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When placing a graphene membrane on a substrate, gas molecules may be trapped underneath to

form bubbles. The size of a graphene bubble (e.g., diameter and height) depends on the number of

gas molecules that are trapped, the elastic properties of graphene, and the interfacial adhesion

between graphene and the substrate. A mechanics analysis of such graphene bubbles is conducted

via membrane and nonlinear plate theories, so that the interfacial adhesion can be determined

directly from measurements of the bubble size. A comparison of the results from these two models

establishes that the membrane analysis is sufficient for relatively large bubbles. The adhesion

energy of mechanically exfoliated graphene on silicon oxide is extracted from two reported data

sets using the simple membrane theory, and the values range from 0.097 to 0.43 J/m2. Moreover,

the strain distribution of the graphene bubbles and transport of gas molecules among the bubbles

are discussed. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759146]

I. INTRODUCTION

Graphene bubbles have been observed in experiments.

Stolyarova et al.1 observed nanoscale bubbles when mechani-

cally exfoliated graphene flakes were placed on top of a silicon

substrate covered with a thermally grown silicon oxide layer

and exposed to proton irradiation. Much larger graphene bub-

bles were observed when the graphene flakes were exposed to

vapors of hydrofluoric acid (HF) and water. In both cases, gas

was released from the silicon oxide and trapped underneath

the impermeable graphene, resulting in formation of the bub-

bles. More recently, Georgiou et al.2 reported that bubbles are

regularly found at the silicon oxide/graphene interface in large

flakes obtained by mechanical cleavage. They observed gra-

phene bubbles with diameters ranging from tens of nanometers

to tens of microns and a variety of shapes (circular, triangular,

and diamond). Bubbles have also been observed in graphene

grown on a Pt (111) substrate.3 While the origin of graphene

bubbles has not been fully understood and may vary with the

material systems and experimental conditions, several poten-

tial applications of the graphene bubbles have emerged. Using

highly strained graphene nanobubbles, Levy et al.3 demon-

strated enormous pseudo-magnetic fields and suggested strain

engineering as a viable means of mechanical control over elec-

tronic structure of graphene. Georgiou et al.2 demonstrated

controllable curvature of graphene bubbles by applying an

external electric field, which may be used as optical lenses

with variable focal length. Zabel et al.4 used graphene bubbles

to study the Raman spectrum of graphene under biaxial strain.

A well-controlled pressurization method was developed by

Bunch et al.5 to form graphene bubbles (or balloons) on pat-

terned substrates, which was used to demonstrate the imper-

meability of graphene to gas molecules and to measure elastic

properties of graphene. Following a similar approach, Koenig

et al.6 measured the adhesion energy between graphene and

silicon oxide. On the other hand, Zong et al.7 used intercala-

tion of nanoparticles to generate graphene blisters on silicon

surfaces and thereby provided a measurement of the graphene

adhesion.

The present study focuses on the mechanics of graphene

bubbles in order to establish a theoretical relationship between

the morphology of graphene bubbles and the mechanical as

well as interfacial properties of graphene. We show that, with

known elastic properties of graphene, the adhesion energy

between graphene and its substrate can be determined from

the measurable dimensions of a graphene bubble (e.g., diame-

ter and height). The number of gas molecules inside the bub-

ble and the pressure can be determined simultaneously.

Moreover, we confirm that the strain of graphene is non-

uniform, varying from an equibiaxial strain at the center of

the bubble to a uniaxial strain at the edge. The magnitude

of the strain depends on the adhesion energy, but is independ-

ent of the bubble size. The mechanics of graphene bubbles is

then extended to discuss transport of gas molecules among

graphene bubbles of different sizes and the coalescence of

graphene bubbles from a thermodynamics perspective.

The remainder of this paper is organized as follows. Sec-

tion II presents an analysis of graphene bubbles based on a

membrane theory that neglects the bending stiffness of gra-

phene. In Sec. III, we take into account the bending stiffness

of graphene by conducting an analysis based on the nonlinear

plate theory. The results are compared with reported experi-

mental data in Sec. IV, along with discussions on applications

for measurements of adhesion energy, strain, and transport of

gas molecules. The effect of van der Waals interaction is

briefly discussed, with comments on the difference between

microbubbles and nanobubbles. The conclusions are drawn in

Sec. V.

