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A Linear Poroelastic Analysis of
Time-Dependent Crack-Tip
Fields in Polymer Gels
Based on a linear poroelastic formulation, we present an asymptotic analysis of the tran-
sient crack-tip fields for stationary cracks in polymer gels under plane-strain conditions.
A center crack model is studied in detail, comparing numerical results by a finite element
method to the asymptotic analysis. The time evolution of the crack-tip parameters is
determined as a result of solvent diffusion coupled with elastic deformation of the gel.
The short-time and long-time limits are obtained for the stress intensity factor and the
crack-tip energy release rate under different chemo-mechanical boundary conditions
(immersed versus not-immersed, displacement versus load controlled). It is found that,
under displacement-controlled loading, the crack-tip energy release rate increases
monotonically over time for the not-immersed case, but for the immersed case, it
increases first and then decreases, with a long-time limit lower than the short-time limit.
Under load control, the energy release rate increases over time for both immersed and
not-immersed cases, with different short-time limits but the same long-time limit. These
results suggest that onset of crack growth may be delayed until the crack-tip energy
release rate reaches a critical value if the applied displacement or traction is subcritical
but greater than a threshold. [DOI: 10.1115/1.4041040]
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1 Introduction

Polymer gels have been widely used in biomedical applications
[1–3]. Recently, polymer gels have been exploited as a class of
soft active materials with potential applications in soft machines
and soft robotics [4–7]. These applications have motivated devel-
opment of smart and tough gels [8–10]. However, it remains a
challenge to accurately measure fracture toughness of polymer
gels [11], and fundamental understanding of the fracture
mechanisms is still lacking [12]. Experimental measurements
have reported a wide range of fracture toughness for polymer
gels, from �1 J/m2 for brittle gelatin and agar gels [13,14] to
�9000 J/m2 for a tough gel with hybrid alginate–polyacrylamide
networks [9]. As noted by Long and Hui [11], most of these meas-
urements were interpreted by assuming that the gels are purely
elastic. On the other hand, fracture is typically rate dependent for
polymer gels. For example, in an experimental study on steady-
state crack growth in gelatin gels, Baumberger et al. [15] found
that the effective fracture energy increased with crack velocity
(so-called “velocity toughening”). They suggested viscoplastic
chain pull-out as the fracture mechanism. Similarly, Lefranc and
Bouchaud [13] attributed the crack velocity-dependent toughness
of agar gels to viscous chain pull-out or stress accelerated chain
dynamics, both localized in the crack tip region. Based on linear
poroelasticity, Noselli et al. [16] predicted a poroelastic toughen-
ing effect as a result of solvent diffusion around the crack tip and
proposed a poroelastic cohesive zone model for the dependence of
effective toughness on crack velocity. In a recent work [17], we
showed that the poroelastic toughening effect could lead to rate-
dependent fracture in a long strip specimen of finite thickness,
unless the crack velocity is so high that the characteristic diffusion
length is much smaller than the specimen size (small-scale diffu-
sion). In general, the rate-dependent fracture of polymer gels may
result from combined effects due to the dynamic molecular proc-
esses at the crack tip (chain pull-out and bond rupture), solvent

diffusion (poroelastic toughening), and polymer viscoelasticity
(creep).

A related phenomenon is delayed fracture, which has been
observed in experiments with polymer gels [18–20] as well as
other materials [21–27]. Bonn et al. [18] proposed a thermally
activated crack nucleation model for three-point bending experi-
ments with uncracked gel specimens. Skrzeszewska et al. [19]
found that the crack nucleation model could not explain their
experiments with a physical gel fractured under a constant shear
stress and proposed a stress-enhanced crosslink dissociation
model with a rupture time decreasing exponentially with increas-
ing stress. Based on a nonlinear visco-poroelastic model, Wang
and Hong [28] suggested that the delay time depends on the size
of a pre-existing crack in a similar way as diffusion-limited proc-
esses (a poroelastic effect). By assuming a specific size distribu-
tion of microcracks, they proposed a statistical theory on the
lifetime prediction of a swollen gel. Recently, Tang et al. [20]
conducted fracture experiments of hydrogels using precracked
specimens. They observed delayed fracture when the applied
energy release rate was subcritical but greater than a threshold
value. The present study considers a stationary crack subject to a
constant step loading by either displacement or traction control.
Depending on the applied mechanical load as well as the chemical
boundary conditions, the crack may grow immediately or after a
delay or would never grow. Based on a linear poroelastic model,
we present an asymptotic analysis on the transient crack-tip fields
and determine the time-dependent stress intensity factor by a finite
element method. The crack-tip energy release rate is calculated by
a modified J-integral method as in previous studies [17,29], with
which the scenario of delayed fracture is discussed.

Similar problems have been studied previously. Atkinson and
Craster [30] analyzed the fracture behavior in linearly poroelastic
media under a prescribed internal pressure and they obtained
stress intensity factor as a function of time using Laplace and Fou-
rier transforms. Hui et al. [31] studied the short-time transient
fields near the tip of a stationary crack in a linearly poroelastic
solid. Bouklas et al. [29] studied the effects of solvent diffusion
on the crack-tip fields and the energy release rate for stationary
cracks in polymer gels using a nonlinear, transient finite element
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method [32]. They proposed a modified J-integral method for cal-
culating the transient crack-tip energy release rate for quasi-static
crack growth in gels. More recently, Yang and Lin [33] presented
a numerical study on the time-dependent crack-tip fields in a line-
arly poroviscoelastic medium under constant applied stress. Simi-
lar to Wang and Hong [28], they calculated the crack-tip energy
release rate using a cohesive zone model. Alternatively, nonlinear
phase-field models have been developed recently for fracture of
polymer gels [34,35].

The remainder of this paper is organized as follows. Section 2
presents an asymptotic analysis based on a linear poroelastic for-
mulation for polymer gels derived from a nonlinear theory. A cen-
ter crack model is considered in Sec. 3, with the short-time and
long-time limits under various chemo-mechanical conditions.
Numerical results are discussed in Sec. 4. The detailed formula-
tion for a finite element method and a crack-tip model for the
short time limit are presented in appendices. Section 5 concludes
the present study with a brief summary.

2 Asymptotic Analysis of Poroelastic Crack-Tip Fields

2.1 A Linear Poroelastic Formulation. Under the condition
of small deformation, a linear poroelastic formulation can be
derived from the generally nonlinear theory for polymer gels
[36–38]. The linear formulation has allowed an asymptotic analy-
sis of the steady-state crack-tip fields in a previous study [17]. The
same linear formulation is adopted in the present study for station-
ary cracks. It should be noted that the deformation around a crack
tip is usually large and the application of the linear formulation is,
thus, limited to the region beyond a small distance away from the
crack tip, assuming a small-scale nonlinear region similar to the
small-scale yielding condition in linear elastic fracture mechanics.
A detailed analysis on the nonlinear effects is left for future
studies.

For completeness, the linear poroelastic formulation is briefly
summarized as follows. Let the gel be stress free and isotropically
swollen in the initial state, where the solvent in the gel has a
chemical potential, l ¼ l0, in equilibrium with an external solu-
tion. Correspondingly, the initial solvent concentration in the gel
is c0 ¼ ð1� k�3

0 Þ=X, where X is the volume of solvent molecule
and k0 is linear swelling ratio of the gel relative to dry state of the
polymer network. The relationship between the swelling ratio (k0)
and the chemical potential (l0) can be obtained from the nonlinear
theory [36–38]. Considering small deformation from the initial
state with a displacement field ui, a linear strain field is defined as

eij ¼
1

2

@ui

@xj
þ @uj

@xi

� �
(2.1)

The volumetric part of the strain is related to the change of solvent
concentration, i.e.,

ekk ¼ Xðc� c0Þ (2.2)

where c is the solvent concentration in the deformed state.
The Cauchy stress in the gel is related to the strain and chemi-

cal potential as

rij ¼ 2 G eij þ
�

1� 2�
ekkdij

� �
� l� l0

X
dij (2.3)

where G is shear modulus and � is Poisson’s ratio,2 both of which
can be derived from the nonlinear theory [39].

The linearized mechanical equilibrium equation (assuming no
body force) is

@rij

@xj
¼ 0 (2.4)

and the linearized rate equation for solvent diffusion is

@c

@t
þ @jk

@xk
¼ 0 (2.5)

where the diffusion flux is related to the gradient of chemical
potential by a linear kinetic law

jk ¼ �M0

@l
@xk

(2.6)

with a constant mobility M0 (which can be related to the solvent
diffusivity in the gel [39]).

