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A strained epitaxial film often undergoes surface roughening during growth and subsequent
processes. One possible means to reduce roughening so as to produce an epitaxial film with a flat
surface is to deposit an oxide cap layer on the film to suppress the kinetic process of roughening.
This paper analyzes the effect of a cap layer on the stability of an epitaxial film and the kinectics of
roughening, assuming the interface diffusion between the film and the cap layer as the dominant
mechanism of mass transport. A variational principle is formulated, which leads to a nonlinear
evolution equation coupled with a boundary-value problem of elasticity. A linear perturbation
analysis is then performed, from which the critical wavelength and the fastest growing mode of
roughening are obtained. It is found that both the thickness and the residual stress of the cap layer
play important roles in controlling the morphological stability and the roughening kinetics. ©2005
American Institute of Physics. fDOI: 10.1063/1.1928311g

I. INTRODUCTION

It is well known that epitaxially deposited films can un-
dergo a transition from layer-by-layer growth to form three-
dimensional islands. It has been understood that this transi-
tion is due to the presence of elastic stress induced by lattice
mismatch between the film and the substrate.1–3 While this
phenomenon has found important applications as a process
to synthesize self-assembled quantum dots for nanoelec-
tronic and optoelectronic devices,4 the rough film surface due
to the transition is undesired in other applications such as
band-gap engineering for microelectronic devices.5,6 To im-
prove the film quality, one procedure has been recently pro-
posed to deposit a cap layer on the film at a relatively low
temperature to suppress the transition process.7 The proce-
dure keeps the epitaxial film at relatively low temperatures,
allowing limited relaxation by either surface roughening or
dislocation formation. Once the cap layer has been depos-
ited, the film is constrained and thus stabilized during subse-
quent processes at higher temperatures. Experimental evi-
dence of the cap layer effect has been observed for a Si cap
layer on SiGe/SiGeC films7 and a ZrO2 cap on a SiGeC
film.8 While dislocation formation may still be a concern for
film degradation, it may be controlled by several techniques
such as strain compensation by carbon incorporation in SiGe
alloys.9,10

This paper studies the effects of a cap layer on the sta-
bility and kinetics of surface roughening, assuming no dislo-
cation formation. The morphological instability of a stressed
solid was first studied by Asaro and Tiller11 and later inde-
pendently by Srolovitz12 and Grinfeld.13 Following similar
ideas, the morphological instability of epitaxial films has
been studied by many authorsse.g., Refs. 1–3d. It was found
that a strained planar film is unstable and the instability is
manifested by mass transport mainly via surface diffusion. A

surface chemical potential has been defined14,15 and widely
used in numerical simulations of nonlinear evolution of sur-
face profiles as well as growth of self-assembled quantum
dots.16,17Alternatively, a variational principle based on non-
equilibrium thermodynamics provides an equivalent ap-
proach, but with a more generic form that can be extended to
more complex systems.18,19

The presence of a cap layer on top of a strained epitaxial
film has two direct effects on the morphological stability.
First, it suppresses the mass transport on the otherwise free
surface of the film. Instead, interface diffusion may take
place, but typically at a substantially lower rate. Second, the
mechanical stiffness of the cap layer tends to stabilize the
film. Furthermore, the cap layer is effectively stiffened when
subjected to a tensile residual stress, but softened with a
compressive residual stress. In fact, a compressive residual
stress in the cap layer by itself may cause surface instability,
as wrinkling of the oxide scale on an aluminum-containing
alloy at high temperatures.20,21To develop a quantitative un-
derstanding of these effects, we employ the variational ap-
proach to analyze the surface instability and the roughening
kinetics of a strained epitaxial film covered by an elastic cap
layer.

The rest of the paper is organized as follows. Section II
formulates the variational principle, which leads to a nonlin-
ear evolution equation coupled with a boundary-value prob-
lem of elasticity. In Sec. III a linear perturbation analysis is
performed. The effects of the cap layer on the critical wave-
length of perturbation and the fastest growing mode are dis-
cussed in Sec. IV. Section V concludes with a summary of
the results.

