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Effect of a cap layer on morphological stability of a strained epitaxial film
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A strained epitaxial film often undergoes surface roughening during growth and subsequent
processes. One possible means to reduce roughening so as to produce an epitaxial film with a flat
surface is to deposit an oxide cap layer on the film to suppress the kinetic process of roughening.
This paper analyzes the effect of a cap layer on the stability of an epitaxial film and the kinectics of
roughening, assuming the interface diffusion between the film and the cap layer as the dominant
mechanism of mass transport. A variational principle is formulated, which leads to a nonlinear
evolution equation coupled with a boundary-value problem of elasticity. A linear perturbation
analysis is then performed, from which the critical wavelength and the fastest growing mode of
roughening are obtained. It is found that both the thickness and the residual stress of the cap layer
play important roles in controlling the morphological stability and the roughening kineti@)08
American Institute of PhysicfDOI: 10.1063/1.1928311

I. INTRODUCTION surface chemical potential has been defffiétland widely
used in numerical simulations of nonlinear evolution of sur-
It is well known that epitaxially deposited films can un- face profiles as well as growth of self-assembled quantum
dergo a transition from layer-by-layer growth to form three-dots®*’ Alternatively, a variational principle based on non-
dimensional islands. It has been understood that this transequilibrium thermodynamics provides an equivalent ap-
tion is due to the presence of elastic stress induced by lattigeroach, but with a more generic form that can be extended to
mismatch between the film and the substfatawhile this  more complex systent§:*®
phenomenon has found important applications as a process The presence of a cap layer on top of a strained epitaxial
to synthesize self-assembled quantum dots for nanoele¢im has two direct effects on the morphological stability.
tronic and optoelectronic devicdshe rough film surface due First, it suppresses the mass transport on the otherwise free
to the transition is undesired in other applications such asurface of the film. Instead, interface diffusion may take
band-gap engineering for microelectronic devitedo im-  place, but typically at a substantially lower rate. Second, the
prove the film quality, one procedure has been recently promechanical stiffness of the cap layer tends to stabilize the
posed to deposit a cap layer on the film at a relatively lowfilm. Furthermore, the cap layer is effectively stiffened when
temperature to suppress the transition proéeBse proce- subjected to a tensile residual stress, but softened with a
dure keeps the epitaxial film at relatively low temperaturescompressive residual stress. In fact, a compressive residual
allowing limited relaxation by either surface roughening orstress in the cap layer by itself may cause surface instability,
dislocation formation. Once the cap layer has been deposts wrinkling of the oxide scale on an aluminum-containing
ited, the film is constrained and thus stabilized during subsealloy at high temperaturéd:** To develop a quantitative un-
guent processes at higher temperatures. Experimental euderstanding of these effects, we employ the variational ap-
dence of the cap layer effect has been observed for a Si cgpoach to analyze the surface instability and the roughening
layer on SiGe/SiGeC filmMlsand a ZrQ cap on a SiGeC kinetics of a strained epitaxial film covered by an elastic cap
film.® While dislocation formation may still be a concern for layer.
film degradation, it may be controlled by several techniques  The rest of the paper is organized as follows. Section Il
such as strain compensation by carbon incorporation in SiG®rmulates the variational principle, which leads to a nonlin-
aIons.g'10 ear evolution equation coupled with a boundary-value prob-
This paper studies the effects of a cap layer on the stdem of elasticity. In Sec. Il a linear perturbation analysis is
bility and kinetics of surface roughening, assuming no disloperformed. The effects of the cap layer on the critical wave-
cation formation. The morphological instability of a stressedlength of perturbation and the fastest growing mode are dis-
solid was first studied by Asaro and Tiltérand later inde- cussed in Sec. IV. Section V concludes with a summary of
pendently by SrolovitZ and Grinfeld*® Following similar  the results.
ideas, the morphological instability of epitaxial films has
been studigd by many quthqsg., Refs. 1-B It was foupq 1. FORMULATION
that a strained planar film is unstable and the instability is
manifested by mass transport mainly via surface diffusion. A Figure 1 illustrates the model structure of the present
study, consisting of a strained epitaxial film sandwiched be-
9Author to whom correspondence should be addressed;Tei512-471-  tween a thick substrate and a thin cap layer. The film and the
7558; FAX: +1-512-471-5500; electronic mail: ruihuang@mail.utexas.edusubstrate are single crystals and form a coherent interface.
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o where h;, is t_he th_lckne’ss of_ the cap Iayeh‘_ip is Young’s _

modulus, v, is Poisson’s ratio, a comma in the subscript
denotes partial differentiation with respect to the subsequent

