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A State Space Method
for Surface Instability
of Elastic Layers With Material
Properties Varying in Thickness
Direction
A state space method is proposed for analyzing surface instability of elastic layers with
elastic properties varying in the thickness direction. By assuming linear elasticity with
nonlinear kinematics, the governing equations for the incremental stress field from a fun-
damental state are derived for arbitrarily graded elastic layers subject to plane-strain
compression, which lead to an eigenvalue problem. By discretizing the elastic properties
into piecewise constant functions with homogeneous sublayers, a state space method is
developed to solve the eigenvalue problem and predict the critical condition for onset of
surface instability. Results are presented for homogeneous layers, bilayers, and continu-
ously graded elastic layers. The state space solutions for elastic bilayers are in close
agreement with the analytical solution for thin film wrinkling within the limit of linear
elasticity. Numerical solutions for continuously graded elastic layers are compared to
finite element results in a previous study (Lee et al., 2008, J. Mech. Phys. Solids, 56, pp.
858–868). As a semi-analytical approach, the state space method is computationally
efficient for graded elastic layers, especially for laminated multilayers.
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1 Introduction

Surface patterns are commonly observed in nature [1] and
experiments [2–4]. A large number of these patterns result from
surface instability. Extensive theoretical studies on surface insta-
bility have been devoted to two types: one is for a homogeneous
block of a rubberlike elastic material when compressed beyond a
moderately large strain [5,6], and the other is for a stiff skin layer
on a soft substrate under compression [7–9]. Correspondingly,
two types of surface instability patterns have been predicted,
creases and wrinkles. Both creases and wrinkles set in by deviat-
ing from a state of homogenous deformation. Wrinkles deviate
from the homogenous state by a field of infinitesimal strain in
finite space, whereas creases deviate by a field of finite strain
localized in space. In the case of a homogeneous elastic block,
onset of creasing instability precedes that of wrinkling [10–12],
with a critical strain in the regime of nonlinear elasticity. For a
stiff skin layer on a soft substrate, the critical strain for wrinkling
can be much smaller, typically within the limit of linear elasticity
(i.e., less than a few percent). By changing the elastic modulus ra-
tio in the bilayer system, a transition from wrinkling to creasing
was predicted by Wang and Zhao [13]. More generally, an elastic
layer could be functionally graded or laminated in multilayers
with the elastic properties varying in the thickness direction, either
continuously or discontinuously. Examples include human skins,
poly(methyldisiloxane) with oxidized surface, and hydrogels with
depthwise cross-link gradients. A few recent studies have

considered surface instability of graded elastic layers. Lee et al.
[14] presented a general bifurcation analysis for surface instability
of an elastic half space with material properties varying in the
thickness direction. Cao et al. [15] derived the critical condition
for wrinkling of a stiff thin layer on a semi-infinite substrate with
continuously graded elastic modulus. More recently, Diab et al.
[16] presented a nonlinear bifurcation analysis for a neo-Hookean
half space with its elastic properties decaying exponentially in
depth. As noted by Lee et al. [14], except for a few special cases,
the critical condition for onset of surface instability has to be
determined numerically, and they used a finite element method to
solve the eigenvalue problem for onset of surface wrinkling. In
the present study, we propose an alternative, semi-analytical
method by the concept of state space for generally graded or lay-
ered materials and show that the state space method is computa-
tionally efficient for the analysis of surface instability.

The remainder of this paper is organized as follows. Section 2
derives the governing equations for the incremental stress field in
an orthotropic elastic layer with arbitrarily graded elastic proper-
ties. The state space method is presented in Sec. 3 to solve the
eigenvalue problem for the critical condition of surface instability.
The results are presented in Sec. 4, verifying the state space
solution by comparing to the analytical solutions for elastic
bilayers and the finite element results for continuously graded
elastic layers. Section 5 concludes the present study with a short
summary.

2 Theory of Elastic Surface Instability

Consider an elastic layer with one face being traction free and
the other face attached to a rigid support as shown in Fig. 1(a),
where a Cartesian coordinate system is set up such that X2 ¼ 0 at
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the free surface and X2 ¼ H at the interface between the layer and
the support. When the elastic layer is subjected to an in-plane
compression parallel to the free surface, the compressive stress
inside the layer may cause surface instability. We refer to the
compressed state with a flat surface as the fundamental state
(Fig. 1(b)) and denote the corresponding coordinates as (x1, x2).
In the present study, we focus on plane-strain compression
with a uniform nominal strain in the x1-direction, although the
analysis can be readily extended to consider biaxial in-plane
compression.

The material is assumed to be linear elastic with a quadratic
strain energy density function in terms of Green–Lagrange strain

W ¼ 1

2
CIJKLEIJEKL (1)

where EIJ ¼ 1
2
ðFkIFkJ � dIJÞ, FkJ ¼ @xk=@XJ , dIJ is the Kronecker

delta, and CIJKL is the elastic modulus. To facilitate a consistent
stability analysis, it is necessary to consider nonlinear kinematics
even for small deformation of constitutively linear elastic materi-
als [14]. For an orthotropic elastic layer with material properties
varying in the thickness direction, CIJKL is a function of X2 and
possesses the orthotropic symmetry with respect to three orthogo-
nal axes coinciding with the Cartesian coordinates.

