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Graphene monolayer, with extremely low flexural stiffness, displays spontaneous rippling due to

thermal fluctuations at a finite temperature. When a graphene membrane is placed on a solid

substrate, the adhesive interactions between graphene and the substrate could considerably suppress

thermal rippling. On the other hand, the statistical nature of thermal rippling adds an entropic

contribution to the graphene-substrate interactions. In this paper, we present a statistical mechanics

analysis on thermal rippling of monolayer graphene supported on a rigid substrate, assuming a

generic form of van der Waals interactions between graphene and substrate at T¼ 0 K. The rippling

amplitude, the equilibrium average separation, and the average interaction energy are predicted

simultaneously and compared with molecular dynamics (MD) simulations. While the amplitude of

thermal rippling is reduced by adhesive interactions, the entropic contribution leads to an effective

repulsion. As a result, the equilibrium average separation increases and the effective adhesion energy

decreases with increasing temperature. Moreover, the effect of a biaxial pre-strain in graphene is con-

sidered, and a buckling instability is predicted at a critical compressive strain that depends on both

the temperature and the adhesive interactions. Limited by the harmonic approximations, the theoreti-

cal predictions agree with MD simulations only for relatively small rippling amplitudes but can be

extended to account for the anharmonic effects. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4941987]

I. INTRODUCTION

Graphene and other two-dimensional (2D) materials have

drawn extensive interests for research due to their remarkable

structures and properties. One of the common features among

these 2D materials is their monatomic thickness. As a result,

they are highly flexible with extremely low flexural rigidity,

compared to conventional membranes and thin film materials.

At a finite temperature (T> 0 K), thermal fluctuations of such

ultrathin membranes are expected,1,2 similar to the ubiquitous

fluctuations of biomembranes.3–5 Indeed, experimental obser-

vations have found that suspended graphene membranes often

display spontaneous ripples,1,6,7 likely a result of thermal fluc-

tuations.2 Such thermal rippling has been found to be respon-

sible for the temperature dependent mechanical properties of

graphene including elastic modulus and apparently negative

coefficient of thermal expansion at the room temperature.8–10

In most applications, graphene membranes are supported on

solid substrates, such as silicon (with an oxide surface), cop-

per, and polymers. In addition to the intrinsic thermal rippling,

the morphology of a substrate-supported graphene membrane

depends on the surface roughness of the substrate as well as

the interactions between graphene and the substrate. Ripples,

wrinkles, and folds are commonly observed in supported gra-

phene as well as other 2D materials.11–16 Many physical prop-

erties of graphene depend on the morphology that may be

altered by the interactions with a substrate. In this paper, we

present a statistical mechanics analysis on thermal rippling of

monolayer graphene supported on a rigid substrate and corre-

sponding molecular dynamics (MD) simulations for compari-

son. Two main questions are to be answered: First, how

would the rippling morphology depend on the adhesive inter-

actions? Second, how would the statistical thermal rippling

influence the graphene-substrate interactions at a finite

temperature?

The mechanisms of adhesive interactions between gra-

phene and typical substrates such as silicon oxide (SiO2) and

metals have been studied recently. Both experiments17–21 and

first-principle calculations22,23 have suggested that van der

Waals interactions are the primary mechanisms in most cases,

although other mechanisms may also exist in some cases.24–26

In the present study, we assume a generic form of van der

Waals interactions between graphene and the substrate at

T¼ 0 K, which was derived from the Lennard-Jones (LJ)

potential for pairwise particle-particle interactions.27 Such an

adhesive interaction is expected to suppress the rippling ampli-

tude of a supported graphene membrane. However, a quantita-

tive correlation between adhesion and rippling morphology of

graphene has yet to be established. Moreover, even with

temperature-independent parameters for the van der Waals

interactions, the statistical nature of thermal rippling renders

an entropic effect on the graphene-substrate interactions that

would depend on temperature. As a result, the effective prop-

erties of the graphene-substrate interface become temperature

dependent in general. Furthermore, additional effects on the

morphology and adhesion of graphene may come from the
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fact that the graphene membrane is often subjected to an in-

plane pre-strain, either unintentionally due to the growth/trans-

fer processes or intentionally for the purpose of strain

engineering.28

The remainder of this paper is organized as follows.

Section II presents a statistical mechanics analysis based on a

continuum membrane model of pre-strained graphene and the

generic form of van der Waals interactions. Section III

describes the MD simulations. The results are compared and

discussed in Section IV, followed by a summary in Section V.

II. A CONTINUUM STATISTICAL MECHANICS
ANALYSIS

The graphene monolayer is modeled as a 2D continuum

membrane, which interacts with the substrate via an interfa-

cial force field of van der Waals type. The presence of an

interfacial force field influences thermal rippling of gra-

phene, which in turn introduces an entropic effect on the

graphene-substrate interactions at a finite temperature. The

substrate is assumed to be rigid with a perfectly flat surface,

whereas the effect of surface roughness is left for future

studies.

For a graphene monolayer on a perfectly flat substrate

with no thermal rippling, a generic form of the van der

Waals interaction energy function can be written as27

V zð Þ ¼ C0

1

2

h0

z

� �9

� 3

2

h0

z

� �3
" #

; (1)

where z is the separation distance between graphene and the

substrate surface, C0 is the adhesion energy (per unit area),

and h0 is the equilibrium separation. The two parameters (C0

and h0) are assumed to be independent of temperature in the

present study, although they could be temperature dependent

in principle (e.g., due to statistical effects of electromagnetic

modes and thermal radiation29–32).