II. A MEMBRANE ANALYSIS

Similar to the pressurized thin film blisters,8 the mechan-

ics of graphene bubbles can be analyzed by using either mem-

brane or nonlinear plate theories. The former ignores the
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bending stiffness of the film, giving rise to relatively simple

solutions. In the present study, we compare the two types of

theoretical analyses and establish the conditions for the suffi-

ciency of the membrane analysis.

Figure 1 illustrates two shapes of graphene bubbles. In

the elastic plate theory, the edge of the bubble is clamped

with zero slope due to a finite bending stiffness. In the mem-

brane analysis, the boundary condition at the edge is relaxed,

resulting in a kink (infinite curvature) at the edge. Typically,

it is expected that the plate theory (with nonlinear effects) is

more accurate but also more tedious for numerical analysis.

When the bubble size is large, the membrane theory is

expected to provide a good approximation with relatively

simple analysis. For an elastic thin film to be treated as a

membrane, the central deflection should be at least several

times of the film thickness.8 For a monolayer graphene, how-

ever, its thickness is not well defined9 and the critical dimen-

sion for the membrane analysis has to be established by

comparing to the nonlinear plate theory.

Consider an axisymmetric bubble with radius a and cen-

tral deflection h (Fig. 1). In the membrane analysis, the

deflection profile is assumed to be

zðrÞ ¼ h 1� r2

a2

� �
; (1)

which is approximately a spherical cap for relatively small h
compared to a. In addition, for the deformation to be kine-

matically admissible, a radial displacement is assumed

uðrÞ ¼ u0

r

a
1� r

a

� �
; (2)

where u0 is a parameter to be determined. Note that the

assumed deformation in Eqs. (1) and (2) is generally consid-

ered as a reasonable approximation for moderately large

bubbles.

With the deformation of graphene described by Eqs. (1)

and (2), the radial and circumferential strain components are

obtained as

erðrÞ ¼
u0

a
1� 2r

a

� �
þ 2h2r2

a4
; (3)

ehðrÞ ¼
u0

a
1� r

a

� �
: (4)

Note that the circumferential strain is necessarily zero at the

edge (r¼ a) under the condition that the graphene membrane

outside the bubble (r> a) is attached to the substrate with no

deformation or sliding.

The elastic strain energy per unit area of the membrane

is

UðrÞ ¼ E2D

2ð1� v2Þ ðe
2
r þ 2vereh þ e2

hÞ; (5)

where E2D is the 2D Young’s modulus of monolayer gra-

phene10,11 and v is Poisson’s ratio.

The total potential energy for the graphene bubble is

then obtained as a function of the three kinematic parameters

Pða; h; u0Þ ¼ 2p
ða

0

UðrÞrdr � 2pðp� p0Þ
ða

0

zðrÞrdr; (6)

where p is the pressure due to the gas molecules trapped

inside the bubble and p0 is the pressure outside the bubble.

For the bubble to be in equilibrium with a fixed radius a,

we have

@P
@u0

¼ @P
@h
¼ 0; (7)

which leads to

h ¼ /ðvÞðp� p0Þa4

E2D

� �1
3

(8)

and

u0 ¼
wðvÞðp� p0Þ2a5

E2
2D

" #1
3

; (9)

with /ðvÞ ¼ 75ð1�v2Þ
8ð23þ18v�3v2Þ and wðvÞ ¼ 45ð3�vÞ3ð1�v2Þ2

8ð23þ18v�3v2Þ2 .

By Eq. (8), the pressure inside the bubble can be deter-

mined from measurement of the bubble radius and central

deflection, namely

p ¼ E2Dh3

/a4
þ p0: (10)

Moreover, by the deflection profile in Eq. (1), the volume of

the trapped gas in the bubble is

V ¼ p
2

a2h: (11)

Thus, by the ideal gas law, the number of gas molecules

inside the bubble may be estimated as

N ¼ pV

kT
¼ p

2kT

E2Dh4

/a2
þ p0a2h

� �
; (12)

FIG. 1. Schematic illustration for the shapes of large and small graphene

bubbles as, respectively, analyzed by membrane (blue, solid line) and plate

theories (red, dashed line).
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where k is Boltzmann constant and T is temperature.

