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Wrinkling of a compressed elastic film on a viscous layer
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A compressively strained elastic film bonded to a viscous layer can form wrinkles. The present study
provides a theoretical model for the wrinkling process. The elastic film is modeled with the
nonlinear theory of a thin plate subject to in-plane and out-of-plane loads. The flow of the viscous
layer is modeled with the theory of lubrication. The interface between the elastic film and the
viscous layer is assumed to be perfect with no slipping or debonding. A set of partial differential
equations evolves the deflection and the in-plane displacements as functions of time. A linear
stability analysis identifies the critical wave number, below which the elastic film is unstable and the
wrinkles can grow. For any fixed wave number less than the critical wave number, the wrinkles
reach a kinetically constrained equilibrium configuration, in which the stress is partially relaxed in
the elastic film and the viscous layer stops flowing. Numerical simulations reveal rich dynamics of
the system with many unstable equilibrium configurations. 2@2 American Institute of Physics.
[DOI: 10.1063/1.14274Q7

I. INTRODUCTION is modeled as a thin plate under the combined action of
in-plane and out-of-plane loads. To allow large deflection,
Various types of compliant substrates have been fabrithe nonlinear Von Karman plate thedty?is applied with a
cated to grow relaxed heteroepitaxial films with low disloca-minor change to include the shear stresses at the interface.
tion density for optoelectronic applicatiohdn the recent The plan for the article is as follows. Section Il formu-
experiments by Hobast al,? a strain-relaxed substrates was lates the problem and reduces the formulations under the
formed by transferring a compressively strained heteroepiplane strain conditions. A linear stability analysis is per-
taxial SiGe film to a Si substrate covered with a glass layeformed in Sec. lll to determine the critical wave number of
through wafer bonding. Upon annealing above the glass trarwrinkling. For any fixed wave number less than the critical
sition temperature, the SiGe film formed wrinkles at the cenwave number, the solution for the kinetically constrained
ter of the film, but extended at the edges. Figure 1 schematequilibrium state is obtained in Sec. IV. Numerical simula-
cally shows the flat and the wrinkled states of an elastic filmtions in Sec. V show rich dynamics of the wrinkling process.
on a viscous layer, which in turn lies on a rigid substrate.
Similar wrinkling pattern has also been observed in othetl. COUPLED VISCOUS FLOW AND ELASTIC
systems, such as thermally grown oxides on mé&taland DEFORMATION

. . 7 . .
thin metal films on polymerS! While the compliant sub- To formulate the problem, we describe the viscous layer
strate technology for optoelectronic applications usually réyith the lubrication theory, and the elastic film with the non-
quires the films to be flat with no wrinkles, the formation and|ineay thin plate theory. The viscous layer and the elastic film
control of the ordered pattern may find uses in optical deyre coupled at the interface, where the traction vector and the
vices as diffraction gratings and microfluidic devices in mak-ye|ocity vector are continuous. The formulation is for three-
ing channels with microstructured walls. dimensional flow and deformation, but is reduced to the

Previous studies on stress relaxation of an elastic film oyane strain field at the end, which will be applied in the
a viscous layer tend to separate deflection and in-plane e¥pmaining sections.

tension. Freund and Nixconsidered the in-plane extension
using the shear lag model, and Sridheiral® studied the
kinetics of wrinkling with only the deflection. However, de- Since the thickness of the viscous layer is small com-
flection and in-plane extension are inherently coupled, bepared with the characteristic lengths in thandy directions,
cause the flow conserves the volume of the viscous layer, anslich as the wavelength of the wrinkles, we describe the vis-
the deflection relaxes the compressive stress in the elastipus layer using the theory of lubricatibhSuch approxima-
film. In the present study, the flow in the viscous layer istion has been used to model the surface evolution in thin
approximated by the theory of lubricatichThe elastic film  |iquid films, describing the three-dimensional flow with two-
dimensional partial differential equatiofis!*In the lubrica-
3Author to whom correspondence should be addressed; electronic maifion theory, the Navier—Stokes equations for incompressible
ruihuang@princeton.edu viscous flow reduce to