At a finite temperature (T> 0 K), the graphene membrane

fluctuates out of the plane (see Fig. 1). At a particular

instance, the rippling profile of the graphene can be written as

zðx; y; TÞ ¼ ½�zðTÞ þ wðx; y; TÞ�h0; (2)

where �z and w are the normalized average separation and

out-of-plane deflection, respectively. Correspondingly, the

total interaction energy between graphene and the substrate

over an area X is approximately

UI ¼
ð ð
X

V zð Þdxdy �
ð ð
X

V �zh0ð Þ þ V0 �zh0ð Þh0w
�

þ 1

2
V00 �zh0ð Þh2

0w2�dxdy; (3)

where V0ðzÞ and V00ðzÞ are the first and second derivatives of

the interaction energy function in Eq. (1), and the higher

order terms are neglected. Note that this approximation is

valid only when jwj � 1 (i.e., the out-of-plane deflection is

small compared to the equilibrium separation).

Following a previous work for freestanding graphene,10

we consider a graphene membrane subjected to a biaxial pre-

strain e0, relative to the ground state at 0 K. With the rippling

profile in Eq. (2), the elastic strain energy of graphene con-

sists of two parts, the bending energy (Ub) and in-plane

strain energy (Us):

Ub �
Dh2

0

2

ð ð
X

@2w

@x2
þ @

2w

@y2

 !2

dxdy; (4)

Us �
ð ð
X

E�e2
0 þ

E�e0h2
0

2

@w

@x

� �2

þ @w

@y

� �2
" #( )

dxdy; (5)

where D is the bending modulus of graphene, E� ¼
E=ð1� �Þ is the in-plane biaxial modulus, and E and v are

the 2D Young’s modulus (unit: N/m) and Poisson’s ratio of

graphene, respectively. Note that the bending energy due to

Gaussian curvature has been ignored in Eq. (4) and only the

quadratic terms of the deflection are retained in Eq. (5) for a

harmonic approximation, as discussed in Ref. 10.

Assuming periodic boundary conditions in the x-y plane,

the deflection wðx; yÞ can be written in form of the Fourier

series

wðrÞ ¼
X

k

ŵðqkÞeiqk �r; (6)

FIG. 1. Thermal rippling of graphene on a rigid substrate by MD simulation

(C0¼ 0.242 J/m2, h0¼ 0.316 nm, e0¼ 0, and T¼ 1000 K): a top-view snap-

shot with color contour for the height and a deflection profile along a line.
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and the corresponding Fourier coefficients are

ŵ qkð Þ ¼
1

L2
0

ð ð
X

w rð Þe�iqk �rdxdy; (7)

where r is the 2D position vector, qk denotes the k-th wave

vector in the 2D space, and L0
2 is the area of the domain X.

For each configuration, the mean-square amplitude of the

out-of-plane fluctuation is then

d2 ¼ h2
0

L2
0

ð ð
X

w2 rð Þdxdy ¼ h2
0

X
k

ŵ2
Re qkð Þ þ ŵ2

Im qkð Þ
� �

; (8)

where ŵReðqkÞ and ŵImðqkÞ are the real and imaginary parts

of ŵðqkÞ, respectively.

Considering the statistical nature of thermal rippling, the

Fourier coefficients ŵReðqkÞ and ŵImðqkÞ are taken as contin-

uous random variables. Each set of ŵReðqkÞ and ŵImðqkÞ con-

stitutes a possible configuration of the membrane. All possible

configurations of the membrane construct a statistical ensem-

ble. Based on the classical statistical mechanics,33,34 the prob-

ability density function (PDF) for each configuration is given

by Boltzmann distribution at thermal equilibrium

q ¼ 1

Z
exp � U

kBT

� �
; (9)

where U is the total potential energy of the configuration, Z
is the configurational partition function, and kB is Boltzmann

constant. Substituting Eq. (6) into Eqs. (3)–(5), the total

potential energy for each configuration of the supported gra-

phene membrane is obtained in terms of the Fourier coeffi-

cients as

U ¼ UI þ Ub þ Us � L2
0ðVð�zh0Þ þ E�e2

0Þ

þ L2
0h2

0

X
kðqk �ey�0Þ

ðDq4
k þ E�e0q2

k

þ V00ð�zh0ÞÞðŵ2
ReðqkÞ þ ŵ2

ImðqkÞÞ; (10)

where qk ¼ jqkj is the amplitude of the wave vector. It is im-

portant to note that the coefficients ŵðqkÞ and ŵð�qkÞ are

not independent since the deflection in Eq. (6) must be real

valued. Consequently, only those Fourier coefficients associ-

ated with the upper half-plane of the wave vectors (i.e.,

qk � ey � 0, including only half of the x-axis) are taken as the

independent random variables in Eq. (10).

By the equipartition theorem,34 the mean energy associ-

ated with each independent harmonic term in Eq. (10) equals

kBT=2, and thus we obtain

hŵ2
Re qkð Þi ¼ hŵ2

Im qkð Þi ¼
kBT

2L2
0h2

0 Dq4
k þ E�e0q2

k þ V00 �zh0ð Þ
� � ;

(11)

where h�i denotes the ensemble average of the enclosed

quantity. The ensemble average of the mean-square ampli-

tude in Eq. (8) is then

hd2i ¼ kBT

L2
0

X
k

1

Dq4
k þ E�e0q2

k þ V00 �zh0ð Þ : (12)

Without the double derivative of the interaction energy func-

tion, Eq. (12) recovers the classical results for undulations of

fluid membranes by Helfrich and Servuss,35 and the same

result was obtained for a freestanding graphene membrane.10

The additional term due to the interactions between graphene

and the substrate depends on the average separation �zh0,

which is unknown a priori. As shown later, the average sepa-

ration at thermal equilibrium can be determined as a function

of the temperature by minimizing the Helmholtz free energy

of the graphene/substrate system under the isothermal condi-

tion. We note that for the amplitude in Eq. (12) to be positive

definite, it requires V00ð�zh0Þ � 0 for e0 � 0 or 4DV 00ð�zh0Þ
> ðE�e0Þ2 for e0 < 0, which imposes a limitation for the har-

monic approximation in the present analysis.

