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Surface instability of epitaxial thin films leads to a variety of surface patterns. Anisotropy in surface
and bulk properties has profound effects on the dynamics of pattern formation. In this paper, we
theoretically predict that under anisotropic mismatch stresses, a bifurcation of surface pattern occurs
in addition to generic symmetry breaking from isotropic systems. Numerical simulations based on
a nonlinear evolution equation demonstrate pattern selection at an early stage and nontrivial patterns
for long-time evolution. © 2007 American Institute of Physics. �DOI: 10.1063/1.2430771�

I. INTRODUCTION

Stress plays an important role in pattern formation at
solid surfaces. A macroscopically planar surface of a stressed
solid is thermodynamically unstable, driven by competition
between elastic strain energy and surface energy.1 Experi-
mental investigations have observed deep grooving and
cracklike surface patterns in a number of systems,2 which
have been theoretically understood as a result of nonlinear
stress effect.3–5 Recently, Berger et al.6 analyzed the morpho-
logical instability of biaxially stressed solids during a
melting-crystallization process and predicted nontrivial dy-
namics of pattern formation when the two principal stresses
at the solid surface take opposite signs �i.e., tension and com-
pression�. Numerical simulations by Paret7 confirmed the
analytical prediction and showed intricate patterns in the
nonlinear regime.

The stress-driven surface instability in epitaxial systems
has been studied extensively as a route to produce self-
assembled surface structures.8 An epitaxial thin film is
stressed due to lattice mismatch with underlying substrate.
Interaction between film and substrate further complicates
the dynamics of surface evolution, leading to a large variety
of surface patterns, such as self-assembled quantum dots.
Previous studies have shown that the shape of an individual
dot is largely controlled by anisotropy in surface energy,9

while the spatial organization of dots is strongly influenced
by long-range interactions through elastic stress fields.10 Ex-
perimental investigations have explored various techniques
to manipulate the stress field in order to achieve directed
organization of quantum dots.11 Theoretically, although a few
recent works considered the effect of elastic anisotropy,12

systematic studies on the dynamics of pattern formation un-
der the influence of anisotropic and/or nonuniform stresses
are lacking.

Recently, we developed an evolution equation for epitax-
ial thin films that takes into account nonlinear effects of
stress and wetting interaction at the film/substrate interface.5

This enables us to theoretically study the dynamics of long-
time evolution over a large surface area. Under an equibi-

axial mismatch stress, the system is isotropic �material an-
isotropy is ignored�, and numerical simulations predict self-
assembly of circular islands. Introducing any anisotropy
would break the symmetry. In this paper, we show that, in
addition to the generic symmetry breaking, a bifurcation in
pattern selection occurs when the film is subjected to an an-
isotropic mismatch stress. While similar bifurcation was pre-
dicted for biaxially stressed solids,6,7 the epitaxial system
exhibits even richer dynamics in forming elongated islands
or tilted line patterns. Practically, anisotropic mismatch
stresses can be obtained in many systems with either an elas-
tically anisotropic film or an anisotropic substrate. Examples
include Ge on Si �113�13 and hexagonally structured ErSi2 on
Si �001�.14

II. EVOLUTION EQUATION

At the reference state, the system consists of a uniformly
stressed epitaxial film of thickness h0 on a substrate. We set
up the Cartesian coordinates coinciding with the principal
directions of the mismatch stress. The two principal stresses
in the plane of the film are �11

�0�=�1 and �22
�0�=�2; other stress

components are zero. Upon annealing, the film surface
evolves, with an instantaneous thickness profile, h�x1 ,x2 , t�,
where t is the time of evolution. Assuming surface diffusion
as the dominant process of mass transport and a linear ki-
netic law, we obtain an evolution equation for the thickness
profile5

�h

�t
= �2M

�2

�x��x�

��UE − �� + UW��1 + h�h�� , �1�

where UE is the elastic strain energy density at the surface,
UW the wetting potential, � the surface energy density, � the
surface curvature, M the surface mobility, � the atomic vol-
ume, and h�=�h /�x� the surface gradient. A repeated Greek
subscript implies summation over 1 and 2.