II. FORMULATION

Figure 1 illustrates the model structure of the present
study, consisting of a strained epitaxial film sandwiched be-
tween a thick substrate and a thin cap layer. The film and the
substrate are single crystals and form a coherent interface.
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The cap layer, on the other hand, is typically an amorphous
oxide. At the reference statefFig. 1sadg both the film and the
cap layer are flat. The film is subjected to an equibiaxial
in-plane strain« f due to the lattice mismatch with the sub-
strate, and the cap layer in general is subjected to a biaxial
residual strain«p; both strains can be either tensile or com-
pressive, depending on the materials and the deposition pro-
cesses. The strain energy stored in such a system may be
relaxed by various mechanisms.22 This paper considers sur-
face roughening by interface diffusion between the film and
the cap layer. A Cartesian coordinate system has been set up
in Fig. 1 with the x-y plane coinciding with the film–
substrate interface and thez axis as the upward normal of the
interface.

A. Energetics

Let hsx,yd represent the profile of the film–cap interface
measured from the film–substrate interface. At the reference
state,hsx,yd=hf, which is a constant. As the interface rough-
ens, the atoms of the epitaxial film diffuse along the inter-
face, and the cap layer deforms concomitantly. The roughen-
ing induces a change to the total free energysDGd of the
trilayer system, consisting of the surface/interface energy
sDGd and the elastic strain energy in the filmsDUfd, the
substratesDUsd, and the cap layersDUpd, namely,

DG = DUs + DUf + DUp + DG. s1d

Consider the elastic energy first. Assume an isotropic,
elastic cap layer, modeled as a thin plate undergoing a verti-
cal displacement,wsx,yd, relative to the reference state. The
strain energy in the cap layer consists of two parts, associ-
ated with bending and in-plane deformation,23 respectively,

DUp =
Ephp

3

24s1 − vp
2d
E

s

fsw,xx + w,yyd2 − 2s1 − vpdsw,xxw,yy

− w,xy
2 dgdS+

Ephp«p

2s1 − vpdEs

sw,x
2 + w,y

2 ddS, s2d

where hp is the thickness of the cap layer,Ep is Young’s
modulus,vp is Poisson’s ratio, a comma in the subscript
denotes partial differentiation with respect to the subsequent
variablessd, and S is an arbitrary plane parallel to the flat
interface at the reference state. As part of the thin-plate ap-
proximation, we have ignored the in-plane displacement of
the cap layer.

At the reference state, the strain is uniform in the film
and zero in the substrate. Upon roughening, the strain be-
comes nonuniform in both the film and the substrate. The
changes of the respective strain energy are

DUf =E
s
SE

0

h 1

2
si j

f «i j
f dz−

Efhf« f
2

1 − v f
DdS, s3d

DUs =
1

2
E

s
E

0

`

si j
s «i j

s dz dS, s4d

whereEf andv f are the Young’s modulus and Poisson’s ratio
of the film, si j and «i j are the stress and strain tensors, and
the superscriptsf and s denote the film and the substrate,
respectively. A repeated Latin subscriptsi or jd implies sum-
mation over the three coordinatesx, y, andz. Both the film
and the substrate are assumed to be isotropic in the present
study. The nonuniform stress and strain fields must be deter-
mined by solving a boundary-value problem as described in
a latter section.

Following the thin plate model for the cap layer, the
upper and lower faces of the cap layer are assumed to remain
parallel. For smooth surfaces with small slope everywhere,
the change of the surface energy is approximately

DG =
1

2
sg1 + g2dE

s

sh,x
2 + h,y

2 ddS, s5d

whereg1 is the interface energy density of the film–cap in-
terface andg2 is the surface energy density of the cap layer.
The surface and interface energies are assumed to be isotro-
pic.

B. Variational principle

The change of the total free energy in the model system
can be associated with two processes. One is the mass trans-
port, i.e., the atomic diffusion at the film–cap interface for
the present study. The divergence of the atomic relocation at
the interface results in the change of the interface profile,
which leads to, by mass conservation,

dh = − VdIa,a, s6d

whereV is the atomic volume anddIa is the atomic reloca-
tion vector, witha denoting the in-plane coordinatex or y. A
repeated Greek subscript implies summation overx and y.
The other process is the mechanical displacement in the film

