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Salt-Induced Swelling and
Volume Phase Transition of
Polyelectrolyte Gels
A theoretical model of polyelectrolyte gels is presented to study continuous and discon-
tinuous volume phase transitions induced by changing salt concentration in the external
solution. Phase diagrams are constructed in terms of the polymer–solvent interaction
parameters, external salt concentration, and concentration of fixed charges. Comparisons
with previous experiments for an ionized acrylamide gel in mixed water–acetone solvents
are made with good quantitative agreement for a monovalent salt (NaCl) but fair qualita-
tive agreement for a divalent salt (MgCl2), using a simple set of parameters for both
cases. The effective polymer–solvent interactions vary with the volume fraction of ace-
tone in the mixed solvent, leading to either continuous or discontinuous volume transi-
tions. The presence of divalent ions (Mg2þ) in addition to monovalent ions in the external
solution reduces the critical salt concentration for the discontinuous transition by several
orders of magnitude. Moreover, a secondary continuous transition is predicted between
two highly swollen states for the case of a divalent salt. The present model may be further
extended to study volume phase transitions of polyelectrolyte gels in response to other
stimuli such as temperature, pH and electrical field. [DOI: 10.1115/1.4036113]
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1 Introduction

A polyelectrolyte gel consists of a charged polymer network
with ionizable groups on the polymer chains and mobile ions in a
fluid solvent [1]. Due to the presence of ionizable groups and
mobile ions, polyelectrolyte gels are responsive to many external
stimuli such as temperature [2,3], pH [4–6], ionic strength [7],
electrical fields [8,9], and light [10,11]. Of particular interest is
the volume phase transition, when the gel volume changes enor-
mously in response to a small change of the external environment
[12]. A discontinuous volume transition was first predicted theo-
retically in 1968 by Dusek and Patterson [13]. The first experi-
mental observation of a volume phase transition in a gel was
reported in 1978 by Tanaka [14]. Since then, many gel systems
have been developed with characteristic volume phase transitions
for a wide range of applications, such as sensors and actuators
[15], artificial muscles [16], and drug delivery [17,18]. Recent
developments of ionic skin [19] and ionic cables [20] have used
polyelectrolyte gels as effective ionic conductors, opening doors
to new applications in wearable electronics and soft robotics.

Many theoretical models have been developed to understand
and predict volume phase transitions in polyelectrolyte gels.
Katchalsky et al. [21] first extended the Flory–Rehner model for
neutral polymer gels to describe swelling of polyelectrolyte gels.
Following a similar approach, Dusek and Patterson [13] predicted
the possibility of a discontinuous volume change of a gel based on
an analogy of the coil–globule transition of polymers in a solution.
Later, Shibayama and Tanaka [12] noted a theoretical analogy
between the volume phase transition of a gel and the liquid–gas
transition of a van der Waals fluid. While the classical mean-field
theory of gels provided a qualitative understanding of the volume
phase transition [22,23], improvements in quantitative agreement
between the theory and experiments have been made by various
modifications to the theoretical formulation [24–26]. To study the
kinetics of swelling and inhomogeneous phenomena such as coex-
isting phases in a polyelectrolyte gel, a continuum field theory

was developed by Hong et al. [27], which couples large deforma-
tion and electrochemistry in the constitutive relations along with a
system of governing equations and boundary conditions. Alterna-
tively, multiphasic models have also been developed for polyelec-
trolyte gels, where the polymer network, the solvent and the ions
are treated as distinct phases within the framework of mixture
theory [28–31].

Volume phase transitions in gels induced by temperature and
pH have been studied extensively [5,12]. Less attention has been
paid to the effect of salt concentration or salinity on volume phase
transitions. Ohmine and Tanaka [32] reported an experimental
study on salt-induced volume phase transitions in an ionized
acrylamide gel, along with a qualitative explanation based on the
classical theory. Their experiments showed intriguing effects due
to the valence of the salt ions and composition of a mixed solvent.
A direct comparison between the experiments and theoretical pre-
dictions would elucidate the capability and limitations of a spe-
cific model for a quantitative description of polyelectrolyte gels in
both the swollen and collapsed phases. In this paper, we present
such a direct comparison based on the continuum theory by Hong
et al. [27], slightly reformulated for equilibrium free swelling of a
polyelectrolyte gel immersed in a salt solution with a mixed sol-
vent. The theory naturally leads to a balance of osmotic pressures
due to elasticity, solvent, and ions in an isotropic, homogeneous
state. Under the condition of electroneutrality, the ion concentra-
tions in the gel satisfy the Donnan equilibrium with a Donnan
potential, recovering the classical theory for a highly swollen
state. Both the salt concentration and solvent composition in the
external solution can be varied to induce a discontinuous volume
phase transition of the polyelectrolyte gel. Comparisons with the
experiments of Ohmine and Tanaka [32] show good quantitative
agreement for a monovalent salt (NaCl) but fair qualitative agree-
ment for a divalent salt (MgCl2), which may be further improved
by calibrating the model parameters for a specific combination of
salt and solvent.

The remainder of this paper is organized as follows: Section 2
presents the theoretical model, including the equations of state for
both the polyelectrolyte gel and the external solution as an ionic
liquid. Section 3 presents an equilibrium analysis of free swelling,
and Sec. 4 discusses the volume phase transition in a general
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form. Direct comparisons with experiments are presented in
Sec. 5 for both monovalent and divalent salts, followed by a short
summary in Sec. 6.

2 Theory

2.1 Kinematic Variables. Take the dry state of the gel (i.e.,
the polymer network) as the reference configuration, where each
material point is labeled by its coordinate X. The location of the
material point in the current configuration at a time t is denoted by
x X; tð Þ. The kinematics of deformation is described by the defor-
mation gradient tensor as usual

F ¼ rx (2.1)

With respect to the reference configuration, a nominal electric dis-
placement, ~D X; tð Þ, is defined by its relationship with the true
electric displacement [33], D x; tð Þ, as

D ¼ 1

J
F ~D (2.2)

where J ¼ detF. Similarly, the nominal concentration, Ca, is
defined as the number of mobile particles of species a per unit vol-
ume of the polymer network in the gel. The true concentration in
the current configuration is then ca ¼ Ca=J. The superscript a is
used here for all the mobile particles in the gel, including the neu-
tral solvent molecules and the mobile ions. Together, F, ~D, and
Ca constitute a set of kinematic variables that describe the current
state of the polyelectrolyte gel.

It is often assumed that the polymer network and the mobile
particles are incompressible at the molecular level. Consequently,
the volume change of the gel is related to the concentrations of
the mobile particles as

J ¼ 1þ
X

a

taCa (2.3)

where ta is the molecular volume of each mobile particle a.

2.2 Constitutive Relations. Following Hong et al. [27], the
free energy density of the polyelectrolyte gel is written as a func-
tion of the deformation gradient F, the nominal electric displace-
ment ~D, and the nominal concentrations Ca, which consists of
four parts

Wg F; ~D;C1;C2;…
� �

¼ Wnet
g þWsol

g þWion
g þWpol

g (2.4)

where Wnet
g , Wsol

g , Wion
g , and Wpol

g are the free energy terms associ-
ated with stretching of the polymer network, mixing the polymer
and the solvent, mixing the solvent and ions, and polarization of
the gel, respectively. Note that the free energy density in Eq. (2.4)
is per unit volume in the reference configuration (i.e., the dry
polymer network); the free energy per unit volume of the gel in
the current configuration is simply Wg=J.