With the strain energy density function, the second
Piola–Kirchhoff stress is obtained as

SIJ ¼
@W

@EIJ
¼ CIJKLEKL (2)

and the first Piola–Kirchhoff stress (nominal stress) is

PiJ ¼
@W

@FiJ
¼ FiKSKJ (3)

The equilibrium equation can be written as

PiJ;J ¼ FiKSKJ;J þ SKJFiK;J ¼ 0 (4)

and the boundary condition at the free surface requires that

Pi2 ¼ 0; at X2 ¼ 0 (5)

Here and subsequently, the notation ðÞ;J denotes differentiation
with respect to XJ in the reference state, whereas ðÞ;j denotes
differentiation with respect to xj in the fundamental state; the
Einstein summation convention is implied over repeated indices
unless noted otherwise.

Under the plane-strain condition, the strain and stress in the
fundamental state can be determined in terms of the imposed
nominal strain, e0 ¼ F11 � 1. The corresponding Green–Lagrange
strain is: E11 ¼ e0 þ ð1=2Þe2

0. Strain compatibility requires that
E11 be independent of X2. The equilibrium equation and boundary
conditions together require that S22 ¼ P22 ¼ 0 everywhere in the
fundamental state, and hence

E22 ¼ �
C2211

C2222

e0 þ
1

2
e2

0

� �
(6)

The compressive stress in the fundamental state is then

S11 ¼ C1111 �
C2

1122

C2222

� �
e0 þ

1

2
e2

0

� �
(7)

and P11 ¼ ð1þ e0ÞS11. For the elastic layer with material proper-
ties varying in the thickness direction, both the lateral strain E22

and the compressive stress (S11 or P11) vary with X2 in general,
hence inhomogeneous for the fundamental state.

Next consider an incremental displacements Dui (i ¼ 1; 2) from
the fundamental state. The increments of the deformation gradient
and the Green–Lagrange strain are

DFkJ ¼ FiJDuk;i (8)

DEIJ ¼
1

2
ðFkIFiJ þ FiIFkJÞDuk;i (9)

and correspondingly, the increments of the Piola–Kirchhoff
stresses are

DSIJ ¼ CIJKLDEKL (10)

DPiJ ¼ FiKDSKJ þ SKJDFiK (11)

The incremental stress field must satisfy the equilibrium equation
and the boundary condition, i.e.,

DPiJ;J ¼ ðFiKDSKJ þ SKJDFiKÞ;J ¼ 0 (12)

DPi2 ¼ FiKDSK2 þ SK2DFiK ¼ 0; at X2 ¼ 0 (13)

Assuming that the strain in the fundamental state is small so
that FiK � diK , the increment of the first Piola–Kirchhoff stress in
Eq. (11) can be approximated as

DPiJ � CiJklDuk;l þ PkJDui;k (14)

Inserting Eq. (14) into Eqs. (12) and (13), the equilibrium equa-
tion and boundary condition become

ðCiJklDuk;l þ PkJDui;kÞ;J ¼ 0 (15)

Ci2klDuk;l þ Pk2Dui;k ¼ 0; at x2 ¼ 0 (16)

Equations (15) and (16) are essentially identical to Eqs. (10) and
(11) in Ref. [14], which were derived from a variational approach
under the same assumptions of linear elasticity and small strain.

Fig. 1 Schematics of an elastic layer on a rigid support: (a) in
the stress-free reference state and (b) in the fundamental state
subjected to in-plane compression, divided into n sublayers for
the state space method
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However, it is noted that the stress in the fundamental state given
by Eq. (1) in Ref. [14] is incorrect, but their numerical results
seem to be unaffected.

In addition, attachment to the rigid support imposes a boundary
condition for the incremental displacement at the bottom of the
elastic layer

Dui ¼ 0; at x2 ¼ h (17)

The equilibrium equation (15) along with the boundary condi-
tions (16) and (17) constitutes an eigenvalue problem. The funda-
mental state becomes unstable when there exist any nontrivial
solutions for the incremental field, and surface instability is
expected for the specific boundary conditions. The critical condi-
tion for onset of surface instability is predicted by solving the
eigenvalue problem. However, for an arbitrarily graded elastic
layer with Cijklðx2Þ, the problem in the general case cannot be
solved analytically. Lee et al. [14] developed a finite element
method by discretizing the governing equations. Their numerical
results for elastic bilayers agree well with the analytical solution
for wrinkling of thin films by Huang et al. [8], but for continu-
ously graded elastic layers the numerical results were not bench-
marked since no analytical solutions were available. In the present
study we develop a state space method to solve the eigenvalue
problem for arbitrarily graded elastic layers (including multi-
layers). We note that the present study is limited by the assump-
tions of linear elasticity and small strain. This limitation may be
removed by using a strain energy density function of nonlinear
elasticity in a generally finite-strain formulation, as shown for
hydrogel layers in a previous study [17].