With Boltzmann distribution in Eq. (9), the configura-

tional partition function for the statistical thermal rippling is

obtained as

Z �
ð1
�1

� � �
ð1
�1

exp � U

kBT

� �
dŵRe q1ð ÞdŵIm q1ð Þ

dŵRe q2ð ÞdŵIm q2ð Þ � � �

¼ exp � L2
0

kBT
V �zh0ð Þ þ E�e2

0

� �� �

	
Y

k qk �ey�0ð Þ
1þ E�e0

Dq2
k

þ V00 �zh0ð Þ
Dq4

k

 !�1
pkBT

DL2
0h2

0q4
k

� �2
4

3
5:
(13)

Here, the integration limits have been taken to be �1 and1
for each random variable. However, the random variables

should be limited within a small range (jwj � 1) under the

harmonic approximation. Moreover, the rippling membrane

should be constrained so that it does not penetrate into the

substrate, which may lead to a steric effect.35–37 Nevertheless,

we proceed with Eq. (13) as an approximate partition function

and leave the additional effects for future studies.

With the partition function in Eq. (13), the Helmholtz

free energy of the graphene/substrate system is obtained as a

function of the average separation, pre-strain, and temperature

A �z; e0; Tð Þ ¼ �kBT ln Z � L2
0 V �zh0ð Þ þ E�e2

0

� �
� kBT

X
k qk �ey�0ð Þ

ln
pkBT

DL2
0h2

0q4
k

� �	

�ln 1þ E�e0

Dq2
k

þ V00 �zh0ð Þ
Dq4

k

 !#
: (14)

At a given temperature, the Helmholtz free energy can

be minimized with respect to the average separation and the

pre-strain for the thermomechanical equilibrium state. First,

taking derivative of the free energy with respect to the aver-

age separation, we obtain the average normal traction (force

per unit area) between graphene and the substrate as
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s �z; e0; Tð Þ ¼ 1

L2
0h0

@A

@�z

� �
T;e0

¼ V0 �zh0ð Þ þ kBT

L2
0

V000 �zh0ð Þ

	
X

k qk �ey�0ð Þ
Dq4

k þ E�e0q2
k þ V00 �zh0ð Þ

� 
�1
; (15)

where the first term on the right-hand side is the interfacial

traction at 0 K (without thermal rippling) and the second

term is the entropic contribution due to thermal rippling.

Hence, Eq. (15) predicts a temperature-dependent traction-

separation relation for the interactions between graphene and

the substrate. The equilibrium average separation, �z�ðe0; TÞ,
is then obtained by setting s ¼ 0, namely,

V0 �z�h0ð Þ þ kBT

L2
0

V000 �z�h0ð Þ

	
X

k qk �ey�0ð Þ
Dq4

k þ E�e0q2
k þ V00 �z�h0ð Þ

� 
�1 ¼ 0: (16)

In addition, it is required that @2A
@�z2

� �
T;e0

> 0 at �z ¼ �z� for the

equilibrium separation to be stable. Interestingly, we note

that, if the interaction energy is purely harmonic with

V000ðzÞ 
 0, the entropic contribution in Eq. (15) vanishes

and the equilibrium average separation becomes independent

of temperature (�z� 
 1). In general, however, the interaction

energy as given in Eq. (1) is anharmonic, which leads to the

entropic effect and the temperature dependence for the equi-

librium separation. Therefore, despite the harmonic approxi-

mation of the interaction energy function in Eq. (3), the

anharmonic effect of the interaction is partly taken into

account in Eqs. (15) and (16).

Next, taking derivative of the Helmholtz free energy in

Eq. (14) with respect to the pre-strain, we obtain the average

in-plane stress (equi-biaxial) in the graphene membrane as

r �z; e0; Tð Þ ¼ 1

2L2
0

@A

@e0

� �
T;�z

¼ E�
�

e0 þ
kBT

2L2
0

X
k qk �ey�0ð Þ

Dq2
k þ E�e0

�

þq�2
k V00 �zh0ð Þ


�1
�
: (17)

Taking �z ¼ �z�ðe0; TÞ, the average in-plane stress at the equi-

librium average separation is

r�ðe0; TÞ ¼ rð�z�; e0; TÞ ¼ E�e0 þ ~r�ðe0; TÞ; (18)

where the first term on the right-hand side is the pre-stress

without rippling and the second term is the additional tension

due to the entropic effect of thermal rippling (rippling stress)

~r� e0; Tð Þ ¼ E�
kBT

2L2
0

X
k qk �ey�0ð Þ

Dq2
k þ E�e0 þ q�2

k V00 �z�h0ð Þ
� 
�1

:

(19)

As noted in the previous study,10 the in-plane thermal

fluctuations of the graphene lattice lead to a positive thermal

expansion if the out-of-plane fluctuations are completely

suppressed. Taking the in-plane thermal expansion into

account, the effective in-plane stress in graphene at a finite

temperature is approximately

r�ðe0; TÞ � E�ðe0 � a2DTÞ þ ~r�ðe0; TÞ; (20)

where a2D is the 2D-CTE resulting from the anharmonic

interactions among in-plane phonon modes and was found to

be a constant, a2D� 5.51	 10�6 K�1, independent of tem-

perature (up to 1000 K).10 Setting r�ðe0; TÞ ¼ 0 in Eq. (20)

then leads to an equilibrium thermal strain, e�0ðTÞ, which

gives the effective thermal expansion of the supported gra-

phene and could be either positive or negative due to the

competing effects between in-plane lattice expansion and

out-of-plane rippling, as discussed in the previous studies8–10

for freestanding graphene.