The elastic free energy of stretching the polymer network is
assumed to be

Wnet
g ¼

1

2
NkT I � 3� 2ln Jð Þ (2.5)

where I ¼ tr FTFð Þ, N is the effective number density of polymer
chains in the dry state, kT is the temperature in the unit of energy
with the Boltzmann constant k and the absolute temperature T.

The free energy of mixing the solvent and the polymer
network is

Wsol
g ¼

kT

ts
tsCsln

tsCs

1þ tsCs
þ vtsCs

1þ tsCs

� �
(2.6)

where ts is the volume of the solvent molecule, Cs is the nominal
concentration of the solvent, and v is the Flory–Huggins parame-
ter for polymer–solvent interactions. Equations (2.5) and (2.6) are
identical to those for neutral polymer gels in previous studies
[34,35].

Assuming the concentrations of the mobile ions to be low, the
free energy of mixing the mobile ions and the solvent is
approximately

Wion
g ¼ kT

X
b

Cb ln
tbCb

J � 1
� 1

� �
(2.7)

where the superscript b is used here for all the mobile ions,
excluding the solvent molecule. Equation (2.7) is slightly different
from that in Hong et al. [27], where zero chemical potential was
assumed at a reference ion concentration. Here, the free energy of
mixing is derived from the statistical mechanics definition of
entropy for an ideal solution [36], without explicitly identifying a
reference ion concentration. This change leads to some subtle dif-
ferences in the swelling behavior, as discussed later. By Eq. (2.7),
we assume that the free energy due to the mixing between the ions
and the polymer network is negligible.

Treating the polyelectrolyte gel as an ideal dielectric, the free
energy of polarization in terms of the nominal electric displace-
ment is [33]

Wpol
g ¼

1

2egJ
jF ~Dj2 (2.8)

where eg is the effective dielectric constant of the gel. Due to the
different dielectric constants of the polymer and the solvent, the
effective dielectric constant of the gel in general depends on the
concentration of the solvent [37], but is assumed to be a constant
here for simplicity.

To impose Eq. (2.3) as a kinematic constraint, the free energy
density function is rewritten as

~Wg ¼ Wg þPg

X
a

taCa þ 1� J
� �

(2.9)

where Pg is a Lagrange multiplier.
With the free energy density function given by Eqs. (2.4)–(2.9),

the nominal electric field ~E and the electrochemical potential la

for each mobile species can then be obtained as [27]

~E ¼ @
~Wg

@ ~D
(2.10)

la ¼ @
~Wg

@Ca
þ ezaU (2.11)

where e is the elementary charge, za is the valence of the mobile
species a, and U is the electric potential so that ~E ¼ �rU. Substi-
tuting Eq. (2.9) into Eqs. (2.10) and (2.11), we obtain

~E ¼ 1

egJ
FTF ~D (2.12)

ls ¼ kT ln
tsCs

1þ tsCs
þ 1

1þ tsCs
þ v

1þ tsCsð Þ2

" #
þPgt

s (2.13)

lb ¼ ezbUþ kTln
tbCb

J � 1
þPgt

b (2.14)

By Eq. (2.12), the nominal electric displacement is obtained as

~D ¼ egJHTH
� �

~E (2.15)
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where H ¼ F�T.
To simplify further calculations, Eq. (2.3) is approximated by

neglecting the contribution of the mobile ions due to relatively
low concentrations (i.e., tbCb � tsCs) so that

1þ tsCs � J (2.16)

Then, by Eq. (2.13), we obtain

Pg ¼
ls

ts
� kT

ts
ln

J � 1

J
þ 1

J
þ v

J2

� �
(2.17)

which is essentially the osmotic pressure due to polymer–solvent
mixing as discussed later (see Eq. (2.22)).

By substituting Eq. (2.17) into Eq. (2.14), the nominal concen-
tration of the mobile ions can be obtained as

Cb ¼ J � 1

tb

J � 1

J

� �tb=ts

exp
lb � ezbU

kT
� tb

ts

ls

kT
� 1

J
� v

J2

� �( )

(2.18)

Assuming tb ¼ ts ¼ t, the nominal ion concentration is simplified
as

Cb ¼ J � 1ð Þ2

tJ
exp

lb � ls � ezbU
kT

þ 1

J
þ v

J2

� �
(2.19)

With Eq. (2.18) or Eq. (2.19), the ion concentrations in a polyelec-
trolyte gel can be obtained explicitly in terms of the electrochemi-
cal potentials and the volume swelling ratio (J ¼ detF).

It is often convenient to rewrite the free energy density as a
function of the deformation gradient, the nominal electric field
(instead of the electrical displacement), and the electrochemical
potentials (instead of concentrations) by a Legendre transform

Ŵg F; ~E; l1;l2;…
� �

¼ ~Wg F; ~D;C1;C2;…
� �

� ~E � ~D

�
X

a

Ca la � ezaUð Þ (2.20)

With Eqs. (2.4)–(2.9), (2.15), (2.16), and (2.19), the free energy
density function in Eq. (2.20) becomes

Ŵg ¼
1

2
NkT I � 3� 2lnJð Þ þ kT

t
J � 1ð Þ ln

J � 1

J
þ v

J
� ls

kT

� �

� kT

t
J � 1ð Þ2

J
exp

1

J
þ v

J2

� �X
b 6¼s

exp
lb � ls � ezbU

kT

� �

� eg

2
JjH~Ej2 ð2:21Þ

The nominal stress in the gel is then obtained as the derivative
of the free energy density function with respect to the deformation
gradient, namely,

P ¼ @Ŵg

@F
¼ NkT F�Hð Þ � JPgH

� kT

t
J � 1þ 1� 2v

J
þ 4v� 1

J2
� 2v

J3

� �
exp

1

J
þ v

J2

� �

�
X
b 6¼s

exp
lb � ls � ezbU

kT

� �
H

þegJ H~E �HTH~E � 1

2

����H~E

����
2

H

 !
ð2:22Þ

which includes four parts: the elastic part due to stretching the
polymer network, an osmotic part due to polymer–solvent mixing,

another osmotic part due to ionic interactions, and the Maxwell
stress due to polarization. In terms of the true stress, r ¼ PFT=J,
the two osmotic parts are isotropic, yielding two osmotic pres-
sures for the solvent and the mobile ions, respectively. The last
term in Eq. (2.22) is the nominal Maxwell stress, with which the
true Maxwell stress can be obtained in its usual form:
rMaxwell ¼ eg E� E� jEj2I=2

� �
, with the true electrical field

E ¼ H~E.
Therefore, the constitutive relations for the polyelectrolyte gel

consist of Eqs. (2.15), (2.19) and (2.22), with which the electrical
displacement, ion concentrations, and nominal stress can be deter-
mined for given deformation gradient (F), electrical field (~E), and
electrochemical potentials (la); the solvent concentration can be
obtained directly from Eq. (2.16).

2.3 External Solution. In the equilibrium state, the electro-
chemical potential for each mobile species is a constant in the gel
and the external solution. We treat the external solution as an
ionic liquid with a mixture of neutral solvent molecules (e.g.,
water) and ions. The treatment is similar to that for polyelectrolyte
gels in Secs. 2.1 and 2.2. Without a polymer network, an arbitrary
configuration of the ionic liquid may be used as the reference con-
figuration to define the deformation gradient. Then, the nominal
electric displacement is defined by Eq. (2.2) and the nominal con-
centration is related to the true concentration as ca ¼ Ca=J.
Assuming molecular incompressibility, the kinematic constraint
for the external solution isX

a

taCa ¼ J (2.23)

which implies that the entire space is occupied by the solvent mol-
ecules and ions in the external solution (i.e.,

P
at

aca ¼ 1).
The free energy density function of the external solution con-

tains two parts, due to ion mixing and polarization

Ws F; ~D;C1;C2;…
� �

¼ Wion
s þWpol

s (2.24)

Based on the statistical mechanics definition of entropy for an
ideal solution [36], the free energy density due to mixing of the
ions and the solvent in the external solution is

Wion
s ¼ kT

X
b6¼s

Cb ln
tbCb

J
� 1

� �
(2.25)

This expression is slightly different from that for the gel in Eq.
(2.7) because the fluid mixture occupies the entire volume of the
external solution but only a fraction of the volume in a gel con-
taining the polymer network.