3 State Space Method

In this section, we first present the state equation for a homoge-
neous layer and then use this equation to analyze surface instabil-
ity of elastic layers with graded material properties. The state
space method is commonly used in dynamic systems to analyze
multiple inputs and outputs related by differential equations (also
known as the “time-domain approach”) [18,19].

3.1 State Equation for a Homogeneous Layer. Assuming
the elastic layer is homogeneous and isotropic, the incremental
stress in Eq. (14) becomes

DP11 ¼ ðkþ 2lþ P11ÞDu1;1 þ kDu2;2 (18)

DP12 ¼ lðDu1;2 þ Du2;1Þ (19)

DP21 ¼ lDu1;2 þ ðlþ P11ÞDu2;1 (20)

DP22 ¼ kDu1;1 þ ðkþ 2lÞDu2;2 (21)

where the fundamental nominal stress P11 � ð4lðkþ lÞ=
ðkþ 2lÞÞe0 with k and l being Lame’s constants of isotropic elas-
ticity. The incremental stress satisfies the equilibrium equations

@DP11

@x1

þ @DP12

@x2

¼ 0 (22)

@DP21

@x1

þ @DP22

@x2

¼ 0 (23)

and the boundary condition

DP22 ¼ DP12 ¼ 0; at x2 ¼ 0 (24)

Let a denote the differentiation with respect to x1. From Eqs.
(19) and (21), we have

Du1;2 ¼
1

l
DP12 � aDu2 (25)

Du2;2 ¼
1

kþ 2l
ðDP22 � kaDu1Þ (26)

Differentiation of Eqs. (18) and (20) with respect to x1 yields

aDP11 ¼ ðkþ 2lþ P11Þa2Du1 þ kaDu2;2 (27)

aDP21 ¼ laDu1;2 þ ðlþ P11Þa2Du2 (28)

Substituting Eqs. (25) and (26) into Eqs. (27) and (28) and then
into Eqs. (22) and (23), we obtain that

DP12;2 ¼ �
4lðkþ lÞ
kþ 2l

þ P11

� �
a2Du1 �

k
kþ 2l

aDP22 (29)

DP22;2 ¼ �P11a
2Du2 � aDP12 (30)

Assume the perturbation displacements to be sinusoidal in the
x1 direction, namely

Du1 ¼ U1ðx2Þ sinðxx1Þ and Du2 ¼ U2ðx2Þ cosðxx1Þ (31)

where x is the wave number. Correspondingly, the incremental
stresses are

DP12 ¼ T1ðx2Þ sinðxx1Þ and DP22 ¼ T2ðx2Þ cosðxx1Þ (32)

Inserting Eqs. (31) and (32) into Eqs. (25), (26), (29), and (30),
a set of differential equations are obtained in a matrix form as

d

dx2

U1ðx2Þ
T2ðx2Þ
U2ðx2Þ
T1ðx2Þ

8>>><
>>>:

9>>>=
>>>;
¼ A

U1ðx2Þ
T2ðx2Þ
U2ðx2Þ
T1ðx2Þ

8>>><
>>>:

9>>>=
>>>;

(33)

where

A ¼

0 0 x
1

l

0 0 P11x2 �x

� kx
kþ 2l

1

kþ 2l
0 0

4lðkþ lÞ
kþ 2l

þ P11

� �
x2 kx

kþ 2l
0 0

2
6666666664

3
7777777775

(34)

Equation (33) defines a set of first-order, homogeneous,
ordinary differential equations in terms of the displacements and
tractions, which is commonly called the state equation [20]. By
integrating the differential equations, the state vector, [U1, T2, U2,
T1], can be determined as

U1ðx2Þ
T2ðx2Þ
U2ðx2Þ
T1ðx2Þ

8>>><
>>>:

9>>>=
>>>;
¼ Dðx2Þ

U1ð0Þ
T2ð0Þ
U2ð0Þ
T1ð0Þ

8>>><
>>>:

9>>>=
>>>;
¼ eAx2

U1ð0Þ
T2ð0Þ
U2ð0Þ
T1ð0Þ

8>>><
>>>:

9>>>=
>>>;

(35)

where the state vector at x2 is related to the same state vector at
x2 ¼ 0. The matrix, Dðx2Þ ¼ eAx2 , can be calculated directly by
the matrix exponential operation (e.g., expm in Matlab), which
maps one matrix (A) to another (D) as follows:

Dðx2Þ ¼ eAx2 ¼ V � eKx2 � V�1 (36)

where K is a diagonal matrix with the eigenvalues of the matrix A
and V is the corresponding matrix with the eigenvectors so that
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A ¼ V � K � V�1. Exponentiation of a diagonal matrix can be
obtained simply by exponentiation of the diagonal elements.