Correspondingly, the linearized boundary conditions are

riknk ¼ si and jknk ¼ �x (2.7)

where nk is the outward unit normal vector on the boundary, si is
the traction, and x is the in-flux of the solvent across the
boundary.

The linearized equations can be further reduced by inserting
Eq. (2.1) into Eq. (2.3) and then into Eq. (2.4)

@2ui

@xj@xj
þ 1

1� 2�

@2uj

@xj@xi
¼ 1

GX
@l
@xi

(2.8)

Substituting Eq. (2.8) into Eq. (2.6) and then into Eq. (2.5), we
obtain

@c

@t
¼ D�

@2c

@xj@xj
(2.9)

where

D� ¼ 2 1� �ð Þ
1� 2�

X2GM0

is often called the effective or cooperative diffusivity [39–41]. As
a standard diffusion equation, (2.9) implies a time-dependent
length scale:

lt ¼
ffiffiffiffiffiffiffi
D�t
p

(2.10)

As in linear elasticity, the equilibrium equation (2.4) may be
solved by using a stress function under the plane-strain condition.
However, the poroelastic stress–strain relation in Eq. (2.3) leads
to a slightly different compatibility condition, namely

r2r2w ¼ �2XGr2c (2.11)

where the Airy’s stress function w is related to the stress compo-
nents as usual

rh ¼
@2w
@r2

; rhr ¼ �
@

@r

1

r

@w
@h

� �
; and rr ¼

1

r

@w
@r
þ 1

r2

@2w

@h2
:

Therefore, under the plane-strain condition, we may solve
Eq. (2.9) for the solvent concentration and then solve Eq. (2.11)
for the stress function, with which both the stress and chemical
potential fields can be determined [17]. For plane strain (ez ¼ 0),
we have

rkk ¼ r2wþ rz and rz ¼
2�

1� 2�
GX c� c0ð Þ �

l� l0

X

by Eq. (2.3), so that the chemical potential is

2The Poisson’s ratio here is often called drained Poisson’s ratio in linear
poroelasticity [30]. The undrained Poisson’s ratio is 0.5 in the present formulation as
a result of Eq. (2.2) assuming molecular incompressibility.
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l ¼ l0 þ
GX2

1� 2�
c� c0ð Þ �

X
2
r2w (2.12)

2.2 Asymptotic Crack-Tip Fields. Consider a stationary
crack (Fig. 1). To solve Eq. (2.9) near the crack tip (r ! 0), we
assume

c ¼ c0 þ
X

n

anðtÞrnfnðhÞ (2.13)

where r and h are the polar coordinates with the origin at the crack
tip; an is a function of time. Note that, since ekk ¼ Xðc� c0Þ, n >
�1 is required in Eq. (2.13) so that the displacement remains finite
at the crack tip.

Substitution of Eq. (2.13) into Eq. (2.9) leads to

D�anðtÞ½f 00nðhÞ þ n2fnðhÞ� ¼ a0n�2ðtÞfn�2ðhÞ (2.14)

For the crack-tip solution (r ! 0), the leading term in Eq. (2.13)
correspond to the minimum value of n (designated as m hereafter),
for which the right-hand side of Eq. (2.14) vanishes, namely

f 00mðhÞ þ m2f ðhÞ ¼ 0 (2.15)

Solving Eq. (2.15) yields

fmðhÞ ¼ bm cosðmhÞ þ dm sinðmhÞ (2.16)

Similarly, for higher order terms with n ¼ mþ k and 0 < k < 2,
the right-hand side of Eq. (2.14) also vanishes and we obtain

fmþkðhÞ ¼ bmþk cosððmþ kÞhÞ þ dmþk sinððmþ kÞhÞ (2.17)

where k does not have to be an integer.
Additional higher-order terms can be obtained by solving Eq.

(2.14) recursively with the leading terms in Eqs. (2.16) and (2.17).
For example, for n¼mþ 2, we have

f 00mþ2ðhÞ þ ðmþ 2Þ2fmþ2ðhÞ ¼ ½bm cosðmhÞ þ dm sinðmhÞ�q
(2.18)

a0mðtÞ ¼ qD�amþ2ðtÞ (2.19)

where q is a constant to be determined. Solving Eq. (2.18), we
obtain

fmþ2 hð Þ ¼ q

4 mþ 1ð Þ bm cos mhð Þ þ dm sin mhð Þ
� �

þ bmþ2 cos mþ 2ð Þh½ � þ dmþ2 sin mþ 2ð Þh½ � (2.20)

Therefore, the leading terms for the solvent concentration can be
written as

c ¼ c0 þ
X

0�k�2

amþkðtÞrmþkfmþkðhÞ þ � � � (2.21)

With Eq. (2.21) for the solvent concentration, Eq. (2.11) becomes

r2r2w ¼ �2XGqamþ2½bm cosðmhÞ þ dm sinðmhÞ�rm (2.22)

The general solution to Eq. (2.22) consists of a particular solution
and a homogeneous solution, namely

w ¼ wh r; hð Þ

� XGqamþ2

16 mþ 1ð Þ mþ 2ð Þ bm cos mhð Þ þ dm sin mhð Þ
� �

rmþ4

(2.23)

where the homogenous solution takes the form of a series expan-
sion as

wh r; hð Þ ¼
X1
n¼1

wn hð Þrnþ2
2 (2.24)

wn hð Þ ¼ Cn1 cos
nþ 2

2
h

� �
þ Cn2 sin

nþ 2

2
h

� �

þ Cn3 cos
n� 2

2
h

� �
þ Cn4 sin

n� 2

2
h

� �
(2.25)

The stress field corresponding to the particular solution is non-
singular, r � rmþ2 (m > �1). As a result, the leading terms for
the stress function are from the homogenous solution with
1 � n � 4, which takes the same form as the linear elastic crack-
tip solution.

The asymptotic solution in the form of Eqs. (2.21) and (2.23)
can be decomposed into symmetric (mode I) and antisymmetric
(mode II) modes with respect to the angular variations. Hereafter,
we consider only the solution for cracks in the symmetric mode
(mode I) under plane strain conditions. Keeping the four leading
terms for mode I, the stress function becomes

w r; h; tð Þ ¼
X4

n¼1

r
nþ2

2 Cn1 tð Þcos
nþ 2

2
h

� �
þ Cn3 tð Þcos

n� 2

2
h

� �� �

þ � � �
(2.26)

and the solvent concentration can be written as

cðr; h; tÞ ¼ c0 þ
X

0�k<2

amþkðtÞrmþk cosðmþ kÞhþ � � � (2.27)

where the higher order term (�rmþ2) in Eq. (2.21) has been
ignored.

For plane-strain problems, the chemical potential is obtained by
inserting Eqs. (2.26) and (2.27) into Eq. (2.12)

l� l0

X
¼ XG

1� 2�

X
0�k<2

amþkrmþk cos mþ kð Þh

�
X4

n¼1

nCn3r
n�2

2 cos
n� 2

2
h

� �
þ � � � (2.28)

If the crack is filled with an external solution (e.g., water), the
chemical potential at the crack faces (h ¼ 6p) equals a constant,
i.e., l ¼ l0 ¼ 0; we call such a crack as “immersed.” Alterna-
tively, if the crack is not immersed and the crack faces are imper-
meable to solvent diffusion, the flux across the crack faces is zero,
i.e., ð@l=@hÞ ¼ 0. In Eq. (2.28), the first leading term from the

Fig. 1 Schematic of a center-cracked specimen under tension.
A polar coordinate at the crack tip is used for the asymptotic
crack-tip fields. A finite element mesh is shown for one quarter
of the specimen.
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stress function is proportional to r�1=2 (n¼ 1), which is singular
as r ! 0. Because the chemical potential is non-singular at the
crack tip, the leading term of the solvent concentration must have
the same order of singularity as the stress field, i.e., m ¼ �1=2.
Moreover, to satisfy the boundary conditions for the chemical
potential at the crack faces (immersed or not-immersed), we must
have k ¼ ðn� 1Þ=2 for the four leading terms of the solvent con-
centration to have the same orders as r2w with 1 � n � 4. Thus,
Eq. (2.27) can be rewritten as

c r; h; tð Þ ¼ c0 þ
X4

n¼1

cn tð Þrn�2
2 cos

n� 2

2
h

� �
þ � � � (2.29)

Then, the leading terms for the chemical potential in Eq. (2.28)
becomes

l r; h; tð Þ ¼ l0 þ
X4

n¼1

ln tð Þrn�2
2 cos

n� 2

2
h

� �
þ � � � (2.30)

where lnðtÞ ¼ GX=ð1� 2�ÞcnðtÞ � nCn3ðtÞ. For the singular term
(n ¼ 1) to vanish in Eq. (2.30), it requires that l1 ¼ 0 and hence

GX
1� 2�

c1 � C13 ¼ 0 (2.31)

With the chemical potential in Eq. (2.30), the chemical boundary
condition for the immersed case (l0 ¼ 0) requires that l2 ¼ l4 ¼
0 and hence

GX
1� 2�

c2 � 2C23 ¼ 0 (2.32)

GX
1� 2�

c4 � 4C43 ¼ 0 (2.33)

As a result, the chemical potential in this case becomes

l ¼ l3 tð Þ
ffiffi
r
p

cos
h
2

� �
þ � � � (2.34)

For the not-immersed case, the zero flux boundary condition
requires that l3 ¼ 0 and hence

GX
1� 2�

c3 � 3C33 ¼ 0 (2.35)

The leading terms of the chemical potential are constant and linear
(n ¼ 2; 4)

l ¼ ltipðtÞ þ l4ðtÞr cos hþ � � � (2.36)

where ltipðtÞ ¼ l0 þ l2ðtÞ. This is different from the asymptotic
solution for the case of a steady-state crack [17].