The free energy density of polarization takes the same form as
Eq. (2.8) for the gel except with a different dielectric constant,
namely,

Wpol
s ¼

jF ~Dj2

2esJ
(2.26)

where es is the effective dielectric constant of the external
solution.

To impose the kinematic constraint in Eq. (2.23), the free
energy density function is rewritten as

~Ws ¼ Ws þPs

X
a

taCa � J
� �

(2.27)

where Ps is a Lagrange multiplier.
Substituting Eq. (2.27) into Eqs. (2.10) and (2.11), we obtain

the nominal electrical field and the electrochemical potentials for
the solvent and ions in the external solution
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~E ¼ 1

esJ
FTF ~D (2.28)

ls ¼ Pst
s (2.29)

lb ¼ ezbUþ kTln
tbCb

J
þPst

b (2.30)

Furthermore, the nominal stress in the external solution is
obtained as the derivative of the free energy density function with
respect to the deformation gradient, namely,

P¼@
~Ws

@F
¼� JPsþkT

X
b6¼s

Cb
� �

Hþ 1

esJ
F ~D� ~D�1

2
jF ~Dj2H

� �

(2.31)

which consists of an osmotic pressure and the Maxwell stress.
More explicitly, in terms of the true quantities, the true stress in
the external solution is

r ¼ 1

J
PFT ¼ � Ps þ kT

X
b6¼s

cb
� �

Iþ 1

es
D� D� 1

2
jDj2I

� �

(2.32)

which is independent of the reference configuration or deforma-
tion but includes a hydrostatic term undetermined by the constitu-
tive relation as expected for an incompressible fluid.

Next, we assume an infinitely large reservoir such that the con-
centrations of the ions are fixed in the external solution far away
from the gel. Let cb

0 be the true ion concentration, and use the
homogeneous state of the external solution as the reference con-
figuration. The electric potential U is set to be zero deep in the
solution (far away from the gel), where the solution is electrically
neutral and hence

P
bcb

0zb ¼ 0. As a result, ~E ¼ 0 and ~D ¼ 0.
Moreover, the solution is assumed to be stress free so that P ¼ 0.
By Eq. (2.31), we obtain

Ps ¼ �kT
X
b 6¼s

cb
0 (2.33)

Then, the electrochemical potential is obtained from Eq. (2.30) as

lb ¼ kTln tbcb
0

� �
þ tbPs (2.34)

and by Eq. (2.29) the chemical potential of the solvent in the
external solution is

ls ¼ �tskT
X
b 6¼s

cb
0 (2.35)

Therefore, by changing the ion concentrations in the external solu-
tion, the chemical potential of solvent and the electrochemical
potential of the ions change simultaneously, which would then
lead to the change of the equilibrium state of the gel. Since the
chemical and electrochemical potentials are set by the external
solution in equilibrium with the gel, the only unknown quantities
to be determined for the gel are the deformation gradient and the
electrical potential.

Note that, based on the statistical mechanics for an ideal solu-
tion [36], the chemical potential of each mobile species (including
solvent and ions) is zero only when it is not mixed with any other
species. Indeed, by Eq. (2.35), the chemical potential of solvent is
zero for a pure solvent with zero ion concentrations (i.e.,P

b6¼sc
b
0 ¼ 0). For ions, however, Eq. (2.34) does not vanish even

when tbcb
0 ¼ 1 and cs ¼ 0, because the free energy function in Eq.

(2.25) is an approximation for cases with low ion concentrations

(e.g., tbcb � tscs) and thus the resulting chemical potential is
inaccurate for the case with a high ion concentration.

3 Equilibrium Analysis of Free Swelling

Consider a simple polyelectrolyte gel, with two types of mobile
monovalent ions of opposite charges, i.e., zþ ¼ þ1 and z� ¼ �1,
and monovalent fixed charges (zfix ¼ �1). At equilibrium, the
chemical potential of solvent and the electrochemical potentials of
the ions in the gel are equal to those in the external solution. Let
c0 be the true concentration of the ions deep in the external solu-
tion (electrically neutral and stress free). By Eq. (2.33)–(2.35), we
obtain the electrochemical potential for both ions

lb ¼ kT ln tbc0

� �
� 2tbc0

	 

(3.1)

and the chemical potential for the solvent

ls ¼ �2kTtsc0 (3.2)

It is well known that an electrical double layer forms at the inter-
face between the polyelectrolyte gel and the external solution
(Fig. 1), with a characteristic thickness proportional to the Debye
length [27], which is often much smaller than the size of the gel
and the external solution. As a result, the fields of electrical poten-
tial, stress, and solvent/ion concentrations are all inhomogeneous
near the interface. On the other hand, at a distance much larger
than the Debye length from the interface, both the gel and the
external solution are electrically neutral, and the fields are homo-
geneous [27]. Here, we ignore the inhomogeneous fields near the
interface and focus on the homogeneous part of the gel. Thus, by
electroneutrality the ion concentrations in the gel are related to the
concentration of fixed charges as

Cþ ¼ Cfix þ C� (3.3)

where Cfix is the nominal concentration of the fixed charges on
the polymer network. For a strong polyelectrolyte gel, Cfix is a
constant, as is assumed in the present study. For a weak polyelec-
trolyte gel, Cfix may change when the degree of dissociation of
the ionizable groups changes in response to the solvent composi-
tion or ion concentration [25,37].

Substituting Eqs. (3.1) and (3.2) into Eq. (2.19), we obtain the
nominal ion concentrations as

Cþ ¼ c0

J � 1ð Þ2

J
exp

1

J
þ v

J2

� �
exp � eU

kT

� �
(3.4)

Fig. 1 Schematic of a polyelectrolyte gel in equilibrium with an
external salt solution, with an electrical double layer at the
interface
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C� ¼ c0

J � 1ð Þ2

J
exp

1

J
þ v

J2

� �
exp

eU
kT

� �
(3.5)

Substituting Eqs. (3.4) and (3.5) into Eq. (3.3), we obtain

sinh
eU
kT

� �
¼ � JCfix

2c0 J � 1ð Þ2
exp � 1

J
� v

J2

� �
(3.6)

For the case of homogeneous swelling, Eq. (3.6) gives a constant
electric potential U, which depends on the fixed charge concentra-
tion, the ion concentration of external solution, and the volume
swelling ratio J. Under this condition, the nominal electric field ~E
vanishes and the nominal electric displacement ~D is zero in the
gel.

We note that Eqs. (3.4) and (3.5) satisfy the Donnan equilib-
rium [7,38,39] with a Donnan potential (U) between the gel and
the external solvent, namely,

cþ

c0

¼ c0

c�
� exp � eU

kT

� �
(3.7)

where the true ion concentrations (ca ¼ Ca=J) are used instead of
the nominal concentrations and the approximation is made for
J � 1 (i.e., highly swollen gels).