The boundary conditions in Eqs. (17) and (24) dictate that

U1ðhÞ ¼ U2ðhÞ ¼ 0 (37)

T2ð0Þ ¼ T1ð0Þ ¼ 0 (38)

For a homogeneous elastic layer, substituting Eqs. (37) and (38)
into Eq. (35), we obtain

0

T2ðhÞ
0

T1ðhÞ

8>><
>>:

9>>=
>>;
¼ DðhÞ

U1ð0Þ
0

U2ð0Þ
0

8>><
>>:

9>>=
>>;

(39)

which leads to an eigenvalue problem in terms of the surface
displacements

D11U1ð0Þ þ D13U2ð0Þ ¼ 0 (40)

D31U1ð0Þ þ D33U2ð0Þ ¼ 0 (41)

To have a nontrivial solution for the surface displacements, the
determinant of the coefficient matrix in Eqs. (40) and (41) must
vanish, namely

D11D33 � D13D31 ¼ 0 (42)

which predicts the critical condition for onset of surface instability
of the elastic layer. By a dimensional consideration, the critical
condition for a homogeneous layer can be written as

ec ¼ f ðxh; �Þ (43)

where ec ¼ �ððkþ 2lÞ=ð4lðkþ lÞÞÞPc
11 defines a critical strain

corresponding to the critical stress Pc
11 and � ¼ k=ð2ðkþ lÞÞ is

Poisson’s ratio.
An alternative method is presented in the Appendix, which

yields an explicit equation for the critical strain (Eq. A10). How-
ever, the explicit result is limited to a homogeneous layer, while
the state space method can be readily extended to multilayered or
graded elastic layers (Sec. 3.2).

3.2 State Space Solution for Graded Layers. Next we con-
sider an elastic layer with its elastic properties varying in the
thickness direction, described by two functions, kðx2Þ and lðx2Þ.
The functions may be continuous (such as functionally graded
elastic layers) or discontinuous (such as piecewise constant func-
tions for bilayers or multilayer laminates). In either case, we
divide the elastic layer into a number of homogeneous sublayers
(Fig. 1(b)). In the case of a continuously graded elastic layer, the
functions kðx2Þ and lðx2Þ are discretized into piecewise constant
functions with n sublayers. When n approaches infinity and the
thickness of each sublayer approaches zero, the discretization
would eventually converge toward the continuous functions. In
practice, the continuously graded elastic layer can be analyzed
exactly by the discretized sublayers with a finite but sufficiently
large n. Therefore, regardless of continuous or discontinuous vari-
ation in the elastic properties, surface instability of the elastic
layer can be analyzed by solving the state equation for each
homogeneous sublayer as presented in Sec. 3.1, with the following
steps.

As shown in Fig. 1(b), for the jth sublayer with thickness hj, the
elastic properties are approximately taken as

kj ¼ ½kðyj�1Þ þ kðyjÞ�=2 and lj ¼ ½lðyj�1Þ þ lðyjÞ�=2 (44)

where yj ¼ h1 þ h2 þ � � � þ hj and y0 ¼ 0. From the state space
solution in Eq. (35), the state vector at the interface x2 ¼ yj is
related to that at x2 ¼ yj�1 as

RðyjÞ ¼ DjðhjÞRðyj�1Þ (45)

where RðyjÞ ¼ ½U1ðyjÞ; T2ðyjÞ;U2ðyjÞ;T1ðyjÞ�T, DjðhjÞ ¼ expðAjhjÞ
(no summation over j), and the matrix Aj is given by Eq. (34) for
each sublayer.

Noting the continuity of the state vector (displacements and
tractions) across all interfaces between the sublayers, we obtain
the following relation:

RðynÞ ¼ KRð0Þ (46)

where K ¼
Q1

j¼n DjðhjÞ, with Rð0Þ and RðynÞ being the state vec-
tors at the surface (x2 ¼ 0) and the bottom (x2 ¼ yn ¼ h) of the
elastic layer, respectively. The boundary conditions in Eqs. (37)
and (38) require that

U1ðynÞ ¼ U2ðynÞ ¼ 0 (47)

T2ð0Þ ¼ T1ð0Þ ¼ 0 (48)

Inserting Eqs. (47) and (48) into Eq. (46), we obtain

0

T2ðynÞ
0

T1ðynÞ

8>><
>>:

9>>=
>>;
¼ K

U1ð0Þ
0

U2ð0Þ
0

8>><
>>:

9>>=
>>;

(49)

which leads to an eigenvalue problem in terms of the surface
displacements

K11U1ð0Þ þ K13U2ð0Þ ¼ 0 (50)

K31U1ð0Þ þ K33U2ð0Þ ¼ 0 (51)

Similar to the case of a homogeneous layer, the critical condi-
tion for onset of surface instability of the laminated layer is deter-
mined by the existence of nontrivial solutions to Eqs. (50) and
(51), which requires that

K11K33 � K13K31 ¼ 0 (52)

Equation (52) presents an implicit relation between the critical
strain ec and the dimensionless wave number xh, which depends
on the discretized material properties (kj and lj) and thickness (hj)
of each sublayer. Note that the corresponding critical stress varies
with the elastic modulus in the sublayers. By a dimensional con-
sideration, the critical condition can be written as

ec ¼ fnðxh;Ej=E1; �j; hj=h; j ¼ 1…nÞ (53)

where Ej ¼ ðljð3kj þ 2ljÞ=ðkj þ ljÞÞ is Young’s modulus of the
jth sublayer.