To be specific, the predictions by the statistical mechan-

ics analysis are illustrated and discussed for a square-shaped

graphene membrane. First, the normal traction in Eq. (15) is

evaluated by summation over discrete Fourier modes, which

can be written in a dimensionless form as

s

s0

¼ f 0 �zð Þ þ f 000 �zð Þ kBT

2D

Xn

i;j¼�n

"
16p4 h0

L0

� �2

i2 þ j2
� �2

þ 4p2be0 i2 þ j2
� �

þ gf 00 �zð Þ L0

h0

� �2
#�1

; (21)

where s0 ¼ C0=h0, g ¼ C0h2
0=D, b ¼ E�h2

0=D, f 0ðzÞ, f 00ðzÞ,
and f 000ðzÞ are derivatives of the normalized interaction

energy function, f zð Þ ¼ 1
2

z�9 � 3z�3ð Þ. The number n
depends on two length scales: the domain size L0 and a mi-

croscopic cut-off length b (e.g., the minimum wavelength

of thermal rippling). For L0 � b, n!1 and the summa-

tion in Eq. (21) converges to a constant. If e0 ¼ 0, the sum-

mation in Eq. (21) can be calculated by an integral

approximation as

s

s0

� f 0 �zð Þ þ f 000 �zð ÞpkBT

D

	
ðqmax

qmin

16p4 h0

L0

� �2

q4 þ gf 00 �zð Þ L0

h0

� �2
" #�1

qdq;

� f 0 �zð Þ þ f 000 �zð Þ
8p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gf 00 �zð Þ

p kBT

D
arctan

4p2ffiffiffiffiffiffiffiffiffiffiffiffiffi
gf 00 �zð Þ

p h0

b

� �2
 !

;

(22)

where we have taken qmax ¼ L0=b and qmin ¼ 1. Note that

the traction is independent of the domain size L0 as long as

L0 � h0, but weakly depends on the choice of the cut-off

length b. The cut-off length is often taken as a few times of

the bond length (r0� 0.14 nm), which is close to the typical

values for h0 (�0.3 nm). For convenience, we take b ¼ h0 in

subsequent calculations. It is found that the results from Eq.

(22) are in close agreement with the summation in Eq. (21)

for L0=h0 > 10.
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As shown in Fig. 2(a), the normalized traction decreases

linearly with increasing temperature; the linear dependence is

expected as a result of the harmonic approximation in the

present analysis. For �z > 1, the traction is positive (attraction)

at low temperatures but may become negative (repulsion) at

high temperatures. Evidently, the entropic effect of thermal

rippling leads to an effective repulsion in addition to the van

der Waals forces. Figure 2(b) shows the predicted traction-

separation relations at different temperatures. As the tempera-

ture increases, the maximum traction (a.k.a. interfacial

strength) decreases. In other words, the attractive forces

between graphene and substrate are weakened by the entropic

repulsion due to thermal rippling. Above a critical tempera-

ture (Tc� 2462 K for g ¼ 0:11), the traction becomes all re-

pulsive (s< 0), meaning that the van der Waals forces are no

longer sufficient to keep the graphene attached to the sub-

strate. Moreover, the predicted traction-separation relation is

limited by the condition, f 00ð�zÞ > 0 or equivalently �z < 1:165.

For �z > 1:165, the integral in Eq. (22) is unbounded and the

harmonic analysis yields no meaningful result.

By setting the traction in Eq. (22) to zero, we obtain two

equilibrium average separations (see Fig. 2(b)), one is stable

with ð@s
@�zÞT > 0 at �z ¼ �z�0ðTÞ and the other is unstable with

ð@s
@�zÞT < 0 at �z ¼ �zcðTÞ. The latter is called the critical aver-

age separation, beyond which the traction becomes repulsive

by the harmonic analysis. As shown in Fig. 3(a), the stable

equilibrium average separation increases with temperature

almost linearly up to 1000 K, beyond which it becomes non-

linear, and no solution can be found above the critical tem-

perature (Tc� 2462 K for g ¼ 0:11). Meanwhile, the critical

average separation decreases with increasing temperature

(dashed lines in Fig. 3(a)). At the critical temperature, the

two average separations converge at �z�0ðTcÞ ¼ 1:122; hence,

by Eq. (22), the critical temperature depends on the van der

Waals interactions approximately as kBTc � D
ffiffiffi
g
p

.

The increase of the stable equilibrium average separa-

tion with temperature is similar to the out-of-plane thermal

expansion of graphite, with a temperature-dependent, posi-

tive coefficient of thermal expansion.38 Quantitatively, the

out-of-plane coefficient of thermal expansion (CTE) for the

graphene/substrate interface may be defined as az ¼ d�z�0=dT,

which depends on the van der Waals interactions through the

dimensionless group g. As shown in Fig. 3(b), the CTE

decreases as g increases. For g ¼ 0:11 and T< 1000 K, we

obtain az � 3:5	 10�5 K�1, which is slightly larger than the

measured out-of-plane CTE of graphite at around 1000 K.39

The predicted CTE increases with increasing temperature,

which is in qualitative agreement with the measured CTE for

graphite. However, the present prediction appears to overes-

timate the CTE at low temperatures (T< 200 K) and at very

high temperatures (T> 2000 K).

At the equilibrium average separation �z�0 for e0 ¼ 0, the

average rippling amplitude can be obtained from Eq. (12) in

the form of a discrete summation as

FIG. 2. (a) Predicted normal traction as

a function of temperature at different av-

erage separations, �z ¼ 1, 1.01, 1.02, and

1.05 (symbols by summation and lines

by integral approximation). (b) Predicted

traction-separation relations at different

temperatures, in comparison with the

relation at T¼ 0 K (dashed line).

Parameters: D¼ 1.4 eV, C0¼ 0.242 J/m2,

h0¼ 0.316 nm, g¼ 0.11, and e0¼ 0.

FIG. 3. (a) Predicted equilibrium aver-

age separation as a function of tempera-

ture, with an unstable branch for the

critical separation (dashed lines). (b)

Predicted out-of-plane coefficient of

thermal expansion as a function of

temperature.