With the Airy stress function in Eq. (2.26), the stress compo-
nents are obtained as follows:

rrr ¼ �
1

4

X4

n¼1

r
n�2

2 n nþ 2ð ÞCn1 cos
nþ 2

2
h

� ��

þn n� 6ð ÞCn3 cos
n� 2

2
h

� ��
þ � � � (2.37a)

rhh ¼
1

4

X4

n¼1

r
n�2

2 n nþ 2ð ÞCn1 cos
nþ 2

2
h

� ��

þn nþ 2ð ÞCn3 cos
n� 2

2
h

� ��
þ � � � (2.37b)

rrh ¼
1

4

X4

n¼1

r
n�2

2 n nþ 2ð ÞCn1 sin
nþ 2

2
h

� ��

þn n� 2ð ÞCn3 sin
n� 2

2
h

� ��
þ � � � (2.37c)

which are identical to the linear elastic crack-tip solution. To sat-
isfy the traction-free boundary conditions at the crack faces, it
requires: C11 ¼ C13=3; C21 ¼ �C23; C31 ¼ �C33=5; C41 ¼ �C43.
Following the linear elastic fracture mechanics, the two leading
terms of stresses are related to the stress intensity factor (KI) and
the T-stress (rT) as: C13 ¼ KI=

ffiffiffiffiffiffi
2p
p

; C23 ¼ rT=4. Thus, the stress
components can be written as

rij ¼
KIffiffiffiffiffiffiffiffi
2pr
p fij hð Þ þ rTd1id1j þ � � � (2.38)

where

f11 ¼ cos
h
2

� �
1� sin

h
2

� �
sin

3h
2

� �� �
(2.39a)

f22 ¼ cos
h
2

� �
1þ sin

h
2

� �
sin

3h
2

� �� �
(2.39b)

f12 ¼ cos
h
2

� �
sin

h
2

� �
cos

3h
2

� �
(2.39c)

With Eq. (2.31), the singular term for the solvent concentration is
related to the stress intensity factor as

c1 ¼
1� 2�ð ÞKI

XG
ffiffiffiffiffiffi
2p
p (2.40)

which is true for both the immersed and not-immersed cases. The
next term for the solvent concentration is a constant (n ¼ 2) that
can be related to the T-stress and the crack-tip chemical potential
as:

c2 ¼
1� 2�

XG

ltip

X
þ rT

2

� �
(2.41)

where ltip ¼ 0 for the immersed case.
Furthermore, the singular part of the crack-tip strain field is

identical to that in the linear elastic case, and the leading term of
the displacement field is also identical. In particular, the near-tip
crack-opening displacement is

u2 r; h ¼ 6pð Þ ¼ 6
2 1� �ð ÞKI

G

ffiffiffiffiffiffi
r

2p

r
þ � � � (2.42)

In summary, we have obtained a linear poroelastic solution for the
asymptotic crack-tip fields (mode I), with the crack-tip stress
components given by Eqs. (2.38) and the solvent concentration by
Eq. (2.29). The chemical potentials are given by Eqs. (2.34) and
(2.36) for the immersed and not-immersed cases, respectively.
The leading terms of the poroelastic crack-tip fields require three
independent crack-tip parameters for the immersed case:
KI; rT ;l3, but require 4 independent parameters for the not-
immersed case: KI ;rT ; ltip;l4. All these parameters are time
dependent for a stationary crack in a linearly poroelastic material,
and they can be determined numerically for specific specimen
geometry and loading conditions.

2.3 Energy Release Rate. To calculate energy release rate
for crack growth in a poroelastic material, a modified J-integral
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was derived by Bouklas et al. [29] in a nonlinear setting, which
can be linearized to yield [17]:

J� ¼
ð

C
/̂n1 � rijnj

@ui

@x1

� �
dCþ

ð
A

c� c0ð Þ
@l
@x1

dA (2.43)

where A is the area enclosed by the contour C around the crack tip
and the linearized free energy density function is

/̂ ¼ G eijeij þ
�

1� 2�
ekkð Þ2

� �
� l� l0ð Þ c� c0ð Þ (2.44)

The modified J-integral is path independent and can be calculated
by the domain integral method, as shown in the previous studies
[17,29]. Note that the linearized J-integral in Eq. (2.43) gives the
energy release rate per unit area of crack growth in the initial
swollen state, not in the dry state as in the original definition by
Bouklas et al. [29]; the two are simply related by a factor of k2

0.
Similar to the case of steady-state crack growth [17], the energy

release rate by the modified J-integral can be related to the crack-
tip stress intensity factor for a stationary crack as

J� ¼ 1� �
2 G

K2
I (2.45)

which can be shown as a result of the asymptotic crack-tip fields.
Since KI is a function of time, the energy release rate J� is also a
function of time for a stationary crack in a poroelastic material.

3 A Center Crack Model

Consider a specimen with a center crack (Fig. 1), subject to uni-
axial tension by either displacement or load (traction) controlled
step loading under plane strain conditions. The initial state of the
gel is stress free and homogeneously swollen, with a solvent con-
centration c0 ¼ ð1� k�3

0 Þ=X corresponding to the chemical
potential l0 ¼ 0. The specimen may be immersed in an external
solution so that all the boundaries (including the crack faces) are
in contact with the external solution with a chemical potential
l ¼ 0. Alternatively, if the specimen is not immersed, we assume
that all the boundaries are impermeable to solvent diffusion so
that the normal flux is zero. The same problem was considered by
Bouklas et al. [29] using a nonlinear formulation, which did not
permit an asymptotic analysis. Here, based on the linear
poroelasticity formulation (Sec. 2.1), a simpler finite element
method is developed to solve the initial/boundary value problem
(Appendix A), which allows us to compare with the asymptotic
analysis and determine the time-dependent crack-tip parameters
as well as the crack-tip energy release rate.

By symmetry, only a quarter of the specimen is modeled by the
finite element method as illustrated in Fig. 1. The symmetry
boundary conditions are imposed at x1 ¼ 0 and at x1 > a; x2 ¼ 0.
The remote tension under displacement control is applied as

u2 ¼ heh; r12 ¼ 0 at x2 ¼ h (3.1)

Under load (traction) control, the boundary condition becomes3

r2 ¼ rh; r12 ¼ 0 at x2 ¼ h (3.2)

Traction-free conditions are assumed for the crack face
(x1 < a; x2 ¼ 0) and at x1 ¼ h. The applied strain (eh) or stress
(rh) is assumed to be a constant for t > 0 (step loading).

For the finite element analysis, all the lengths are normalized
by half of the crack length (e.g., setting a ¼ 1) and time is normal-
ized by the characteristic diffusion time, s ¼ a2=D�. Stresses are
normalized by the shear modulus G, chemical potential by GX

and solvent concentration by X�1. Within the linear poroelastic
formulation, the elastic moduli (G and �) are related to the gel
properties. Taking k0 ¼ 3:215 as the initial swelling ratio, the cor-
responding Poisson’s ratio is 0.24. The Poisson’s ratio can be var-
ied by using different gel properties with different initial swelling
ratios [39].

By dimensional considerations, the poroelastic stress intensity
factor at the crack tip can be written as

KI ¼ nu
t

s
;
h

a
; �

� �
Geh

ffiffiffiffiffiffi
pa
p

(3.3a)

or

KI ¼ nr
t

s
;
h

a
; �

� �
rh

ffiffiffiffiffiffi
pa
p

(3.3b)

where nu and nr are dimensionless functions under displacement
and traction controlled conditions, respectively.