In practice, the state equation can be normalized for each sub-
layer to yield a dimensionless matrix D, which helps preventing
the matrix K from ill-conditioning after multiplication of a large
number of D-matrices. The present state space method is applica-
ble under the condition of linear elasticity and small-strain
approximations. While the present study assumes a flat surface
before instability, the state space method in principle can be
extended to analyze instability of curved surfaces, such as radially
graded elastic cylinders [21], which is left for future studies.

4 Results and Discussion

In this section, we present results for homogeneous elastic
layers, bilayers, and continuously graded elastic layers. A bilayer
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with an elastic thin film on an elastic substrate is considered as a
benchmark problem, for which the state space solution is compare
to an analytical solution. For continuously graded elastic layers,
the state space method offers an approximate solution by discre-
tizing the elastic properties. Alternatively, Lee et al. [14] devel-
oped a finite element method by discretizing the differential
equations. In both methods, the approximate solution converges
when a sufficient number of discrete sublayers (or elements) are
used.

4.1 Surface Instability of a Homogeneous Elastic Layer.
For a homogeneous elastic layer, the critical condition for onset of
surface stability can be obtained from Eq. (42) in terms of either a
critical stress (Pc

11) or a critical strain (ec). Figure 2 plots the criti-
cal strain ec as a function of the perturbation wave number xh. As
the wave number increases, the critical strain decreases and
approaches a constant as xh!1. Thus, the critical condition for
the surface instability of a homogeneous elastic layer is deter-
mined by the short-wave limit, independent of the layer thickness.
This is similar to swell-induced surface instability of a hydrogel
layer [22]. The critical strain at the short-wave limit for a homoge-
neous elastic layer can also be obtained analytically from
Eq. (A10), shown as the horizontal dashed lines in Fig. 2.
Evidently, the state space solution coincides with the analytical
solution for xh!1. The critical condition may be compared to
Biot’s analysis for an elastomer half space [5]. While Biot
assumed a neo-Hookean nonlinear elasticity with a finite-strain
formulation, the present study has assumed constitutively linear
elasticity along with the small-strain approximation. As a result,
the critical strain obtained from the present analysis is consider-
ably lower than Biot’s prediction (ec ¼ 0:46). Apparently, the
critical strain for a homogeneous elastic layer is beyond the small-
strain approximation. Depending on the material, such a large
strain could cause nonlinear elasticity, plasticity, or other types of
instability (e.g., shear bands) before onset of the surface instabil-
ity. In the case of an elastomer, it has been found that surface
creasing precedes surface wrinkling as the primary mode of sur-
face instability [10–12].

Most of the previous studies on surface instability of a homoge-
neous layer have assumed the material to be incompressible.

Fig. 2 The critical strain versus the perturbation wave number
for homogeneous elastic layers with various Poisson’s ratios.
The horizontal dashed lines represent the analytical solutions
for xh ! ‘, obtained from Eq. (A10).

Fig. 3 The critical strain versus dimensionless wave number
for elastic bilayers with mf 5 ms 5 0:4: (a) Ef=Es 5 1000 and (b)
hs=hf 5 10

Fig. 4 (a) The critical strain for onset of surface instability and
(b) the corresponding critical wavelength versus the thickness
ratio for elastic bilayers with mf 5 ms 5 0:4. The solid lines are
predicted by the analytical solution [8].
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Although quantitatively inaccurate, the present analysis predicts a
qualitative trend that the critical strain depends on Poisson’s ratio
or in general the compressibility of the elastic material. As shown
in Fig. 2, the critical strain increases as Poisson’s ratio decreases
(increasingly compressible).

4.2 Surface Instability of Elastic Bilayers. For an elastic
bilayer, the critical condition for surface instability depends on
the stiffness ratio between the two sublayers. When the surface
layer is much stiffer than the underlayer, the critical strain is small
and within the linear elasticity regime, as predicted analytically
by Huang et al. [8] and many others [23–25]. Lee et al. [14] com-
pared their numerical results to the analytical solution as a bench-
mark. Here we show that the state space solution for an elastic
bilayer is in close agreement with the analytical solution. Follow-
ing the notation in Ref. [14], let hf and hs be the thicknesses of the
upper layer (film) and the underlayer (substrate), respectively, and
h ¼ hf þ hs. Young’s moduli for the two layers are Ef and Es, and
their Poisson’s ratios are �f and �s.

