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Abstract

The present study provides a theoretical framework for the inhomogeneous deformation in
metallic glasses. The free volume concentration is adopted as the order parameter, which is a
function of position and time. The three processes that can change the local free volume concen-
tration are di4usion, annihilation, and stress-driven creation. The rate functions for free volume
generation and plastic 5ow depend on the underlying microscopic model, but the framework is
generally valid for di4erent models. A simple shear problem is solved as an example. A linear
stability analysis is performed on the basis of the homogeneous solution. An inhomogeneous
solution is obtained with a 6nite amplitude disturbance to the initial free volume distribution.
Numerical simulation shows the development of the inhomogeneous deformation and strain
localization. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Metallic glasses, also known as amorphous metals, di4er from ordinary metals in that
their atoms do not assemble on a crystalline lattice. Since the 6rst amorphous metal
was formed from the liquid state of an Au–Si alloy by the fast quenching technique
(Klement et al., 1960), a great number of amorphous metals have been produced
during the last three decades. Prior to the development of bulk metallic glasses, very
high cooling rates (¿105 K=s) were required to prevent crystallization and studies of
metallic glasses were con6ned to very thin ribbons or wires (Pampillo, 1975). The
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recent development of bulk metallic glasses (Johnson, 1999) has allowed mechanical
testing under a much wider range of loading conditions and has renewed interest in this
class of material. While many properties of bulk metallic glasses are still under active
investigation, it has been con6rmed that metallic glasses have a unique combination
of various properties and are suitable for many applications, ranging from sporting
equipment (Onugi et al., 1999) to MEMS (Maekawa et al., 2000).

Mechanical properties of metallic glasses have been studied for many years. Based
on 5ow data for Pd-based metallic glasses from creep tests, uniaxial compression tests,
and tensile tests, Spaepen (1977) has established an empirical deformation map. In the
range in which the material can be considered a solid, two basic modes of deformation
can be distinguished: homogeneous 5ow and inhomogeneous 5ow. Homogeneous 5ow
occurs at low stresses and high temperatures as in creep tests (Chen and Goldstein,
1972). Under uniaxial tension, a specimen thins down uniformly during deformation.
Inhomogeneous 5ow occurs at high stresses and low temperatures, where the strain
localizes in a few very thin shear bands. In uniaxial tensile tests, metallic glasses
exhibit very high yield strength compared to crystalline metals, but fracture occurs along
a single band with little global plasticity (Leamy et al., 1972). Meanwhile, fracture
toughness values ranging from 16 to 55 MPa

√
m have been measured using compact

tension and single edge notched bend geometries (Conner et al., 1997; Gilbert et al.,
1997; Lowhaphandu and Lewandowski, 1998). Even higher values of fracture toughness
of a Zr–Ti–Ni–Cu–Be bulk metallic glass have been measured by using a single edge
notched tension geometry (Flores and Dauskardt, 1999). The high fracture toughness of
metallic glasses is associated with signi6cant plastic deformation and blunting formed
by multiple shear bands and branched cracks. Multiple shear bands have also been
observed in specimens loaded under other constrained geometries, such as uniaxial
compression and bending (Pampillo, 1975; Hufnagel et al., 2000; Wright et al., 2001).
By bonding a layer of metallic glass between two ductile metal layers, Leng and
Courtney (1991) observed a high density of shear bands “trapped” between the ductile
layers under tensile loading (tensile axis parallel to the layers). Recent study of a new
class of ductile metal reinforced metallic glass matrix composites shows that organized
shear band patterns develop throughout the sample under bending, compression, and
tensile tests (Hays et al., 2000).

Some theoretical models have been put forth to explain various features of the
inhomogeneous deformation in metallic glasses. Argon (1979) has shown that 5ow
can localize in a band in which the strain rate has been perturbed, when the threshold
stress for driving the local shear transformations is altered through creation of free
volume. Steif et al. (1982) assumed an initial band of slightly weaker material in their
analysis of strain localization and shear band. However, the origin of such a band
was not considered in detail. More recently, Vaks (1991) proposed a possible mecha-
nism for the formation of shear bands in amorphous alloys at the stage preceding the
macroscopic 5ow.

