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Wrinkling of a compressed elastic film on a viscous layer
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A compressively strained elastic film bonded to a viscous layer can form wrinkles. The present study
provides a theoretical model for the wrinkling process. The elastic film is modeled with the
nonlinear theory of a thin plate subject to in-plane and out-of-plane loads. The flow of the viscous
layer is modeled with the theory of lubrication. The interface between the elastic film and the
viscous layer is assumed to be perfect with no slipping or debonding. A set of partial differential
equations evolves the deflection and the in-plane displacements as functions of time. A linear
stability analysis identifies the critical wave number, below which the elastic film is unstable and the
wrinkles can grow. For any fixed wave number less than the critical wave number, the wrinkles
reach a kinetically constrained equilibrium configuration, in which the stress is partially relaxed in
the elastic film and the viscous layer stops flowing. Numerical simulations reveal rich dynamics of
the system with many unstable equilibrium configurations. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1427407#
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I. INTRODUCTION

Various types of compliant substrates have been fa
cated to grow relaxed heteroepitaxial films with low disloc
tion density for optoelectronic applications.1 In the recent
experiments by Hobartet al.,2 a strain-relaxed substrates w
formed by transferring a compressively strained hetero
taxial SiGe film to a Si substrate covered with a glass la
through wafer bonding. Upon annealing above the glass t
sition temperature, the SiGe film formed wrinkles at the c
ter of the film, but extended at the edges. Figure 1 schem
cally shows the flat and the wrinkled states of an elastic fi
on a viscous layer, which in turn lies on a rigid substra
Similar wrinkling pattern has also been observed in ot
systems, such as thermally grown oxides on metals3–5 and
thin metal films on polymers.6,7 While the compliant sub-
strate technology for optoelectronic applications usually
quires the films to be flat with no wrinkles, the formation a
control of the ordered pattern may find uses in optical
vices as diffraction gratings and microfluidic devices in ma
ing channels with microstructured walls.7

Previous studies on stress relaxation of an elastic film
a viscous layer tend to separate deflection and in-plane
tension. Freund and Nix8 considered the in-plane extensio
using the shear lag model, and Sridharet al.9 studied the
kinetics of wrinkling with only the deflection. However, de
flection and in-plane extension are inherently coupled,
cause the flow conserves the volume of the viscous layer,
the deflection relaxes the compressive stress in the el
film. In the present study, the flow in the viscous layer
approximated by the theory of lubrication.10 The elastic film

a!Author to whom correspondence should be addressed; electronic
ruihuang@princeton.edu
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is modeled as a thin plate under the combined action
in-plane and out-of-plane loads. To allow large deflectio
the nonlinear Von Karman plate theory11,12 is applied with a
minor change to include the shear stresses at the interfa

The plan for the article is as follows. Section II formu
lates the problem and reduces the formulations under
plane strain conditions. A linear stability analysis is pe
formed in Sec. III to determine the critical wave number
wrinkling. For any fixed wave number less than the critic
wave number, the solution for the kinetically constrain
equilibrium state is obtained in Sec. IV. Numerical simu
tions in Sec. V show rich dynamics of the wrinkling proces

II. COUPLED VISCOUS FLOW AND ELASTIC
DEFORMATION

To formulate the problem, we describe the viscous la
with the lubrication theory, and the elastic film with the no
linear thin plate theory. The viscous layer and the elastic fi
are coupled at the interface, where the traction vector and
velocity vector are continuous. The formulation is for thre
dimensional flow and deformation, but is reduced to t
plane strain field at the end, which will be applied in th
remaining sections.

A. Flow of the viscous layer

Since the thickness of the viscous layer is small co
pared with the characteristic lengths in thex andy directions,
such as the wavelength of the wrinkles, we describe the
cous layer using the theory of lubrication.10 Such approxima-
tion has been used to model the surface evolution in t
liquid films, describing the three-dimensional flow with two
dimensional partial differential equations.13,14 In the lubrica-
tion theory, the Navier–Stokes equations for incompress
viscous flow reduce to
il:
5 © 2002 American Institute of Physics
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]2va

]z2
5

1

h

]p

]xa
, ~1!

where h is the viscosity andp is the pressure. The gree
suffix a takes the two valuesx andy, andvx , vy are the flow
velocities in thex andy directions. The shear stresses arisi
from the viscosity are

tza5h
]va

]z
. ~2!