For a bilayer, the matrix in Eq. (46) is simply K ¼ DsðhsÞ
DfðhfÞ, where DsðhsÞ and DfðhfÞ are the matrix exponentials for
the two homogeneous sublayers as defined in Eq. (36). By solving
the eigenvalue problem in Eqs. (50) and (51), we obtain from
Eq. (52) the critical strain ec as a function of the dimensionless
wave number xhf , as shown in Fig. 3. For a fixed stiffness ratio
(Ef=Es), the critical strain decreases with increasing thickness ra-
tio (hs=hf ) as shown in Fig. 3(a). For a fixed thickness ratio, the

critical strain decreases with increasing modulus ratio, as shown
in Fig. 3(b). In all cases with Ef=Es > 1, the critical strain is mini-
mized at a finite wavenumber, defining a specific instability mode
with wavenumber x� and the corresponding critical strain e�c . The
onset of surface instability is then predicted at the critical strain
e�c , with the corresponding wavelength 2p=x�.

The critical strain e�c and the wavelength 2p=x�, normalized
by the thickness of the upper layer (hf ), are plotted in Fig. 4 as
functions of the thickness ratio hs=hf , in comparison with the ana-
lytical solution for thin film wrinkling [8]. The results from the
state space method are found to be in excellent agreement with
the analytical solution. We note that the finite element results by
Lee et al. [14] were also in good agreement with the analytical
solution. However, using the finite element method, 200 elements
had to be used in order to achieve sufficient accuracy. In contrast,
with two sublayers, the state space method requires only two four-
by-four matrices and the solution is exact for the eigenvalue
problem. In general, the state space method can be effectively
extended for elastic layers with piecewise constant elastic proper-
ties (such as multilayers).

Both the minimum critical strain and the corresponding wave-
length depend on the modulus ratio for elastic bilayers, as shown
in Fig. 5. As the modulus ratio Ef=Es decreases, the critical strain
increases and the wavelength decreases. When the modulus ratio
approaches one (Ef=Es ! 1), the critical strain approaches that
for a homogeneous layer, with ec ¼ 0:266 for � ¼ 0:4 as shown in
Fig. 2. Interestingly, the corresponding wavelength in Fig. 5(b)
approaches a finite value (�3.7), instead of zero wavelength

Fig. 5 (a) The critical strain for onset of surface instability and
(b) the corresponding critical wavelength versus the modulus
ratio for elastic bilayers. The solid lines are predicted by the
analytical solution [8], and the horizontal dashed line in (a) sug-
gests an upper bound for the small-strain approximation.

Fig. 6 Convergence of the state space solution for an expo-
nentially graded elastic layer: (a) the critical strain and (b) the
corresponding wave number, versus the number of sublayers
used
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expected for a homogeneous layer. This behavior is similar to a
hydrogel bilayer considered in a previous study [17], where a met-
astable long-wavelength mode was predicted for modulus ratio
less than 1. As the modulus ratio approaches 1 from either side,
the long-wavelength mode persists while the corresponding
critical strain approaches that for the zero-wavelength mode
(short-wave limit), analogous to a first-order phase transition. As
long as Ef=Es > 1, the critical strain for the long-wave mode is
lower than the short-wave limit for a homogeneous layer. Similar
transition was considered by Wang and Zhao [13] based on energy
minimization, but their numerical results predicted a critical
modulus ratio greater than 1.

We note that the assumption of linear elasticity limits the pres-
ent method to small strains. Taking e�c ¼ 0:05 as the upper bound
for the assumption to be valid, the minimum modulus ratio in
Fig. 5(a) is around 30, below which a nonlinear finite-strain for-
mulation must be employed for more accurate analysis. The ana-
lytical solution by Huang et al. [8] is subject to the same limit of
linear elasticity. In addition, the use of classical plate theory for
the surface layer requires that the wavelength be much larger than
the thickness (2p=x� � hf ) in the analytical solution [25]; this
limitation is removed in the state space solution. As shown in
Fig. 5, when the stiffness ratio Ef=Es is relatively large, the nor-
malized critical wavelength is long and the critical strain predicted
by the analytical solution agrees closely with the state space solu-
tion. However, as the stiffness ratio decreases, the critical wave-
length decreases and the analytical solution becomes less accurate
in comparison with the state space solution. However, within the

limit of linear elasticity (e�c < 0:05), the two solutions are nearly
indistinguishable.

4.3 Elastic Layers With Continuously Graded Modulus.
Following Lee et al. [14], we consider two types of elastic layers
with the plane-strain modulus varying in the thickness direction as
an exponential function and a complementary error function,
respectively

�Eðx2Þ ¼ �Es þ ð �E0 � �EsÞ exp
�x2

l

� �
(54)

�Eðx2Þ ¼ �Es þ ð �E0 � �EsÞerfc
x2

l

� �
(55)

where �E0 and �Es refer to the plane-strain moduli at the surface
(x2 ¼ 0) and the bottom (x2 ¼ h!1) of the graded elastic layer,
and the parameter l is a characteristic length for the modulus gra-
dient. Poisson’s ratio is taken to be a constant � ¼ 0:4 in both
cases.