With the number of gas molecules fixed inside the bub-

ble, the potential energy can be obtained as a function of the

bubble radius. Assuming p� p0 (see results in Sec. IV A for

justification), we obtain approximately

Pða;NÞ ¼ NkT

4
� NkTln

p0a5=2

ðNkTÞ3=4E
1=4
2D

: (13)

The first term on the right hand side of Eq. (13) is the strain

energy in graphene, which is independent of the bubble size

under the condition of constant N. The second term is the

potential energy of the gas, relative to the reference state in

the ambient condition. As the bubble radius a increases, the

total potential energy decreases. Meanwhile, the interfacial

energy increases as part of the graphene is detached from the

substrate. The equilibrium bubble radius is attained when the

potential energy of the bubble is balanced by the adhesion

energy (C) of the graphene/substrate interface, namely

@P
@a

� �
N

¼ �2paC; (14)

which gives rise to the adhesion energy

C ¼ 5NkT

4pa2
¼ 5E2Dh4

8/a4
: (15)

Hence, the adhesion energy can be determined from the

measurements of the equilibrium bubble size (a and h). Note

that, for the same adhesion energy, the equilibrium bubble

size may vary, depending on N.

We note that the present membrane analysis is slightly

different from Hencky’s classical analysis,12 which included

7 terms in a polynomial expansion of the deflection profile

(as opposed to the two terms in Eq. (1)) with the coefficients

determined numerically for specific Poisson’s ratios. Table I

compares Hencky’s solution with the present membrane

analysis for v¼ 0.16. Apparently, with same values of a, h,

and E2D, the present analysis underestimates the pressure

and adhesion energy by 9% and 13%, respectively. A numer-

ical error in Hencky’s paper has been noted and corrected by

others.13–15 A subtle issue has also been raised regarding the

difference between uniform lateral loading (Hencky’s prob-

lem) and uniform pressure loading.15 A more detailed analy-

sis may be needed to settle these issues.

III. A NONLINEAR PLATE MODEL

The bending stiffness of monolayer graphene is small

but finite.16–18 Moreover, the bending stiffness of monolayer

graphene is an intrinsic property, independent of the in-plane

elastic modulus. Nevertheless, a graphene monolayer may

be treated as an elastic plate with specific moduli for in-

plane and bending deformation. The von Karman nonlinear

plate theory may be used in the analysis of graphene bubbles

to take into account the effect of bending stiffness. Similar

analyses have been carried out for thin film blisters, often by

numerical methods.8,19 Here, we present an approximate an-

alytical solution similar to that of Timoshenko.20 Treating

the graphene monolayer as an elastic plate, the deflection

profile is assumed to be

zðrÞ ¼ h 1� r2

a2

� �2

; (16)

which satisfies the zero-slope boundary condition at the edge

of the bubble (Fig. 1). In addition, the radial displacement is

assumed to take the form

uðrÞ ¼ rða� rÞðc1 þ c2rÞ; (17)

where c1 and c2 are two parameters to be determined. We

note that the assumed deformation in Eqs. (16) and (17) is a

reasonable approximation for small to moderately large

bubbles.

By Eqs. (16) and (17), the radial and circumferential

strain components are obtained as

er ¼ c1ða� 2rÞ þ c2rð2a� 3rÞ þ 8h2r2ða2 � r2Þ2

a8
; (18)

eh ¼ ða� rÞðc1 þ c2rÞ: (19)

Again, the circumferential strain is zero at the edge (r¼ a).

The elastic strain energy consists of two parts, one due

to stretching and the other due to bending. The elastic

stretching energy per unit area of the membrane is

UsðrÞ ¼
E2D

2ð1� v2Þ ðe
2
r þ 2vereh þ e2

hÞ: (20)

The elastic bending energy per unit area is

UbðrÞ ¼
D

2

d2z

dr2

� �2

þ 1

r2

dz

dr

� �2

þ 2v

r

dz

dr

d2z

dr2

" #
; (21)

where D is the bending stiffness.

The total potential energy for the graphene bubble is

then

Pða; h; c1; c2Þ ¼ 2p
ða

0

½UsðrÞ þ UbðrÞ�rdr

� 2pðp� p0Þ
ða

0

zðrÞrdr: (22)

TABLE I. Comparison between the present analysis of graphene bubbles

and Hencky’s solution for �¼ 0.16.