A. Flow of the viscous layer
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| Strained elastic film Equations(6) and (7) evolve the displacements once we re-
T late the tractiong and T, to the displacement field. These
relations will be provided by analyzing the elastic deforma-

Ho

Viscous layer tion of the thin film in the next subsection.
(a) Rigid substrate
Wrinkled elastic film B. Deformation of the elastic film
P S 1w We now turn our attention to the elastic film. The non-
e linear theory>!? for large deflections of thin elastic plates
i T—J‘ Viscous layer under in-plane and out-of-plane loads is employed for the

film. The elastic film is bonded to the viscous layer, so that
the displacements and tractions are continuous across the in-
FIG. 1. Schematic illustration of a compressed elastic film on a viscoud€rface. That is, the elastic film is subject to the presgure
layer. (@) The trivial equilibrium state where the film is flat and biaxially and the shear strességandT,, and the displacement com-
stressed(b) A wrinkled state. ponents of the film arei,, u,, andw. We take the flat,
biaxially strained film as the reference state, in which the
membrane strain isq in both x andy directions. The dis-
) placements are set to be zero in the reference state. The
&: 1 ﬁ_p (1) membrane strains relate to the displacements as
(922 n axa,

(b) Rigid substrate

1
where 7 is the viscosity andp is the pressure. The greek Eap=800apt 5

suffix « takes the two valuesandy, andv,, v are the flow 2
velocities in thex andy directions. The shear stresses arising
from the viscosity are

®

AU, auB) 10w dw
—+ L+ — .
Xg  Xg) 2 Xy IXg

The nonlinear plate theory includes the term quadratic in the
slope of the deflection.

IV 4 Hooke’s law relates the membrane forces in the film to
T2a= N5, (20 the membrane strains, namely,

The no-slip boundary condition is assumed at the bottom
of the viscous layer, i.eu,=v,=0 atz=0. LetH(x,y,t) be N.sz=Eh
the varying thickness of the viscous layer. At the top of the
viscous layerz=H(x,y,t), we prescribe shear stresses, ) _ _ _ _
=T, and7,,=T,. The pressure is independent ot in the Where_E is Young'’s quulus,v is Poisson’s ratio, antl is
theory of lubrication, such that Eq1) can be integrated the thickness of the film. In the reference statg,=N,,
twice with respect t(Z, g|V|ng =0'0h and ny=0, where gog= E80/(1_U) is the biaxial

stress when the film is flat.

v
7 V8“B+ - stwb‘aﬁ

, (©)

S a—pz(z—ZH)+ Ez. 3 Equilibrium in the plane of the film requires that
2m 9X, 7
. . . aNa,B
The flow rates in thex andy directions are T“:aT' (10
B
H H3 gp H?
Qo= 0 v,dz=— 5 WJL ET“’ (4) Equ.il_ibr_ium in the direction perpendicular to the plane and
equilibrium of moments require that
and the mass conservation requires that
H Q N I L
- &X“ =0. (5) P= IXqOXa0XgdXg P IXaIXg  CIX,' (1)

Let u, andu, be the displacements at the top surface ofvvheresD is the Zflexural rigidity of the elastic film, i.eD
the viscous layer in thex andy directions, andw be the ~ =[Eh*/12(1-»9)].

displacement in the directions. LetH, be the initial thick- Equations(8)—(11) relate the tractiongy andT,, to the
ness of the viscous layer, so tHafx,y,t)=Hy+w(X,y,t). displacementsy andu,, . These relations, together with Egs.
Equations(5) and (3) give (6) and(7), form a complete system governing the relaxation

process of a strained elastic film on a viscous layer.

aw 9 (H®op H? ) 5 The elastic strain energy stored in the film provides the
ot ox,\3padx, 275§ ¢’ ©) driving force of the relaxation process. The strain energy

arises from two processes: bending and in-plane deforma-
% _ H_2 &_p+ ET @) tion. The energy densitienergy per unit areadue to bend-
ot 2max, np ing is
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DI /2w  o2w\? film is neglected. A flat film with the uniform biaxial strain
=5 —+ —2) —-2(1-v) gg and stressro=Eey/(1—v) is a trivial equilibrium state,
Ix= o dy in which w=u,=0, N,,=N,,=och, and p=T,=0, as
2w 2w | 22w \2 shown in Fig. 1a). The total elastic energy density B
(___( ) H (12) =o0geh. In this state, according to Eq$14) and (15),
ax* ay* \ axay owl dt=gu,/9t=0. Consequently, the film does not evolve.