Furthermore, by Eq. (2.22), the nominal stress in the gel is
obtained as

P ¼ NkT F�Hð Þ þ kT

t
Jln

J � 1

J
þ 1þ v

J
þ 2tc0J

� �
H

�2kTc0cosh
eU
kT

� �
J � 1þ 1� 2v

J
þ 4v� 1

J2
� 2v

J3

� �

exp
1

J
þ v

J2

� �
H (3.8)

Consider the case of free swelling with an isotropic deformation
gradient: F ¼ kI, where k is the linear stretch. As a result, J ¼ k3

and the nominal stress in Eq. (3.8) becomes isotropic:
P ¼ P k;Uð ÞI. The static equilibrium requires that the nominal
stress vanish for free swelling, thus P k;Uð Þ ¼ 0. By Eq. (3.6), the
electrical potential is obtained as a function of k and then Eq.
(3.8) becomes

P ¼ NkT k� 1

k

� �
þ kT

t
k2ln

k3 � 1

k3
þ 1

k
þ v

k4

� �

þ2kTc0k
2 1� 1� 1

k3
þ 1� 2v

k6
þ 4v� 1

k9
� 2v

k12

� ��

exp
1

k3
þ v

k6

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

fixk
6

4c2
0 k3 � 1ð Þ4

exp � 2

k3
� 2v

k6

� �vuut
1
A ¼ 0

(3.9)

Solving Eq. (3.9), we obtain the linear stretch k of a polyelectro-
lyte gel in equilibrium with an external solution, which depends on
four dimensionless parameters: the effective number density of
polymer chains Nt, the Flory–Huggins parameter v, the nominal
concentration of fixed charges tCfix, and the normalized ion con-
centration in the external solution tc0. Once the stretch is deter-
mined, Eq. (3.6) is used to determine the electric potential in the
gel. Then, Eqs. (3.4) and (3.5) are used to find the nominal concen-
trations of the ions in the gel. For example, Fig. 2 shows the results
for free swelling of a polyelectrolyte gel with Nt ¼ 10�3,
tCfix ¼ 0:02, and v ¼ 0:5 in an external solution of varying ion
concentrations. It can be seen that increasing the ion concentration
in the external solution leads to a decrease in the linear stretch and

thus shrinking of the gel volume. This is a result mainly due to the
decrease in the chemical potential of the solvent in the external
solution, as given by Eq. (2.35). Meanwhile, the electrochemical
potentials of the ions increase, leading to an increase of the ion
concentrations in the gel. However, since the ion concentrations
are much lower than the solvent concentration (tCþ=�� tCs

� k3 � 1), the volume change of the gel is dominated by the
change in the solvent concentration. Moreover, with the negative
fixed charges in the gel, the electric potential of the gel is negative
and increases as the ion concentrations increase in the external
solution. These results are similar to those obtained by Hong
et al. [27]

Equation (3.9) may be considered as a balance of three osmotic
pressures due to elasticity, solvent, and ions, respectively. Similar
osmotic pressures were used by Ohmine and Tanaka [32], where
the osmotic pressure due to ions was given explicitly for two lim-
iting cases only. First, for a pure solvent without any ions (c0¼ 0)
or a very low ion concentration (c0� Cfix), Eq. (3.9) becomes

P � NkT k� 1

k

� �
þ kT

t
k2ln

k3 � 1

k3
þ 1

k
þ v

k4
� tCfixk

2

k3 � 1ð Þ2

"

� k3 � 1þ 1� 2v

k3
þ 4v� 1

k6
� 2v

k9

� ��
¼ 0 (3.10)

which can be reduced to Eq. (7.10) by Hong et al. [27] if k3 � 1.
Under the same conditions (c0 � Cfix and k3 � 1), the osmotic
pressure due to the solvent is negligible, and Eq. (3.10) can be fur-
ther simplified as

P � kT Nk� Cfix

k

� �
¼ 0 (3.11)

by which the osmotic pressures due to elasticity and ions are bal-
anced. The osmotic pressure due to ions in Eq. (3.11) is propor-
tional to Cfix, similar to that in Ref. [32] for c0 � Cfix.

For the second limit, if the ion concentrations in the external
solution are much higher than the fixed charge concentration in
the gel, i.e., c0 � Cfix, we have U � 0 by Eq. (3.6), and Eq. (3.9)
becomes

Fig. 2 Free swelling of a polyelectrolyte gel (Nt 5 1023,
tCfix 5 0:02, and v 5 0:5) immersed in an ionic solution with
varying ion concentration. (a) Stretch, (b) electrical potential,
(c) and (d) nominal concentrations of counter-ions and co-ions.
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P � NkT k� 1

k

� �
þ kT

t
k2ln

k3 � 1

k3
þ 1

k
þ v

k4

� �

þ2kTc0k
2 1� 1� 1

k3
þ 1� 2v

k6
þ 4v� 1

k9
� 2v

k12

� ��

� exp
1

k3
þ v

k6

� ��
¼ 0 (3.12)

which again can be reduced to the corresponding equation (7.8) in
Ref. [27] if k3 � 1. Under these conditions (c0 � Cfix and
k3 � 1), Eq. (3.9) can be further simplified as

P � kT Nk� C2
fix

4c0k
4

 !
¼ 0 (3.13)

where the osmotic pressure due to ions is proportional to C2
fix, sim-

ilar to that in Ref. [32] for c0 � Cfix. However, this simplification
is problematic, because the condition k3 � 1 typically does not
hold at high ion concentrations. Hong et al. [27] predicted that the
equilibrium swelling ratio is independent of the ion concentration
for the limit of a highly concentrated solution. Equation (3.13)
predicts that the equilibrium swelling ratio decreases with increas-
ing ion concentration. In contrast, by Eq. (3.12), the equilibrium
swelling ratio may increase with increasing ion concentration.
Indeed, experiments by Okay and Sariisik [40] found that the
equilibrium swelling ratio of a poly(acrylamide-co-sodium acry-
late) hydrogel increased with increasing salt (NaCl) concentration
in highly concentrated solutions, qualitatively consistent with Eq.
(3.12). It should be noted that, with relatively high ion concentra-
tions in the gel, the approximation in Eq. (2.16) may not be appli-
cable, and a more accurate solution can be obtained by solving a
system of equations simultaneously.

4 Volume Phase Transition

The Flory–Huggins parameter v characterizes the polymer–
solvent interactions in the gel, which depends on temperature
[12,26] and solvent composition [41,42]. A change of v has a pro-
found effect on the swelling behavior of polyelectrolyte gels. As
shown in Fig. 3(a), the equilibrium stretch k is determined as a
function of the ion concentration in the external solution by solv-
ing Eq. (3.9) for different values of v (Nt ¼ 10�3 and
tCfix ¼ 0:02). It is found that when v is small (a good solvent),
e.g., v ¼ 0:1, 0.3, and 0.5, the gel is swollen with a relatively large
stretch (k > 2) over the entire range of ion concentration, and the
equilibrium stretch decreases continuously with increasing ion
concentration. However, when v is larger, e.g., v ¼ 0:7 (a poor
solvent), a discontinuous jump of the equilibrium stretch is pre-
dicted at a critical ion concentration, where a transition occurs
from a highly swollen gel (k > 3) to a collapsed phase (k < 2).
When v is even larger, e.g., v ¼ 0:9, the equilibrium stretch is
small (k 	 1) over the entire range of the ion concentration, and
thus the gel stays in the collapsed phase. A phase diagram is con-
structed in Fig. 3(b) in terms of the normalized ion concentration
tc0 and v, where the two phases (highly swollen and collapsed)
are separated by a set of transition lines. The line of the discontin-
uous transition (the thick solid line) is obtained by plotting the
critical ion concentration at the discontinuous transition (if it
occurs) versus v. Apparently, for Nt ¼ 10�3 and tCfix ¼ 0:02, the
discontinuous transition occurs only within a narrow range of v
around 0.7. For smaller values of v, the transition is continuous as
indicated by the dashed lines, each corresponding to a constant
stretch (e.g., k ¼ 3, 2.5, and 2).