Normalized

pressure ðp� p0Þ=ðE2Dh3

a4 Þ
Adhesion energy

C=ðE2Dh4

a4 Þ

Hencky’s solution 3.09 2.024

Present membrane analysis 2.825 1.766

Present nonlinear

plate analysis (h> 10 nm)

2.518 1.049
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At equilibrium, the two parameters c1 and c2 can be

determined by setting @P
@c1
¼ @P

@c2
¼ 0, which yields

c1 ¼
ð179� 89vÞ

126

h2

a3
; (23)

c2 ¼
ð13v� 79Þ

42

h2

a4
: (24)

Next, by setting @P
@h
¼ 0, we obtain that

p ¼ 64g
E2Dh3

a4
þ 64

Dh

a4
þ p0; (25)

where g ¼ 7505þ4250v�2791v2

211680ð1�v2Þ . Note that the first term on the

right hand side of Eq. (25) is similar to the result from the

membrane analysis in Eq. (10), while the second term is the

contribution of the finite bending stiffness.

From the deflection profile in Eq. (16), the volume

inside the bubble is

V ¼ p
3

a2h; (26)

and thus the number of gas molecules is

N ¼ pV

kT
¼ p

3kT
64gE2D

h4

a2
þ 64D

h2

a2
þ p0a2h

� �
: (27)

Using the same equilibrium condition as in Eq. (14), we

obtain the adhesion energy to be

C ¼ 80gE2Dh4

3a4
þ 32Dh2

a4
: (28)

Again, the first term on the right hand side of Eq. (28) is sim-

ilar to that obtained from the membrane analysis in Eq. (15),

whereas the second term is due to the bending stiffness.

For a graphene bubble with a relatively small height

(h � a), it may be sufficient to apply the linear plate analy-

sis, which ignores the nonlinear terms in the strain energy as

well as the contribution of stretch. As a result, the pressure

inside the bubble is simply

p ¼ 64Dh

a4
þ p0: (29)

Correspondingly, the adhesion energy of the graphene/sub-

strate is obtained as

C ¼ 32Dh2

a4
: (30)

This is the exact solution to the linear plate equations.8,20

IV. DISCUSSIONS

A. Comparison of membrane and plate analyses

Figure 2 plots the pressure inside the bubble as a func-

tion of the central deflection. For comparison, we normalize

the pressure according to the membrane analysis, i.e.,

�p ¼ ðp�p0Þa4

E2Dh3 , so that the normalized pressure is a constant by

the membrane model. In contrast, in the linear plate solution

(Eq. (29)), the normalized pressure decreases with increasing

h. The nonlinear plate analysis on the other hand compares

closely with the membrane analysis for large h and agrees

with the linear plate solution for small h. The transition

occurs at a length scale defined by the ratio between the

bending modulus and the in-plane modulus: L �
ffiffiffiffiffiffi
D

E2D

q
,

which is in the order of 0.1–1 nm. Such a small length

scale suggests that the membrane analysis is generally suffi-

cient for graphene bubbles with h> 10 nm. Here, we have

used E2D ¼ 353 N=m, v ¼ 0:16, and D ¼ 0:238 nN-nm for

monolayer graphene based on experimental measurements10

and first-principle calculations.16

Recently, Georgiou et al.2 measured the cross-sectional

profile of a graphene bubble on an oxidized silicon substrate

by atomic force microscope (AFM) in tapping mode. Figure 3

compares the experimental data with the deflection profiles

assumed in the membrane and plate analyses. Apparently, the

FIG. 2. Normalized pressure as a function of the central deflection, compar-

ing four different solutions.

FIG. 3. Cross-sectional profile of a graphene bubble obtained from AFM

measurements,2 in comparison with the profiles obtained from the mem-

brane and nonlinear plate analyses.
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spherical profile in Eq. (1) offers a better fit to the data. Based

on this, the bubble radius and central deflection are deter-

mined as a ¼ 1183 nm and h ¼ 132 nm. Using these values in

Eq. (15), we obtain the adhesion energy C ¼ 0.097 J/m2. The

pressure obtained from Eq. (10) is: p ¼ 1:272� 106 Pa, and

the number of gas molecules in the bubble is: N ¼ 8:92� 107

(assuming p0 ¼ 1:013� 105 Pa and T ¼ 300 K). The pres-

sure inside the bubble is over 10 times of the ambient pressure

(p0), justifying the assumption made to reach Eq. (13).