However, this equilibrium state is unstable. The elastic en-
ergy reduces when the film forms wrinkles.
1 Perturb the displacements as

CDZZ_NQ,B‘SD[[?' (13)
w(x,t)=A(t)sin(kx), (23

The energy density due to in-plane deformation is

2

The total elastic energy density in the filmds=®;+d,.
u(x,t)=B(t)cogkx), (24
C. Reduced formulations under the plane strain ) o
conditions whereA and B are small amplitudes. Substituting Eq423)
and(24) into Egs.(18), (16), and(17), and keeping only the
Since the film is initially strained in both the andy ﬁrst(orc}er -, iﬁA )an(dB) ol O(bgm g oy

directions, relaxation occurs simultaneously in both direc-

tions. To make the problem simpler, the remainder of this k
paper assumes that relaxation occurs only inxloérection, Nyx= ooh— . 5B sin(kx), (29
such that the deformation is in a state of plane strain, i.e., v
Uy=Uy(X,t), w=w(x,t), and u,=0. Thus, the evolution
: y EhK
equationg6) and(7) reduce to T=— - B cogkx), (26)
-V
aw 9 [H®ap H2T 14
T x\Bpax  2p ) (14 , 3 .
p=| oohk"+ 5 A sin(kx). (27)
o, HZap H 121-1?)
= —+—T,. 15
ot 2pax n % (15 Inserting Eqs(26) and (27) into Egs.(14) and(15), we ob-
The shear stresB, and the pressurp are tain that
INxx A a- 2 BkHoB (28)
T=— (16) dt 2 P,
dB 3a
9w 7w oW —=——A-p$B (29)
p—Dg—Nxxﬁ—Txﬁ—x. 17 dt 2kHg
where
The membrane forces are
E(kHg)®
Eh [au, 1(ow)? a=—————[—12¢(1+ v)(kh)—(kh)3], (30
Ny = oph+ T2 T E(a_x) , (18) 367(1—v?)
O uER [ 1[aw)? _EdykHo) 3D
M=ot T o T2l | a9 (1=

Equations(28) and(29) are two coupled linear ordinary

andN,,=0. The membrane strain components are . X . .
* P differential equations. The solution takes the form

du, 1[aw)\?
Exx=8&oT ox 2l ax) Eyy= €0, 8xyzo' (20) A(t)=A, exp(sit) + Az exp(syt), (32)
The energy densities in Eq&L2) and (13) reduce to B(t) =By exp(sit) + By exp(s;t), (33
D [ 2w\ 2 where
P77 ﬁ) @ s=H(a-p)+ (a BPT aBl, (34
(D2:%(NXX8XX+ Nyysyy)- (22 32:%[(a_ﬂ)+ V(a_IB)2+aB]v (39
and

I1l. LINEAR PERTURBATION ANALYSIS
Bl_Z(a—Sl) 82_2((1_52)

A; BkHy ' A, BkHo (36

The remainder of this article considers a compressively
strained infinite film under the plane strain conditions. That
is, the lateral dimension of the film is much larger than theLet the initial amplitudes be&\(0)=A, and B(0)=B,, so

wrinkle wavelength, so that the relaxation at the edges of théhat
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FIG. 2. The normalized growth rate as a function of the normalized wave Normalized wave number, kh
number.
FIG. 3. The normalized critical wave number and the fastest growing wave
number as functions of the initial compressive strain.
o — Sz ﬁk HO
Al:S —s 0 2(5 —s ) 03 (37) i o
1792 1792 interface. This is because the pressure at the surface of the
a—s; BkH, viscous layer is not uniformly distributed and thus forces the
= Bg, (38) viscous flow parallel to the surface. While in Ref. 7, the

2= 0~
$2— 85 2(s,—s1)

andB;, B, can be obtained from E¢36).