To understand the discontinuous transition, we plot the normal-
ized stress–stretch relations (Eq. (3.9)) in Fig. 4(a) for different
ion concentrations in the external solution with dimensionless
parameters v ¼ 0:7, Nt ¼ 10�3, and tCfix ¼ 0:02. The equilib-
rium stretch for free swelling corresponds to the stretch with zero

stress, i.e., P kð Þ ¼ 0. When the ion concentration is relatively
high (e.g., c0=Cfix ¼ 0:02), there is only one solution for the equi-
librium stretch and it is in the collapsed phase. When the ion con-
centration is relatively low (e.g., c0=Cfix ¼ 0:001), there are three
possible solutions for the equilibrium stretch, one in the collapsed
phase (k < 2), one in the highly swollen phase (k > 3), and
another in between. To determine which one of these solutions is
thermodynamically stable, we compute the mechanical work
required to stretch the gel from the collapsed phase to an arbitrary
k as

W kð Þ ¼
ðk

k1

P k0ð Þdk0 (4.1)

Fig. 3 (a) Equilibrium stretch as a function of ion concentra-
tion in the external solution for polyelectrolyte gels with differ-
ent values of v, showing continuous and discontinuous
transitions. (b) A phase diagram with two distinct phases,
highly swollen and collapsed, and the transition lines in
between (thick solid line for discontinuous transition and
dashed lines for continuous transition with k 5 3, 2.5, and 2).
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where k1 is the stretch in the collapsed phase with P k1ð Þ ¼ 0. As
shown in Fig. 4(b), for a relatively low ion concentration, the
mechanical work has two local minima and one local maximum,
corresponding to the three possible solutions with zero stress in
Fig. 4(a). The stretch with the local maximum mechanical work is
an unstable solution. The stretch with the lower mechanical work
of the two local minima is thermodynamically stable, while the
stretch at the other local minimum is metastable. At a critical ion
concentration (c0=Cfix ¼ 0:0052), the two local minima are equal
in the mechanical work, and the two phases may coexist. If the
ion concentration is greater (c0=Cfix > 0:0052) or lower, the stable
equilibrium stretch corresponds to the collapsed or highly swollen
phase, respectively. The discontinuous transition at the critical ion
concentration is thus a first-order phase transition. Alternatively,
the critical ion concentration for the discontinuous volume phase

transition can also be determined directly from the stress–stretch
relations (Fig. 4(a)) by the Maxwell rule [43,44], equivalent to the
energetic consideration.

Interestingly, Fig. 4(a) predicts that a discontinuous volume
transition may also be induced by mechanical stress (or pressure)
for a fixed ion concentration in the external solution. When the
ion concentration is greater than the critical concentration (e.g.,
c0=Cfix > 0:0052), the gel is in the collapse phase at zero stress.
Applying a hydrostatic tension increases the gel volume and indu-
ces a discontinuous volume transition to the highly swollen phase
at a critical stress. The critical stress can be determined from the
stress–stretch diagram by the Maxwell rule. On the other hand,
when the ion concentration is lower than the critical concentration
(e.g., c0=Cfix < 0:0052), the gel is in the highly swollen phase at
zero stress. In this case, the gel volume decreases under a hydro-
static compression and undergoes a discontinuous transition to the
collapsed phase at a critical pressure. At the critical ion concentra-
tion, the critical pressure (or stress) is zero. Such stress-induced
discontinuous volume phase transition has not received much
attention and may deserve further studies.

The discontinuous volume phase transition depends sensitively
on the concentration of fixed charges in the polyelectrolyte gel.
As shown in Fig. 5(a), with increasing concentration of fixed
charges, the transition line shifts up and the range of v values
with a discontinuous transition expands. Figure 5(b) shows the
upper and lower limits of v versus the concentration of fixed
charges, which may be considered as a diagram of phase transi-
tions. For a polyelectrolyte gel with properties (v and tCfix)
between the two lines, a discontinuous volume phase transition is
expected at a critical ion concentration. Below the lower (blue)
line, a smooth transition is expected. Above the upper (red) line,
the gel is in the collapsed phase with no transition. Interestingly,
there exists a critical point where the two lines intersect, with
v � 0:63 and tCfix � 0:012 for the case Nt ¼ 10�3. The location
of the critical point depends on Nt. Therefore, a necessary condi-
tion for the discontinuous volume phase transition in polyelectro-
lyte gels requires a relatively large fix charge concentration
(tCfix > 0:012) along with a poor solvent (v > 0:63). In general,
it is known that the presence of fixed charges (by ionization) pro-
motes the discontinuous volume phase transition in many gel
systems [12,22].

To explain the discontinuous shrinkage of swollen polymer net-
works, Erman and Flory [45] considered the effect of gel compo-
sition on the solvent–polymer interactions by representing v as a
function of the volume fraction of polymer, namely,

v ¼ v0 þ
v1

J
þ v2

J2
þ � � � (4.2)

Similar forms have been used by others [23,46,47], most com-
monly with the first two terms on the right hand side of Eq. (4.2).
As a result, the nominal stress in Eq. (2.22) contains additional
terms associated with the composition dependent interaction
parameter @Ŵ=@v

� �
dv=dJð Þ @J=@Fð Þ

� �
. Following the same pro-

cedure in Sec. 3, we obtain an equation slightly different from
Eq. (3.9) for the nominal stress

P¼NkT k�1

k

� �
þkT

t
k2ln

k3�1

k3
þ1

k
þv�v1

k4
þv1

k7

� �

þ2kTc0k
2 1� 1� 1

k3
þ1�2v

k6
þ4v�1

k9
� 2v

k12
�v1 k3�1ð Þ2

k15

 ! 

�exp
1

k3
þ v

k6

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

fixk
6

4c2
0 k3�1ð Þ4

exp � 2

k3
�2v

k6

� �vuut
1
A¼0

(4.3)

Fig. 4 (a) Normalized stress–stretch relations for a polyelec-
trolyte gel (v 5 0:7, Nt 5 1023, and tCfix 5 0:02) with different ion
concentrations, and (b) normalized mechanical work
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The effects of the composition dependent interaction parameter
on the volume phase transition of polyelectrolyte gels are illus-
trated in Fig. 6. Most interestingly, the minimum concentration of
fixed charges required to have a discontinuous volume phase tran-
sition can be reduced to nearly zero with v1 ¼ 0:4, as shown in
Fig. 6(d). As discussed by Erman and Flory [45], the composition
dependent polymer–solvent interaction is essential for uncharged
polymer networks (Cfix ¼ 0) to have the possibility of a discontin-
uous volume phase transition. For ionic gels, the degree of ioniza-
tion becomes the dominant factor in phase transitions [22]. As
shown in Fig. 6(a) for polyelectrolyte gels with Nt ¼ 10�3,
tCfix ¼ 0:02, and v0 ¼ 0:9, the equilibrium stretch undergoes a
discontinuous transition for v1 ¼ 0:4 and 0.6, but no transition for
v1 ¼ 0:2 or 0. The critical ion concentration for the discontinuous
transition depends on both v0 and v1. As a result, the transition
line in Fig. 6(b) shifts up as v1 increases. A diagram of phase tran-
sitions in terms of the two interaction parameters is presented in
Fig. 6(c) for Nt ¼ 10�3 and tCfix ¼ 0:02, where the discontinuous
transition is predicted over a range of v0 values depending on v1.