The no-slip boundary condition is assumed at the bott
of the viscous layer, i.e.,vx5vy50 atz50. LetH(x,y,t) be
the varying thickness of the viscous layer. At the top of t
viscous layer,z5H(x,y,t), we prescribe shear stresses:tzx

5Tx andtzy5Ty . The pressurep is independent ofz in the
theory of lubrication, such that Eq.~1! can be integrated
twice with respect toz, giving

va5
1

2h

]p

]xa
z~z22H !1

Ta

h
z. ~3!

The flow rates in thex andy directions are

Qa5E
0

H

va dz52
H3

3h

]p

]xa
1

H2

2h
Ta , ~4!

and the mass conservation requires that

]H

]t
1

]Qa

]xa
50. ~5!

Let ux anduy be the displacements at the top surface
the viscous layer in thex and y directions, andw be the
displacement in thez directions. LetH0 be the initial thick-
ness of the viscous layer, so thatH(x,y,t)5H01w(x,y,t).
Equations~5! and ~3! give

]w

]t
5

]

]xa
S H3

3h

]p

]xa
2

H2

2h
TaD , ~6!

]ua

]t
52

H2

2h

]p

]xa
1

H

h
Ta . ~7!

FIG. 1. Schematic illustration of a compressed elastic film on a visc
layer. ~a! The trivial equilibrium state where the film is flat and biaxial
stressed.~b! A wrinkled state.
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Equations~6! and ~7! evolve the displacements once we r
late the tractionsp and Ta to the displacement field. Thes
relations will be provided by analyzing the elastic deform
tion of the thin film in the next subsection.

B. Deformation of the elastic film

We now turn our attention to the elastic film. The no
linear theory11,12 for large deflections of thin elastic plate
under in-plane and out-of-plane loads is employed for
film. The elastic film is bonded to the viscous layer, so th
the displacements and tractions are continuous across th
terface. That is, the elastic film is subject to the pressurp
and the shear stressesTx andTy , and the displacement com
ponents of the film areux , uy , and w. We take the flat,
biaxially strained film as the reference state, in which t
membrane strain is«0 in both x and y directions. The dis-
placements are set to be zero in the reference state.
membrane strains relate to the displacements as

«ab5«0dab1
1

2 S ]ua

]xb
1

]ub

]xa
D1

1

2

]w

]xa

]w

]xb
. ~8!

The nonlinear plate theory includes the term quadratic in
slope of the deflection.

Hooke’s law relates the membrane forces in the film
the membrane strains, namely,

Nab5EhF 1

11n
«ab1

n

12n2
«ggdabG , ~9!

whereE is Young’s modulus,n is Poisson’s ratio, andh is
the thickness of the film. In the reference state,Nxx5Nyy

5s0h and Nxy50, wheres05E«0 /(12v) is the biaxial
stress when the film is flat.

Equilibrium in the plane of the film requires that

Ta5
]Nab

]xb
. ~10!

Equilibrium in the direction perpendicular to the plane a
equilibrium of moments require that

p5D
]4w

]xa]xa]xb]xb
2Nab

]2w

]xa]xb
2Ta

]w

]xa
, ~11!

where D is the flexural rigidity of the elastic film, i.e.,D
5@Eh3/12(12n2)#.

Equations~8!–~11! relate the tractions,p andTa , to the
displacements,w andua . These relations, together with Eq
~6! and~7!, form a complete system governing the relaxati
process of a strained elastic film on a viscous layer.

The elastic strain energy stored in the film provides
driving force of the relaxation process. The strain ene
arises from two processes: bending and in-plane defor
tion. The energy density~energy per unit area! due to bend-
ing is

s
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F15
D

2 F S ]2w

]x2
1

]2w

]y2 D 2

22~12n!

3S ]2w

]x2

]2w

]y2
2S ]2w

]x]y
D 2D G . ~12!

The energy density due to in-plane deformation is

F25
1

2
Nab«ab . ~13!

The total elastic energy density in the film isF5F11F2 .