For the continuously graded elastic layers, the elastic properties
are discretized by dividing the layer into many homogeneous sub-
layers. A sufficiently large number of sublayers should be used in
the state space method to ensure the accuracy of the results, simi-
lar to the convergence requirement for the finite element method.
For an exponentially graded elastic layer with �E0= �Es ¼ 100 and
h=l ¼ 50, by Eq. (54), �Eðx2Þ is essentially equal to �Es for
x2 	 20l. Thus, the layer can be divided into n� 1 uniform

Fig. 7 (a) The critical strain and (b) the corresponding wave

number for exponentially graded elastic layers with �E0=�Es rang-
ing from 10 to 105, comparing the state space solutions with
the finite element results by Lee et al. [14] and the analytical
approximation

Fig. 8 (a) The critical strain and (b) the corresponding wave
number, for the graded elastic layers with an error function for
the plane-strain modulus, comparing the state space solutions
with the finite element results by Lee et al. [14] and the analyti-
cal approximation
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sublayers for 0 
 x2 < 20l and one sublayer for x2 	 20l (almost
homogeneous). Similar to the bilayer case, a minimum critical
strain e�c is predicted at a specific wavenumber, x�. Figure 6
shows the convergence of the state space solution with respect to
the number of sublayers. It is observed that both e�c and x�l
decrease monotonically with the increasing number of sublayers,
eventually converging toward the values of 0.0560 and 0.1474,
respectively, for n 	 200. Similar number of elements would have
to be used to achieve convergence by the finite element method
although the exact number was not given in Ref. [14].

Figure 7 shows the critical strain e�c and the corresponding
dimensionless wave number x�l as the modulus ratio ( �E0= �Es)
changes from 10 to 105. Both the critical strain and the critical
wave number decrease monotonically with the increasing modu-
lus ratio, similar to Fig. 5 for the elastic bilayers. In addition,
when the relative thickness h=l increases, both e�c and x�l show
converging trends, similar to Fig. 4 for the bilayers with the
increasing thickness ratio. Interestingly, we notice that the results
for h=l ¼ 50 agree well with the finite element results in
Ref. [14], which differ slightly from the limiting case with
h=l!1, i.e., a half space. An “equivalent homogeneous layer”
was suggested by Lee et al. [14] as an approximation for the con-
tinuously graded elastic layer, with which an analytical solution
can be obtained based on the bilayer model. As shown in Fig. 7,
the analytical approximation underestimates the critical strain and
overestimates the wavenumber, in comparison with the state space
solutions for h=l > 100.

The critical strain e�c and the corresponding dimensionless wave
number x�l for the graded elastic layers described by the error

function in Eq. (55) are shown in Fig. 8 with the modulus ratio
( �E0= �Es) varying from 10 to 105. Similar to Fig. 7, e�c and x�l have
the same trends with the increasing �E0= �Es and h=l. We find that
the results for h=l ¼ 100 and 200 are nearly indistinguishable,
suggesting that both e�c and x�l for the error function grading con-
verge faster with increasing h=l than for the exponential function.
The faster convergence rate may be attributed to the fact that the
error function decays more rapidly than the exponential function.
For h=l ¼ 50, the critical strain e�c is again in good agreement with
the finite element results [14], but the corresponding wave number
x�l is considerably greater than the previous numerical results.
Interestingly, the analytical approximation by the “equivalent
homogeneous layer” compares closely with the predicted wave-
number by the state space solution for h=l > 100 in Fig. 8(b),
while the finite element results underestimated the wavenumber.

As another example, we consider a linearly graded elastic layer
using the state space method. In this case, the layer is divided into
n uniform sublayers. The critical strain and the corresponding
wave number are presented in Fig. 9 with increasing number of
sublayers. It is found that the convergence of the state space solu-
tion depends on the modulus ratio, i.e., the larger the modulus ra-
tio is, the slower the convergence rate becomes. However, even
for a very large modulus ratio ( �E0= �Es ¼ 1000), the predicted criti-
cal strain is beyond the small-strain limit for linear elasticity. The
critical strain can be significantly reduced by attaching a thick,
homogeneous layer (substrate) to the bottom of the linearly graded
elastic layer. In this case, the plane-strain modulus varies linearly
from �E0 to �Es for the upper layer (0 
 x2 < hf ) and remains as
a constant �Es for the underlayer (hf 
 x2 
 hf þ hs), while

Fig. 9 Convergence of the state space solution for linearly
graded elastic layers with different modulus ratios: (a) the criti-
cal strain and (b) the corresponding wave number, versus the
number of sublayers used