The present results suggest that both the degree of ionization (con-
centration of fixed charges) and the composition-dependent
polymer–solvent interaction are important for the discontinuous vol-
ume phase transition in polyelectrolyte gels.

5 Comparison With Experiment

In this section, we extend the formulation and analysis in Secs.
2 and 3 to compare with the experiments by Ohmine and Tanaka
[32]. In their experiments, acrylamide gels with the ionizable
group –COOH were immersed in a mixed solvent of water and
acetone with varying salt concentrations of NaCl or MgCl2. The
acetone concentration of the mixed solvent plays an important
role in the swelling and volume phase transition of the gels [14].
Here, we treat the mixed solvent as one pure solvent with an
effective solvent–polymer interaction [41,42] depending on the
volume fraction of acetone (u), namely,

v ¼ �v0 uð Þ þ
�v1 uð Þ

J
(5.1)

where

�vi uð Þ ¼ va
i uþ vw

i 1� uð Þ � vaw
i u 1� uð Þ (5.2)

for i¼ 0 and 1. When u ¼ 0, the solvent is pure water and the
polymer–water interaction is characterized by vw

i . When u ¼ 1,
the solvent is pure acetone and the polymer–acetone interaction is
characterized by va

i . In between, a simple rule of mixture is
assumed with the parameter vaw

i as the potential coupling for the
mixed solvent. It is assumed that the solvent in the gel has the
same volume fraction of acetone as in the external solution. As a
result, the gel may undergo a discontinuous volume phase transi-
tion upon changing the acetone concentration in the external solu-
tion as observed by Tanaka [14], even without adding any salt. As
shown in Fig. 5(a), for tc0 ! 0, a discontinuous transition occurs

Fig. 5 (a) Lines of discontinuous transition for different con-
centrations of fixed charges and (b) a diagram of phase transi-
tions for Nt 5 1023

Fig. 6 Effects of the composition dependent polymer–solvent
interaction. (a) Equilibrium stretch for polyelectrolyte gels with
Nt 5 1023, tCfix 5 0:02, and v0 5 0:9; (b) lines of discontinuous
transition (Nt 5 1023 and tCfix 5 0:02); (c) a diagram of phase
transitions in terms of the two interaction parameters (Nt 5 1023

and tCfix 5 0:02); and (d) a diagram of phase transitions in terms
of tCfix and v0 (Nt 5 1023 and v1 5 0:4), in comparison with the
case for composition independent interaction (v1 5 0).
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at a critical value of v that depends on the concentration of fixed
charges in the gel.

Consider an external solution of NaCl with the water–acetone
mixed solvent, characterized by the volume fraction of acetone (u)
and the salt concentration (c0). There exist four types of mobile
ions in the gel and the external solution: Naþ, Cl�, OH�, and Hþ.
In addition to the salt ions (Naþ and Cl�), dissociation of the ioniz-
able group –COOH in the acrylamide gel leaves fixed charges
–COO� on the polymer network and mobile counter ions (Hþ) in
the gel, while self-ionization of water yields OH� and Hþ ions.
Strictly, each hydrogen ion (Hþ) immediately protonates another
water molecule to form a hydronium ion, H3Oþ. Here we do not
distinguish Hþ and H3Oþ under the assumption that its concentra-
tion is relatively low compared to the concentration of neutral sol-
vent. With a given salt concentration (c0), the concentrations of the
Naþ and Cl� ions in the external solution (far away from the gel)
are identically c0. The concentrations of Hþ and OH� ions in the
external solution are determined by the pH value. Assuming a neu-
tral solution with pH¼ 7, as the case in the experiments by Ohmine
and Tanaka [32], the concentrations of Hþ and OH� are equal and
fixed at c1 ¼ 10�4NA /m3 (i.e., 10(�7) mol/l), where NA ¼
6:022� 1023 is the Avogadro constant. Taking t 	 10�28 m3 as a
representative volume, we have tc1 	 6� 10�9, which is a negligi-
bly small portion of the total volume

P
at

aca ¼ 1
� �

.
By Eq. (2.35), the chemical potential of the solvent in the exter-

nal solution is

ls ¼ �2kTt c0 þ c1ð Þ (5.3)

By Eq. (2.34), the electrochemical potentials of the Naþ and Cl�

ions are

lNaþ ¼ lCl� ¼ kT ln tc0ð Þ � 2t c0 þ c1ð Þ
	 


(5.4)

and the electrochemical potentials of the Hþ and OH� ions are

lHþ ¼ lOH�¼ kT ln tc1ð Þ � 2t c0 þ c1ð Þ
	 


(5.5)

With Eq. (2.19), the nominal concentrations of the mobile ions in
the gel are

CNaþ ¼ c0 J � 1ð Þ2

J
exp

1

J
þ v

J2
� eU

kT

� �
(5.6)

CCl� ¼ c0 J � 1ð Þ2

J
exp

1

J
þ v

J2
þ eU

kT

� �
(5.7)

CHþ ¼ c1 J � 1ð Þ2

J
exp

1

J
þ v

J2
� eU

kT

� �
(5.8)

COH� ¼ c1 J � 1ð Þ2

J
exp

1

J
þ v

J2
þ eU

kT

� �
(5.9)

which again satisfy the Donnan equilibrium. The condition of
electroneutrality in the gel (far away from the interface) requires
that

CNaþ þ CHþ ¼ CCl� þ COH� þ Cfix (5.10)

Inserting Eqs. (5.6)–(5.9) into Eq. (5.10), we obtain

sinh
eU
kT

� �
¼ � JCfix

2ce J � 1ð Þ2
exp � 1

J
� v

J2

� �
(5.11)

which is same as Eq. (3.6) but with ce ¼ c0 þ c1 as the effective
ion concentration in the external solution. Moreover, the interac-
tion parameter v as given in Eq. (5.1) depends on both the volume

fraction of acetone (u) in the mixed solvent and the volume frac-
tion of polymer (1=J) in the gel. Similarly, the nominal stress is
obtained in the same form as Eq. (4.3), which equals zero for free
swelling. Therefore, for each external solution with given values
of u (acetone) and c0 (NaCl), the equilibrium stretch k can be
determined by solving Eq. (4.3).

To compare with the experiment, two dimensionless parameters
are needed for the gel, tCfix and Nt, in addition to the interaction
parameters (vw

i , va
i , and vaw

i ). According to Ohmine and Tanaka
[32], the concentration of the –COO� group was about 0.1 mol/l
in the initial state of the gel with k0 ¼ 201=3 ¼ 2:7 (the volume
fraction of polymer was 0.05), which can be converted to tCfix 	
0:1 with t 	 10�28 m3. To determine the other parameters, we
first consider the case with pure water as the solvent (u ¼ 0), with
which we determine Nt and vw

i by fitting the theoretical prediction
to the experimental data in Ref. [32]. Then, we consider the case
with zero salt concentration (c0 ¼ 0) but varying u, with which
we determine va

i and vaw
i .