C. Reduced formulations under the plane strain
conditions

Since the film is initially strained in both thex and y
directions, relaxation occurs simultaneously in both dir
tions. To make the problem simpler, the remainder of t
paper assumes that relaxation occurs only in thex direction,
such that the deformation is in a state of plane strain,
ux5ux(x,t), w5w(x,t), and uy50. Thus, the evolution
equations~6! and ~7! reduce to

]w

]t
5

]

]x S H3

3h

]p

]x
2

H2

2h
TxD , ~14!

]ux

]t
52

H2

2h

]p

]x
1

H

h
Tx . ~15!

The shear stressTx and the pressurep are

Tx5
]Nxx

]x
, ~16!

p5D
]4w

]x4
2Nxx

]2w

]x2
2Tx

]w

]x
. ~17!

The membrane forces are

Nxx5s0h1
Eh

12n2 F]ux

]x
1

1

2 S ]w

]x D 2G , ~18!

Nyy5s0h1
vEh

12n2 F]ux

]x
1

1

2 S ]w

]x D 2G , ~19!

andNxy50. The membrane strain components are

«xx5«01
]ux

]x
1

1

2 S ]w

]x D 2

, «yy5«0 , «xy50. ~20!

The energy densities in Eqs.~12! and ~13! reduce to

F15
D

2 S ]2w

]x2 D 2

, ~21!

F25 1
2~Nxx«xx1Nyy«yy!. ~22!

III. LINEAR PERTURBATION ANALYSIS

The remainder of this article considers a compressiv
strained infinite film under the plane strain conditions. Th
is, the lateral dimension of the film is much larger than t
wrinkle wavelength, so that the relaxation at the edges of
Downloaded 23 Jan 2002 to 128.112.36.226. Redistribution subject to A
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film is neglected. A flat film with the uniform biaxial strain
«0 and stresss05E«0 /(12v) is a trivial equilibrium state,
in which w5ux50, Nxx5Nyy5s0h, and p5Tx50, as
shown in Fig. 1~a!. The total elastic energy density isF
5s0«0h. In this state, according to Eqs.~14! and ~15!,
]w/]t5]ux /]t50. Consequently, the film does not evolv
However, this equilibrium state is unstable. The elastic
ergy reduces when the film forms wrinkles.

Perturb the displacements as

w~x,t !5A~ t !sin~kx!, ~23!

u~x,t !5B~ t !cos~kx!, ~24!

whereA andB are small amplitudes. Substituting Eqs.~23!
and~24! into Eqs.~18!, ~16!, and~17!, and keeping only the
first order terms inA andB, we obtain that

Nxx5s0h2
Ehk

12n2
B sin~kx!, ~25!

Tx52
Ehk2

12n2
B cos~kx!, ~26!

p5Fs0hk21
Ek4h3

12~12n2!
GA sin~kx!. ~27!

Inserting Eqs.~26! and ~27! into Eqs.~14! and ~15!, we ob-
tain that

dA

dt
5aA2

1

2
bkH0B, ~28!

dB

dt
5

3a

2kH0
A2bB, ~29!

where

a5
E~kH0!3

36h~12n2!
@212«0~11n!~kh!2~kh!3#, ~30!

b5
E~kh!~kH0!

h~12n2!
. ~31!

Equations~28! and~29! are two coupled linear ordinary
differential equations. The solution takes the form

A~ t !5A1 exp~s1t !1A2 exp~s2t !, ~32!

B~ t !5B1 exp~s1t !1B2 exp~s2t !, ~33!

where

s15 1
2@~a2b!1A~a2b!21ab#, ~34!

s25 1
2@~a2b!1A~a2b!21ab#, ~35!

and

B1

A1
5

2~a2s1!

bkH0
,

B2

A2
5

2~a2s2!

bkH0
. ~36!

Let the initial amplitudes beA(0)5A0 and B(0)5B0 , so
that
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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A15
a2s2

s12s2
A02

bkH0

2~s12s2!
B0 , ~37!

A25
a2s1

s22s1
A02

bkH0

2~s22s1!
B0 , ~38!

andB1 , B2 can be obtained from Eq.~36!.
For any given wave numberk, b.0 ands2,0. Conse-

quently, thes2 mode in Eqs.~32! and ~33! always decays
exponentially with time. For thes1 mode, however, there
exists a critical wave number

kch5A212«0~11n!. ~39!