For any given wave numbdsg 3>0 ands,<0. Conse-
quently, thes, mode in Egs.(32) and (33) always decays
exponentially with time. For thes; mode, however, there
exists a critical wave number

keh=v=126o(1+»). (39)

Whenk>k., «<0 ands;<0, so that the perturbations de-
cay and the trivial equilibrium state is stable. WHesa k.,
a>0 ands; >0, so that the perturbation grows exponentially
and the trivial equilibrium state is unstable. The critical wave
number is an outcome of the trade-off between bending an

shear stress at the interface is neglected.

The fastest growing wave numbdég,, can be found by
settingds, /dk=0, as shown by the thin solid line in Fig. 3.
The dashed line in Fig. 3 is from the linear stability analysis
in Ref. 7 in the limit of small viscous layer thickness. Al-
though the present study gives a different growth rate of the
wrinkling, the fastest growing wave number is close to the
previous study. It is also found that the fastest growing wave
number from the present study slightly depends on the thick-
ness ratio between the viscous layer and the elastic film. The
thick solid line in Fig. 3 shows the critical wave number.

In the experiments of Hobaret al.? they found the
wavelength of the wrinkles is approximatelyuin for a film

in-plane deformation. The film wrinkles to reduce the elasticwith £;=0.012,h=30 nm, andH,=200 nm. Assuming that

energy due to the compressive in-plane deformation. Upo

this corresponds to the fastest growing wavelengkh, (

wrinkling, the film acquires some bending energy. The bend-
ing energy is low when the wave number is small. The sta-

bility condition is identical to that of Euler buckling, ardis 1

the same as the growth rate of buckling amplitude in Ref. 7 .| )

in the limit of small thickness of the viscous layer. However, v=03

the growth rate from the present analysissis which is o8r R ]

different from «. For comparison, Fig. 2 shows the growth £} j

rate as a function of the wave number for given initial strain 3

eo=—0.012, thickness ratiéd,/h=200/30, and Poisson’s §°°f o 0, ]

ratio v=0.3. The solid line is the growth rate and the §o,5. i

dashed line ise. When kh—0, the wrinkles have long &

waves, and it takes a long time for the viscous material undeléo"" oD ]

the film to flow to accommodate the wrinkling process, so 50.3- e .

that the growth rate is small. Wheth— o, the wrinkles <

have short waves, and the bending energy is too high to trad 1

off with the in-plane elastic energy, so that wrinkles decay. o.1} .

The growth rate becomes positive whierrk., and reaches o . ) . ,

a peak at a wave numbgy,. 0 0.2 0.4 " 0.6 0.8 1
[

The difference between the present analysis and the

a_nalySiS in Ref- 7is that, in th_e pres_ent analysis, the in-plangg. 4. The average strain energy densities of the kinetically constrained
displacement is not zero, neither is the shear stress at thguilibrium wrinkles as functions of the wave number.
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FIG. 5. Distributions of the normalized deflection and in-plane displacement o . )
at different times from the numerical simulation with the wave nunider  FIG. 6. Distributions of the normalized membrane force and strain energy
—0.3533. density at different times from the numerical simulation with the wave num-

berkh=0.3533.

=2m/k,), the present analysis predicts a wavelength of 0.53

#m, which is in reasonable agreement with the experimentg§, o vanish. i.e p=T,=0. Consequently, Eq(16) requires
. y - X . H

(i.e., less than a factor of)2 that N, be independent of, and Eq.(17) becomes

IV. KINETICALLY CONSTRAINED EQUILIBRIUM oW _ Pw “0)
WRINKLES PVl

When an elastic column in the air is subject to a large | ot k be a given wave number of the equilibrium
enough axial compression at two ends, the column buckles tQyinkle. Equation(40) has a solution in the form

an equilibrium configuration. Depending on the type of con- _
straint at the ends, the equilibrium configuration takes the =~ W=AegSiN(kx), (41)

shape of a half or a whole period of a sinusoidal CUIVe,\ here the equilibrium wrinkle amplitudée,, is to be de-

Equilibrium configurations with shorter waves do exist. termined as a function of the wrinkle wave number. Substi-
However, these configurations are of higher energy than thfuting Eq.(41) into Eq. (40), we obtain that

fundamental mode. The column in the air can quickly settle
to the fundamental mode. k\?