To enable theoretical analysis for both the initial shear band formation and the post
shear banding deformation, we provide a general framework within the context of
continuum mechanics in the present study. In addition to the deviatoric plastic 5ow,
we introduce an inelastic dilatational strain associated with the excess free volume as
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another internal variable. Three processes compete to change the local free volume
concentration and they are di4usion, annihilation, and stress-driven creation. As an
example, a simple shear problem is studied in detail. Both homogeneous and inhomo-
geneous solutions are obtained. A linear stability analysis is performed on the basis of
the homogeneous solution. Numerical simulations of the inhomogeneous solution show
the development of localized shear deformation.

The plan of the paper is as follows. Section 2 describes the general formulation of
the framework. In Sections 3 and 4, explicit formulae for the plastic 5ow and free
volume generation are introduced based on a speci6c microscopic model. In Section 5,
we consider the simple shear problem and discuss the homogeneous solution, linear
stability analysis, and the inhomogeneous solution, respectively, in three subsections.
Finally, some concluding remarks are given in Section 6.

2. General formulation

In the absence of body forces, momentum balance requires that

�ij; j = �
92ui
9t2 ; (1)

where the summation convention is used for i; j= 1; 2; 3, and (); j denotes di4erentiation
with respect to the jth spatial coordinate. �ij are the components of the Cauchy stress
tensor, ui are the components of displacement, and � is the mass density.

Con6ning to the small deformation assumptions, the strain relates to the displacement
gradients by


ij = 1
2 (ui; j + uj; i): (2)

However, because the strain can be extremely large inside shear bands during inho-
mogeneous deformation of metallic glasses, a more precise formulation should allow
large strain. Nevertheless, Eq. (2) is used in this preliminary work.

In the present model of metallic glasses, the total strain consists of three parts: the
elastic strain 
e

ij, the deviatoric plastic strain 
p
ij, and the inelastic dilatational strain

associated with excess free volume, i.e.,


ij = 
e
ij + 
p

ij + 1
3 (�− �0)
ij; (3)

where � is the local concentration of free volume (to be de6ned shortly) and �0 is the
free volume concentration at the reference state with zero strain.

We assume the metallic glasses to be isotropic and specify the constitutive laws using
the invariants of the stress tensor, such as the mean stress and the Mises e4ective shear
stress. Dividing the stress tensor into the mean stress

�m = 1
3 (�11 + �22 + �33) (4)

and the deviatoric stress tensor

sij = �ij − �m
ij: (5)
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The Mises e4ective shear stress is

�e =
√

1
2 sijsij: (6)

Next, we specify the constitutive laws for the elastic strain, the deviatoric plastic
strain, and the inelastic dilatational strain in turn.

The elastic strain relates to the stress by Hooke’s law. For isotropic materials, we
have

�ij = 2�
(

e
ij +

�
1 − 2�


e
kk
ij

)
; (7)

where � is the shear modulus and � is Poisson’s ratio.
The 5ow of the deviatoric plastic strain, 
p

ij, is taken to be in the same direction as
the deviatoric stress tensor sij, with the 5ow rate depending on the concentration of
free volume �, the e4ective shear stress �e, and the mean stress �m, namely,

9
p
ij

9t =f(�; �e; �m)
sij
2�e

: (8)

The function f can be 6t to pure shear or uniaxial tensile tests.
The inelastic dilatational strain is associated with the change of the local excess free

volume. The excess free volume in metallic glasses is de6ned as follows. Let V be the
volume of a sample and Vd be the volume of the same sample with a dense random
packaging of atoms. The excess free volume, Vf , is the di4erence between the two
volumes, i.e., Vf =V − Vd. De6ne the concentration of free volume as

�=
Vf

Vd
: (9)

In this paper, we take � as the order parameter that describes the state of amorphous
metals. To be speci6c, the free volume concentration is a continuum 6eld, which can
be non-uniform and can evolve with time.