074305-5 Wang, Gao, and Huang J. Appl. Phys. 119, 074305 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions.  IP:  146.6.103.158 On: Fri, 19 Feb 2016 15:49:31



hd2i
h2

0

¼ kBT

D

Xn

i;j¼�n

16p4 i2 þ j2
� �2 h0

L0

� �2

þ gf 00 �z�0
� � L0

h0

� �2
" #�1

:

(23)

For n!1, the summation can be evaluated by an integral

approximation and the root-mean-square (RMS) amplitude

of thermal rippling is then obtained as

�d ¼
ffiffiffiffiffiffiffiffiffi
hd2i

q
� h0

ffiffiffiffiffiffiffiffi
kBT

8D

r
gf 00 �z�0
� �� 
�1=4

: (24)

For a freestanding membrane, the rippling amplitude can be

obtained from Eq. (23) with g ¼ 0, which recovers the result

in the previous study10

�d � L0

4p3=2

ffiffiffiffiffiffiffiffi
kBT

D

r
: (25)

Apparently, as a result of the harmonic approximation, the

rippling amplitude of a freestanding membrane scales linearly

with the domain size (L0), although a power-law scaling was

observed in MD simulations due to anharmonic effects.10 In

contrast, with the presence of van der Waals interactions

(g > 0), the rippling amplitude in Eq. (24) is independent of

the domain size (for L0 � h0). Figure 4(a) shows the pre-

dicted rippling amplitude as a function of temperature for dif-

ferent values of g. Evidently, comparing to the freestanding

graphene, the presence of adhesive interactions considerably

suppresses the amplitude of thermal rippling, and the normal-

ized RMS amplitude decreases with increasing g.

The effective adhesion energy may be defined as the dif-

ference between the Helmholtz free energy at the equilib-

rium average separation (�z ¼ �z�) and that at infinite

separation (�z !1). For e0 ¼ 0, we have

C Tð Þ ¼ � 1

L2
0

A �z�0; 0; T
� �

� A 1; 0; Tð Þ
� 


�� V �z�0h0

� �
� kBT

L2
0

X
k qk �ey�0ð Þ

ln 1þ V00 �z�0h0ð Þ
Dq4

k

 !
: (26)

It can be seen that as T ! 0 K, we have �z�0 ! 1 and C!
C0 ¼ �Vðh0Þ as expected from the interaction energy func-

tion in Eq. (1). By integral approximation, we obtain

C Tð Þ
C0

� �f �z�0
� �
� kBT

8D

ffiffiffiffiffiffiffiffiffiffiffiffi
f 00 �z�0ð Þ

g

s
: (27)

As shown in Fig. 4(b), the adhesion energy decreases with

increasing temperature, almost linearly up to about 1000 K.

Interestingly, while the statistical effect of thermal rippling

leads to an effective repulsion and hence an effectively lower

adhesion energy with increasing temperature, an opposite

effect was predicted by considering the electromagnetic

modes and thermal radiation, where the attractive van der

Waals forces increase with increasing temperature.29–32 For

the case of an atomic monolayer interacting with a solid sub-

strate, the two effects may co-exist, leading to a more com-

plicated dependence on temperature. Without considering

the increasing attractive van der Waals forces, the entropic

effect is overestimated by the thermal rippling effect alone.

On the other hand, the out-of-plane CTE of graphite was

underestimated by the first-principle calculations with a qua-

siharmonic approximaiton,38 possibly because the thermal

rippling effects were not fully taken into account. Thus, the

coupling of the two competing effects would be of interest

for further studies.

Alternatively, the predicted traction-separation relations

(see Fig. 2(b)) may be used to determine the adhesion energy

(or work of separation), by integrating the traction from the

equilibrium average separation (�z�) to the critical average

separation (�zc). This is equivalent to the difference in the

Helmholtz free energy at the two equilibrium separations,

which would give a much lower adhesion energy due to the

much shorter range of separation (�z < �zc < 1:165) accessible

by the harmonic analysis.

The effect of pre-strain on the interfacial traction-

separation relation is shown in Fig. 5(a), where the summa-

tion in Eq. (21) is calculated by an integral approximation

similar to that in Eq. (22). When e0 > 0, we obtain

FIG. 4. (a) Predicted RMS amplitude of thermal rippling as a function of temperature. (b) Normalized adhesion energy as a function of temperature due to the

effect of thermal rippling.
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s

s0

� f 0 �zð Þ þ kBT

4pD

f 000 �zð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gf 00 �zð Þ � b2e2

0

q
	 p

2
� arctan

be0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gf 00 �zð Þ � b2e2

0

q
0
@

1
A

2
4

3
5 (28)

if 4gf 00ð�zÞ > b2e2
0, or

s

s0

� f 0 �zð Þ þ kBT

8pD

f 000 �zð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2e2

0 � 4gf 00 �zð Þ
q

	 ln
be0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2e2

0 � 4gf 00 �zð Þ
q

be0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2e2

0 � 4gf 00 �zð Þ
q

0
B@

1
CA (29)

if 4gf 00ð�zÞ < b2e2
0. When e0 < 0, the traction is unbounded if

4gf 00ð�zÞ < b2e2
0 and only the result for 4gf 00ð�zÞ > b2e2

0 is

meaningful. Notably, the traction-separation relation

depends on the pre-strain sensitively when e0 < 0, with

decreasing strength for increasingly large compressive strain.

This again can be attributed to the effect of entropic repul-

sion due to thermal rippling that is amplified by the compres-

sive strain. Beyond a critical compressive strain, the traction

becomes all repulsive. On the other hand, when e0 > 0, the

entropic repulsion is reduced so that the maximum traction

increases with increasing strain, slowly approaching the limit

at T¼ 0 K (dashed line in Fig. 5(a)).

By setting the interfacial traction to zero, we obtain the

equilibrium average separation �z�ðe0; TÞ as a function of the

pre-strain at different temperatures, as shown in Fig. 5(b).