@) variablds), and S is an arbitrary plane parallel to the flat
interface at the reference state. As part of the thin-plate ap-

Cap layer proximation, we have ignored the in-plane displacement of
the cap layer.
At the reference state, the strain is uniform in the film
I, v 1) Epitaxial film and zero in the substrate. Upon roughening, the strain be-
> comes nonuniform in both the film and the substrate. The
x changes of the respective strain energy are
Substrate h 1 E.h 82
AU; = “oleldz- #>d 3
fL(JOZIJIJ 1-0v; S, )
(b)
FIG. 1. Schematic of the model structute} the reference state artbl) the AUg= lf f a'isjsisj dz dS (4)
state after roughening. 2 sJo

whereE; anduv; are the Young’s modulus and Poisson’s ratio
The cap layer, on the other hand, is typically an amorphousf the film, o;; ande;; are the stress and strain tensors, and
oxide. At the reference stal€ig. 1(a)] both the film and the the superscript§ and s denote the film and the substrate,
cap layer are flat. The film is subjected to an equibiaxialrespectively. A repeated Latin subscripor j) implies sum-
in-plane straines due to the lattice mismatch with the sub- mation over the three coordinatesy, andz. Both the film
strate, and the cap layer in general is subjected to a biaxigind the substrate are assumed to be isotropic in the present
residual strairep; both strains can be either tensile or com- study. The nonuniform stress and strain fields must be deter-
pressive, depending on the materials and the deposition prenined by solving a boundary-value problem as described in
cesses. The strain energy stored in such a system may Beatter section.
relaxed by various mechanisiffsThis paper considers sur- Following the thin plate model for the cap layer, the
face roughening by interface diffusion between the film andupper and lower faces of the cap layer are assumed to remain
the cap layer. A Cartesian coordinate system has been set garallel. For smooth surfaces with small slope everywhere,

in Fig. 1 with the x-y plane coinciding with the film— the change of the surface energy is approximately
substrate interface and thaxis as the upward normal of the

. 1
interface. AT = 5(71 + 'yz)J (h'2X + hi,)dS, (5)
S

_ where vy; is the interface energy density of the film—cap in-
A. Energetics terface andy, is the surface energy density of the cap layer.

Let h(x,y) represent the profile of the film—cap interface The surface and interface energies are assumed to be isotro-

measured from the film—substrate interface. At the referencB!C:
state h(x,y)=h;, which is a constant. As the interface rough-
ens, the atoms of the epitaxial film diffuse along the inter-g, variational principle

face, and the cap layer deforms concomitantly. The roughen- )
ing induces a change to the total free enefdys) of the The change of the total free energy in the model system

trilayer system, consisting of the surfacefinterface energf@n P€ associated with two processes. One is the mass trans-
(AT) and the elastic strain energy in the filtdU,), the POt i.e., the atomic diffusion at the film—cap interface for

substratg AU,), and the cap layefAU,), namely, the present study. Th(_a divergence of the atqmic relocatiop at
the interface results in the change of the interface profile,

AG=AUy+AU;+ AU, + AT 1) which leads to, by mass conservation,

Consider the elastic energy first. Assume an isotropic, =03 6)
elastic cap layer, modeled as a thin plate undergoing a vertivhere() is the atomic volume andl, is the atomic reloca-
cal displacementy(x,y), relative to the reference state. The tion vector, witha denoting the in-plane coordinateor y. A
strain energy in the cap layer consists of two parts, assocrepeated Greek subscript implies summation ovendy.
ated with bending and in-plane deformatﬁf?’mespectively, The other process is the mechanical displacement in the film
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r

(éu{), the substratésu’), and the cap layefow). Assuming gi =00 (V)
that the interfaces remain bonded, the compatibility requires —0 (V)
that 'J d !
] %nJ -D,V*h+N,v*h (z=h) (14)
S_ f
suS= oul (7) aJ n=0 (z=h)
at the film—substrate interfade=0), and \0'31- = U;j (z=0)
_ f Equation(14) describes a boundary-value problem for the
Sw=éh+ éu, (8) - . .
film—substrate structure subjected to a surface traction due to
at the film—cap interfacéz=h). the cap layer. Together with the constitutive relations for the

Taking the variation of Eqg2) to (5), we obtain that substrate and the film, the boundary-value problem can be
solved to determine the stress and strain fields.