There are three processes that can change the local free volume concentration: dif-
fusion, annihilation, and generation. The di4usion of free volume is analogous to the
di4usion of vacancies in crystalline materials. The free volume is redistributed by dif-
fusion until it is spatially uniform. In crystalline materials, vacancies can annihilate
at certain locations, such as grain boundaries and dislocations, where the structural
requirement of crystalline translational symmetry is relaxed. In metallic glasses, this
requirement does not exist and free volume can annihilate at any position simply by the
atomic rearrangement. The annihilation of free volume decreases the total free volume
and the metallic glasses become denser after annihilation. The generation of free volume
is induced by stresses. Extra free volume can be created by a shear stress squeezing an
atom into a hole smaller than itself (Spaepen, 1977). The combined rate of annihilation
and generation of free volume, g, is taken to be a function of the local concentration
of free volume �, the e4ective shear stress �e, and the mean stress �m. Therefore, the
change of free volume concentration is governed by a di4usion–production equation:

9�
9t =D�;ii + g(�; �e; �m) ; (10)
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where the di4usivity D is a function of temperature, but is taken to be independent of
the free volume concentration and the stresses.

Eqs. (1)–(10) provide a general framework for inhomogeneous deformation in metal-
lic glasses. The speci6c functions for the plastic 5ow, f(�; �e; �m), and the production
rate of free volume, g(�; �e; �m), are discussed in the following two sections. Note
that the functions are based on a speci6c microscopic model. As theories and exper-
iments are re6ned, more appropriate functions may emerge. We will proceed within
the general framework using the existing functions and leave detailed modi6cations to
subsequent work.

3. Flow equation

Based on the free volume theory Cohen and Turnbull (1959); Turnbull and Cohen,
1961, 1970; Spaepen (1977) derived a 5ow equation for metallic glasses under a shear
stress �:

9�p

9t = 2�0 exp
[
−�v∗

vf
− OGm

kBT

]
sinh

[
��

2kBT

]
; (11)

where �p is the plastic shear strain, vf the average free volume per atom, v∗ a critical
volume (the e4ective hard-sphere volume of an atom, for example), � a geometrical
factor of order unity, �0 the frequency of atomic vibration, OGm the activation energy,
� the atomic volume, kB the Boltzmann’s constant, and T the absolute temperature.

According to Eq. (11), the plastic strain rate increases as the applied shear stress
increases. At a low stress, sinh

[
��

2kBT

] ≈ ��
2kBT

, and Eq. (11) recovers the linear Newto-
nian viscous behavior. Furthermore, the 5ow rate depends on the average free volume
per atom. At a constant stress, the strain rate is higher when the average free vol-
ume is larger. Changing the free volume can radically change the 5ow rate. Steif
et al. (1982) showed that the softening induced by increasing the free volume permits
localized deformation.

For multiaxial stress states, we replace the shear stress � in Eq. (11) with the Mises
e4ective shear stress �e. The concentration of free volume de6ned in Eq. (9) can be
approximately taken as �= vf =v∗. Thus, from Eq. (11), we obtain a formula for the
function f in the general 5ow Eq. (8) as below

f(�; �e) = 2R exp
[
−�
�

]
sinh

[
�e�

2kBT

]
; (12)

where R= �0 exp
[
−OGm

kBT

]
and 1=R de6nes a time. Using the typical values of �0 (∼ 1013

s−1); OGm (∼ 10−19 J), and kBT (∼ 5 × 10−21 J, corresponding to T ∼ 400 K), we
have R∼ 2 × 104 s−1.

Note that the 5ow rate function in Eq. (12) is independent of the mean stress, �m.
Although the earlier work conducted on thin ribbons of amorphous Pd–Cu–Si reported
a slight pressure dependence of the 5ow=fracture behavior, it was noted that there
may have been problems with alignment and gripping which facilitated deformation
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and fracture at the grip ends (Davis and Kavesh, 1975). The recent study on the
5ow and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass showed that the
5ow stress and fracture strain are essentially independent of superimposed hydrostatic
pressure over the range from 50 to 575 MPa (Lowhaphandu et al., 1999). However,
the pressure is low compared to the yield stress of metallic glasses (1–2 GPa) and
one might reasonably expect that the e4ect could only become important at higher
pressures. Flores and Dauskardt (2001) showed in their experiments a critical tensile
mean stress of 0:95 GPa and proposed a strain localization model with the e4ect of
mean stress. While the mean stress e4ect on the 5ow behavior of metallic glasses is
still under investigation, in the present study we include the e4ect in the 5ow equation
for the general scheme (Eq. (8)), but set it to be zero in the example problem.