Similar to Fig. 3(a), there are two branches for the equilib-

rium separation at each temperature, one stable and the other

unstable (critical average separation, �zcðe0; TÞ, shown as

dashed lines). The two branches converge at a critical strain

(ec), below which no solution can be found as the traction

becomes all repulsive. Correspondingly, Fig. 5(c) shows the

effect of pre-strain on the rippling amplitude. By Eqs. (12)

and (16), the rippling amplitude at the equilibrium average

separation is obtained as

�d ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2f 0 �z�ð Þ

f 000 �z�ð Þ

s
: (30)

The rippling amplitude decreases with a tensile pre-strain

and increases with a compressive strain. As a tensile strain

tends to reduce the amplitude of thermal rippling, it reduces

the entropic repulsion and hence the equilibrium average

separation (Fig. 5(b)). The opposite is true for a compressive

strain until it reaches the critical strain (ec). The rippling am-

plitude increases rapidly near the critical strain, resembling a

buckling instability. Beyond the critical strain (e0 < ec), a

nonlinear analysis with anharmonic effects would be neces-

sary for further studies. The critical strain as predicted by the

present analysis depends on temperature through the dimen-

sionless group, kBT=D. In addition, it depends on the van der

Waals interactions and the mechanical properties of gra-

phene through two other dimensionless groups, g ¼ C0h2
0=D

and b ¼ E�h2
0=D. As T ! 0 K, the critical strain approaches

the buckling strain, eB ¼ �6
ffiffiffiffiffi
3g
p

=b; the latter was predicted

FIG. 5. Effects of pre-strain by the sta-

tistical mechanics analysis (with pa-

rameters: E*¼ 403 N/m, D¼ 1.4 eV,

C0¼ 0.242 J/m2, h0¼ 0.316 nm, and

g¼ 0.11). (a) Traction-separation rela-

tions at T¼ 300 K with different pre-

strains as indicated. The dashed line is

the traction-separation relation at

T¼ 0 K, independent of the pre-strain.

(b) Equilibrium average separation,

with a critical strain at each tempera-

ture. (c) RMS amplitude of thermal

rippling. (d) Critical strain versus tem-

perature (a stability phase diagram).
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previously by Aitken and Huang27 without considering the

effect of thermal rippling. At a finite temperature, with ther-

mal rippling, the critical strain becomes less compressive,

i.e., ec > eB, as shown in Fig. 5(d). At very high tempera-

tures, the membrane could be unstable even under a tensile

strain (e.g., ec > 0). The critical temperature noted in Fig.

3(a) is simply the temperature with a zero critical strain

(ec ¼ 0). Hence, Fig. 5(d) may be considered as a stability

phase diagram in terms of temperature and pre-strain.

By Eq. (20), the average in-plane stress in graphene is

obtained with an entropic contribution (the rippling stress) as

~r�ðe0; TÞ ¼ E�
kBT

16p2D

X
i;j

	
ði2 þ j2Þ þ E�e0L2

0

4p2D

þ 1

i2 þ j2

gf 00ð�z�Þ
16p4

L4
0

h4
0

��1

� E�
	

kBT

32pD
ln

�
1þ 4p2

gf 00ð�z�Þ
E�e0h2

0

D

�
h0

b

�2

þ 16p4

gf 00ð�z�Þ

�
h0

b

�4�
þ E�e0h2

0

4D

f 0ð�z�Þ
f 000ð�z�Þ

�
: (31)

Figure 6(a) shows that the entropic rippling stress increases

with increasing temperature, but decreases with increasing

pre-strain, following the same trend as the rippling amplitude

(Fig. 5(c)). The total stress, with the effect of in-plane ther-

mal expansion, is shown in Fig. 6(b) as a function of pre-

strain for T¼ 1000 K. Here, we have assumed that the biaxial

modulus E� of graphene is independent of temperature and

strain. Due to in-plane thermal expansion, the in-plane

stress-strain relation simply shifts downward at a finite tem-

perature before the rippling stress is taken into account. With

thermal rippling, the total stress becomes more tensile with a

slightly nonlinear dependence on the pre-strain. The effec-

tive modulus, defined as the slope of the stress-strain curve,

is lower than E� and depends on temperature, similar to the

effective modulus for a freestanding graphene as discussed

in the previous study.10

III. MOLECULAR DYNAMICS SIMULATION

The theoretical predictions by the continuum statistical

mechanics analysis in Section II are compared to MD simula-

tions using LAMMPS.40 A square-shaped graphene membrane

(L0� 20 nm) is placed on top of a flat surface as a rigid sub-

strate. The van der Waals interactions between the carbon

atoms of graphene and the substrate are specified in the form of

Eq. (1) with two parameters (C0 and h0). The energy per unit

area is converted to energy per atom by using the area per atom

in the graphene lattice, A0 ¼ 3
4

ffiffiffi
3
p

r2
0, where r0¼ 0.142 nm for

the bond length. The dimensionless parameter g is varied by

changing the reference adhesion energy C0 and equilibrium

separation h0. Here, we use two different values for h0: 0.316

and 1.0 nm; the former is predicted by DFT calculations for

graphene on SiO2,23 while the latter is taken as an upper bound

from measurements.17,41,42 The value of C0 is varied between

0.1 and 1.0 J/m2, as the typical range for the adhesion energy

from both experiments and theoretical calculations.17–23

The second-generation reactive empirical bond-order

(REBO) potential43 is used for the carbon-carbon interac-

tions in graphene. With the REBO potential, the mechanical

properties of graphene in the ground state (T¼ 0 K) have

been predicted previously44–46 as E¼ 243 N/m, �¼ 0.397,

and D¼ 1.4 eV. Although these values are different from

DFT calculations,47,48 they are used in the present study to

compare the theoretical predictions with the MD simulations.