FIG. 1. Schematic of the model structure:sad the reference state andsbd the
state after roughening.
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sdui
fd, the substratesdui

sd, and the cap layersdwd. Assuming
that the interfaces remain bonded, the compatibility requires
that

dui
S= dui

f s7d

at the film–substrate interfacesz=0d, and

dw = dh + duz
f s8d

at the film–cap interfacesz=hd.
Taking the variation of Eqs.s2d to s5d, we obtain that

dG = − gE
S

¹2hdh dS, s9d

dUp =E
S

sDp¹
4w − Np¹

2wddw dS, s10d

dUf =E
S1+S2

si j
f dui

fnj dS−E
Vf

si j ,j
f dui

f dV

+E
S1

1

2
si j

f «i j
f dh dS, s11d

dUS=E
S2

si j
Sdui

Snj dS−E
Vs

si j ,j
S dui

S dV, s12d

where ¹2=]2/]x2+]2/]y2, g=g1+g2, Dp=Ephp
3/12s1−vp

2d,
Np=Ephp«p/ s1−vpd, eVf

s·ddV=eVs
e0

hs·ddz dS, eVs
s·ddV

=eVs
e−`

0 s·ddz dS, S1 andS2 are the film–cap interface and the
film–substrate interface, respectively, andnj is the normal
vector of the corresponding interface. Applying the compat-
ibility relations in s7d and s8d leads to the variation of the
total free energy

dG =E
s
FDp¹

4h − sg + Npd¹2h +
1

2
ssi j

f «i j
f dz=hGdh dS

+E
s

fDp¹
4h − Np¹

2h + ss3j
f njdz=hgduz

f dS

+E
s

fssa j
f njdz=hgdua

f dS+E
s

fss3j
f dz=0

− ss3j
s dz=0gduj dS−E

Vf

si j ,j
f dui

f dV−E
Vs

si j ,j
s dui

s dV

s13d

In deriving Eq. s13d we have approximately takenw<h
−hf under the assumption of small deformation.

Of the two processes, the mass transport is usually much
slower than the mechanical displacement. Consequently, in
the time scale of mass transport, it is sufficient to assume that
the system maintains mechanical equilibrium. Under this
condition, the variational principle dictates that the variation
of the free energy vanishes for arbitrary variation in me-
chanical displacements, which leads to

5
si j ,j

s = 0 sVsd
si j ,j

f = 0 sVfd
s3j

f nj = − Dp¹
4h + Np¹

2h sz= hd
sa j

f nj = 0 sz= hd
s3j

s = s3j
f sz= 0d

s14d

Equation s14d describes a boundary-value problem for the
film–substrate structure subjected to a surface traction due to
the cap layer. Together with the constitutive relations for the
substrate and the film, the boundary-value problem can be
solved to determine the stress and strain fields.

On the other hand, the system is thermodynamically
in-equilibrium, as the variation of the free energy with re-
spect to mass transport drives interface diffusion. The ther-
modynamic driving forcePa is defined as

dG = −E
d

PadIa dS. s15d

By comparing Eqs.s13d ands15d and applying the mechani-
cal equilibrium conditions in Eq.s14d and the mass conser-
vation relation in Eq.s6d, we obtain

Pa = V
]

]xa
hDp¹

4h − sg + Npd¹2h + 1
2ssi f

f «i f
f dz=hj . s16d

When the cap layer is absentsi.e., Dp=Np=0d, Eq. s16d is
reduced to the familiar driving force for surface diffusion,
namely, the gradient of the chemical potential at a solid
surface.15 The presence of a cap layer therefore modifies the
chemical potential at the interface. A similar driving force
was defined for interface diffusion between a strained oxide
scale and an aluminum alloy substrate,20 in which the surface
energy and the strain energy in the substrate were ignored.

C. Kinetics

The kinetics of interface diffusion is often complex and
difficult to characterize experimentally. For simplicity, we
assume a linear kinetic law so that the atomic flux rate is
proportional to the thermodynamic driving force, namely,

Ja = MPa, s17d

whereM is a constant characterizing the atomic mobility at
the film–cap interface. It is noted that the atomic mobility at
an interface strongly depends on the cap layer and is typi-
cally smaller than that at a free surface.

The divergence of the atomic flux changes the interface
profile, and the mass conservation requires that

]h

]t
= − VJa,a. s18d

Substitution of Eq.s16d into Eq. s17d and then into Eq.s18d
leads to

]h

]t
= MV2¹2hDp¹

4h − sg + Npd¹2h + 1
2ssü

f «ü
f dz=hj . s19d

Equations19d describes the evolution of the interface profile,
which couples with the boundary-value problem described
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by Eq. s14d. The coupled problem can be solved as follows.
At a given instance, the interface profilehsx,y,td is known.
Solve the boundary-value problem to determine the stress
and strain at the film–cap interface. Then, substitute the
stress and strain into Eq.s19d and integrate over time to
update the interface profile. Repeat the procedure to evolve
the interface over time. In general, a numerical method is
required to solve the boundary-value problem and to inte-
grate the evolution equation. In the following we pursue ana-
lytical solutions by a linear perturbation analysis to illustrate
the effect of the cap layer.