4. Free volume creation and annihilation

The concentration of free volume plays the role as an order parameter in the present
framework. An as-prepared metallic glass is thermodynamically unstable and has a
non-equilibrium amount of free volume. The free volume is continuously being anni-
hilated by structural relaxation toward the metastable equilibrium con6guration (Taub
and Spaepen, 1980). Meanwhile, applying stresses can create free volume. In the model
by Spaepen (1977), free volume is created by an applied shear stress � and annihilated
by a series of atomic jumps, and the net rate of the change of free volume is

9vf

9t = v∗�0 exp
[
−OGm

kBT
− �v∗

vf

]{
2�kBT
Svf

(
cosh

��
2kBT

− 1
)
− 1

nD

}
; (13)

where nD is the number of atomic jumps needed to annihilate a free volume equal to
v∗, and S = 2

3
1+�
1−��.

From Eq. (13), we obtain a formula for the function g in Eq. (10), again by taking
�= vf =v∗ and replacing � with �e, namely

g(�; �e) =R exp
[
−�
�

]{
�

 P��

(
cosh

�e�
2kBT

− 1
)
− 1

nD

}
; (14)

where

 =
2
3

1 + �
1 − �

v∗

�
; P�=

��
2kBT

: (15)

Notice that the e4ect of mean stress on the creation and annihilation of free volume
has not been taken into account in Eq. (14). Equations modeling the e4ect of mean
stress on free volume have been proposed by other studies (Steif, 1983; Flores and
Dauskardt, 2001). Here, we include the e4ect in the general scheme (Eq. (10)), but
neglect it in the following analysis.

Fig. 1 schematically shows the rate function, Eq. (14), versus the free volume con-
centration for constant e4ective shear stresses. When �e = 0, there is no stress-driven
creation of free volume and the concentration of free volume decreases as the result
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Fig. 1. The combined rate function of annihilation and stress-driven creation of free volume from Spaepen’s
microscopic model.

of free volume annihilation. The rate is very small as the free volume concentration
approaches zero, but the process does not stop until the free volume concentration
is zero. However, since certain amount of free volume should exist in the metastable
equilibrium con6guration to allow plastic 5ow, a better formula would have a non-zero
equilibrium value of the free volume concentration. When �e �= 0, there exists a steady
state, at which the stress-driven creation and the annihilation are balanced. The steady
state value of the free volume concentration, �E, increases as the e4ective shear stress
increases.

A comparison of the production rate in Eq. (14) with the di4usion term in the
right-hand side of Eq. (10) de6nes a length:

l=

√
D
R
: (16)

Thus, the di4usivity D takes the form

D= �0 exp
[
−OGm

kBT

]
l2: (17)

Eq. (17) has the same form as the di4usivity for vacancies in crystalline materials,
where the length scale is comparable to the diameter of atoms. Assuming the similar
mechanism for the di4usion of free volume, we estimate l ∼ 0:1 nm. However, the
mechanisms of free volume di4usion in metallic glasses are not well understood; in
particular, it is not clear that the free volume di4uses by a vacancy-like mechanism.

5. Example: simple shear problem

Consider a layer of width 2h (h�l) in the x direction, as shown in Fig. 2. The
dimensions of the layer in the y and z directions are much larger than h and are
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Fig. 2. Geometric con6guration of a simple shear problem.

assumed to be in6nity. The layer is loaded with a constant average shear strain rate.
The strain rate is assumed to be low, falling in the quasi-static range, such that we
can neglect the inertial term in the momentum equation, Eq. (1).