For a linearly elastic specimen of the same geometry as in
Fig. 1, the stress intensity factor is

Ke ¼ nue
h

a

� �
2 Geh

1� �
ffiffiffiffiffiffi
pa
p

displacement controlð Þ (3.4a)

or

Ke ¼ nre
h

a

� �
rh

ffiffiffiffiffiffi
pa
p

traction controlð Þ (3.4b)

For h=a ¼ 10, we obtain numerically nueð10Þ ¼ 0:989 and
nreð10Þ ¼ 1:014, both of which approaches 1 as h=a!1.

Instantaneously upon a step loading (t ¼ 0þ), if the poroelastic
material behaves like an incompressible elastic material with � ¼
0:5 (undrained), the stress intensity factor would be (for both
immersed and not-immersed cases): KI0 ¼ 4nueGeh

ffiffiffiffiffiffi
pa
p

(displace-
ment control) or KI0 ¼ nrerh

ffiffiffiffiffiffi
pa
p

(load control). Correspondingly,

the energy release rate would be: J0 ¼ ðK2
I0=4 GÞ. However, even

for an infinitely small time (t! 0þ), there exists a diffusion zone
around the crack tip, which may influence the stress intensity fac-
tor and the crack-tip energy release rate. As shown in the follow-
ing (Table 1), the short-time limits for the stress intensity factor
and the energy release rate for a poroelastic material are not nec-
essarily the same as those expected for an incompressible elastic
material.

The instantaneous elastic deformation around the crack leads to
an inhomogeneous field of chemical potential, which drives sol-
vent diffusion. As the poroelastic stress intensity factor evolves
over time (Eq. 3.3), the crack-tip energy release rate by the modi-
fied J-integral can be written as

J�

J0

¼ K
t

s
;
h

a
; �

� �
(3.5)

where the dimensionless function on the right-hand side is to be
determined numerically and depends on the chemo-mechanical
conditions.

Next, we discuss the short-time and long-time limits for the
stress intensity factor and the energy release rate under different
chemo-mechanical conditions, followed by the full-field numeri-
cal results and discussion in Sec. 4.

3.1 Short-Time Limits. At the short time limit
(0 < t=s� 1), solvent diffusion is confined in a small region
around the crack tip (as well as near the edges) with a length scale,
lt ¼

ffiffiffiffiffiffiffi
D�t
p

� a. In this crack-tip region (r < lt), the stress is partly
relaxed, leading to a reduced stress intensity factor, referred to as
poroelastic shielding [30,31]. For the immersed case, an

3In experiments the load may be applied by a dead weight, in which case the
traction at x2 ¼ h may not be uniform unless h	 a.
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approximate analytical solution was presented by Hui et al. [31],
which predicted a relation between the poroelastic crack-tip stress
intensity factor and the instantaneous (elastic) stress intensity
factor

KI t! 0þð Þ ¼ KI0

2 1� �ð Þ (3.6)

On the other hand, Atkinson and Craster [30] presented a more
sophisticate analysis and predicted a different relation for the
immersed case

KI t! 0þð Þ ¼ KI0

Nþ 0ð Þ � �gd
� � (3.7)

where Nþð0Þ, �g, and d are functions of Poisson’s ratio (see Appen-
dix B). It is found that the numerical results of Eq. (3.7) can be
written approximately as

KI t! 0þð Þ ¼ KI0
1

2 1� �ð Þ

� �a

(3.8)

where a 
 0:735 (see Appendix C). As shown in Fig. 11, results
from our finite element analysis agree closely with Eq. (3.8),
whereas Eq. (3.6) underestimates the crack-tip stress intensity fac-
tor. Interestingly, a relation identical to Eq. (3.6) was recently pre-
dicted for the case of steady-state crack growth in a linearly
poroelastic material at the limits of fast or slow crack speed [17].

For not-immersed cases, Craster and Atkinson [42] obtained the
short-time limit of the crack-tip stress intensity factor as

KI t! 0þð Þ ¼ KI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2 1� �ð Þ

s
(3.9)

Therefore, in both immersed and not-immersed cases, KIðt!
0þÞ < KI0 as long as � < 0:5; the poroelastic shielding is slightly
weaker for the not-immersed case.

With Eq. (2.45), the crack-tip energy release rate at the short-
time limit is obtained for the immersed and not-immersed cases as

J� t! 0þð Þ ¼ J0

1

2 1� �ð Þ

� �2a�1

(3.10)

Thus, for the immersed case (a 
 0:735), J�ðt! 0þÞ < J0; for
the not-immersed case (a ¼ 0:5), J�ðt! 0þÞ ¼ J0. Interestingly,
while poroelastic shielding in terms of the stress intensity factor is
predicted for both cases, poroelastic toughening in terms of the
energy release rate is predicted for the immersed case only. As
noted by Eqs. (2.34) and (2.36), while the chemical potential is
non-singular at the crack tip for both immersed and not-immersed
cases, the gradient of chemical potential is singular for the
immersed case but not singular for the not-immersed case. As a
result, the energy dissipation due to solvent diffusion as calculated
by the domain integral in Eq. (2.43) approaches zero at the short-

time limit for the not-immersed case but approaches a finite value
for the immersed case, hence the difference in poroelastic
toughening.

The poroelastic crack-tip stress intensity factor and energy
release rate at the short-time limit are the same for displacement
or load control except for the different values from the elastic
solution (KI0 and J0).

3.2 Long-Time Limits. At the long-time limit (t!1), the
chemical potential becomes homogenous so that the specimen
reaches both chemical and mechanical equilibrium. For the
immersed case, the chemical potential is zero (l ¼ l0 ¼ 0), while
for the not-immersed case it is a constant (l ¼ l1) that depends
on the applied displacement or traction. In both cases, the right-
hand side of Eq. (2.11) vanishes,4 and the poroelasticity problem
becomes identical to an elasticity problem. For the immersed
case, the stress intensity factor at the long-time limit is exactly the
same as the elastic case with the (drained) Poisson’s ratio (�).
Under displacement control, we obtain:

KI t!1ð Þ ¼ KI0

2 1� �ð Þ (3.11)

which is smaller than the short-time limit given by Eq. (3.8) with
� < 0:5. Incidentally, this is the same as the short-time limit pre-
dicted by Hui et al. [31]. Under load control, the elastic stress
intensity factor is independent of Poisson’s ratio. As a result, the
poroelastic stress intensity factor at the long time limit is simply

KIðt!1Þ ¼ KI0 ¼ nrerh

ffiffiffiffiffiffi
pa
p

(3.12)

which is greater than the short-time limit in Eq. (3.8) for the
immersed case. Therefore, the poroelastic stress intensity factor as
a function of time depends on the loading conditions, with differ-
ent long-time limits for displacement and load control.

With Eq. (2.45), the crack-tip energy release rate at the long-
time limit for the immersed case is obtained as

J� t!1ð Þ ¼ J0

2 1� �ð Þ (3.13a)

under displacement control and

J�ðt!1Þ ¼ 2ð1� �ÞJ0 (3.13b)

under load control. Similar to the stress intensity factor, the crack-
tip energy release rate as a function of time also depends on the
loading conditions.

For the not-immersed case, under load control, the stress field is
the same as that for the immersed cases since it is subject to only
traction boundary conditions, although the strain field is different
due to different chemical potential in the stress–strain relation

Table 1 Short-time and long-time limits of the poroelastic stress intensity factor and the crack-tip energy release rate for center-
cracked specimens

Short-time limit Long-time limit

Immersed Displacement
control KI t! 0þð Þ ¼ KI0

1

2 1� �ð Þ

� �0:735

, J� t! 0þð Þ ¼ J0

1

2 1� �ð Þ

� �0:47

KI t!1ð Þ ¼ KI0

2 1� �ð Þ, J� t!1ð Þ ¼ J0

2 1� �ð Þ

Load control KI t!1ð Þ ¼ KI0, J� t!1ð Þ ¼ 2 1� �ð ÞJ0

Not-immersed Displacement
control KI t! 0þð Þ ¼ KI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2 1� �ð Þ

r
, J� t! 0þð Þ ¼ J0

KI t!1ð Þ ¼ 0:993KI0, J� t!1ð Þ ¼ 1:496J0
5

Load control KI t!1ð Þ ¼ KI0, J� t!1ð Þ ¼ 2 1� �ð ÞJ0

4Note that, by Eq. (2.8), r2c ¼ ð1� 2�=2ð1� �ÞX2GÞr2l, which vanishes at
the long-time limit.