Under an equi-biaxial pre-strain (e0), the theoretical results

depend on a dimensionless group, b ¼ E�h2
0=D. Despite the

discrepancy in the 2D Young’s modulus and Poisson’s ratio,

the biaxial modulus, E� ¼ E=ð1� �Þ, predicted by the

REBO potential (E� � 403 N/m) is in close agreement with

DFT (E� � 406 N/m). The bending modulus (D) is also in

close agreement with DFT (�1.5 eV).45,47

MD simulations are performed in the NVT ensemble

with periodic boundary conditions, where the temperature is

controlled by the Nose-Hoover thermostat. The equi-biaxial

pre-strain e0 is applied to the graphene membrane by

simultaneously changing the two in-plane dimensions as

L ¼ L0ð1þ e0Þ, where L0 is the side length of the square-

shaped membrane in the ground state (T¼ 0 K). It is found

that the simulation results are independent of the membrane

size as long as L0 � h0, and only the simulations with L0 �
20 nm (see Fig. 1) are presented. Periodic boundary condi-

tions are applied in all three directions. The thickness dimen-

sion of the simulation box is set to be 20 nm so that it is large

enough to avoid interactions between periodic images. Each

simulation runs up to 40 ns with a time step of 1 fs. The first

10 ns is for the system to equilibrate with the prescribed

FIG. 6. (a) Predicted rippling stress as a

function of pre-strain; (b) Comparison

of the average in-plane stresses at

1000 K with and without rippling.
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temperature and pre-strain, and the subsequent 30 ns is used

for calculating the time-averaged quantities.

The normalized equilibrium average separation is calcu-

lated for each MD simulation as

�z� T; e0; gð Þ ¼ 1

Nh0

XN

i¼1

zi

* +
t

; (32)

where N is the total number of carbon atoms and hziit is the

time-averaged z-coordinate of the i-th atom. The mean am-

plitude of the out-of-plane thermal rippling is calculated by a

time-averaged RMS, namely,

�d T; e0; gð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

zi � �z�h0ð Þ2
* +

t

vuut : (33)

The average in-plane stress in graphene is evaluated by

the time-averaged 2D virial stress

r ¼ 1

L2

1

2

X
i; j

i 6¼ j

Fij 
 rj � rið Þ �
X

i

mivi 
 vi

+
t

;

*
(34)

where Fij is the interatomic force between two carbon atoms

(i and j), ri is the position vector of i-th atom, vi is the veloc-

ity vector, and mi is the atomic mass.

Finally, the time-averaged interaction potential energy

(per unit area) is calculated, for which the corresponding

ensemble average can be predicted by the statistical mechan-

ics analysis as

hUIi
L2

0

� V �z�h0ð Þ þ 1

2
V00 �z�h0ð Þhd2i

¼ C0 f �z�ð Þ � f 0 �z�ð Þf 00 �z�ð Þ
f 000 �z�ð Þ

 !
: (35)

We note that the average interaction energy differs from the

effective adhesion energy defined by the Helmholtz free

energy (Eq. (26)). The latter may be calculated by the steered

MD simulations,49 which is left for future studies.

IV. RESULTS AND DISCUSSION

In this section, we compare the theoretical predictions by

the statistical mechanics analysis in Section II with the MD

simulations. First, we compare the RMS amplitude of thermal

rippling (Fig. 7(a)) and the equilibrium average separation

(Fig. 7(b)) for cases with zero pre-strain (e0¼ 0). Both

increase with increasing temperature as a result of the entropic

effect. Increasing the adhesion energy (g) reduces the rippling

amplitude and hence the entropic repulsion, leading to less

expansion in the equilibrium separation. The results from MD

simulations agree reasonably well with the theoretical predic-

tions at relatively low temperatures. At high temperatures, the

statistical mechanics analysis over-predicts the amplitude of

thermal rippling, possibly due to the harmonic approximation.

The predicted critical temperature is not observed in the MD

simulations. It is possible that the anharmonic effects not con-

sidered in the present analysis are substantial at high tempera-

tures, suppressing the rippling amplitude and delaying the

critical temperature behavior. Figure 7(c) shows the average

interaction energy between graphene and substrate, decreasing

FIG. 7. Comparison between theoreti-

cal predictions and MD (e0¼ 0): (a)

RMS amplitude of thermal rippling as

a function of temperature for different

g. (b) Equilibrium average separation

as a function of temperature. (c)

Average interaction energy between

graphene and substrate. (d) Average

in-plane stress in graphene (dashed

line for the case of no rippling). All

symbols are from MD simulations and

lines by the theoretical predictions.
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with increasing temperature. The same trend is predicted for

the effective adhesion energy (Fig. 4(b)). By Eq. (35), the nor-

malized interaction energy with U0 ¼ �C0L2
0 depends on the

rippling amplitude and the average separation. Again, the the-

oretical prediction agrees with the MD simulations at rela-

tively low temperatures.

Constrained at zero pre-strain (relative to the ground

state at 0 K), a thermal stress is induced in graphene at a fi-

nite temperature. By Eq. (20), the amplitude of thermal stress

would increase linearly with temperature if the out-of-plane

rippling is completely suppressed, as shown by the dashed

line in Fig. 7(d). While the positive 2D-CTE (a2D> 0) leads

to a compressive thermal stress, the rippling stress ~r� is ten-

sile, as predicted by Eq. (31) and shown in Fig. 6(a). As a

result, the average thermal stress in graphene becomes less

compressive and depends on the adhesive interactions with

the substrate. In contrast, for a freestanding graphene the

thermal stress was found to be tensile due to significantly

larger rippling stress.10 Figure 7(d) shows that the thermal

stresses obtained from MD simulations agree reasonably

well with the theoretical prediction up to moderately high

temperatures (�1000 K).