Under the quasi-static assumption, the force equilibrium requires that the shear stress
be spatially uniform but time-dependent, i.e., �= �(t). As the shear stress creates more
free volume, the sample dilates. When the dilation is non-uniform across the layer,
geometric constraint will induce normal stresses in the y and z directions. The stresses
are assumed equal in both directions, i.e., �yy = �zz = �(x; t), and the total stress after
integrating across the layer is zero∫ h

−h
�(x; t) dx= 0: (18)

In the x direction, the material dilates freely with no constraint and the normal stress
is zero. Under such a stress state, the e4ective shear stress is

�e =
√
�2 + 1

3�
2: (19)

The total shear strain, �, consists of the elastic strain, �e, and the plastic strain, �p.
The elastic shear strain relates to the shear stress by Hooke’s law, and the plastic strain
5ows according to Eq. (8). Thus, the total shear strain rate is

9�
9t =

1
�

d�
dt

+ f(�; �e)
�
�e
: (20)
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The average shear strain rate is

r =
1
2h

∫ h

−h

9�
9t dx: (21)

Integration of both the sides of Eq. (20) with respect to x from −h to h leads to

d�
dt

= �

[
r − 1

2h

∫ h

−h
f(�; �e)

�
�e

dx

]
: (22)

We assume that, by the geometric constraint, the normal strains are equal in the y
and z directions and they are spatially uniform, i.e., 
yy = 
zz = 
(t). The normal strain
consists of the elastic strain, the plastic strain, and the dilatational strain associated
with free volume. The total normal strain rate is

d

dt

=
1 − 2�

2�
9�
9t + f(�; �e)

�
6�e

+
1
3
9�
9t : (23)

By integrating both the sides of Eq. (23) with respect to x from −h to h and applying
Eq. (18) for the 6rst term at the right-hand side, we obtain

d

dt

=
1
2h

∫ h

−h

[
f(�; �e)

�
6�e

+
1
3
9�
9t

]
dx: (24)

Assuming that the concentration of free volume is uniform along the y and z direc-
tions but varies along the x direction, Eq. (10) becomes

9�
9t =D

92�
9x2 + g(�; �e): (25)

Eqs. (22)–(25) are coupled together and have to be solved simultaneously for the
shear stress, the normal strain, the normal stress, and the free volume concentration.
The shear strain can be computed from Eq. (20) after solving the coupled equations.

5.1. Homogeneous deformation

If the initial distribution of the free volume is uniform across the layer, there exists a
set of homogeneous solutions to Eqs. (22)–(25) and the deformation is homogeneous,
i.e.,

�h = rt; (26a)

�h = 0; (26b)

d�h
dt

= �[r − f(�h; �h)]; (26c)

d
h
dt

= 1
3g(�h; �h); (26d)

d�h
dt

= g(�h; �h): (26e)
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The shear strain in the above homogeneous solution is uniformly distributed, increas-
ing linearly with time at the prescribed constant strain rate. Since the deformation is
homogeneous, the normal stress due to the geometric constrain is zero and the normal
strain is purely dilatational. The variations of the shear stress and the free volume con-
centration with time are obtained by numerically integrating Eqs. (26c) and (26e) for
the given strain rate, r. The solution is similar to that obtained by Steif et al. (1982)
except for the normal strain in Eq. (26d).

Fig. 3a shows the stress–strain curve of the homogeneous deformation and Fig. 3b
shows the concentration of free volume versus the shear strain for normalized strain rate
r=R= 10−6. The initial concentration of free volume is taken to be 0.008 and the initial
stress is zero. The material parameters used in the calculations are: P�= 120; �= 0:15;
 = 1; nD = 3. The shear stress drops after an initial elastic response and the free
volume concentration increases concurrently, indicating a homogeneous softening of
the material. The homogeneous deformation eventually reaches a steady state, at which
both the free volume concentration and the shear stress are constant and the metallic
glass 5ows like a liquid. The steady state values of the shear stress and free volume
concentration correspond to the steady state point in Fig. 1 and depend on the prescribed
strain rate.