Whenk.kc , a,0 ands1,0, so that the perturbations de
cay and the trivial equilibrium state is stable. Whenk,kc ,
a.0 ands1.0, so that the perturbation grows exponentia
and the trivial equilibrium state is unstable. The critical wa
number is an outcome of the trade-off between bending
in-plane deformation. The film wrinkles to reduce the elas
energy due to the compressive in-plane deformation. U
wrinkling, the film acquires some bending energy. The be
ing energy is low when the wave number is small. The s
bility condition is identical to that of Euler buckling, anda is
the same as the growth rate of buckling amplitude in Re
in the limit of small thickness of the viscous layer. Howev
the growth rate from the present analysis iss1 , which is
different from a. For comparison, Fig. 2 shows the grow
rate as a function of the wave number for given initial stra
«0520.012, thickness ratioH0 /h5200/30, and Poisson’s
ratio n50.3. The solid line is the growth rate and the
dashed line isa. When kh→0, the wrinkles have long
waves, and it takes a long time for the viscous material un
the film to flow to accommodate the wrinkling process,
that the growth rate is small. Whenkh→`, the wrinkles
have short waves, and the bending energy is too high to t
off with the in-plane elastic energy, so that wrinkles dec
The growth rate becomes positive whenk,kc , and reaches
a peak at a wave numberkm .

The difference between the present analysis and
analysis in Ref. 7 is that, in the present analysis, the in-pl
displacement is not zero, neither is the shear stress a

FIG. 2. The normalized growth rate as a function of the normalized w
number.
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interface. This is because the pressure at the surface o
viscous layer is not uniformly distributed and thus forces
viscous flow parallel to the surface. While in Ref. 7, th
shear stress at the interface is neglected.

The fastest growing wave number,km , can be found by
setting]s1 /]k50, as shown by the thin solid line in Fig. 3
The dashed line in Fig. 3 is from the linear stability analy
in Ref. 7 in the limit of small viscous layer thickness. A
though the present study gives a different growth rate of
wrinkling, the fastest growing wave number is close to t
previous study. It is also found that the fastest growing wa
number from the present study slightly depends on the th
ness ratio between the viscous layer and the elastic film.
thick solid line in Fig. 3 shows the critical wave number.

In the experiments of Hobartet al.,2 they found the
wavelength of the wrinkles is approximately 1mm for a film
with «050.012,h530 nm, andH05200 nm. Assuming that
this corresponds to the fastest growing wavelength (lm

FIG. 4. The average strain energy densities of the kinetically constra
equilibrium wrinkles as functions of the wave number.

e

FIG. 3. The normalized critical wave number and the fastest growing w
number as functions of the initial compressive strain.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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52p/km), the present analysis predicts a wavelength of 0
mm, which is in reasonable agreement with the experime
~i.e., less than a factor of 2!.

IV. KINETICALLY CONSTRAINED EQUILIBRIUM
WRINKLES

When an elastic column in the air is subject to a lar
enough axial compression at two ends, the column buckle
an equilibrium configuration. Depending on the type of co
straint at the ends, the equilibrium configuration takes
shape of a half or a whole period of a sinusoidal cur
Equilibrium configurations with shorter waves do exi
However, these configurations are of higher energy than
fundamental mode. The column in the air can quickly se
to the fundamental mode.

For a large area elastic film on a viscous layer, exp
ments have shown that the film can stay in the state of s
wave wrinkles for a long time.2,15 Indeed, for any wave num
ber k,kc , there is an equilibrium wrinkle state. Once th
film is in the neighborhood of such an equilibrium state, t
viscosity of the underlayer makes the film stay there fo
long time before the film further evolves to lower energ
longer wave wrinkles. That is, all these equilibrium states
unstable, but the film may spend a long time in such a s
simply because of the kinetic constraint of the viscous lay

The film reaches the unstable equilibrium states wh
the viscous layer stops flowing and the tractions at the in

FIG. 5. Distributions of the normalized deflection and in-plane displacem
at different times from the numerical simulation with the wave numberkh
50.3533.
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face vanish, i.e.,p5Tx50. Consequently, Eq.~16! requires
that Nxx be independent ofx, and Eq.~17! becomes

D
]4w

]x4
5Nxx

]2w

]x2
. ~40!