III. LINEAR PERTURBATION ANALYSIS

An arbitrary interface profilehsx,yd can be represented
by the summation of many Fourier components of different
wavelengths along different directions. For linear perturba-
tion analysis, we consider a single component, i.e., a sinu-
soidal perturbation with a constant wavelength. Since the
model structure is isotropic in thex-y plane, any direction of
the sinusoidal wave is equivalent, and we choose the direc-
tion to coincide with thex coordinate without losing any
generality. Thus, we write

hsx,td = hf + Astdsinkx, s20d

where A is the perturbation amplitude andk is the wave
number.

The perturbation induces the change of the stress and
strain fields in the film and the substrate, which can be de-
termined by two steps considering the effects of mass relo-
cation and the interaction with the cap layer separately. First,
assuming no cap layer, the mass relocation at the surface of
the film changes the morphology. The associated change in
the stress field can be obtained by solving an equivalent
problem with a distributed shear traction acting on the sur-
face of a flat film, as described in Ref. 2. The corresponding
shear traction is proportional to the slope of the surface,
namely,

szxsz= hfd =
Ef« f

1 − v f
kAcoskx. s21d

Next, the cap layer upon deflection exerts a normal traction
on the surface of the film, i.e.,

szzsz= hfd = − Dp¹
4h + Np¹

2h. s22d

Substituting Eq.s20d into Eq. s22d, we obtain

szzsz= hfd = s− Dpk
4 − Npk

2dA sinkx. s23d

Equationss21d and s23d represent the linear approximation
of the boundary conditions at the film surfacesz=hd in Eq.
s14d for small perturbations.

The solution to the boundary-value problem is given in
the Appendix. In particular, under the shear and normal trac-
tions in Eqs.s21d and s23d, the in-plane displacement at the
film surface is

ux
fsz= hfd =

1 + v f

Ef
Fb1

Ef« f

1 − v f
− b2sDpk

3

+ NpkdGA cosskxd, s24d

whereb1 andb2 are given in Eqs.sA18d and sA19d.
For a small perturbation from the reference state, Eq.

s19d is reduced to

]h

]t
= MV2¹2HDp¹

4h − sg + Npd¹2h

+
Ef« f

1 − v f
S ]uz

f

]x
D

z=hf

J . s25d

Substitution of Eqs.s20d and s24d into Eq. s25d leads to

dA

dt
= aA, s26d

where

a = MV2k2H 1 + v
s1 − vd2b1Ef« f

2k

− F1 +S1 +
1 + v
1 − v

« fb2DNp

g
Ggk2

− S1 +
1 + v
1 − v

« fb2DDpk
4J . s27d

Therefore, the amplitude of the perturbation as a function of
time is Astd=A0 expsatd, whereA0 is the initial amplitude.
The perturbation either grows or decays, depending on the
sign ofa. The first term in the bracket of Eq.s27d is positive
for both tensile and compressive film strain« f, which drives
roughening to relax the strain energy. The second term rep-
resents the penalty due to the increase of surface energy and,
in addition, the stretching of the cap layer. The residual strain
in the cap layer can be either stabilizingsNp.0d or destabi-
lizing sNp,0d, depending on its sign. The third term further
penalizes the roughening due to the flexural stiffness of the
cap layer. The competition among the three terms leads to
two length scales. A comparison between the first two terms
defines a length

l1 =
gEf

s1 + vds0
2 , s28d

wheres0 is the biaxial film stress at the reference state, i.e.,
s0=Ef« f / s1−vd. This length scale has been used previously
to characterize the competition between the surface energy
and the strain energy. Similarly, a comparison between the
first and the third term leads to another length

l2 = F EfDp

s1 + vds0
2G1/3

, s29d

which characterizes the effect of the bending stiffness of the
cap layer.