5.2. Linear stability analysis

The stability of the homogeneous deformation may be investigated by seeking an
inhomogeneous solution with small perturbations from the homogeneous solution

�= �h + 
�(t) sin(kx); (27a)

�= �h + 
�(t) sin(kx); (27b)

�= �h + 
�(t) sin(kx); (27c)

where k is the wave number of the perturbations, and (
�; 
�; 
�) denote the amplitudes
of the perturbations, assumed to be small compared to (�h; �h; �h). The shear stress �
and the dilatational strain 
 are required to be homogeneous and have no perturbations.
This method is commonly used when the homogeneous solution is time-independent;
however, it has been employed in time-dependent cases by Clifton (1980), Bai (1982),
and Fressengeas and Molinari (1987) for thermo-plastic instability analysis. In those
cases, it is assumed that the growth rate of the perturbation is much greater than the
rate of the homogeneous solution.

Substitutions of Eq. (27) into Eqs. (25), (20), and (23), and retaining only the 6rst
order terms of 
�; 
�, and 
� lead to

d
�
dt

=
[
9g
9� − k2l2

]

�; (28a)

d
�
dt

=
9f
9� 
�; (28b)
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Fig. 3. Results from the homogeneous solution of the simple shear problem with normalized strain rate
r=R= 10−6: (a) shear stress versus shear strain; (b) free volume concentration versus shear strain.

d
�
dt

= − f(�h; �h)
6�h


� − 1
3

[
9g
9� − k2l2

]

�; (28c)

where 9g=9� and 9f=9� are evaluated at the homogeneous solution, (�h; �h). The time
t in Eq. (28) has been scaled by 1=R and the rate functions, f and g, have been scaled
accordingly by R.

From Eq. (28a), the perturbation to the concentration of free volume will amplify
if (9g=9�)¿k2l2. From Eq. (28b), the perturbation to the shear strain will amplify
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as the perturbation to the concentration of free volume ampli6es. From Eq. (28c), the
growth of the perturbation to the free volume concentration induces the growth of
compressive normal stress, but the amplitude of the stress decreases as the result of
relaxation through plastic 5ow.

From the above analysis, we see that the stability of the homogeneous solution de-
pends on the perturbation to the free volume concentration, which is governed by three
processes: di4usion, annihilation, and creation. The di4usion of free volume is slow
for small wave number perturbations (i.e., long wavelengths) and fast for large wave
number perturbations (i.e., short wavelengths). The annihilation of free volume mostly
depends on temperature, slow at low temperature and fast at high temperature. The
stress-driven creation of free volume is slow at low stresses and fast at high stresses.
The di4usion and annihilation processes cause the perturbation to decay, and the cre-
ation process causes the perturbation to amplify. The stability of the homogeneous
deformation is determined by the competition of these three processes.

As seen in Eq. (26) and Fig. 3, both the shear stress and the free volume concentra-
tion in the homogeneous deformation are changing over the time. Once the combination
of the shear stress and free volume satis6es the condition, (9g=9�)¿k2l2, the homoge-
neous deformation becomes unstable and the perturbations start to grow. Fig. 4 shows
the variation of 9g=9� (scaled by R) from the homogeneous solution for the normalized
strain rate r=R= 10−6. The maximum value of (9g=9�) de6nes a critical wave number
satisfying k2

c l
2 = max[9g=9�]. The homogeneous deformation is stable for k ¿kc and

unstable for k ¡kc. The critical wave number depends on the prescribed strain rate,
as shown in Fig. 5.

Note that the linear perturbation analysis is only valid for a short time after instability
and cannot predict the whole process of inhomogeneous deformation. Eqs. (22)–(25)
must be solved numerically for the complete solution of inhomogeneous deformation.

5.3. Inhomogeneous deformation

The deformation of the metallic glass layer will be inhomogeneous if the initial free
volume is not uniformly distributed. In practice, the non-uniform distribution of free
volume may be the result of quenching processes or due to thermal 5uctuation. Assume
a 6nite amplitude disturbance in the form of a Gauss function is added to the initial
distribution of free volume, i.e.,

�(x; 0) = �i + 
 exp
[
− (x − x0)2

(2

]
; (29)

where �i is a constant, 
 is the amplitude of the disturbance, x0 is the location, and
( is the characteristic half width. It is assumed that (�h such that the boundaries
of the layer at x= ± h are far away from the disturbance and therefore, have little
e4ect on the evolution of the disturbance. In the following numerical simulation, we
take �i = 0:008; 
= 0:001; x0 = 0; (= 100l, and h= 2000l. The stresses and strains
are assumed to be zero in the initial con6guration.

