible when h> 1.5 nm.

7 Conclusions

A nonlinear plate theory is adapted to describe the deformation
of a graphene monolayer subject to lateral loads. A numerical
method is developed to solve the nonlinear equations for circular
graphene bubbles. In comparison to approximate solutions by ana-
lytical methods, it is found that the deflection profile and
the strain distribution are generally not well described by the ana-
lytical solutions. Based on the numerical results, approximate for-
mulas for the center deflection and center strain are suggested. In
comparison with molecular dynamics simulations of nanoscale
graphene bubbles, it is found that the continuum plate theory is
suitable only within the limit of linear elasticity. On the other
hand, the effect of van der Waals interactions between graphene
and its substrate is found to be significant when the center deflec-
tion is relatively small.
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