Although both the film and the substrate are considered
linear elastic, the boundary condition at the evolving surface
renders a nonlinear boundary-value problem, typically re-
quiring significant effort to determine the strain energy UE
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during evolution.9,12 Previously, we solved the boundary-
value problem via an asymptotic approach,5 which leads to a
series expansion of the strain energy

UE = UE
�0� + UE

�1� + UE
�2� + ¯ , �2�

where, for the present system,

UE
�0� =

1

2Ef
��1

2 + �2
2 − 2� f�1�2� , �3�

UE
�1� = �1

�u1
�1�

�x1
+ �2

�u2
�1�

�x2
, �4�

UE
�2� =

1 + � f

Ef
���

�0����
�0�h�h� + ���

�0� �u�
�2�

�x�

+
1

2
���

�1� �u�
�1�

�x�

. �5�

The first term UE
�0� is a constant, corresponding to the

strain energy density at the reference state as given in Eq.
�3�. To focus on the effect of stress anisotropy, the present
study assumes an otherwise isotropic system, with E and � as
Young’s modulus and Poisson’s ratio, respectively, and sub-
scripts f and s denoting film and substrate, both elastically
isotropic.

The second term UE
�1� is to the first order of surface per-

turbation. In Eq. �4�, the surface displacement u�
�1� is related

to the perturbed surface profile as the first-order solution to
the boundary-value problem

û�
�1� = ik�C�����

�0�ĥ , �6�

where ˆ on top indicates two-dimensional Fourier transform
of the quantity with respect to x1 and x2, k� is the component
of wave vector with k=�k1

2+k2
2, and C�� is from the compli-

ance matrix

FIG. 1. �Color online� Contours of simulated surface morphology, h�x1 ,x2 , t�, under an equibiaxial stress �c=1�. Evolution starts from a random initial
perturbation at t=0. A bright spot represents a crest.

FIG. 2. Contours of the growth rate, s�k1 ,k2�, under various stress aniso-
tropy: �a� c=1, �b� c=0, �c� c=2, and �d� c=−1.
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C =
2�1 + �s�

Esk
3 �

�1 − �s�k2 + �sk2
2 − �sk1k2 −

1 − 2�s

2
ik1k

− �sk1k2 �1 − �s�k2 + �sk1
2 −

1 − 2�s

2
ik2k

1 − 2�s

2
ik1k

1 − 2�s

2
ik2k �1 − �s�k2 � . �7�

The third term at the right-hand side of Eq. �2� is to the
second order of surface perturbation, which is the leading
nonlinear term. The higher order terms are ignored. In Eq.
�5�, the first-order stress is related to the gradient of surface
displacement by Hooke’s law,

���
�1� =

Ef

2�1 + � f�
� �u�

�1�

�x�

+
�u�

�1�

�x�

+
2� f

1 − � f

�u�
�1�

�x�

���	 , �8�

and the second-order displacement is given by

û�
�2� = C��	̂� + C�3
̂ , �9�

where 	�=���
�1�h� and 
=���

�0�h�h�.
For the wetting potential in Eq. �1�, we adopt the

transition-layer model,15 which assumes a transition of the
surface energy density as

��h� =
1

2
�� f + �s� +

1

�
�� f − �s�arctan�h

b
	 , �10�

where the length b characterizes the transition thickness be-
tween the film and the substrate. Equation �10� leads to a
nonlinear wetting potential15

UW =
b�� f − �s�

��b2 + h2��1 + h�h�

. �11�

III. RESULTS AND DISCUSSIONS

The nonlinear evolution equation can be solved effi-
ciently by a spectral method.5 The numerical results are nor-
malized by a length scale L=� fEs / �2�1−�s

2��1
2� and a time

scale �=L4 / ��2M� f�. The parameters used in simulations
are Ef /Es=1.1, �s /� f =1.2, h0=0.1L, b=0.001L, and � f =�s

=0.25. When the film is subjected to an equibiaxial mis-
match stress ��1=�2=�0�, the system is isotropic. As shown
in Fig. 1, the surface first evolves into a chaotic pattern and

FIG. 3. �Color online� Contours of simulated surface morphology, h�x1 ,x2 , t�, with c=0.
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then breaks up into circular dots. Subsequently, the pattern
undergoes a coarsening process with the number density of
dots decreasing. After a long time, the pattern is stabilized,
with a nearly uniform dot size and random organization. The
rotational symmetry of the isotropic system is responsible for
the initial chaotic pattern as well as the randomly organized
circular dots. It should be noted that the shape transition of
individual islands predicted by previous works9 is not cap-
tured in the present simulation due to the assumption of iso-
tropic surface energy. Here we focus on macroscopic shape
and large-area organization of islands rather than detailed
surface facets and steps at atomic scale.