On the other hand, the system is thermodynamically
- 2

o= VJ;V héh dS ©) in-equilibrium, as the variation of the free energy with re-
spect to mass transport drives interface diffusion. The ther-
modynamic driving forceP,, is defined as

6UD:J (DpVAW = N,V2W) dw dS (10)

s éG:—f P.dl,dS. (15
B)

By comparing Eqs(13) and(15) and applying the mechani-

_ fof _ f

oU¢ = LHSQ oy oun; dS JV ‘T'J jou; dvV cal equilibrium conditions in Eg(14) and the mass conser-
! vation relation in Eq(6), we obtain

1 ff
Zotel d
' Ll 2%E1 N 0 M R =0 o= (e NV Hodel ). (19
When the cap layer is absefite., D,=N,=0), Eq. (16) is
8Us f oroun dS f oy jourdV, (12)  reduced to the familiar driving force for surface diffusion,
Vs namely, the gradient of the chemical potential at a solid

5 .
T ) 3 surface*® The presence of a cap layer therefore modifies the
where V2=/ax*+ 719y, y=y1+ya, Dp=E/121-vp),  (pamical potential at the interface. A similar driving force
N Eghpa /(1-vp), fV( Jdv=Jy fo( )dz ds fV( )dv was defined for interface diffusion between a strained oxide
=Jv/=.()dz dS S ands, are the film-cap interface'and the scale and an aluminum alloy substratén which the surface

film—substrate interface, respectively, andis the normal energy and the strain energy in the substrate were ignored.
vector of the corresponding interface. Applying the compat-

ibility relations in (7) and (8) leads to the variation of the
total free energy C. Kinetics

. N The kinetics of interface diffusion is often complex and
5G:f DpVih = (y+NpVoh+ E(Uiisii)ﬁh shds difficult to characterize experimentally. For simplicity, we
s assume a linear kinetic law so that the atomic flux rate is
proportional to the thermodynamic driving force, namely,

+ [ [D,V*h=N,V2h+ (ohn ), ]ouf dS
fs P P ST J,=MP,, 17)

¢ ¢ f whereM is a constant characterizing the atomic mobility at
* L[(‘Tajni)ph]wa dS+ L[(Usj)po the film—cap interface. It is noted that the atomic mobility at
an interface strongly depends on the cap layer and is typi-
s f s cally smaller than that at a free surface.
~ (03))z=0lU; dS~ fv U'J jou dv= f oijjour dV The divergence of the atomic flux changes the interface
profile, and the mass conservation requires that
ah
In deriving Eg.(13) we have approximately takew=h E:_Q‘]a,a'
—h; under the assumption of small deformation.
Of the two processes, the mass transport is usually muchubstitution of Eq(16) into Eq.(17) and then into Eq(18)
slower than the mechanical displacement. Consequently, it¢ads to
the time scale of mass transport, it is sufficient to assume that .
the system maintains mechanical equilibrium. Under this E:Mﬂsz{DpV“h—(W' N V2h + 5(olel; ~n}- (19
condition, the variational principle dictates that the variation
of the free energy vanishes for arbitrary variation in me-Equation(19) describes the evolution of the interface profile,
chanical displacements, which leads to which couples with the boundary-value problem described

f Vs

(13
(18)
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by Eq.(14). The coupled problem can be solved as follows. ; 1+uv; Eses 3
At a given instance, the interface profiéx,y,t) is known. U(z=hy) = E, /311 —u; ~ Ba(Dpk
Solve the boundary-value problem to determine the stress
and strain at the film—cap interface. Then, substitute the
L ) ' ) + NyKk) |A cogkx), 24
stress and strain into Eq19) and integrate over time to P )] 9 24

update the interface profile. Repeat the procedure to evolve _ _

the interface over time. In general, a numerical method i¢vhereB, and 3, are given in Eqs(A18) and (A19).