Rewrite Eq.s27d with the lengthsl1 and l2 as
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a =
1

t
skl1d3fb1 − s1 + j1dkl1 − j2skl2d3g, s30d

where

j1 = S1 +
1 + v
1 − v

« fb2DNp

g
, s31d

j2 = 1 +
1 + v
1 − v

« fb2, s32d

t =
g3Ef

4

s1 + vd4MV2s0
8 . s33d

The parameterj1 can be either positive or negative, charac-
terizing the effect of the residual stress in the cap layer.
Equations33d defines a time scale for the evolution process,
which is identical to the time scale for the evolution of a free
surface,1,2 except that the atomic mobility at the interface for
the present case is typically much smaller. Note that, while
Eq. s30d appears to take a polynomial form in terms of the
wave numberk, the actual dependence of the growth rate on
the wave number is more complicated since the parameters
b1 and b2 are, in general, functions of the wave number as
given in Eqs.sA18d and sA19d. The effect of the elastic
stiffness of the substrate is also included through the defini-
tions of b1 andb2.

IV. RESULTS AND DISCUSSIONS

Compared to the previous studies on films with no cap
layer, Eq.s30d apparently includes two additional terms that
represent the effect of the cap layer. To make the discussion
more concrete, we consider a specific system with an epitax-
ial Si0.5Ge0.5 film sandwiched between a Sis100d substrate
and a SiO2 cap layer. The Young’s modulus of Si0.5Ge0.5 and
Si are 116 and 130 GPa, respectively. The Poisson’s ratio is
taken to be 0.25 for both the film and the substrate. The
mismatch strain in the film is20.02. The cap layer has a
Young’s modulus of 71 GPa and a Poisson’s ratio of 0.16.
Various thickness and residual stresses in the cap layer will
be considered. Taking a typical value of 1 J/m2 for the sur-
face energy densityg, the length scalel1 defined in Eq.s28d
is then 9.7 nm. The other length scalel2 is proportional to the
thickness of the cap layer,l2=3.89hp for the present system.
The time scale defined in Eq.s33d, however, is more difficult
to estimate due to the uncertainty of the atomic mobility at
the interface. Roughly, the time scale strongly depends on
the temperature and is significantly longer than that for the
evolution of a free surface.

Figure 2 plots the normalized growth rateat as a func-
tion of the wave numberkl1 with and without a cap layer. As
noted in previous studies, without a cap layershp=0d, the flat
film is unstable; there exists a critical wave number, below
which the perturbation grows. The presence of a cap layer
with no residual stress tends to stabilize the film, leading to a
smaller critical wave numberslonger wavelengthd and a
slower growth rate. Both the critical wave number and the

growth rate decrease as the thickness of the cap layer in-
creases. The system, however, remains unstable at the long
wavelength end.

The critical wave number also depends on the film thick-
ness and the stiffness of the substrate, as shown in Fig. 3 for
the case with no cap layer. Similar plots were reported
previously.1,2 Two points are noted here. First, for a given
stiffness ratio, the critical wavelength is bounded between
two limits. For thick filmsshf / l1.3d the effect of the sub-
strate is negligible, and the critical wavelength approaches
that for a stressed solid in the half plane, which is

l` =
p

1 − v
l1. s34d

On the other hand, for very thin filmsshf / l1→0d the sub-
strate effect dominates, and the critical wavelength again ap-
proaches that for a stressed half plane but now with the sub-
strate stiffness, i.e.,

FIG. 2. Normalized growth rate as a function of the wave number with and
without a cap layer.

FIG. 3. The critical wavelength as a function of the film thickness for
various stiffness ratios between the substrate and the filmswith no cap
layerd. The dashed line is for a Si0.5Ge0.5 film on a Sis100d substrate. The
open circles are the solution for limiting cases with very thin films.
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l0 =
p

1 − v

Es

Ef
l1, s35d

as denoted by the open circles in Fig. 3 for various stiffness
ratios. For an arbitrary film thickness, the critical wavelength
is in between. When the substrate and the film have the same
stiffness, the critical wavelength is independent of the film
thickness. For SiGe films on Si substrates, the stiffness ratio
is close to unity and the critical wavelength weakly depends
on the film thickness, as shown by the dashed line in Fig. 3
for a Si0.5Ge05 film. The second point to note is that a stiffer
substrate significantly increases the critical wavelength for
thin films shf / l1,1d. At the limit of a rigid substrate, the
critical wavelength approaches infinity for the film below a
critical thickness. These results agree with previous
studies.1,2