For a large area elastic film on a viscous layer, experi- Nox= k_c) aoh,
ments have shown that the film can stay in the state of short o o
wave wrinkles for a long tim&2° Indeed, for any wave num- Wherek. is given by Eq.(39). As anticipated, the longer the
ber k<k., there is an equilibrium wrinkle state. Once the Wrinkle wave, the smaller the magnitude of the membrane
film is in the neighborhood of such an equilibrium state, thef0rce- The stress is relaxed whierck. . From Eqs(18) and
viscosity of the underlayer makes the film stay there for a4, we obtain that
long time before the film further evolves to lower energy, 1
longer wave wrinkles. That is, all these equilibrium states are U= — 3
unstable, but the film may spend a long time in such a state
simply because of the kinetic constraint of the viscous layerObserve that, in the equilibrium state, the in-plane displace-

The film reaches the unstable equilibrium states whement undulates with the wave number twice the wave num-
the viscous layer stops flowing and the tractions at the interber of the deflection.

(42)

KAZ,Sin(2Kx). (43
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4 . . . ! Deflection, w/h In-plane displacement, uy/(goh)
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0 1000 Norn%gﬂged time30t09E/n 4000 5000 FIG. 8. Distributions of the normalized deflection and in-plane displacement

at different times from the numerical simulation with a perturbed deflection
FIG. 7. (8 The amplitude of the wrinkles as a function of tim@) the from the kinetically constrained equilibrium wrinkles as the initial condi-

average membrane force as a function of tifegthe average strain energy tion.
densities as functions of time.

The total elastic energy is lower at the equilibrium states
with a lower wave number. Ak—0, N,,—0 and &
Inserting Eqs(41), (42), and(43) into Eq. (18), we ob- —)ESOZhIZ, which corresponds to the state when the film is
tain that fully relaxed in thex direction but under uniaxial compres-
AITAE sion in they direction. Figure 4 shows the average energy
C
] -

(44) densities at the equilibrium state as functions of the wave
Fork<k., Eq.(44) gives a real equilibrium amplitude of the

number.
wrinkle and the amplitude increases as the wave number de: NUMERICAL SIMULATIONS

creases. Fok>Kk., howeverA is imaginary and the equi- In this section, we solve the nonlinear partial differential
librium state does not exist. equations by using the finite difference method. The forward-
The elastic strain energy densities in the equilibriumtime-centered-spad&TCS differencing scheme is used and
states are the periodic boundary conditions are assumed. The equations
K2 K2 are normalized for numerical simulations. In the following
P=(1+v)Py—| 1— _) [1—cog 2kx)], (45) discussions, the unit of time i8/E. Using the typical values
k2 2 of 7(~ 10" N s/nf) andE(~ 10" N/m?), an estimate of the
® 4 time unit is 0.1 second.
@2:70 1-v+(1+v) P] (46) A. Sinusoidal deflection as the initial condition
C

) i o o We start the numerical simulation with the initial condi-
where®,= oyeoh is the strain energy density in the trivial jgn w(x,t=0)=A,sink¥) and u(x,t=0)=0. Figure 5
equilibrium state. The average of the total strain energy denspows the distribution of the displacements at different

sity Is times, and Fig. 6 shows the distributions of the membrane
1+ K2\ 2 force and the strain energy density. tAt 0, the compressive

O=Py| 1—- — |1~ 2) ] (477  membrane force is slightly relaxed due to the initial deflec-

ke tion. Numerical simulations with various wave numbers of
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Membrane force, Ny/(o¢h) Strain energy density, ®/®q Deflection, w/h In-plane displacement, u,/(goh)
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0.8 | 2 FIG. 10. Distributions of the normalized deflection and in-plane displace-
07 ment at different times from the numerical simulation with a random deflec-
' tion as the initial condition.
t= 10000 1
0.6
0.5! 0
0 50 100 0 50 100

x/h x/h brane force decreases and reaches the equilibrium value,
which is given by Eq(42) and indicated by the dashed line.