The rotational symmetry is broken when the mismatch
stress is anisotropic �i.e., �1��2�, which can be shown ana-

lytically by a linear analysis. We define c=�2 /�1 as the fac-
tor of stress anisotropy. Taking only the linear part of Eq. �1�,
we obtain

�ĥ

�t
= s�k1,k2�ĥ , �12�

where

s�k1,k2� =
1

k�1 − �s�
��k1

2 + k2
2c2�k2 − �k1

2 + ck2
2�2�s� − k4

+
2bL2�� f − �s�

�h0
3� f

k2. �13�

Therefore, in the linear regime, each Fourier component of
the surface profile grows �or decays� exponentially, with the
growth rate s as a function of the wave vector �k1 ,k2�. When
c=1, the contour plots of the growth rate are concentric
circles �Fig. 2�a��, indicating rotational symmetry in the iso-
tropic system. The growth rate is positive in an annular re-
gion, and the fastest growing mode corresponds to a circle.
The symmetry is broken when c�1. As shown in Figs. 2�b�
and 2�c�, the fastest growing mode corresponds to two points
�white spots� located on one of the principal axes. This sug-
gests that the initial evolution would develop parallel line
patterns perpendicular to the principal direction. This is con-
firmed by numerical simulation as shown in Fig. 3 for c=0.
A parallel line pattern emerges at the early stage of evolu-
tion. The nonlinear effects of stress and wetting take over for

FIG. 4. Angle�s� of the fastest growing mode as a function of stress aniso-
tropy ��s=0.25�.

FIG. 5. �Color online� Contours of simulated surface morphology, h�x1 ,x2 , t�, with c=−1.
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long-time evolution, breaking up the lines into elongated is-
lands.

The generic symmetry breaking persists when c becomes
negative, with the principal mismatch stresses tensile in one
direction and compressive in the orthogonal direction. In ad-
dition, a bifurcation occurs at a critical value. As shown in
Fig. 2�d� for c=−1, the fastest growing mode now corre-
sponds to four points located at angles ±45° from the prin-
cipal directions; i.e., the two white spots in Fig. 2�b� have
split into four. We define the angle 
 of wave vector such that
k1=k cos 
 and k2=k sin 
 in Eq. �13�. Setting �s /�
=0 leads
to

�c − 1���1 − �s��1 + c� − �s�1 − c�cos 2
�sin 
 cos 
 = 0.

�14�

When c=1, �s /�
=0 all around, thus no particular angle is
selected for the fastest growth. When c�1, the angle of the
fastest growing mode can be determined by examining the
second derivative of the growth rate. For 0.5��s�0, three
cases exist: �I� When 1�c�−�1−2�s�, sin 
=0 for the fast-
est growth, giving 
=0. �II� When c�1 or c�−�1−2�s�−1,
the fastest growing mode corresponds to cos 
=0, and thus

= ±90°. Cases I and II are equivalent upon switching �1

and �2. �III� When −�1−2�s�−1�c�−�1−2�s�, the angle of
the fastest growing mode is given by

cos 2
 =
�1 + c��1 − �s�

�1 − c��s
. �15�

Figure 4 plots the angle of the fastest growing mode as a
function of stress anisotropy. A pitchfork bifurcation occurs
at c=−�1−2�s�±1. In between, the angle rotates from one
principal direction to another, through two equivalent paths
�clockwise or counterclockwise�. In the present system, there
exist two types of transition: a step transition at c=1 as the
result of generic symmetry breaking and a smooth transition
from c=−�1−2�s� to c=−�1−2�s�−1 via the bifurcation.
Similar bifurcation patterns were reported for binary compo-
sitional fields in self-assembled monolayers.16

Figure 5 shows a simulated evolution sequence of sur-
face pattern with c=−1. At the early stage, as opposed to the
parallel line pattern in Fig. 3, the two angles of the fastest
growth, 
= ±45°, compete, leading to a diamond pattern.
Subsequently, square-shaped islands form and undergo
coarsening. Interestingly, after a long time, the islands coa-
lesce to form tilted lines. The competition of the two tilting
directions �±45° � leads to the coexistence of long and short
�broken� lines. Compared to previous studies on stressed
solids,6,7 the long-time dynamics of pattern evolution in the
epitaxial system is more complicated due to film-substrate
interaction.

IV. CONCLUDING REMARKS

The present study considers the effect of stress aniso-
tropy in an otherwise isotropic epitaxial system. In real sys-
tems, stress anisotropy is usually coupled with other material
anisotropy. For example, in an epitaxial system with Ge on

Si �113�, the two principal directions of the mismatch stress
are 38° clockwise ��1� and 52° counterclockwise ��2� from

Si�332̄�, and the ratio c=0.76. Considering only the stress
anisotropy would predict elongated Ge islands in the direc-
tion perpendicular to �1, i.e., 52° counterclockwise from

Si�332̄�. However, in experiments, Ge lines parallel to

Si�332̄� were observed.13 This discrepancy may be resolved
by including effects of elastic anisotropy and surface energy
anisotropy. The interactions among different anisotropy
would further complicate and also enrich the dynamics of
pattern formation in the epitaxial system, which will be left
for future studies.
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