In the experiments by Ohmine and Tanaka [32], when using
pure water as the solvent (u ¼ 0), the volume of the acrylamide
gel varied continuously as the salt concentration changed in the
external solution. The equilibrium stretch relative to the dry state
ranged from 10 to 3.4, all in the highly swollen state. At extremely
low salt concentration (c0 ! 0), the measured volume ratio was
q ¼ k3

0=k
3 	 0:022, corresponding to k 	 9:7. In this case, the

osmotic pressure due to the solvent is negligible, and Eq. (4.3) can
be approximated by Eq. (3.11), with which we obtain:
Nt ¼ 1:06� 10�3. At this limit (c0 ! 0 and k� 1), the equilib-
rium stretch is largely determined by the competition between
elasticity of the polymer network and the effect of fixed charges
(osmotic pressure of the mobile ions), independent of the interac-
tion parameters. At the other limit, when the salt concentration
was high (	1 mol/l), corresponding to tc0 	 0:06, the volume
ratio was q ¼ k3

0=k
3 	 0:5 and thus k 	 3:4. In this case, Eq. (4.3)

can be approximated as

P�NkT k�1

k

� �
þkT

t

k2ln
k3�1

k3
þ1

k
þvw

0 �vw
1

k4
þ2tc0k

2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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fix

4c2
0k

6

s0
@

1
A

2
4

3
5¼ 0

(5.12)

with which we obtain vw
0 � vw

1 	 0:1. For simplicity, we ignore
the effect of the gel composition on the solvent–polymer interac-
tion by setting vw

1 ¼ 0 so that vw
0 	 0:1. With these parameters

(tCfix ¼ 0:1, Nt ¼ 1:06� 10�3, vw
0 ¼ 0:1, and vw

1 ¼ 0), the theo-
retical prediction by Eq. (4.3) is in reasonable agreement with

the data for the volume swelling ratio (q ¼ k3
0=k

3) of the acryl-
amide gel in a NaCl solution with pure water solvent (u ¼ 0)
and varying salt concentration from 10�7 to 1 mol/l, as shown in
Fig. 7(a).

Next consider the case with zero salt concentration (c0 ¼ 0) but
varying u for the water–acetone mixed solvent. In this case, the
gel was highly swollen (k > 7) when u < 65% and then under-
went a discontinuous transition to the collapsed phase (k < 2) for
u > 65% [32]. As shown in Fig. 5, the critical value of v for the
discontinuous transition is 	1.55 when tCfix ¼ 0:1 and c0 ¼ 0.
Assuming vaw

i ¼ 0 and va
1 ¼ 0 in Eq. (5.2), we obtain va

0 ¼ 2:3 so
that v ¼ 1:55 for the mixed solvent with u ¼ 65%. As a result, the
effective interaction parameter v varies linearly from 0.1 to 2.3
with the volume fraction of acetone for the mixed solvent. By the
phase transition diagram in Fig. 5(b), when tCfix ¼ 0:1, a
discontinuous volume phase transition is predicted for 0:98
< v < 1:55, corresponding to 0:4 < u < 0:65, in excellent agree-
ment with the experiment (Fig. 7(a)).

Using the parameters determined above, we calculate the equi-
librium stretch by Eq. (4.3) as a function of the NaCl concentra-
tion for mixed solvents with various volume fractions of acetone
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and compare directly with the experimental data by Ohmine and
Tanaka [32] in terms of the relative volume ratio (q ¼ k3

0=k
3 with

k0 ¼ 2:7) in Fig. 7(a). The overall agreement is remarkable, con-
sidering the fact that only a few data points have been used to
determine the parameters along with a few assumptions. However,
a notable discrepancy between the theoretical and experimental
results is for the highly swollen phase at relatively low salt con-
centrations. As predicted by Eq. (3.11), the theoretical result is
independent of volume fraction of acetone at the limit of c0 ! 0
and k� 1 (u < 0:65). In contrast, the experimental data at the
same limit shows a slight variation of the relative volume ratio
from 0.02 to 0.04 with 0 < u < 0:6. This may be explained by
the change of the fixed charge concentration (tCfix) in the gel. It
was noted that the ionizable group (–COOH) is a relatively weak
acid and its dissociation in general depends on the dielectric con-
stant of the solvent [37]. The relative dielectric constants of water
and acetone at room temperature (	25 
C) are 78 and 21, respec-
tively. For the water–acetone mixed solvent, the effective dielec-
tric constant would depend on the volume fraction of acetone. As
a result, dissociation of –COOH would vary with the volume frac-
tion of acetone, yielding different fixed charge concentrations. By
Eq. (3.11), decreasing the fixed charge concentration (tCfix)
would decrease the equilibrium stretch and increase the relative
volume ratio.

Next, consider the polyelectrolyte gel immersed in an external
solution of MgCl2. The presence of divalent mobile ions (Mg2þ)
makes the calculation slightly more complicated. Deep in the
external solution, the ion concentrations are different for Mg2þ

and Cl�, c0 and 2c0, respectively. The concentrations of Hþ and
OH� are still the same, c1 ¼ 10�7 mol/l with pH¼ 7. The chemi-
cal potential of the solvent is then

ls ¼ �kTt 3c0 þ 2c1ð Þ (5.13)

The electrochemical potentials are different for Mg2þ and Cl�

ions in the external solution, and they are

lMg2þ ¼ kT ln tc0ð Þ � t 3c0 þ 2c1ð Þ
	 


(5.14)

lCl� ¼ kT ln 2tc0ð Þ � t 3c0 þ 2c1ð Þ½ � (5.15)

The electrochemical potentials of Hþ and OH� are identical:

lHþ ¼ lOH� ¼ kT ln tc1ð Þ � t 3c0 þ 2c1ð Þ
	 


(5.16)

By Eq. (2.19), the nominal concentrations of Mg2þ and Cl� ions
in the gel are

CMg2þ ¼ c0 J � 1ð Þ2

J
exp

1

J
þ v

J2
� 2eU

kT

� �
(5.17)

CCl� ¼ 2c0 J � 1ð Þ2

J
exp

1

J
þ v

J2
þ eU

kT

� �
(5.18)

The nominal concentrations of Hþ and OH� ions in the gel
remain the same as given in Eqs. (5.8) and (5.9). Again, the
Donnan equilibrium is satisfied for all of the ion species. The
condition of electroneutrality in the gel (far away from the inter-
face) requires that

2CMg2þ þ CHþ ¼ CCl� þ COH� þ Cfix (5.19)

Inserting Eqs. (5.17), (5.18), (5.8), and (5.9) into Eq. (5.19), we
obtain

2c0

c2
þ c1

c
� 2c0 þ c1ð Þc ¼ JCfix

J � 1ð Þ2
exp � 1

J
� v

J2

� �
(5.20)

where c ¼ exp eU=kTð Þ. Unlike Eq. (5.11) for the case of mono-
valent ions, Eq. (5.20) does not yield an explicit relationship
between the electrical potential in the gel and the volume fraction
of polymer (1=J), due to the presence of divalent ions (Mg2þ).
Two limiting cases may be considered. First, when
c0 � c1 � Cfix, Eq. (5.20) approaches the same form as Eq.
(5.11) for c0 ! 0. Second, when c0 	 c1 � Cfix, Eq. (5.20) is
approximately

2c0

c2
¼ JCfix

J � 1ð Þ2
exp � 1

J
� v

J2

� �
(5.21)

or equivalently

U ¼ kT

2e
ln

2c0 J � 1ð Þ2

JCfix

 !
þ 1

J
þ v

J2

" #
(5.22)

The nominal stress in the gel is obtained from Eq. (2.22) and is
slightly different from Eq. (4.3)