B. Adhesion energy

Based on the membrane analysis, measuring the radius

and central deflection of a graphene bubble is sufficient to

determine the adhesion energy of the graphene/substrate inter-

face. In addition, the number of gas molecules trapped inside

the bubble can also be determined approximately by the ideal

gas law. As shown in Fig. 4, for a fixed adhesion energy C,

the central deflection of the bubble varies linearly with the

bubble radius, according to Eq. (15). On the other hand, for a

constant number of gas molecules (N), the central deflection

varies with the radius nonlinearly according to Eq. (12). For a

specific combination of C and N, the intersection of the two

curves defines the equilibrium bubble radius and height. For

comparison, the experimental data from Georgiou et al.2 and

Koenig et al.6 are plotted in Fig. 4. The two data points from

Georgiou et al.2 give two relatively low adhesion energy val-

ues: C ¼ 0.097 and 0.173 J/m2. The data set from Koenig

et al.6 puts the adhesion energy in the range between 0.25 and

0.43 J/m2, with an average value of 0.33 J/m2. These values

are lower than the reported value (0.45 J/m2) for monolayer

graphene on silicon oxide.6 The difference is partly attributed

to the approximations made in the present membrane analysis

as opposed to Hencky’s solution used by Koenig et al.6 Note

that the experiments by Koenig et al.6 were performed with

mechanically exfoliated graphene on predefined wells etched

in SiO2, where the radius of the bubble remains a constant

(�2.5 lm) until a critical pressure was introduced inside the

well. Beyond the critical pressure, the bubble radius increased

stably and reached an equilibrium size under the condition of

constant N; the measured bubble radius (>2.5 lm) and central

deflection were used to calculate the adhesion energy. The

scattering of the adhesion energy from these data may suggest

that the adhesion energy could be non-uniform due to the sta-

tistical nature of the surface roughness.21 It was predicted that

the effective adhesion energy between a graphene membrane

and its substrate depends on surface roughness.22 However,

no quantitative measurement has been reported to correlate

the adhesion energy of graphene with the surface roughness

of its substrate.

Interestingly, Georgiou et al.2 observed changes in the

bubble size when a gate voltage (Vg) was applied. Figure

5(a) reproduces their data for gate voltages of 0, �15, �25,

and �35 V, which were fitted here via Eq. (1) to determine

the radius and central deflection of each bubble. The adhe-

sion energy was then calculated and plotted in Fig. 5(b) as a

function of the gate voltage. There was an apparent increase

in adhesion energy as the magnitude of gate voltage

increased. Since the intrinsic adhesion is not expected to

depend on the gate voltage, this increase suggests that the

attractive electrostatic interaction between the graphene and

the substrate should be accounted for in the membrane analy-

sis of the graphene bubble. A quantitative model of the elec-

trostatic interaction may be brought up to further understand

its contribution to the adhesion.23,24 Also shown in Fig. 5(b)

are the numbers of gas molecules estimated by Eq. (12). As

FIG. 4. Graphene bubble dimensions, central deflection vs. radius. Lines of

constant adhesion energy and curves of constant NkT are drawn in compari-

son with experimental data.2,6 The inset shows the data for a large bubble.2

FIG. 5. Effect of gate voltage: (a) cross-sectional profiles of a graphene bub-

ble subject to gate voltage obtained from AFM2 and fitting with Eq. (1); (b)

The apparent adhesion energy and NkT versus the gate voltage.

083512-5 Yue et al. J. Appl. Phys. 112, 083512 (2012)



expected, the number of gas molecules remains nearly a con-

stant, independent of the gate voltage.

C. Strain distribution

Based on their AFM measurement (Fig. 3), Georgiou

et al.2 estimated the strain of the graphene bubble to be

around 1%, which may be considered as the average radial

strain along one diameter. Similar strain values were obtained

from Raman spectroscopy measurements.4 As indicated by

the results of the membrane analysis and others,12–15 the

strain of a graphene bubble is generally non-uniform, with

both radial and circumferential components, as given in Eqs.

(3) and (4). The strain components, normalized by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C=E2D

p
,

are plotted in Figure 6 as a function of r/a. At the center

(r ¼ 0), the strain is equi-biaxial (er ¼ eh). At the edge of the

bubble ðr ¼ aÞ, the strain is uniaxial as eh ¼ 0. While the cir-

cumferential strain varies linearly from the center to the edge,

the radial strain is nonlinear in between. Remarkably, the

magnitude of the strain as predicted by the membrane analy-

sis scales linearly with
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C=E2D

p
, independent of the bubble

size. This suggests that strain measurement could be used as

an alternate approach for determining the adhesion energy.