5Based on numerical results for h=a ¼ 10 and � ¼ 0:24.
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(Eq. 2.3). Thus, the stress intensity factor in this case is the same
as Eq. (3.12), which again is greater than the short-time limit in
Eq. (3.9) for the not-immersed case. Under displacement control,
the traction-free boundary condition at the crack faces and the
free edge (x1 ¼ h) requires that

2 G eij þ
�

1� 2�
ekkdij

� �
nj ¼

l1 � l0

X
ni (3.14)

Comparing to the immersed case, the only difference is that the
right-hand side of Eq. (3.14) is not zero for the not-immersed
case. Thus, the long-time limit for the not-immersed case under
displace control can be regarded as a superposition of two elastic-
ity problems as illustrated in Fig. 2: one corresponding to the
long-time limit for the immersed case with the same applied dis-
placement (problem A) and the other (problem B) with zero
applied displacement, but with a normal traction or pressure,
p ¼ �ðl1 � l0=XÞ, acting on the crack faces and the free edges
(x1 ¼ h). By linear superposition, the stress intensity factor at the
long-time limit in this case can be obtained as

KI t!1ð Þ ¼ KI0

2 1� �ð Þ þ Kp (3.15)

where Kp is the stress intensity factor in problem B. Since l1 �
l0 < 0 under tension, the crack face in problem B is subject to a
positive pressure (p > 0), which gives a positive stress intensity
factor (Kp > 0). Hence, the stress intensity factor at the long-time
limit is greater for the not-immersed case than the immersed case
under displacement control.

Furthermore, the chemical potential at the long time limit for
the not-immersed case can be determined semi-analytically as fol-
lows. Since the corresponding poroelasticity problem can be
treated as a superposition of the two linear elasticity problems
(Fig. 2), the pressure for problem B must be chosen such that the
sum of the total volume changes in the two elasticity problems is
zero because the total volume of the specimen is conserved for the
not-immersed case. Let the average normal traction at the top/bot-
tom edges of the two elasticity problems be

�r22 ¼
1

2 h

ðh

�h

r22dx (3.16)

It can be shown that �rA
22 ¼ 2 Geh=ð1� �Þ and �rB

22 ¼ ��p=ð1� �Þ
if h=a	 1. For h=a ¼ 10 and � ¼ 0:24, by a standard finite ele-

ment method, we obtain �rA
22 ¼ 2:60 Geh and �rB

22 ¼ �0:33p, both
of which are close to those for h=a	 1. For the same specimen
subject to a uniform equibiaxial compressive stress (r11 ¼ r22

¼ r0 < 0) under the plane-strain condition, the resulting strains in
the x1-and x2-directions are the same (e11 ¼ e22 ¼ e0). Then, by

the reciprocal theorem, the volume changes in the linear elasticity
problems A and B can be obtained as

r0DVA ¼ ð2h�rA
22Þð2he0Þ (3.17a)

r0DVB ¼ ð2h�rB
22Þð2he0Þ � ð2hpÞð2he0Þ (3.17b)

Thus, by setting DVA þ DVB ¼ 0, we obtain p ¼ �rA
22 þ �rB

22 and
hence for h=a	 1, p ¼ 2 Geh and l1 ¼ l0 � 2XGeh. For
h=a ¼ 10, we obtain numerically p ¼ 1:95 Geh. The correspond-

ing stress intensity factor for problem B is Kp ¼ ðpþ �rB
22Þ

ffiffiffiffiffiffi
pa
p

¼
2ð1� 2�Þ=ð1� �ÞGeh

ffiffiffiffiffiffi
pa
p

for h=a	 1 or in general,
Kp ¼ npðh=a; �ÞGeh

ffiffiffi
a
p

, where np ¼ 2:34 for h=a ¼ 10 and

� ¼ 0:24. Therefore, for the not-immersed case under displace-
ment control, the crack-tip stress intensity factor at the long-time
limit is

KI t!1ð Þ ¼ KI0

2 1� �ð Þ þ Kp ¼ KI0 for h=a	 1 (3.18)

and KIðt!1Þ ¼ 0:993KI0 for h=a ¼ 10 and � ¼ 0:24. We note
that the long-time limits under displacement and load control con-
ditions are the same for the not-immersed case if h=a	 1, but
slightly different for a finite specimen. Similarly, the energy
release rate at the long-time limit for h=a	 1 is the same as
Eq. (3.13b) for the not-immersed case under displacement control,
but slightly different for a finite specimen: J�ðt!1Þ ¼ 1:496 J0

for h=a ¼ 10 and � ¼ 0:24.
For a not-immersed specimen under load control, the long-time

limit of the chemical potential can be obtained in the same way by
the reciprocal theorem: l1 ¼ l0 � 0:5rhX, which is the same as
that under displacement control for h=a	 1 (with rh ¼ 4 Geh).

Table 1 summarizes the short-time and long-time limits of the
poroelastic stress intensity factor and the crack-tip energy release
rate for the immersed and not-immersed cases under displacement
and load controlled conditions. Notably, while the long-time lim-
its of the stress intensity factor and energy release rate are lower
than their short-time limits for the immersed case under displace-
ment control, it is the opposite for the other three cases (immersed
load control, and not-immersed, both displacement and load con-
trol). In particular, under displacement control, the lower long-
time limit for the immersed case may be expected as a result of
poroelastic relaxation, which however is not the case for the not-
immersed specimen. Under load control, the long-time limits are
higher for both immersed and not-immersed cases, similar to the
creep behavior in metals and polymers.

4 Numerical Results and Discussion

In this section, we present numerical results for the center-
crack model (Fig. 1) obtained by the finite element method
(Appendix A) based on linear poroelasticity. We compare the
numerical results with the asymptotic analysis for the crack-tip
fields as predicted in Sec. 2.2 and determine the time-dependent
crack-tip parameters. The short-time and long-time limits as well
as the transient evolution in between are examined for different
chemical and mechanical boundary conditions (immersed versus
not-immersed, displacement versus load control). The possible
scenario of delayed fracture as a result of solvent diffusion is dis-
cussed based on a hypothetic criterion for onset of crack growth.

4.1 Poroelastic Crack-Tip Fields. The asymptotic poroelas-
tic crack-tip fields are derived in Sec. 2.2 for both the immersed
and not-immersed cases. The singular stress and solvent concen-
tration fields are given in Eqs. (2.38) and (2.29), where the leading
terms relate to the stress intensity factor and T-stress. As dis-
cussed in Sec. 3, the stress intensity factor is a function of time
(Eq. 3.3) and can be determined numerically. For a center-cracked

Fig. 2 Superposition of two linear elasticity problems (A and
B) for the long-time limit of the not-immersed case under dis-
placement control
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specimen with h=a ¼ 10 and � ¼ 0:24, Fig. 3 shows the numeri-

cal results at t=s ¼ 10�4 for the immersed case, comparing the
angular distributions of the stress and solvent concentration with
the asymptotic predictions. A small strain, eh ¼ 0:001, is applied
(displacement control) for the numerical calculation, but the nor-
malized results are independent of the applied strain by the linear
theory. By fitting the angular distribution of the stress component
r22 in Fig. 3(a) (or r12 in Fig. 3(b)), a stress intensity factor is
obtained, KI ¼ 5:23 Geh

ffiffiffi
a
p

, which is close to the short-time limit
by Eq. (3.8) for this case, KIðt! 0þÞ ¼ 5:15 Geh

ffiffiffi
a
p

. Next, the
T-stress, rT ¼ �7:87 Ge1, can be obtained by fitting of r11 in
Fig. 3(c). Correspondingly, by Eqs. (2.40) and (2.41), we obtain

Xc1 ¼ 1:085eh
ffiffiffi
a
p

and Xc2 ¼ �2:05eh, with which the predicted
angular distribution of the solvent concentration by the two lead-
ing terms in Eq. (2.29) is in excellent agreement with the numeri-
cal result (Fig. 3(d)). The numerical results at different radii
(close to the crack tip) are plotted to show that the angular distri-
butions are independent of the radius as predicted for the singular
crack-tip fields. The agreement confirms the square-root singular-
ity for both the stress and concentration fields.

Similar numerical results are obtained for the not-immersed case
at t=s ¼ 10�4, for which the stress intensity factor is found to be
slightly larger: KI ¼ 5:70 Ge1

ffiffiffi
a
p

, as expected for the short-time
limit by Eq. (3.9), KIðt! 0þÞ ¼ 5:69 Geh

ffiffiffi
a
p

. In this case, the T-
stress and Xc2 are obtained independently by fitting the stress com-
ponent r11 and the solvent concentration: rT ¼ �6:01 Ge1 and
Xc2 ¼ �8:63e1. Then, by Eq. (2.41), we obtain ltip ¼
�13:6XGeh as the chemical potential at the crack tip (as opposed
to ltip ¼ 0 for the immersed case). Figure 4 shows the angular dis-
tributions of the chemical potential for the immersed and not-
immersed cases. As predicted by Eq. (2.34), the leading term of the
chemical potential for the immersed case is proportional to

ffiffi
r
p

. By
fitting the numerical results with the analytical prediction, we
obtain l3 ¼ �150XGe1=

ffiffiffi
a
p

. For the not-immersed case, Eq.