Let k be a given wave number of the equilibrium
wrinkle. Equation~40! has a solution in the form

w5Aeqsin~kx!, ~41!

where the equilibrium wrinkle amplitude,Aeq, is to be de-
termined as a function of the wrinkle wave number. Sub
tuting Eq.~41! into Eq. ~40!, we obtain that

Nxx5S k

kc
D 2

s0h, ~42!

wherekc is given by Eq.~39!. As anticipated, the longer th
wrinkle wave, the smaller the magnitude of the membra
force. The stress is relaxed whenk,kc . From Eqs.~18! and
~41!, we obtain that

ux52
1

8
kAeq

2 sin~2kx!. ~43!

Observe that, in the equilibrium state, the in-plane displa
ment undulates with the wave number twice the wave nu
ber of the deflection.

nt
FIG. 6. Distributions of the normalized membrane force and strain ene
density at different times from the numerical simulation with the wave nu
ber kh50.3533.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Inserting Eqs.~41!, ~42!, and~43! into Eq. ~18!, we ob-
tain that

Aeq5hA1

3 F S kc

k D 2

21G . ~44!

For k,kc , Eq.~44! gives a real equilibrium amplitude of th
wrinkle and the amplitude increases as the wave number
creases. Fork.kc , however,Aeq is imaginary and the equi
librium state does not exist.

The elastic strain energy densities in the equilibriu
states are

F15~11n!F0

k2

kc
2 S 12

k2

kc
2D @12cos~2kx!#, ~45!

F25
F0

2 F12n1~11n!
k4

kc
4G , ~46!

whereF05s0«0h is the strain energy density in the trivia
equilibrium state. The average of the total strain energy d
sity is

F5F0F12
11n

2 S 12
k2

kc
2D 2G . ~47!

FIG. 7. ~a! The amplitude of the wrinkles as a function of time;~b! the
average membrane force as a function of time;~c! the average strain energ
densities as functions of time.
Downloaded 23 Jan 2002 to 128.112.36.226. Redistribution subject to A
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The total elastic energy is lower at the equilibrium sta
with a lower wave number. Ask→0, Nxx→0 and F
→E«0

2h/2, which corresponds to the state when the film
fully relaxed in thex direction but under uniaxial compres
sion in they direction. Figure 4 shows the average ener
densities at the equilibrium state as functions of the wa
number.

V. NUMERICAL SIMULATIONS

In this section, we solve the nonlinear partial different
equations by using the finite difference method. The forwa
time-centered-space~FTCS! differencing scheme is used an
the periodic boundary conditions are assumed. The equat
are normalized for numerical simulations. In the followin
discussions, the unit of time ish/E. Using the typical values
of h(;1010 N s/m2) andE(;1011 N/m2), an estimate of the
time unit is 0.1 second.

A. Sinusoidal deflection as the initial condition

We start the numerical simulation with the initial cond
tion w(x,t50)5A0 sin(kx) and u(x,t50)50. Figure 5
shows the distribution of the displacements at differe
times, and Fig. 6 shows the distributions of the membra
force and the strain energy density. Att50, the compressive
membrane force is slightly relaxed due to the initial defle
tion. Numerical simulations with various wave numbers

FIG. 8. Distributions of the normalized deflection and in-plane displacem
at different times from the numerical simulation with a perturbed deflect
from the kinetically constrained equilibrium wrinkles as the initial cond
tion.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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1141J. Appl. Phys., Vol. 91, No. 3, 1 February 2002 R. Huang and Z. Suo
the initial deflection confirm that the amplitude of perturb
tion decays whenk.kc and grows whenk,kc , as predicted
by the linear perturbation analysis. When the amplitude d
grow, the numerical simulation goes beyond the linear p
turbation analysis and reaches the kinetically constrai
equilibrium state. At the early stage, as in the linear per
bation analysis, the wave number of the in-plane displa
ment is the same as the deflection. At a later stage, the
tries to reach the constrained equilibrium state, in which
wave number of the in-plane displacement is twice the w
number of deflection. As shown fort51000, the wave num-
ber of the in-plane displacement starts to change. By the t
t53000, the wave number is about twice the initial wa
number. Meanwhile, the average value of the membr
force and strain energy density decrease and the distribu
of the membrane force is nearly uniform att53000. During
the entire simulation, the wave number of the deflection
mains the same, but its amplitude grows and reaches
equilibrium value. Figure 7~a! shows the wrinkle amplitude
as a function of time. At the early stage, the amplitude gro
exponentially with the growth rate given by Eq.~32!, as
shown by the dashed straight line. The dashed horizontal
indicates the equilibrium value of the amplitude, given
Eq. ~44!. The numerical simulation shows that the amplitu
reaches the equilibrium value with less than 2% numer
error. Figure 7~b! shows that the mean value of the mem