Fig. 10 (a) The critical strain and (b) the corresponding wave-
length versus the thickness ratio for a linearly graded elastic
layer on a homogeneous substrate. The solid lines are the ana-
lytical solution for the elastic bilayers with �Ef 5 ð�E0 þ �EsÞ=2 for
the upper layer.
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Poisson’s ratio is taken to be a constant � ¼ 0:4. To apply the
state space method, the upper layer is divided into n� 1 sublayers
uniformly and the underlayer as one sublayer. For the modulus
ratio �E0= �Es ranging from 102 to 104, convergence of the state
space solution is achieved by using n 	 50. Figure 10 plots the
critical strain and the corresponding wavelength, normalized by
the upper layer thickness, for the continuously graded elastic
layer. Similar to Fig. 4 for the bilayers, the critical strain and the
corresponding wavelength depend on the modulus ratio ( �E0= �Es)
and the thickness ratio (hs=hf ). For comparison, the analytical
solution for the bilayers with the average modulus �Ef

¼ ð �E0 þ �EsÞ=2 is shown in Fig. 10. Evidently, the bilayer approxi-
mation overestimates the critical strain and wavelength for the
continuously graded elastic layers.

5 Summary

In this paper, by assuming a quadratic strain energy density
function with nonlinear kinematics, we derived the governing
equations for the incremental stress field in orthotropic elastic
layers with the elastic properties varying in the thickness direc-
tion. Under the conditions of linear elasticity and small strain, a
state space method was developed for predicting the onset of sur-
face instability in graded elastic layers. The present method was
verified by comparing to the analytical solutions for isotropic elas-
tic bilayers and the finite element results for continuously graded
elastic layers. It is found that the state space method is computa-
tionally more effective than the finite element method for multi-
layers with discontinuous variations in the elastic properties,
while the convergence for continuously graded layers requires
discretization with a sufficient number of sublayers similar to the
finite element method. In addition, we note that the linear elastic-
ity and small-strain conditions limit the present method to graded
or layered materials with the critical strain less than a few percent.
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Appendix: An Analytical Solution for Surface

Instability of a Homogeneous Elastic Layer

Here, we present an analytical approach to solve the eigenvalue
problem in Eqs. (15)–(17) for a homogeneous and isotropic elastic
layer. Substituting the incremental stress components (18)–(21)
into the equilibrium equations (22) and (23), we obtain

lDu1;22 þ ðkþ 2lþ P11ÞDu1;11 þ kDu2;21 þ lDu2;12 ¼ 0 (A1)

kDu1;12 þ lDu1;21 þ ðkþ 2lÞDu2;22 þ ðlþ P11ÞDu2;11 ¼ 0

(A2)

Inserting the perturbation displacements in Eq. (31) into Eqs. (A1)
and (A2) and the boundary condition in Eq. (24), we obtain

lU001 � x2ðkþ 2lþ P11ÞU1 � xðkþ lÞU02 ¼ 0 (A3)

xðkþ lÞU01 þ ðkþ 2lÞU002 � x2ðlþ P11ÞU2 ¼ 0 (A4)

and

U01 � xU2 ¼ 0 and xkU1 þ ðkþ 2lÞU02 ¼ 0; at x2 ¼ 0

(A5)

where the single and double primes denote the first and second-
order differentiations with respect to x2. Equations (A3) and (A4)
can be solved by

U1ðx2Þ ¼ C1epxx2 þ C2e�pxx2 þ C3eqxx2 þ C4e�qxx2 (A6)

U2ðx2Þ ¼ �C1epxx2=pþ C2e�pxx2=p� C3qeqxx2 þ C4qe�qxx2

(A7)

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P11=l

p
and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P11=ðkþ 2lÞ

p
. Applying

the boundary conditions in Eqs. (A5) and (37), a set of algebraic
equations are obtained for the coefficients C1, C2, C3, and C4,
written in the matrix form as

MC ¼ 0 (A8)

where C ¼ ½C1; C2; C3; C4�T, and

M ¼

epxh e�pxh eqxh e�qxh

�epxh=p e�pxh=p �qeqxh qe�qxh

pþ 1=p �p� 1=p 2q �2q

�2l �2l k� ðkþ 2lÞq2 k� ðkþ 2lÞq2

2
6664

3
7775

(A9)

The critical condition for onset of surface instability is then pre-
dicted by setting the determinant of M to zero, i.e., det M ¼ 0,
which can be written in the same form as Eq. (43).

It is noted that the critical strain decreases with increasing
wavenumber (xh), similar to that for a hydrogel layer [22]. As a
result, the minimum critical strain can be predicted by taking the
wave number xh!1 in Eq. (A9), with which we obtain a poly-
nomial equation

e3
c � 4ð1� �Þe2

c þ 2ð1� �Þð2� �Þec � ð1� �Þ2 ¼ 0 (A10)

Among the three roots to Eq. (A10), one is real-valued for
0 
 � 
 0:5. In particular, for an incompressible elastic layer
(� ¼ 0:5), the predicted critical strain is 0.228 (compressive).
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