The effect of the cap layer on the critical wavelength is
shown in Fig. 4. With no residual stress, the flexural stiffness
of the cap layer disfavors roughening. Consequently, the
critical wavelength increases with the thickness of the cap
layer. A tensile residual stresss«p.0d in the cap layer further
stiffens the layer against roughening, leading to a signifi-
cantly longer critical wavelength. The epitaxial film is there-
fore effectively stabilized. On the other hand, a compressive
residual stresss«p,0d destabilizes the film because rough-
ening relaxes the compressive stress in the cap layer. This
leads to a shorter critical wavelength for a thin cap layer.
However, as the thickness of the cap layer increases, the
stabilizing effect due to the flexural stiffness eventually over-
comes the destabilizing effect due to compression, and the
critical wavelength then increases. Therefore, a minimum
thickness is required for a compressively stressed cap layer
to stabilize the epitaxial film.

Figure 2 shows that the cap layer significantly affects the
kinetics of surface roughening. At the initial stage of rough-
ening, the fastest growing mode dominates. Both the wave-
length and the growth rate of the fastest growing mode are
influenced by the cap layer. Generally speaking, the wave-
length increases and the growth rate decreases with the cap
layer, as shown in Fig. 5. In fact, the cap layer suppresses the
kinetic process of roughening. Recall that interface diffusion

is typically much slower than surface diffusion, and therefore
the effect of the cap layer on the growth rate is even more
substantial. The residual stress in the cap layer also has a
strong effect on the kinetics, as illustrated in Fig. 6. A tensile
stress enhances the stabilizing effect of the cap layer, leading
to longer wavelengths and slower growth rate. A compres-
sive stress, however, destabilizes the system, leading to
shorter wavelengths and faster growth rate. This is not sur-
prising because a compressed cap layer by itself tends to
buckle to relax the compressive stress. The competition be-
tween the compressive residual stress and the stiffness of the
cap layer leads to a minimum wavelength and a maximum
growth rate at a specific cap layer thickness. Therefore, care
must be taken to determine the thickness when using a com-
pressively stressed cap layer to stabilize the epitaxial film.

V. SUMMARY

In this paper, a variational approach is formulated to
analyze the effect of a cap layer on morphological stability
and roughening kinetics of a strained epitaxial film. Atomic
diffusion at the film–cap interface is considered. The thermo-
dynamic driving force is defined with the presence of the cap
layer. The derived evolution equation couples with a
boundary-value problem of elasticity. A linear perturbation

FIG. 4. Effect of an elastic cap layer on the critical wavelength.

FIG. 5. sad The wavelength andsbd the growth rate of the fastest growing
mode as functions of the film thickness with and without a cap layer. The
dashed line insad is the critical wavelength with no cap layer.
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analysis is then performed, based on which the effect of the
cap layer is discussed. The flexural stiffness, which scales
with the cube of its thickness, tends to stabilize the film,
leading to longer critical wavelengths and lower growth rate.
A tensile residual stress in the cap layer further enhances the
stabilizing effect. A compressive residual stress, however, de-
stabilizes the film. It is suggested that the thickness be care-
fully selected when using a compressively stressed cap layer
to stabilize the epitaxial film.
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APPENDIX
Consider a flat elastic film of thicknesshf on an infi-

nitely thick elastic substrate subjected to a periodic traction
snormal and sheard on the surface. The plane strain problem
can be solved by using the stress and displacement
potentials.24 The stress components and the displacements in
the film are

sxx
f = hC1 coshskzd + C2 sinhskzd + C3f2 sinhskzd

+ kzcoshskzdg + C4f2 coshskzd + kzsinhskzdgjsinkx,

sA1d

szz
f = − fC1 coshskzd + C2 sinhskzd + C3kzcoshskzd

+ C4kzsinhskzdgsinkx, sA2d

szx
f = − hC1 sinhskzd + C2 coshskzd + C3fcoshskzd

+ kzsinhskzdg + C4fsinhskzd + kzcoshskzdgjcoskx,

sA3d

ux
f = −

1 + v f

Efk 1C1 coshskzd + C2 sinhskzd
+ C3fkzcoshskzd + 2s1 − vd sinhskzdg
+ C4fkzsinhskzd + 2s1 − vd coshskzdg

2coskx,

sA4d

uz
f = −

1 + v f

Efk 1C1 sinhskzd + C2 coshskzd
+ C3fs2v − 1dcoshskzd + kzsinhskzdg
+ C4fs2v − 1dsinhskzd + kzcoshskzdg

2sinkx.