Eq. (25) is solved by the 6nite element method and a semi-implicit algorithm is used
for the time integration. The integrations with respect to x in Eqs. (22) and (24) are
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Fig. 4. Variation of 9g=9� (scaled by R) from the homogeneous solution of the simple shear problem.
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Fig. 5. Stability analysis of the homogeneous deformation: critical wave number versus shear strain rate.

computed by the Gaussian quadrature. Since the boundary of the layer is far away from
the disturbance (h�(), the free volume is uniformly distributed near the boundaries
and 9�=9x= 0 is assumed at the boundaries. At each time step, the shear stress and
the free volume concentration at the next time step are computed from Eqs. (22) and
(25), respectively, using the values at the current time step; then, the normal strain is
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Fig. 6. Results from the numerical simulation of the inhomogeneous deformation: distributions of (a) free
volume concentration, (b) shear strain and (c) normal stress.

computed from Eq. (24), after which the normal stress is computed at each integration
point from Eq. (23); the shear strains at the integration points are computed from
Eq. (20) although it is not necessary for the computations at the next time step.

Figs. 6 and 7 show the results of a numerical simulation of the inhomogeneous
deformation with the prescribed average shear strain rate r = 10−6R. Fig. 6a shows
the distributions of the free volume at di4erent time steps, where the time is indicated
by the average shear strain, �ave = rt. Figs. 6b and c show the distributions of the
shear strain and the normal constraining stress. Fig. 7 shows the shear stress versus
the average shear strain. At the initial stage of the deformation, the stress is low
and the change of the free volume is dominated by the di4usion and annihilation
processes. At this stage, the amplitude of the initial disturbance to the free volume
concentration decays, the deformation is nearly homogeneous and elastic. As the shear
stress increases, the creation process of the free volume becomes more signi6cant.
The amplitude of the disturbance starts to grow at �ave ≈ 0:04, when the creation
process starts to dominate the di4usion and annihilation. As shown in Fig. 6a, the
free volume concentration at the center of the disturbance grows much faster than it
does elsewhere. Meanwhile, the shear strain grows rapidly at the center, but increases
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Fig. 7. Variation of the shear stress from the numerical simulation of the inhomogeneous deformation with
r=R= 10−6. The dashed line is from the corresponding homogeneous solution.

slowly and even decreases at the other location, which develops a localized distribution
of the shear deformation, as shown in Fig. 6b. The inhomogeneous growth of the free
volume causes inhomogeneous dilatation of the material, which in turn causes the
constraining normal stress, as shown in Fig. 6c. The normal stress is relatively small
comparing to the shear stress. As the free volume and shear strain start to localize,
the shear stress drops abruptly from a maximum stress, as shown in Fig. 7. As the
shear stress drops to a lower level, the di4usion and annihilation processes regain the
dominance against the creation process and eventually stop the localization process.
Similar behaviors have been observed in the uniaxial compression tests, where shear
bands formed, propagated, and then stop (Wright et al., 2001). Finally, the deformation
approaches the homogeneous steady state and the distribution of free volume becomes
uniform.

The results of the numerical simulation are sensitive to several parameters. For in-
stance, very di4erent behavior can be obtained if a di4erent value of � in Eqs. (12) and
(14) is used, or if a di4erent value of the initial free volume concentration (�i) is used.
In some cases, the localization of free volume is so severe that the shear stress drops
to zero before the localization stops, a di4erent behavior as observed in the uniaxial
tensile tests.

6. Concluding remarks

A framework for inhomogeneous deformation in metallic glasses has been presented.
The free volume concentration is adopted as the order parameter of the amorphous
material systems. The speci6c rate functions for the free volume generation and plastic
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5ow depend on the underlying microscopic model, but the framework is generally valid
for other models.

As an example, the simple shear problem is solved. Both homogeneous and inhomo-
geneous solutions are obtained and the results are based on the chosen rate functions,
obtained from a simple extension of the microscopic model by Spaepen (1977). The
numerical simulation shows the development of the inhomogeneous deformation and
the strain localization.
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