(2.36) predicts a constant term ltip as the leading term, which is
related to the T-stress and c2 by Eq. (2.41). By subtracting the con-
stant ltip, the next leading term is proportional to r, for which we
obtain l4 ¼ �494 GXe1=a by fitting. Note that in Fig. 4 the chem-
ical potentials for the two cases are normalized differently. The
slope of the chemical potential is zero at h ¼ p for the not-
immersed case as required by the zero-flux condition at the crack
face, whereas the slope is not zero for the immersed case, indicat-
ing solvent flux across the crack face. Again, the numerical results
at different radii are plotted to show that the angular distributions
are independent of the radius as predicted.

Figures 3 and 4 illustrate that the time-dependent crack-tip
parameters can be determined by comparing the numerical results
for the angular distributions of stress, solvent concentration, and
chemical potential to the asymptotic predictions. In particular, for
the immersed case, three independent parameters are determined
for the poroelastic crack-tip fields, including KI , rT and l3, while
four independent parameters are determined for the not-immersed
case, including KI , rT , ltip and l4. As noted by Yu et al. [17] for
steady-state crack growth in a linearly poroelastic material, it is
also possible to determine the crack-tip parameters from the radial
distributions of the displacement and chemical potential along the
crack face. For example, the stress intensity factor can be deter-
mined by the crack-opening displacement based on Eq. (2.42).
Figure 5 shows the normalized crack-tip parameters versus the
normalized time for the center-cracked specimen with h=a ¼ 10
and � ¼ 0:24. The stress intensity factor (Fig. 5(a)) for the not-
immersed case increases monotonically with time from the short-
time limit (KIðt! 0þÞ ¼ 5:69 Geh

ffiffiffi
a
p

) to the long-time limit
(KIðt!1Þ ¼ 6:96 Geh

ffiffiffi
a
p

). On the other hand, the stress inten-
sity factor for the immersed case first increases and then decreases
over time, with a peak at t=s � 1. The non-monotonic variation
may be attributed to the effect of solvent diffusion from the outer
boundary for the immersed case, consistent with previous results

Fig. 3 Numerical results for the angular distributions of the stress components (a)–(c) and
solvent concentration (d) around the crack tip at t /s 5 1024, in comparison with the asymp-
totic predictions, for the immersed case with h/a 5 10 and m 5 0:24
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by Bouklas et al. [29]. For both the immersed and not-immersed
cases, the numerical results approach the theoretical values at the
short-time and long-time limits represented by the horizontal
dashed and dotted lines in Fig. 5(a). The T-stress in Fig. 5(b) is
negative for both cases, with the magnitude decreasing over time.
At short time, the magnitude of T-stress is higher for the
immersed case than the not-immersed case. At the long time limit,
the T-stress approaches to the elastic limits, T1 ¼ �2 Geh=
ð1� �Þ, with � ¼ 0:24 for the immersed case and � ¼ 0:5 for the
not-immersed case. Figure 5(c) shows that the chemical potential
at the crack tip for the not-immersed case is negative, first
increasing and then decreasing over time, with a long-time limit
as predicted in Sec. 3 by the method of superposition
(l1 ¼ �1:95XGeh). Two additional parameters for the chemical
potential, corresponding to the square root term (l3) for the
immersed case and the linear term (l4) for the not-immersed case,
are shown in Fig. 5(d), both decreasing over time and vanishing at
the long-time limit as expected for a constant chemical potential
in the equilibrium state. Moreover, Hui et al. [31] predicted that
for short-time (t=s� 1), l3 � XKI0=

ffiffiffiffiffiffiffi
D�t
p

, which agrees closely
with the numerical results for the immersed case for t=s < 1. For
the not-immersed case, the numerical results (Fig. 5(d)) suggest
that l4 � XKI0ðD�tÞ�0:75

at short time (t=s < 1).

4.2 Transient Full-Field Analysis. The full-field time evolu-
tion of the chemical potential and solvent concentration in a

center-cracked specimen is shown in Fig. 6. Upon loading, the
chemical potential immediately becomes inhomogeneous around
the crack where the solvent concentration remains homogeneous
(except for an infinitesimal region near the crack tip). The gradi-
ent of chemical potential drives solvent diffusion so that solvent
concentration increases ahead of the crack tip. Meanwhile, solvent
diffusion occurs also from the outer edges for the immersed speci-
men. Eventually, after a sufficiently long-time (t=s	 1), the
chemical potential becomes homogeneous (l ¼ 0) as the speci-
men reaches chemical equilibrium with the external solution,
whereas solvent concentration is inhomogeneous near the crack as
a result of inhomogeneous stress and deformation by the condition
of mechanical equilibrium. The overall behavior is similar to the
results by Bouklas et al. [29].

Figure 7(a) shows that the chemical potential ahead of the crack
tip follows the poroelastic crack-tip solution in Eq. (2.34)
(l � r1=2) up to a distance proportional to the diffusion length
(lt=a ¼

ffiffiffiffiffiffi
t=s

p
). For r > lt, the chemical potential transitions to fol-

low an elastic solution with l � r�1=2 until r � a. As noted in a
previous study [16], by assuming a constant solvent concentration
(c ¼ c0) and incompressibility (� ¼ 0:5), the chemical potential
can be obtained from the elastic crack-tip solution as

l ¼ � XK1ffiffiffiffiffiffiffiffi
2pr
p cos

h
2

(4.1)

where K1 is the applied stress intensity factor in the far field. It is
found that K1 ¼ KI0 for the center-cracked specimen, corre-
sponding to a linearly elastic specimen with � ¼ 0:5. For short
time (t=s� 1), Hui et al. [31] predicted a self-similar form for
the transient evolution of the chemical potential as

l ¼ � XKI0ffiffiffiffiffiffiffiffi
2pr
p erf

r

2
ffiffiffiffiffiffiffi
D�t
p

� �
cos

h
2

(4.2)

which reduces to Eq. (4.1) for r > 2lt. For r � lt, the leading
term in Taylor’s expansion of Eq. (4.2) is identical to Eq. (2.34),

with l3 ¼ �XKI0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2D�t
p

as shown in Fig. 5(d). Thus, by

rescaling the chemical potential as l
ffiffiffi
lt
p

=ðXKI0Þ and the distance
as r=lt in Fig. 7(b), the numerical results for t=s < 1 nearly col-
lapse onto one curve except for the far field (r > a). The transition

from the poroelastic crack-tip field (l � r1=2) to the elastic field

(l � r�1=2) is captured closely by Eq. (4.2), except for the case

with an extremely short time (t=s ¼ 10�8). By Eq. (4.2), the mini-
mum chemical potential is predicted at r 
 2lt, directly ahead of
the crack tip (h ¼ 0). For t=s > 1, the elastic crack-tip field ceases
to exist, while the poroelastic field extends further away from the
crack tip to directly interact with the far field. Eventually, the
chemical potential becomes zero everywhere as shown in Fig. 6.

For a not-immersed specimen, Fig. 8 shows that the chemical
potential ahead of the crack tip follows the poroelastic crack-tip
solution in Eq. (2.36) up to a distance proportional to the diffusion
length. Strictly, the elastic crack-tip solution for the chemical
potential in Eq. (4.1) does not satisfy the zero-flux condition on
the crack faces. Thus, it appears that the elastic crack-tip field
does not exist theoretically for the not-immersed case. However,
the numerical results in Fig. 8 suggest that the chemical potential
follows the elastic solution for 2lt < r < a ahead of the crack tip
in the not-immersed case, similar to the immersed case, although
the angular distribution of the chemical potential may be different
from Eq. (4.1). For t=s > 1, the poroelastic crack tip field interacts
with the far field, and the chemical potential eventually becomes a
nonzero constant (l1 ¼ �1:95XGeh) everywhere.