Figure 7 plots the strain as a function of the adhesion energy.

To compare with the AFM measurement, we calculate the av-

erage radial strain along one diameter and obtain (for

v ¼ 0:16)

ela
r ¼ 0:508

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C=E2D

p
: (31)

With ela
r ¼ 1%,2,4 we obtain C ¼ 0:14 J/m2, in close agree-

ment with the adhesion energy obtained earlier based on the

measured bubble dimensions.

Raman spectroscopy may be used to measure the local

strain based on the fact that strain modifies the crystal pho-

non frequency due to the anharmonic interactions among the

atoms. The method has been used extensively for measuring

strain and stress in silicon.25–28 The Raman spectrum of

monolayer graphene typically has four peaks, the so-called

D, G, 2D, and 2D0 peaks, in the order of increasing fre-

quency.4 Subject to a state of strain with two principal com-

ponents e1 and e2, the frequency shift of each peak is

Dx ¼ �cx0ðe1 þ e2Þ6
1

2
bx0ðe1 � e2Þ; (32)

where x0 is the reference frequency at zero strain, c is the

so-called Gruneisen parameter, and b is the shear deforma-

tion potential.29 The second term on the right hand side of

Eq. (32) gives the mode splitting due to the shear component

of the strain, as observed for the G peak of graphene under

uniaxial strain.29–31 Both the Gruneisen parameter and the

shear deformation potential have been predicted from first-

principle calculations,29 with which the local strain of gra-

phene can be measured by Raman spectroscopy.

In an effort to experimentally determine the Gruneisen

parameters of graphene, Zabel et al.4 carried out Raman

spectroscopy measurements of graphene bubbles. Since the

strain is equibiaxial (er ¼ eh) at the center of the bubble, no

splitting of the G peak was observed, while the Raman spec-

trum was strongly blue-shifted compared to the reference

spectrum measured for unstrained graphene. To determine

the Gruneisen parameters, an independent measurement of

the strain is needed. Zabel et al.4 used the average radial

strain measured by AFM, which was approximately 1%. As

shown in Fig. 6, the strain is non-uniform. The local strain at

the center of the bubble is considerably higher than the aver-

age strain (Fig. 7). For v ¼ 0:16, the local strain at the center

of the bubble is

ecenter ¼ 0:855
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C=E2D

p
; (33)

which is about 17% higher than the average radial strain ela
r in

Eq. (31). Thus, for a bubble with ela
r ¼ 1%, the local strain

ecenter ¼ 1:68%. Using this local strain value, along with the

Raman shifts measured by Zabel et al.4 (Dx ¼ �57, �140,

�108, and �68 cm�1 for the G, 2D, 2D0, and D peaks;

x0 ¼ 1582, 2692, 3245, and 1349 cm�1), we obtain the Gru-

neisen parameters: c(G)¼ 1.07, c(2D)¼ 1.55, c(2D0)¼ 0.99,

and c(D)¼ 1.50. These values are considerably lower than the

values obtained by Zabel et al.4 as well as those predicted by

the first-principle calculations.29 The cause of this discrepancy

is not known. While the theoretical model of the graphene
FIG. 6. Variation of the radial and circumferential strain components in a

graphene bubble.

FIG. 7. Dependence of the local strain at the center and the linear average

radial strain on the adhesion energy for monolayer graphene bubbles.
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bubble could be improved to more accurately predict the

strain, it is desirable to independently measure the local strain

components along with the Raman spectroscopy in order to

determine the Gruneisen parameters fully by experiments.

Moreover, the effects of the laser power and the laser spot

size may also be investigated. For example, laser heating may

alter the strain of graphene locally, and the non-uniform strain

distribution within the laser spot size may require the use of

an average strain over the area under the laser spot.

Strain engineering has been suggested as a viable

approach to tailoring the electronic properties of gra-

phene.3,32,33 For this purpose, a relatively large strain (>5%)

is needed.34 Figure 7 shows that the strain of a graphene bub-

ble is limited by the adhesion energy. To achieve a 5% strain

at the center of the bubble, the required adhesion energy is

predicted to be 1.2 J/m2, much higher than the measured ad-

hesion energy of graphene on SiO2 and other substrate mate-

rials.6,7,35 Surface functionalization may be used to enhance

the adhesion so that graphene bubbles with higher strain can

be achieved.