sA5d

For the substrate of infinite thicknesss0.z.−`d, the solu-
tion is reduced to

sxx
s = fD1 + D2s2 + kzdgexpskzdsinkx, sA6d

szz
s = − fD1 + D2kzgexpskzdsinkx, sA7d

szx
s = − fD1 + D2s1 + kzdgexpskzdcoskx, sA8d

ux
s = −

1 + vs

Esk
fD1 + D2s2 − 2v + kzdgexpskzdcoskx, sA9d

uz
s = −

1 + vs

Esk
fD1 − D2s1 − 2v − kzdgexpskzdsinkx. sA10d

The six coefficients are determined by the boundary condi-
tions at the film surfacesz=hfd and the continuity conditions
at the film–substrate interfacesz=0d, i.e.,

szx
f sz= hfd = B1 coskx, sA11d

szz
f sz= hfd = B2 sinkx, sA12d

szx
f sz= 0d = szx

s sz= 0d, sA13d

szz
f sz= 0d = szz

s sz= 0d, sA14d

ux
fsz= 0d = ux

ssz= 0d, sA15d

uz
fsz= 0d = uz

ssz= 0d, sA16d

whereB1 andB2 are the amplitudes of the shear and normal
tractions acting on the surface, respectively.

After obtaining the coefficients, the displacements at the
film surface can be determined. In particular, the shear dis-
placement at the surface is given by

FIG. 6. sad The wavelength andsbd the growth rate of the fastest growing
mode as functions of the cap layer thickness.
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ux
fsx,z= hfd =

1 + v
Efk

fb1B1 + b2B2gcoskx, sA17d

where

b1 =
2s1 − vdbs2 sinhs2khfd + s3 coshs2khfd + s4khfc
s1 + s2 coshs2khfd + s3 sinhs2khfd + s4skhfd2 ,

sA18d

b2 =
s2v − 1ds2 coshs2khfd + s2v − 1ds3 sinhs2khfd + s4skhfd2 + s5

s1 + s2 coshs2khfd + s3 sinhs2khfd + s4skhfd2 , sA19d

and

s1 = sp − 1df3 − 4v + ps8v2 − 12v + 5dg,

s2 = s1 + p2ds3 − 4vd + 2ps1 − 2vd2,

s3 = 8ps1 − vd2,

s4 = 2sp − 1dsp + 3 − 4vd,

s5 = sp − 1d2s3 − 4vds1 − 2vd, sA20d

with p=Es/Ef. In the above solution we have assumedvs

=v f =v to simplify the result.
The above solution can be reduced in several limiting

cases. First, for a rigid substratesi.e., p→`d, sA18d and
sA19d are reduced to

b1 = s1 − vd
s3 − 4vdsinhs2khfd + 2khf

s3 − 4vdcosh2skhfd + skhfd2 + s2v − 1d2 ,

sA21d

b2 =
s3 − 4vds2v − 1dsinh2skhfd + skhfd2

s3 − 4vdcosh2skhfd + skhfd2 + s2v − 1d2 , sA22d

which are identical to the solution for an elastic layer with a
fixed boundary at the bottom given in Ref. 24. The solution
may be further reduced for incompressible materialssv
=0.5d. At the opposite limit when the substrate stiffness is
approaching zerosp→0d, we have

b1 = s1 − vd
sinhs2khfd − 2khf

sinh2skhfd − skhfd2 , sA23d

b2 =
s2v − 1dsinh2skhfd − skhfd2

sinh2skhfd − skhfd2 , sA24d

which corresponds to the solution for an elastic layer with no
substrate constraint, i.e., a traction-free surface at the bottom.

For an infinitely thick elastic filmsi.e., khf →`d, the so-
lution is independent of the substrate and Eq.sA17d reduces
to

ux =
1 + v
Efk

f2s1 − vdB1 + s2v − 1dB2gcoskx, sA25d

which is the solution for an elastic half plane.11 In the other
limit when the elastic film is very thinsi.e., khf →0d, the
solution is reduced to

ux =
1 + v
Esk

f2s1 − vdB1 + s2v − 1dB2gcoskx, sA26d

which is again the solution for an elastic half plane, but now
with the substrate’s stiffness. The two solutions, therefore,
bound the general solution for elastic films of arbitrary thick-
ness. In the special case when the film and the substrate have
the same elastic modulussi.e., p=1d, the two bounds col-
lapse and the solution is independent of the thickness.
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