4.3 Energy Release Rate. By the modified J-integral in Eq.
(2.43), which is path independent as shown in previous studies
[16,17,29], we calculate the crack-tip energy release rate (J�) in
the poroelastic center-cracked specimen. Alternatively, the

Fig. 4 Angular distributions of the chemical potential for the
immersed (a) and not-immersed (b) cases (t /s 5 1024, h/a 5 10
and m 5 0:24)
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crack-tip energy release rate can also be calculated using Eq.
(2.45) with the time-dependent stress intensity factor in Fig. 5(a).
Similar to the stress intensity factor, the energy release rate is a
function of time for a stationary crack, as noted in Eq. (3.5), with

short-time and long-time limits summarized in Table 1. Figure
9(a) shows the energy release rate normalized by the instantane-
ous elastic value as a function of the normalized time (t=s) for
both the immersed and not-immersed specimens under

Fig. 5 The normalized crack-tip parameters versus the normalized time for center-cracked
specimens (immersed and not-immersed) with h/a 5 10 and m 5 0:24: (a) stress intensity fac-
tor, (b) T-stress, (c) chemical potential at the crack tip, and (d) additional parameters for
chemical potential (normalized as l3

ffiffiffi
a
p

/(XGeh) and l4a/(XGeh))

Fig. 6 Time evolution of chemical potential (upper row) and solvent concentration (lower row) in an immersed center-
cracked specimen (showing one quarter only) with eh 5 0:001, h/a 5 10 and m 5 0:24
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displacement-controlled loading with J0 ¼ 4pn2
ueGe2

ha. For the
not-immersed case, the normalized energy release rate increases
monotonically over time, from the short-time limit
(J�ðt! 0þÞ ¼ J0) to the long-time limit (J�ðt!1Þ ¼ 1:496J0).
For the immersed case, however, the normalized energy release
rate first increases and then decreases, approaching a long-time
limit (J�ðt!1Þ ¼ 0:658J0) that is smaller than the short-time
limit (J�ðt! 0þÞ ¼ 0:821J0). Similar results were obtained previ-
ously by Bouklas et al. [29] based on a nonlinear theory, although
in principle the short-time and long-time limits are applicable
only for the linear theory.

Figure 9(b) shows the normalized energy release rates under
load control with KI0 ¼ nrerh

ffiffiffiffiffiffi
pa
p

and J0 ¼ pn2
rer

2
ha=ð4 GÞ. For

the not-immersed case, the behavior is similar for both displace-
ment and load controlled conditions, except for a slightly different
long-time limit (J�ðt!1Þ ¼ 1:52J0) as discussed in Sec. 3. On
the other hand, the behavior for the immersed case is very different
under load control. While the short-time limit is the same for both
displacement and load control, the long-time limits are different for
the immersed case. In contrast to the nonmonotonic variation under
displacement control (Fig. 9(a)), the crack-tip energy release rate
for the immersed case increases monotonically under load control,
approaching the same long-time limit as for the not-immersed case.
Thus, under different loading conditions, the fracture behavior
could be different for the immersed specimens.

Fig. 7 Chemical potential straight ahead of the crack tip at dif-
ferent times for an immersed center-cracked specimen with
eh 5 0:001, h/a 5 10 and m 5 0:24

Fig. 8 Chemical potential straight ahead of the crack tip at dif-
ferent times for a not-immersed center-cracked specimen with
eh 5 0:001, h/a 5 10 and m 5 0:24

Fig. 9 Energy release rate (J�), normalized by J0, as a function
of the normalized time (t /s) for immersed and not-immersed
center-cracked specimens with h/a 5 10 and m 5 0:24: (a)
Under displacement control and (b) under load control. The hor-
izontal dashed and dotted lines are the short-time and long-
time limits.
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Previously, Wang and Hong [28] predicted similar results for
impermeable cracks (not immersed) using a nonlinear visco-
poroelastic model, where the crack-tip energy release rate was cal-
culated using a cohesive zone model. More recently, based on a
linear poroviscoelastic model, Yang and Lin [33] reported similar
results for both permeable (immersed) and impermeable (not
immersed) cracks under load control, and they too used a cohesive
zone model to calculate the crack-tip energy release rate. The
present study shows that the crack-tip energy release rate in a
poroelastic material can be calculated by the modified J-integral
method, without using a cohesive zone model. On the other hand,
a poroelastic cohesive zone model [16] could be used to simulate
rate-dependent fracture process for both crack initiation and
propagation.

4.4 Delayed Fracture. As a hypothetical fracture criterion
for polymer gels, a stationary crack would start growing once the
crack-tip energy release rate (J�) reaches a critical value that may
be considered as the intrinsic fracture toughness (C) of the gel.
Since J� depends on time (Fig. 9), the crack may grow immedi-
ately or after a time delay or may not grow at all, depending on
the applied load (either displacement or load control) as well as
the chemical boundary condition (immersed or not-immersed).
According to the numerical results in Fig. 9, except for the
immersed case under displacement-controlled loading, the energy
release rate (J�) increases monotonically from the short-time limit
to the long-time limit. In these cases, the crack would grow imme-
diately if the short-time limit of the energy release rate is greater
than the fracture toughness (J�ðt! 0þÞ > C) but would never
grow if the long-time limit is lower than the fracture toughness
(J�ðt!1Þ < C), while delayed crack growth may be expected if
J�ðt! 0þÞ < C < J�ðt!1Þ. Taking J0 as the loading parame-
ter, which is proportional to the square of the applied displace-

ment or traction (J0 � e2
h or r2

h), the delay time may be predicted
by setting J�ðtÞ ¼ C in Eq. (3.5). Figure 10 illustrates the possible
scenario of delayed fracture under load control for both the
immersed and not-immersed cases. For a center-cracked specimen
with h=a ¼ 10 and � ¼ 0:24, the crack would never grow if
J0=C < 0:66 (inverse of the long-time limit), immersed or not.
For the not-immersed case, delayed fracture would occur if
0:66 < J0=C < 1, with the delay time decreasing as the applied
load (J0) increases; the crack grows immediately if J0=C > 1. For
the immersed case, the crack grows immediately if J0=C > 1:22
(inverse of the short-time limit). Hence, the gel would appear to
be tougher when immersed (poroelastic toughening). Under the
same loading (0:66 < J0=C < 1), the delay time would be longer
for the immersed case than not-immersed case.

Experimentally, delayed fracture has been observed in polymer
gels [18–20] as well as many other materials [21–27]. For poly-
mer gels, delayed fracture may result from several molecular
processes, such as thermally activated crack nucleation, stress-
enhanced bond rupture and dissociation, viscoelasticity (creep)
and poroelasticity (solvent diffusion). Bonn et al. [18] proposed a
crack nucleation model for their three-point bending experiments
with un-cracked gel specimens, which predicted a power-law
dependence of the activation energy on the applied force

(Eact � 1=r2d�2 with 1 < d � 2) and an exponential dependence
of the mean breaking time on the activation energy
(tb � expðEact=kBTÞ). Skrzeszewska et al. [19] found that the
nucleation model (with d ¼ 3) could not explain their experiments
with a physical gel fractured under a constant shear stress and
proposed a stress-enhanced crosslink dissociation model with a
rupture time decreasing exponentially with increasing stress
(tb � expð�3:75r=GÞ). Based on a nonlinear visco-poroelastic
model, Wang and Hong [28] suggested that the delay time
depends on the size of a pre-existing crack in a similar way as
diffusion-limited processes (a poroelastic effect). By assuming a
specific size distribution of microcracks, they proposed a statisti-
cal theory for the lifetime prediction of a swollen gel. Recently,
Tang et al. [20] conducted fracture experiments of hydrogels
using pre-cracked specimens. They observed delayed fracture
when the applied energy release rate was subcritical but greater
than a threshold value, while the delay time increased as the
applied energy release rate decreased. This observation is qualita-
tively consistent with Fig. 10, where the critical energy release
rate for instantaneous crack growth is set by the short-time limit
(J�ðt! 0þÞ > C) and the threshold for delayed fracture is set by
the long-time limit (J�ðt!1Þ > C). In between, the delay time
decreases sharply with increasing load (J0) and can be written as

tb ¼
a2

D�
f

J0

C
; �

� �
(4.3)

where the dimensionless function f ðJ0=C; �Þ depends on the spec-
imen geometry and the chemo-mechanical loading conditions as
shown in Fig. 10 for center-crack specimens.