required to solve the boundary-value problem and to inte- FOr @ small perturbation from the reference state, Eq.
grate the evolution equation. In the following we pursue ana{19 is reduced to

lytical solutions by a linear perturbation analysis to illustrate Jh
the effect of the cap layer. i MQO2V% D,V*h = (y +N,)V?h
Erer (94 2
I1l. LINEAR PERTURBATION ANALYSIS * 1-v¢\ X/ = ) (25)
—f

An arbitrary interface profilén(x,y) can be represented Substitution of Eqs(20) and (24) into Eq. (25) leads to
by the summation of many Fourier components of different
wavelengths along different directions. For linear perturba- dA
tion analysis, we consider a single component, i.e., a sinu- gt = ah, (26)
soidal perturbation with a constant wavelength. Since the

model structure is isotropic in they plane, any direction of Where

the sinusoidal wave is equivalent, and we choose the direc- 1+
tion to coincide with thex coordinate without losing any a= MQZkZ{ UZIglEfsfk
generality. Thus, we write (1-v)

1+ N

h(x,t) = h; + A(t)sinkx, (20) _ {1+<1+ : Usfﬁz)_g]?’kz
v y

where A is the perturbation amplitude aridis the wave 1+v
number. “\1*t, 8f,32>Dpk4 : (27)

The perturbation induces the change of the stress and
strain fields in the film and the substrate, which can be deTherefore, the amplitude of the perturbation as a function of
termined by two steps considering the effects of mass relotime is A(t)=A, explat), whereA, is the initial amplitude.
cation and the interaction with the cap layer separately. FirstThe perturbation either grows or decays, depending on the
assuming no cap layer, the mass relocation at the surface gfgn of a. The first term in the bracket of E(R7) is positive
the film changes the morphology. The associated change ifdr both tensile and compressive film straip which drives
the stress field can be obtained by solving an equivalenfoughening to relax the strain energy. The second term rep-
problem with a distributed shear traction acting on the surresents the penalty due to the increase of surface energy and,
face of a flat film, as described in Ref. 2. The correspondingn addition, the stretching of the cap layer. The residual strain
shear traction is proportional to the slope of the surfacein the cap layer can be either stabilizitig,> 0) or destabi-

namely, lizing (N,<0), depending on its sign. The third term further
£ penalizes the roughening due to the flexural stiffness of the
o (z=h) = e KA coskx. (21 cap layer. The competition among the three tgrms leads to
1-vs two length scales. A comparison between the first two terms

. _ defines a length
Next, the cap layer upon deflection exerts a normal traction

on the surface of the film, i.e., YE;

& (1+v)op’ 28)
o,4z=hy) == D,V*h+N,V?h. (22)
whereay is the biaxial film stress at the reference state, i.e.,
Substituting Eq(20) into Eq. (22), we obtain oo=E;e¢/(1-v). This length scale has been used previously
to characterize the competition between the surface energy
.42 =p) = (= Dpk* = Nk A sinkx. (23)  and the strain energy. Similarly, a comparison between the

. _ ... first and the third term leads to another length
Equations(21) and (23) represent the linear approximation

of the boundary conditions at the film surfage=h) in Eqg. E.D, [¥3
(14) for small perturbations. (1 +v)0%

The solution to the boundary-value problem is given in
the Appendix. In particular, under the shear and normal tracwhich characterizes the effect of the bending stiffness of the
tions in Egs.(21) and(23), the in-plane displacement at the cap layer.
film surface is Rewrite Eq.(27) with the lengthd; andl, as
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1 0.6
a= ;(kll)s[ﬂl = (L + &Pkl = &(Klp?, (30 osl
. .
where P 0.4}
©
1+ N =
&= (1 + "sfﬁz>—9, @y §°
o 4 2 0.2
& U
1+v g 0.1}
§2:1+1_08fﬁ2, B =7
§ 0
= 39 04 h /I, = 0.5
T= %5 &a-
(1 +v)4MQZO'g -0.2 . .
0.5 1 1.5

The parameteg; can be either positive or negative, charac-
terizing the effect of the residual stress in the cap layer.
Equation(33) defines a time scale for the evolution process,FIG. 2. Normalized growth rate as a function of the wave number with and
which is identical to the time scale for the evolution of a fregWwithout a cap layer.