FIG. 9. Distributions of the normalized membrane force and strain ene
density at different times from the numerical simulation with a perturb
deflection from the kinetically constrained equilibrium wrinkles as the ini
condition.
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brane force decreases and reaches the equilibrium va
which is given by Eq.~42! and indicated by the dashed line
Figure 7~c! shows the average strain energy densities
functions of time. As the wrinkle grows, the strain ener
due to in-plane deformation decreases, but the strain en
due to bending increases. The total strain energy decre
and reaches the equilibrium value.

y
d
l

FIG. 10. Distributions of the normalized deflection and in-plane displa
ment at different times from the numerical simulation with a random defl
tion as the initial condition.

FIG. 11. Distributions of the normalized membrane force and strain ene
density at different times from the numerical simulation with a rando
deflection as the initial condition.
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B. Perturbed deflection from the constrained
equilibrium state as the initial condition

In the previous numerical simulation, the kinetical
constrained equilibrium state is reached and the evolu
stops. However, as we mentioned before, the equilibrium
unstable and the strain energy in the elastic film can be
ther reduced by decreasing the wave number of the wrink
To demonstrate the instability of the equilibrium state,
add to the deflection in the equilibrium state with a sm
amplitude perturbation of a smaller wave number. Figur
shows the evolution of the displacement field. The first r
shows the displacements in the constrained equilibrium s
which are computed from Eqs.~41! and ~43! for kh
50.377. The second row shows the perturbed displaceme
The amplitude of the perturbation is small compared to
wrinkle amplitude in the equilibrium state and the wa
number is 0.314. Numerical simulation shows that the p
turbation grows. Att54000, as shown in the third row o
Fig. 8, the film forms mixed-mode wrinkles. Att510 000,
the wrinkles reach another equilibrium state with a sma
wave number. Figure 9 shows the evolution of the membr
force and the strain energy density. Both the membrane fo
and the average strain energy density are reduced in the
ond equilibrium state.

C. Random deflection as the initial condition

Our third simulation starts with a randomly generat
distribution of the initial deflection. Figure 10 shows the ev
lution of the displacements and Fig. 11 shows the membr
force and the strain energy density. First, all the modes w
the wave number less than the critical wave number gr
but the mode with the fastest growth rate dominates. In
particular example, there are two fastest growing modes w
nearly the same growth rate. Att52000, the two modes ar
mixed. At t55000, however, the mode with a smaller wa
number and lower elastic energy dominates and approa
the equilibrium. As shown in Fig. 2, fork,km , the growth
rate decreases ask decreases. Therefore, further relaxation
the modes with even smaller wave numbers becomes
creasingly slower. This explains why the film can stay in
wrinkling state with the fastest growing wave number for
long time.

VI. CONCLUDING REMARKS

A compressively strained elastic film on a viscous lay
forms wrinkles. We formulate a set of nonlinear partial d
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ferential equations to evolve the shape. The elastic film
modeled by the nonlinear thin-plate theory, and the visc
layer by the theory of lubrication. Wrinkling is a compromis
between elastic energy as a driving force, and the visc
flow as a kinetic process. If the waves are too short,
bending costs too much elastic energy, and the wrinkles
cay. If the waves are too long, the viscous flow takes
much time for the shape to change noticeably. The wrink
have infinitely many unstable equilibrium configuration
The longer the wave, the lower the elastic energy. Howe
these unstable wrinkles are kinetically constrained. The e
tic film may spend a long time in the neighborhood of o
equilibrium configuration before evolving further into
longer wave to lower the elastic energy. Our numerical sim
lations start with the perturbations of the flat film and t
unstable wrinkles, and reveal rich dynamics of the wrinkli
process. The complex energy landscape merits further in
tigations.
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