5 Summary

Based on a linear poroelastic formulation, an asymptotic analy-
sis of the transient crack-tip fields is developed for stationary
cracks in polymer gels. A center crack model is studied in detail,
comparing numerical results by a finite element method to the
asymptotic analysis. The time evolution of the crack-tip parame-
ters is determined as a result of solvent diffusion coupled with
elastic deformation of the gel. A modified J-integral method is
used to calculate the crack-tip energy release rate. The short-time
and long-time limits are obtained for the poroelastic stress inten-
sity factor and the crack-tip energy release rate under different
chemo-mechanical boundary conditions (immersed versus not-
immersed, displacement versus load controlled). The results show
that, under displacement-controlled loading, the crack-tip energy
release rate increases monotonically over time for the not-
immersed case, but for the immersed case it increases first and
then decreases, with a long-time limit lower than the short-time
limit. Under load control, the energy release rate increases over
time for both immersed and not-immersed cases, with different
short-time limits but the same long-time limit. These results sug-
gest that onset of crack growth may be delayed until the crack-tip
energy release rate reaches a critical value if the applied displace-
ment or traction is subcritical but greater than a threshold, qualita-
tively consistent with experiments.
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Fig. 10 Delay time for onset of crack growth under load control
for the immersed and not-immersed specimens
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Appendix A: Formulation of a Finite Element Method

The solution to a poroelastic initial/boundary value problem
consists of a vector field of displacement and a scalar field of
chemical potential, uðx; tÞ and lðx; tÞ. Similar to previous works
[17,29], the weak form of Eqs. (2.4) and (2.5) is obtained by using
test functions duðxÞ and dlðxÞ with the divergence theorem,
namely ð

V0

rijdui;jdV ¼
ð

S0

siduidS (A1)

ð
V0

@c

@t
dl� jkdl;k

� �
dV ¼

ð
S0

xdldS (A2)

A backward Euler scheme is used to integrate Eq. (A2) over time,
namely

ð
V0

ctþDt � ct

Dt
dl� jtþDt

k dl;k

� �
dV ¼

ð
S0

xtþDtdldS (A3)

Combining Eqs. (A1) and (A3), we obtainð
V0

ðrijdui;j � cdlþ Dtjkdl;kÞdV ¼
ð

S0

ðsidui � xDtdlÞdS

�
ð

V0

ctdldV (A4)

where the superscripts are omitted for all the terms at the current
time-step (tþ Dt) and ct is the solvent concentration at the previ-
ous time-step.

The displacement field and the chemical potential are discre-
tized as

u ¼ Nuun and l ¼ Nlln (A5)

where un and ln are the nodal values, Nu and Nl are the corre-
sponding shape functions for the displacements and the chemical
potential, respectively. The test functions are discretized in the
same way

du ¼ Nudun and dl ¼ Nldln (A6)

The stress, solvent concentration and flux are evaluated at the inte-
gration points with Eqs. (2.1)–(2.3) and (2.6). Taking the gradients
of the discretized displacements and chemical potential, we obtain

ru ¼ Buun and rl ¼ Blln (A7)

where Bu and Bl are the gradients of the corresponding shape
functions for the displacement and chemical potential fields. In
this formulation, different shape functions are allowed for the dis-
cretization of the displacement and chemical potential. Following
the previous works [17,29], the two-dimensional 8u4p
Taylor–Hood elements with biquadratic serendipity interpolation
for displacement and bilinear interpolation for chemical potential
are used to alleviate numerical oscillations.

Upon discretization, the weak form in Eq. (A4) leads to a sys-
tem of linear equations

Kd ¼ f (A8)

where d ¼ ðun; lnÞT, f is the external force vector, and K is the
stiffness matrix. More specifically, the external force components
are given by

f u;m
i ¼

ð
S0

siN
u;mdS (A9)

f l;m ¼ �
ð

S0

xDtNl;mdS�
ð

V0

ctNl;mdV (A10)

where m indicates the node number. The stiffness matrix can be
written as

K ¼ Kuu Kul

Klu Kll

� �
(A11)

where the components for each pair of nodes m; nð Þ and degrees-
of-freedom i; kð Þ are

Kuu;mn
ik ¼

ð
V0

Bu;m
j

@rij

@uk;l
Bu;n

l dV (A12a)

Kul;mn
i ¼ Klu;nm

i ¼ � 1

X

ð
V0

Bu;m
i Nl;ndV (A12b)

Kll;mn ¼ �M0Dt

ð
V0

Bl;m
i Bl;n

i dV (A12c)

In Eq. (A12a), the derivative of the stress gives the isotropic elas-
ticity tensor, namely

@rij

@uk;l
¼ G dikdjl þ dildjk þ

2�

1� 2�
dijdkl

� �
(A13)

Thus, the stiffness matrix is symmetric for linear
poroelasticity, which is not the case for the nonlinear formulation
[29]. A standard symmetric solver is used to solve Eq. (A8) at
each time-step.

Appendix B: Short-Time Limit for the Immersed Case

The poroelastic stress intensity factor at the short-time limit
was given by Eq. (89) in Atkinson and Craster [30]:

KI t! 0þð Þ ¼ Ke

Nþ 0ð Þ � �gd
� � (B1)

where Ke is the corresponding elastic stress intensity factor and
�g ¼ 1� �ð Þ= 2 �u � �ð Þ

	 

with � and �u being the drained and

undrained Poisson’s ratios. In the present study, �u ¼ 0:5 by the
assumption of molecular incompressibility for both the polymer
and the solvent.

Two split functions, N� nð Þ and Nþ nð Þ, are given by Eqs. (185)
and (188) in Atkinson and Craster [30]

ln
N� nð Þ
�N0

� �
¼ � 1

p

ð1

0

arctan
p 1� p2
	 
1=2

p2 � �g

" #
dp

pþ in
(B2)

ln Nþ nð Þ½ � ¼ � 1

p

ð1

0

arctan
p 1� p2
	 
1=2

p2 � �g

" #
dp

p� in
(B3)

with N0 ¼ 1� 2�gð Þ=2. By Eq. (B3), we obtain

Nþ 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �
1� �u

r
(B4)

Finally, the expression for d is given by Eq. (202) in Atkinson and
Craster [30]
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d ¼ � 1

p

ð1

0

dy

y1=2 1� yð Þ1=2

1

N� �iyð Þ � Nþ 0ð Þ�g
� �

(B5)

which can be evaluated by numerical integration. The results are
shown in Fig. 11 in comparison with the finite element analysis.

Appendix C: A Crack-Tip Model for the Short-Time

Limit

For the short-time limit (t! 0þ), the characteristic diffusion
length is much smaller than the crack length (lt ¼

ffiffiffiffiffiffiffi
D�t
p

� a),
and an elastic crack-tip field exists as the transition field (see
Fig. 7) between the poroelastic crack-tip field and the far field for
the immersed case. Similar to the previous study for steady-state
crack growth [17], a crack-tip model (Fig. 11(a)) can be used to
determine the poroelastic crack tip field at the short-time limit. A
similar model was used by Hui et al. [31], where a very fine mesh
was used to suppress numerical oscillations with standard ele-
ments in ABAQUS. By using Taylor–Hood elements in the present
study, a relatively coarse mesh can be used except for the crack-
tip region, where the mesh becomes increasingly finer in order to
accurately resolve the singular stress and concentration fields.

By symmetry, only half of the domain around the crack tip is
modeled (Fig. 11(a)). A circular outer boundary is arbitrarily set
at r ¼ 1000 as the normalized domain size. The displacement and
chemical potential corresponding to the elastic crack-tip field with
a stress intensity factor Ke are prescribed at the outer boundary.
The symmetry boundary conditions are applied straight ahead of
the crack tip (h ¼ 0), whereas the crack face (h ¼ p) is traction
free with zero chemical potential. For the short-time limit, we

solve the transient problem up to a time tmax � r2
max=D�. With

normalized values, rmax ¼ 1000 and D� ¼ 106, we set tmax ¼
10�6 in our calculations. The crack-tip energy release rate (J�) is
calculated by the modified J-integral method, which is path inde-
pendent and remains a constant over time within the short-time
limit (t < tmax). Then, by Eq. (2.45), the poroelastic crack-tip
stress intensity factor (KI) is determined, which is also a constant
at the short-time limit.

By dimensional considerations, the poroelastic crack-tip stress
intensity factor must be linearly proportional to Ke that is applied
at the outer boundary, with a proportionality depending on the
Poisson’s ratio. Figure 11(b) shows the normalized stress intensity
factor (KI=Ke) as a function of Poisson’s ratio at the short-time
limit. The finite element results from the crack-tip model agree
very closely with the semi-analytical solution by Atkinson and
Craster [30], which can be fitted by a simple function as:

KI t! 0þð Þ ¼ Ke
1

2 1� �ð Þ

� �a

(C1)

with a 
 0:735. On the other hand, Hui et al. [31] predicted a dif-
ferent short-time limit with a ¼ 1, which apparently underesti-
mates the poroelastic stress intensity factor.

Correspondingly, the crack-tip energy release rate at the short-
time limit depends on Poisson’s ratio as

J� t! 0þð Þ ¼ Je
1

2 1� �ð Þ

� �2a�1

(C2)

where Je ¼ K2
e= 4 Gð Þ is the applied energy release rate. For the

immersed case, J� t! 0þð Þ < Je, and the difference is due to
energy dissipation by solvent diffusion within the domain.
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