surface'? except that the atomic mobility at the interface for

the present case is typically much smaller. Note that, whilgyrowth rate decrease as the thickness of the cap layer in-
Eqg. (30) appears to take a polynomial form in terms of the creases. The system, however, remains unstable at the long
wave numbek, the actual dependence of the growth rate onyavelength end.

the wave number is more complicated since the parameters The critical wave number also depends on the film thick-
By and B, are, in general, functions of the wave number asness and the stiffness of the substrate, as shown in Fig. 3 for
given in Egs.(A18) and (A19). The effect of the elastic the case with no cap layer. Similar plots were reported
stiffness of the substrate is also included through the definipreviousw:}'z Two points are noted here. First, for a given
tions of 8; and S3,. stiffness ratio, the critical wavelength is bounded between
two limits. For thick films(h;/l;>3) the effect of the sub-
strate is negligible, and the critical wavelength approaches
that for a stressed solid in the half plane, which is

Normalized wave number, kI1

IV. RESULTS AND DISCUSSIONS

Compared to the previous studies on films with no cap -7
layer, Eq.(30) apparently includes two additional terms that Tl ¥
represent the effect of the cap layer. To make the discussion
more concrete, we consider a specific system with an epitaXon the other hand, for very thin filméy/I;— 0) the sub-
ial Siy<Gey s film sandwiched between a (300 substrate strate effect dominates, and the critical wavelength again ap-
and a SiQ cap layer. The Young's modulus of3Ge,sand  proaches that for a stressed half plane but now with the sub-
Si are 116 and 130 GPa, respectively. The Poisson’s ratio igtrate stiffness, i.e.,
taken to be 0.25 for both the film and the substrate. The
mismatch strain in the film is-0.02. The cap layer has a 10
Young's modulus of 71 GPa and a Poisson’s ratio of 0.16.
Various thickness and residual stresses in the cap layer wil
be considered. Taking a typical value of 1 F/for the sur- - 8
face energy density, the length scalé, defined in Eq(28)
is then 9.7 nm. The other length scélés proportional to the
thickness of the cap layep=3.8%, for the present system.
The time scale defined in E(B3), however, is more difficult
to estimate due to the uncertainty of the atomic mobility at § 4
the interface. Roughly, the time scale strongly depends org
the temperature and is significantly longer than that for thes
evolution of a free surface.

Figure 2 plots the normalized growth raie as a func-
tion of the wave numbekl, with and without a cap layer. As
noted in previous studies, without a cap layey=0), the flat 0
film is unstable; there exists a critical wave number, below
which the perturbation grows. The presence of a cap layer
with no residual stress tends to stabilize the film, leading to &'G: 3 The critical wavelength as a function of the film thickness for

" various stiffness ratios between the substrate and the (filith no cap
smaller critical wave numbeflonger wavelength and a

o layen. The dashed line is for a §iGey 5 film on a S{100 substrate. The
slower growth rate. Both the critical wave number and theopen circles are the solution for limiting cases with very thin films.

(34)

velength, xcll
(2]

W

ritic

C
N

0.5 1 1.5 2 25 3
Film thickness, h‘,ll1
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50 18
hfll1=2 :E 16— hp/|1=0.5
= 40} £
<° g 14}
L -
S 30f $ 12}
< ]
2 2
210
z 20} 3 h il =02
® o 8r =
£ 2 h /I, =0.1
-: [ - .
5 10f i — o
w h =0
4 z £ =
0 - . . : (a) 2.5 3
0 0.2 0.4 0.6 0.8 1
Cap layer thickness, hpll1
FIG. 4. Effect of an elastic cap layer on the critical wavelength.
|
m Eg -
No= —ly, 35 g Yy
0= T V! (35 g /’
£
as denoted by the open circles in Fig. 3 for various stiffness § 0.3 bl =02
ratios. For an arbitrary film thickness, the critical wavelength §> Pl
is in between. When the substrate and the film have the same § %2[ —"
stiffness, the critical wavelength is independent of the film E
thickness. For SiGe films on Si substrates, the stiffness ratio 01} h il =05
is close to unity and the critical wavelength weakly depends p 1
, . A 0 . . . . ,
on the _f|Im thlc_kness, as shown b_y the dash_ed line in F|g. 3 0 0.5 1 15 2 25 3
for a SpsGeys film. The second point to note is that a stiffer  (b) Film thickness, h I,

substrate significantly increases the critical wavelength for

thin films (h¢/l1;<1). At the limit of a rigid substrate, the FIG. 5. (a) The wavelength an¢b) the growth rate of the fastest growing
critical wavelength approaches infinity for the film below a mode as funptioqs of thg film thickness with and without a cap layer. The
critical thickness. These results agree with preViousdashed line in(a) is the critical wavelength with no cap layer.

studies'?