The effects of pre-strain are compared in Fig. 8. First, the

rippling amplitudes at four different temperatures are shown

with pre-strains ranging from �0.02 to 0.06 (Fig. 8(a)). The

results from MD simulations agree well with the predictions

for the cases with a tensile pre-strain (e0 > 0). The statistical

mechanics analysis predicts a temperature dependent critical

strain (Fig. 5(d)), beyond which the harmonic approximation

yields no meaningful result. The RMS amplitude of thermal

rippling from MD simulations increases dramatically as the

pre-strain changes from �0.01 to �0.02, indicating a critical

strain in between. Figure 9 shows the morphology of the sup-

ported graphene at 300 K with a pre-strain of �0.02, where a

zigzag buckling pattern is observed. Similar buckling patterns

are observed at other temperatures. Such a buckling phenom-

enon resembles the telephone cord blistering in thin films as a

result of biaxial compression and interfacial delamination.50

Apparently, the largest separation shown in Fig. 9 is greater

than 1 nm (�3h0), for which the van der Waals interactions

with the substrate become negligible and the graphene may be

considered as delaminated locally from the substrate. A few

recent studies have also simulated buckling of substrate-

supported graphene with a variety of morphological patterns

such as wrinkles, folds, and crumpling.51–53 However, the

transition from thermal rippling to buckling is noted for the

first time in the present study. We leave it for further studies

to determine the critical strain for this transition and its de-

pendence on the interfacial adhesion and temperature.

The equilibrium average separation as a function of the

pre-strain is compared in Fig. 8(b). The trend is similar to

the rippling amplitude because the entropic repulsion

increases with increasing rippling amplitude. The average

separation becomes much larger (�1.4 h0) at e0 ¼ �0:02, a

result of the rippling to buckling transition. Similarly, the av-

erage interaction energy is compared in Fig. 8(c), which

decreases as both the rippling amplitude and the equilibrium

average separation increase under a compressive strain.

FIG. 8. Effects of pre-strain by MD

(C0¼ 0.242 J/m2, h0¼ 0.316 nm, and

g¼ 0.11). (a) RMS amplitude of ther-

mal rippling as a function of strain at

different temperatures. (b) Equilibrium

average separation as a function of

strain. (c) Average interaction energy

between graphene and substrate. (d)

Average in-plane stress in graphene.

All symbols are from MD simulations

and lines by the theoretical predictions.
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After the buckling transition, the average interaction energy

drops dramatically to less than 80% of the reference value

(U0 ¼ �C0L2
0) at e0 ¼ �0:02. The comparisons in Figs.

8(a)–8(c) show that the theoretical predictions in Section II

are reasonable for the cases with relatively low temperatures

(T< 1000 K) and subcritical pre-strains (e0 > �0:01).

Figure 8(d) compares the normalized in-plane stress of

graphene. As noted in Fig. 6(d), the average in-plane stress

is subject to two competing effects. Relative to the stress-

strain relation at 0 K, the stress becomes more compressive

at a finite temperature (T> 0 K) due to the positive lattice

expansion but becomes less compressive due to thermal rip-

pling. The two effects combine to give a weak temperature

dependence for the in-plane stress-strain relation of the sup-

ported graphene. The results from MD simulations agree

with the theoretical predictions when the strain is small

(�0:01 < e0 < 0:01) for temperatures up to 1000 K. At

larger tensile strains (e0 > 0:01), the stresses from MD sim-

ulations are lower because of the intrinsic elastic nonlinear-

ity of graphene as discussed in previous studies.10,44,48 At

larger compressive strains (e.g., e0 ¼ �0:02), the compres-

sive stress is largely relaxed due to buckling and becomes

nearly independent of temperature.

We conclude this section by commenting on the major

differences between substrate-supported graphene and free-

standing graphene. For freestanding graphene (g ¼ 0), as

shown in the previous study,10 the rippling amplitudes from

MD simulations are considerably lower than the predictions

by the harmonic analysis (even at low temperatures) and

depend on the size of the graphene membrane by a power

law instead of the linear scaling predicted by the harmonic

approximation. For supported graphene with adhesive inter-

actions (g > 0), the rippling amplitudes are independent of

the membrane size as long as L0 � h0, and the harmonic

approximation becomes more applicable since the rippling

amplitude is much smaller than freestanding graphene. The

comparisons in Figs. 7 and 8 suggest that the theoretical pre-

dictions by the harmonic approximations are reasonable as

long as the rippling amplitude is relatively small (e.g.,

�d=h0 < 0:1). In case with g ¼ 0:11, the applicable tempera-

ture range is up to 1000 K with the pre-strain e0 > �0:01.

V. SUMMARY

Thermal rippling of a substrate-supported graphene

depends on the adhesive interactions between graphene and the

substrate, and the statistical nature of thermal rippling leads to

an entropic effect on the graphene-substrate interactions. This

inter-relationship between thermal rippling and adhesion is the-

oretically analyzed by a continuum statistical mechanics analy-

sis under harmonic approximations. Comparisons with MD

simulations show that the theoretical predictions on the rippling

amplitude, the equilibrium average separation, and the average

interaction energy are reasonable up to moderately high tem-

peratures, when the rippling amplitude is relatively small. Of

particular interest is the entropic effects of thermal rippling that

lead to an effective repulsion, and as a result, the equilibrium

average separation increases and the effective adhesion energy

decreases with increasing temperature. Moreover, the presence

of a biaxial pre-strain in graphene could either reduce or

amplify the thermal rippling and the entropic effects, depend-

ing on the sign of strain (tensile or compressive). A rippling-to-

buckling transition is predicted and observed in MD simula-

tions beyond a critical compressive strain. These theoretical

and numerical results shed light on the commonly observed

morphological features (wrinkles, buckles, and folds) in

substrate-supported graphene and other 2D materials, and, in

particular, on the effects of adhesive interactions and tempera-

ture. Further studies would extend the statistical mechanics

analysis to account for the anharmonic effects and consider

more realistic substrate surfaces with roughness.
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