Fig. 7 (a) The relative volume ratio (q 5 k3
0=k

3) versus NaCl concentration for mixed
solvents with various volume fractions of acetone, comparing theoretical predic-
tions (lines) with the data (symbols) from the experiments by Ohmine and Tanaka
[32]. (b) The relative volume ratio versus MgCl2 concentration, with symbols for
u 5 60% from the experiments by Ohmine and Tanaka [32]. The same set of param-
eters are used in the calculations for both (a) and (b).
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P ¼ NkT k� 1

k

� �
þ kT

t

� k2ln
k3 � 1

k3
þ 1

k
þ v

k4
þ k2 3c0tþ 2c1tð Þ � �v1 k3 � 1ð Þ

k7

" #

�kT
c0

c2
þ c1

c
þ 2c0 þ c1ð Þc

� �
k2 � 1

k
þ 1� 2v

k4

�

þ 4v� 1

k7
� 2v

k10
� �v1 k3 � 1ð Þ2

k13

!
exp

1

k3
þ v

k6

� �
¼ 0 ð5:23Þ

Thus, Eqs. (5.20) and (5.23) can be solved simultaneously to
obtain c and k (or J ¼ k3). Similar to the cases with monovalent
ions, multiple solutions may exist when a discontinuous transition
occurs. The energetic analysis or the Maxwell rule can then be
used to determine the thermodynamically stable solution for the
equilibrium state.

Using the same set of parameters as for the acrylamide gels
immersed in a NaCl solution with a mixed solvent of water and
acetone, we calculate the equilibrium stretch as a function of the
MgCl2 concentration for various volume fractions of acetone. To
compare with the experimental data by Ohmine and Tanaka [32],
the relative volume ratio (q ¼ k3

0=k
3 with k0 ¼ 2:7) is shown in

Fig. 7(b). In this case, the quantitative agreement is poor as illus-
trated by the data for u ¼ 60%, where the critical salt concentra-
tion for the discontinuous transition differs by several orders of
magnitude. Such a discrepancy requires further studies. Neverthe-
less, the theoretical results are qualitatively consistent with the
experiment as the critical salt concentration for the discontinuous
transition when u ¼ 40� 60% is much lower for the divalent salt
(MgCl2) than for the monovalent salt (NaCl). It is also consistent
in which no discontinuous transition occurs for u ¼ 0� 20%.
The critical volume fraction of acetone for discontinuous transi-
tions to occur was between 25% and 30% in the experiments, but
slightly larger than 30% from the theoretical results. The discrep-
ancy between the theoretical and experimental results for the
highly swollen phase at relatively low salt concentrations remains,
which may be partly resolved by considering different fixed
charge concentrations as discussed for the case of NaCl. Interest-
ingly, the theoretical results for u � 40% show a secondary con-
tinuous transition at a very low concentration of MgCl2
(c0 	 10�10 mol/l), which did not exist for the case of NaCl. This
may be explained theoretically by the two limiting cases for Eq.

(5.20). When c0 � c1 � Cfix and c0 ! 0, Eq. (5.20) approaches
the same limit as Eq. (5.11) for the monovalent salt, and as a
result, Eq. (5.23) approaches Eq. (3.11) for the highly swollen
state with the same equilibrium stretch (k 	 9:7), independent of
the salt. However, another limit exists for the case of MgCl2 when
c0 	 c1 � Cfix and Eq. (5.21) can be used to simplify Eq. (5.23)
to obtain

P � kT

t
kNt� tCfix

2k

� �
¼ 0 (5.24)

which is slightly different from Eq. (3.11). With Nt ¼ 1:06� 10�3

and tCfix ¼ 0:1, we obtain k ¼ 6:9 and thus q ¼ 0:06, in close
agreement with the numerical results in Fig. 7(b) for c0 	 10�7

mol/l and u � 40%. Evidently, it is the presence of divalent ions
(Mg2þ) in addition to monovalent ions in the polyelectrolyte gel
and the external solution that leads to the two highly swollen states
and the continuous transition. This limit was also noted by Ohmine
and Tanaka [32] with an osmotic pressure due to ions similar to
that in Eq. (5.24).

To summarize, the comparisons with the experiments in Fig. 7
show quantitative agreement for the monovalent salt (NaCl) and
qualitative consistency for the divalent salt (MgCl2), using a simple
set of parameters for both cases. It is possible to further improve
the quantitative agreement by changing the parameters for different
acetone concentrations and different salts. For example, for NaCl
in pure water (u ¼ 0%) as the solvent, an excellent agreement can
be achieved (Fig. 8(a)) by increasing the concentration of fixed
charge to tCfix ¼ 0:3 and changing the other parameters accord-

ingly: Nt ¼ 3:18� 10�3, vw
0 ¼ 0:1, and vw

1 ¼ 0:6. Similarly, an
excellent agreement can be achieved (Fig. 8(b)) for NaCl in a
mixed solvent (u ¼ 60%) by slightly increasing Nt so that the

equilibrium stretch at c0 	 10�7 mol/l is 8.3 instead of 9.7 by Eq.
(3.11). As another example, for the case of MgCl2 in a mixed sol-
vent with u ¼ 60%, the critical salt concentration for the discontin-
uous volume transition can be brought to the same level as the
experiment (Fig. 8(b)) by changing the polymer–solvent interaction
parameters to vw

0 ¼ 0:43 and va
0 ¼ 1:55. As suggested by Safronov

et al. [48], the interaction parameter may depend on the type of the
counterions. Meanwhile, to fit the equilibrium stretch (k 	 8:7) at

c0 	 10�7 mol/l, we obtain Nt ¼ 0:66� 10�3 for tCfix ¼ 0:1 by
using Eq. (5.24) for the divalent salt instead of Eq. (3.11). The
quantitative agreements in Fig. 8 demonstrate the capability of the
present model for accurately describing both the continuous and

Fig. 8 (a) Improved agreement for continuous volume transition of acrylamide
gels in a pure water solvent (u 5 0%) with varying NaCl concentrations. (b)
Improved agreement for the discontinuous volume transitions of acrylamide gels
in a mixed solvent (u 5 60%) with either NaCl or MgCl2. Experimental data (sym-
bols) are taken from Ohmine and Tanaka [32].
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discontinuous volume phase transitions of polyelectrolyte gels in
response to changing salt concentration in the external solution.

6 Summary

In this paper, we present a theoretical model of polyelectrolyte
gels to study continuous and discontinuous volume phase transitions
induced by changing salt concentration in the external solution.
Phase diagrams are constructed in terms of the polymer–solvent
interaction parameters, external salt concentration, and concentra-
tion of fixed charges. Direct comparisons with previous experiments
for an ionized acrylamide gel in mixed water–acetone solvents
show good quantitative agreement for a monovalent salt (NaCl) but
fair qualitative agreement for a divalent salt (MgCl2), using a simple
set of parameters for both cases. The quantitative agreement may be
further improved for both cases by calibrating the model parameters
for a specific combination of salt and solvent composition. The
theory in its present form naturally leads to a balance of osmotic
pressures due to elasticity, solvent, and ions in an isotropic, homo-
geneous state, which can be readily extended to study anisotropic
swelling (e.g., under constraint) and inhomogeneous phenomena
(e.g., coexisting phases). Under the condition of electroneutrality,
the ion concentrations in the gel satisfy the Donnan equilibrium
with a Donnan potential that depends on the volume swelling ratio
(or the volume fraction of polymer). The present model may be fur-
ther extended to study volume phase transitions of polyelectrolyte
gels in response to other stimuli such as temperature, pH, electrical
fields, and pressure (or stress in general).
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