D. Transport of gas molecules

Stolyarova et al.1 observed coalescence of graphene

bubbles during annealing, which can be understood as a

result of the transport of gas molecules along the interface

driven by the different pressures in bubbles of different sizes.

Combining Eqs. (10) and (15), the membrane model predicts

that the pressure inside the graphene bubble is inversely pro-

portional to the bubble radius

p ¼ 1

a

83E2DC3

125/

� �1=4

: (34)

Consequently, the pressure is higher in the smaller bubbles

and the pressure difference drives the gas molecules to dif-

fuse from smaller bubbles to larger bubbles. The diffusion

process is kinetically mediated and is enhanced by thermal

annealing so that the large bubbles grow larger while the

small bubbles disappear, similar to the Ostwald ripening pro-

cess in thin film growth.36

The coalescence of graphene bubbles may also be

understood from an energy consideration. With Eqs. (13)

and (15), the free energy of each bubble can be determined

as a function of the number of gas molecules:

FðNÞ ¼ PðNÞ þ pa2C

¼ 3

2
NkT 1� 1

3
ln NkT

0:0387/p4
0

E2DC5

� �1=2
" # !

: (35)

It can be shown that the free energy of two small bubbles is

greater than the free energy of one large bubble with the

same total number of gas molecules, namely

FðN1Þ þ FðN2Þ > FðN1 þ N2Þ: (36)

Therefore, there exists a thermodynamic driving force for

the two small bubbles to coalesce so that the total free energy

is reduced. In other words, while each graphene bubble is in

a thermodynamically equilibrium state, the system with a

group of graphene bubbles is not in equilibrium. Since the

graphene is impermeable,5 the kinetic pathways for the trans-

port of gas molecules may include the graphene/substrate

interface and the substrate bulk. For example, Koenig et al.6

utilized the bulk diffusion of nitrogen molecules through

SiO2 to pressurize graphene membranes. However, bulk dif-

fusion is typically slow and the most likely route for the coa-

lescence of graphene bubbles in the time frame of the

experiments is interfacial diffusion.

E. Effect of van der Waals interaction

It is commonly assumed that the interfacial adhesion

between graphene and an amorphous oxide substrate is

through van der Waals interaction.37–40 By assuming an equi-

librium separation between the graphene and the substrate

along with an adhesion energy, a simple model of the van der

Waals interaction predicts the traction-separation relation for

the graphene/substrate interface.38 Such a model could be

employed to study the adhesive interaction near the edge of a

graphene bubble, which has been ignored in the present study.

Since the equilibrium separation is in the order of 0.4 nm,21

the adhesive interaction decays quickly as the separation

exceeds a few nanometers. Therefore, for relatively large gra-

phene bubbles (h> 10 nm), the effect is negligible. However,

for nanoscale graphene bubbles,1,3 the adhesive interaction

could be significant not only near the edge but also over the

entire bubble. Consequently, the shape of graphene nanobub-

bles may be different and depend on the traction-separation

relation of the interface, which is left for future studies.

V. SUMMARY

The mechanics of graphene bubbles is analyzed by using

membrane and nonlinear plate theories. A comparison of the

two theoretical analyses suggests that the membrane analysis

is sufficient for relatively large bubbles (h > 10 nm). A sim-

ple solution relates the bubble size (radius and central deflec-

tion) to the adhesion energy between graphene and its

substrate. This membrane analysis was applied to reported

experimental data, and adhesion energies ranging from 0.097

to 0.43 J/m2 were extracted for mechanically exfoliated gra-

phene on silicon oxide. The wide range of values may be

partly attributed to the effect of surface roughness. A non-

uniform, biaxial strain distribution is predicted for the

graphene bubble, in comparison with experimental measure-

ments by AFM (average radial strain) and Raman spectros-

copy (local strain). The mechanics of graphene bubbles is

then extended to discuss transport of gas molecules among

graphene bubbles of different sizes and coalescence of gra-

phene bubbles from a thermodynamics perspective.

The present study is confined to relatively large gra-

phene bubbles (h> 10 nm), for which adhesive interactions

are accounted for via an energy balance involving the strain

and adhesion energies, without a detailed analysis incorpo-

rating the adhesive interaction via a traction-separation rela-

tion. In addition, only the monolayer graphene bubbles are

considered, although the approach can be readily extended to
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the study of multilayer graphene bubbles. Further studies

may also consider the effect of residual stress and possibly

anisotropic shapes of graphene bubbles.2,3
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