The effect of the cap |ayer on the critical Wave|ength isiS typlcally much slower than surface diﬁUSion, and therefore
shown in Fig. 4. With no residual stress, the flexural stiffnesghe effect of the cap layer on the growth rate is even more
of the cap |ayer disfavors roughening_ Consequenﬂy, théubstantial. The residual stress in the cap Iayer also has a
critical wavelength increases with the thickness of the castrong effect on the kinetics, as illustrated in Fig. 6. A tensile
layer. A tensile residual streés, > 0) in the cap layer further stress enhances the stabilizing effect of the cap layer, leading
stiffens the layer against roughening, leading to a signifilo longer wavelengths and slower growth rate. A compres-
cantly longer critical wavelength. The epitaxial film is there- Sive stress, however, destabilizes the system, leading to
fore effectively stabilized. On the other hand, a compressivéhorter wavelengths and faster growth rate. This is not sur-
residual stresge,<0) destabilizes the film because rough- Prising because a compressed cap layer by itself tends to
ening relaxes the compressive stress in the cap layer. Thiguckle to relax the compressive stress. The competition be-
|eads to a Shorter Critica' Wave|ength for a thin Cap |ayer_tWeen the CompreSSiVe residual stress and the stiffness of the
However, as the thickness of the cap layer increases, tHeap layer leads to a minimum wavelength and a maximum
stabilizing effect due to the flexural stiffness eventually over-growth rate at a specific cap layer thickness. Therefore, care
comes the destabilizing effect due to compression, and th@ust be taken to determine the thickness when using a com-
critical wavelength then increases. Therefore, a minimunPressively stressed cap layer to stabilize the epitaxial film.
thickness is required for a compressively stressed cap layer
to stqbilize the epitaxial film. o V. SUMMARY

Figure 2 shows that the cap layer significantly affects the
kinetics of surface roughening. At the initial stage of rough-  In this paper, a variational approach is formulated to
ening, the fastest growing mode dominates. Both the waveanalyze the effect of a cap layer on morphological stability
length and the growth rate of the fastest growing mode ar@nd roughening kinetics of a strained epitaxial film. Atomic
influenced by the cap layer. Generally speaking, the wavediffusion at the film—cap interface is considered. The thermo-
length increases and the growth rate decreases with the caynamic driving force is defined with the presence of the cap
layer, as shown in Fig. 5. In fact, the cap layer suppresses tHayer. The derived evolution equation couples with a
kinetic process of roughening. Recall that interface diffusionboundary-value problem of elasticity. A linear perturbation
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1
(4]
(=]

ot ={C, cost{ka) + C, sinhka) + C4[2 sinhk2)
+kzcoshk2)] + C,[ 2 cosltkz) + kzsinh(kz) ]}sinkx,

A ll
m

hfll1=2

£ 40
g (A1)
]
[

30
‘§ cr;Z: -[C; coshik2) + C, sinh(kz) + Cskzcoshkz)
.g 20 + Cykzsinh(k2)]sinkx, (A2)
(=]
e ol =—{C; sinh(k2) + C, coshk2) + C5[coshk2)
wn 10 zX
Q
» +kzsinh(k2)] + C,[sinh(kz) + kzcoshkz) ]}coskx,
[T

% 0.2 04 06 0.8 1 (A3)

s

Cap layer thickness, hpll1 '
C, coshkz) + C, sinh(k2)

1+ .
10’ uf=- = Il(}f + Cy[kzcoshkz) + 2(1 —v) sinh(k2)] |coskx,
. h /1, =2 ™\ + C [kzsinhk2) + 2(1 - v) coshk)]

5510 (A4)

g

<10 L |G sinh(k2) + C, costik2)

g u;: & ;(Jf + C4[(2v — 1)coshk2) + kzsinhkz)] |sinkx.