FIG. 9. Distributions of the normalized membrane force and strain energy-. - .
density at different times from the numerical simulation with a perturbed)i:Igure 4c) shows the average strain energy densities as

deflection from the kinetically constrained equilibrium wrinkles as the initial functions of time. As the wrinkle grows, the strain energy
condition. due to in-plane deformation decreases, but the strain energy

due to bending increases. The total strain energy decreases
and reaches the equilibrium value.

the initial deflection confirm that the amplitude of perturba-
tion decays whek> k. and grows whelk<k., as predicted
by the linear perturbation analysis. When the amplitude does

grow, the numerical simulation goes beyond the linear per- Membrane force, Nu/(ooh) Strain energy density, O/
turbation analysis and reaches the kinetically constrainec 1.1 1.1
equilibrium state. At the early stage, as in the linear pertur-
bation analysis, the wave number of the in-plane displace-t=0 1 1 - e
ment is the same as the deflection. At a later stage, the filrr
tries to reach the constrained equilibrium state, in which the 09 0.9 z
wave number of the in-plane displacement is twice the wave 0 50 100 0 50 100
number of deflection. As shown for= 1000, the wave num- 1.1 1.1
ber of the in-plane displacement starts to change. By the time
t=3000, the wave number is about twice the initial wave _ = 1~~~ 1 NN~~~ AN
number. Meanwhile, the average value of the membrane
force and strain energy density decrease and the distributior ,

. . . 0.9 0.9
of the membrane force is nearly uniformtat 3000. During 0 50 100 0 50 100
the entire simulation, the wave number of the deflection re- 0.7 : 2
mains the same, but its amplitude grows and reaches the j
equilibrium value. Figure (& shows the wrinkle amplitude t=5000 0.6 + 1 /VVV\/\/\/VVV\
as a function of time. At the early stage, the amplitude grows ; }
exponentially with the growth rate given by E(B2), as """\-'V\/"“
shown by the dashed straight line. The dashed horizontal line 0'50 50 100 0o 50 100
indicates the equilibrium value of the amplitude, given by x/h xh

Eq. (44)' The nun.].en.cal SImU|at|0.n shows that thoe amplltu_de IG. 11. Distributions of the normalized membrane force and strain energy
reaCheS_ the equilibrium value with less than 2% numericajiensity at different times from the numerical simulation with a random
error. Figure ) shows that the mean value of the mem- deflection as the initial condition.
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B. Perturbed deflection from the constrained ferential equations to evolve the shape. The elastic film is
equilibrium state as the initial condition modeled by the nonlinear thin-plate theory, and the viscous
layer by the theory of lubrication. Wrinkling is a compromise

constrained equilibrium state is reached and the evolutioh€Ween elastic energy as a driving force, and the viscous
stops. However, as we mentioned before, the equilibrium i§OW @s a kinetic process. If the waves are too short, the
unstable and the strain energy in the elastic film can be fur?€nding costs too much elastic energy, and the wrinkles de-

ther reduced by decreasing the wave number of the wrinkle$@- If the waves are too long, the viscous flow takes too
To demonstrate the instability of the equilibrium state, weMuch time for the shape to change noticeably. The wrinkles

add to the deflection in the equilibrium state with a small’@ve infinitely many unstable equilibrium configurations.
amplitude perturbation of a smaller wave number. Figure gl N€ longer the wave, the lower the elastic energy. However,
shows the evolution of the displacement field. The first rowthese unstable wrinkles are kinetically constrained. The elas-
shows the displacements in the constrained equilibrium statd® film may spend a long time in the neighborhood of one
which are computed from Eqs4l) and (43 for kh equilibrium configuration before evolving further into a
=0.377. The second row shows the perturbed displacement§nder wave to lower the elastic energy. Our numerical simu-

The amplitude of the perturbation is small compared to théa'tions start with the perturbations of the flat film and the
wrinkle amplitude in the equilibrium state and the wave Unstable wrinkles, and reveal rich dynamics of the wrinkling

number is 0.314. Numerical simulation shows that the perPr0Ccess. The complex energy landscape merits further inves-
turbation grows. Att=4000, as shown in the third row of t9ations.

Fig. 8, the film forms mixed-mode wrinkles. At=10 000,

the wrinkles reach another equilibrium state with a smaller

wave number. Figure 9 shows the evolution of the membran8CKNOWLEDGMENTS
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