P4 -2

310 ™ \+C (20 - D)sinhk2) +kzcoshk2)]

[

< A5

8 10° (A5)

For the substrate of infinite thickne&€@>z> —), the solu-
10* tion is reduced to
0 0.2 04 0.6 0.8 1 .

(b) Cap layer thickness, h /I, 03 =[D1 + Dy(2 +k2) Jexpkz)sinkx, (A6)
FIG. 6. (a) The wavelength an¢b) the growth rate of the fastest growing Uiz: - [Dl + D2kz]exm(z)sm kX, (A7)
mode as functions of the cap layer thickness.

o5,=—[D; + Dy(1 +k2) Jexp(kz)coskx, (A8)

analysis is then performed, based on which the effect of the
cap layer is discussed. The flexural stiffness, which scales
with the cube of its thickness, tends to stabilize the film, Ek
leading to longer critical wavelengths and lower growth rate.

A tensile residual stress in the cap layer further enhances the
stabilizing effect. A compressive residual stress, however, de-

stabilizes the film. It is suggested that the thickness be Care1 0 six coefficients are determined by the boundary condi-
fully selected when using a compressively stressed cap Iay%r

to stabilize the epitaxial film ons at the film surfacéz=h;) and the continuity conditions
P ' at the film—substrate interfadg=0), i.e.,

1+uvg

o

[D;+Dy(2 - 2v + kz)lexpkz)coskx, (A9)

S —
=

1+ug
Ek

S—_
u;,=

[D; - Dy(1 -2 —k2)]expkzsinkx. (A10)

ot (z=hy) = B, coskx, (Al11)
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u'(z=0)=us(z=0), (A15)
APPENDIX u'(z=0)=ul(z=0), (A16)

Consider a flat elastic film of thicknesg on an infi-
nitely thick elastic substrate subjected to a periodic tractiorwhereB; andB, are the amplitudes of the shear and normal
(normal and sheamn the surface. The plane strain problemtractions acting on the surface, respectively.
can be solved by using the stress and displacement After obtaining the coefficients, the displacements at the
potentialsz.4 The stress components and the displacements ifilm surface can be determined. In particular, the shear dis-
the film are placement at the surface is given by
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1+
uf(x,z=hy) = E—kv[,li’lBl + B,B5]coskx, (A17)
f
where

J. Appl. Phys. 97, 113537 (2005)

_ 2(1 -v)ls, sinh(2khy) + s5 cosh{2khy) + s;khy]

P2 S, + S, cosh(2khy) + s5 sinh(2khy) + s,(khy)?

and
s;=(p=1[3 - 40 +p(8v? - 12 + 5)],

$=(1+p?)(3-4v) +2p(1 - )3,
$3=8p(1-v)?,
$=2(p-1)(p+3-4),

Ss=(p- 133 -4)(1-2),

with p=Eg/E;. In the above solution we have assumed
=vs=v to simplify the result.

(A20)

The above solution can be reduced in several limitingness. In the special case when the film and the substrate have
the same elastic moduluse., p=1), the two bounds col-

cases. First, for a rigid substratee., p— =), (A18) and
(A19) are reduced to

(3 - 4v)sinh(2khy) + 2khy
(3 - 4v)cost(khy) + (khe)? + (20 — 1)’
(A21)

B1=(1-v)

8, (3 = 4v)(2v - 1)sintP(khy) + (khe)?
2

(3 - 4v)cost(khy) + (khp)2 + (20 - 1)?’ (A22)

which are identical to the solution for an elastic layer with a

_ (2v = 1)s, coshi2khy) + (2v = 1)sg sinh(2khy) + Sy(khg)? + s5

A s, + s, cosh(2khy) + s; sinh(2khy) + s,(khy)?
(A18)
) (A19)
|
1+v
Uy = E [2(1 -v)B; + (2v — 1)B,]coskx, (A25)
f

which is the solution for an elastic half plafeln the other

limit when the elastic film is very thifi.e., kh;—0), the
solution is reduced to

1+v
[2(1-v)B; + (2v — 1)B,]coskx,
Ek

u, = (A26)

which is again the solution for an elastic half plane, but now
with the substrate’s stiffness. The two solutions, therefore,

bound the general solution for elastic films of arbitrary thick-

lapse and the solution is independent of the thickness.
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