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Abstract

A compressed elastic film on a compliant substrate can form wrinkles. On an elastic

substrate, equilibrium and energetics set the critical condition and select the wrinkle

wavelength and amplitude. On a viscous substrate, wrinkle grows over time and the kinetics

selects the fastest growing wavelength. More generally, on a viscoelastic substrate, both

energetics and kinetics play important roles in determining the critical condition, the growth

rate, and the wavelength. This paper studies the wrinkling process of an elastic film on a

viscoelastic layer, which in turn lies on a rigid substrate. The film is elastic and modeled by the

nonlinear von Karman plate theory. The substrate is linear viscoelastic with a relaxation

modulus typical of a cross-linked polymer. Beyond a critical stress, the film wrinkles by the

out-of-plane displacement but remains bonded to the substrate. This study considers plane

strain wrinkling and neglects the in-plane displacement. A classification of the wrinkling

behavior is made based on the critical conditions at the elastic limits, the glassy and rubbery

states of the viscoelastic substrate. Linear perturbation analyses are conducted to reveal the

kinetics of wrinkling in films subjected to intermediate and large compressive stresses. It is

shown that, depending on the stress level, the growth of wrinkles at the initial stage can be

exponential, accelerating, linear, or decelerating. In all cases, the wrinkle amplitude saturates

at an equilibrium state after a long time. Subsequently, both amplitude and wavelength of the
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wrinkle evolve, but the process is kinetically constrained and slow compared to the initial

growth.

r 2004 Elsevier Ltd. All rights reserved.
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transforms
1. Introduction

Recently several techniques have been developed to fabricate ordered structures at
micro- and nano-scales with thin films wrinkling on compliant substrates. Bowden et
al. (1998) deposited metal films on a thermally expanded polymer; upon cooling, the
metal films wrinkle spontaneously. They were able to generate wrinkle patterns of
complex orders over large areas by patterning polymer surfaces with bas-relief
structures or by photochemically modifying planar polymer surfaces (Huck et al.,
2000). Similar patterns were also generated by plasma oxidation of an elastomeric
polymer, where a compressively stressed thin silicate layer forms at the surface as a
result of the plasma treatment and wrinkles with wavelengths from submicrometer to
micrometers (Bowden et al., 1999; Chua et al., 2000). Yoo et al. (2002) placed an
elastomeric mold with periodic patterns on the surface of a metal/polymer bilayer
and produced various patterns upon heating to above the glass transition
temperature of the polymer, and they recently reported a spectrum of evolution of
the wrinkle patterns similar to that in a spinodal system but with a longer time scale
(Yoo and Lee, 2003). The capability of wrinkling has been demonstrated to be a
general feature of organic–inorganic hybrid multilayer systems (Muller-Wiegand et
al., 2002). Complex and ordered wrinkle patterns may offer interesting applications
in fabricating micro- and nano-scale devices. On the other hand, without any
control, wrinkling may be responsible for degradation of integrated devices
containing organic materials (Iacopi et al., 2003). Wrinkling has also been observed
in other thin film systems, such as stress relaxation of strained SiGe on a glass layer
(Hobart et al., 2000; Yin et al., 2002), laser-induced surface structures of Si covered
with oxides (Lu et al., 1996; Serrano and Cahill, 2002), compliant electrodes for
electroactive polymer actuators (Watanabe et al., 2002), stretchable interconnects for
large-area flexible electronics (Lacour et al., 2003; Jones et al., 2003), oxidation of
Al-containing alloys at high temperatures (Tolpygo and Clarke, 1998), and thermal
barrier coating under cyclic temperatures (Mumm et al., 2001). In nature, wrinkles
develop in aging human skins as well as the skin of a shriveled apple (Cerda and
Mahadevan, 2003).

The underlying mechanism of wrinkling has been generally understood as a stress-
driven instability, similar to buckling of an elastic column under compression. For a
solid film bonded to a substrate, however, the instability is constrained. Under
compression, the film may buckle and delaminate from the substrate (Hutchinson
and Suo, 1992). Alternatively, the film and the substrate stay bonded and deform
concurrently to form wrinkles. This paper is concerned with the wrinkling case only.
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If the substrate is elastic, there exists a critical compressive stress, beyond which the
film wrinkles with a particular wavelength selected by minimizing the total elastic
energy in the film and the substrate (Allen, 1969; Groenewold, 2001; Chen and
Hutchinson, 2004). If the substrate is viscous, wrinkling becomes a kinetic process
(Sridhar et al., 2001; Huang and Suo, 2002a). In this case, since the viscous substrate
does not store elastic energy, a compressed blanket film is always unstable
energetically. The viscous flow in the substrate controls the kinetics, selecting a
fastest growing wavelength. Other kinetic processes associated with wrinkling
include interfacial diffusion (Suo, 1995), nonlinear creep of substrate (Balint and
Hutchinson, 2003), and plastic ratcheting under cyclic temperatures (He et al., 2000;
Karlsson and Evans, 2001; Im and Huang, 2004).

This paper studies wrinkling of an elastic film on a viscoelastic substrate with a
relaxation modulus typical of a cross-linked polymer. As opposed to elastic and
viscous substrates in previous studies, the viscoelastic substrate has a profound effect
on both energetics and kinetics of wrinkling. The paper is organized as follows.
Section 2 outlines the model with elastic deformation of the film, viscoelastic
deformation of the substrate, and coupling between them. Section 3 presents the
equilibrium and energetics for wrinkling of an elastic film on an elastic substrate. In
Section 4, a classification of the wrinkling behavior on viscoelastic substrates is made
based on the energetics at the elastic limits, the glassy and rubbery states of the
viscoelastic substrates; the kinetics of wrinkling is then studied by linear perturbation
analyses, starting from a flat film and a wrinkled film, respectively, subjected to
intermediate and large compressive stresses. The study develops a unifying map for
wrinkling behavior of compressed elastic films on viscoelastic substrates, with elastic
and viscous substrates as two limiting cases. The results may be used to characterize
the viscoelastic properties of thin polymer films or to devise new techniques for
fabricating ordered structures at micro- and nano-scales.
2. The model

Fig. 1 schematically illustrates the structure under consideration: an elastic film of
thickness hf bonded to a viscoelastic layer of thickness H, which in turn lies on a
rigid substrate. At the reference state (Fig. 1a), the film is flat and subjected to a
biaxial compressive residual stress (i.e., s0o0). Upon wrinkling (Fig. 1b), the film
deforms elastically to relax the compressive stress, and the viscoelastic layer deforms
concurrently to maintain perfect bonding at the interface. We consider plane-strain
deformation only.

2.1. Elastic deformation of the film

We employ the nonlinear von Karman plate theory (Timoshenko and
Woinowsky-Krieger, 1987; Landau and Lifshitz, 1959) to model the elastic film.
The plane-strain elastic deformation of the film is described by a deflection w and an
in-plane displacement u. The top surface of the film is traction free, and the bottom
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Fig. 1. A schematic of the model structure: (a) reference state; (b) wrinkled state.
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surface, bonded to the substrate, is subjected to both normal and shear tractions. At
equilibrium, the pressure p (negative normal traction) and the shear traction T are,
respectively

p ¼
Efh

3
f

12ð1� n2f Þ
q4w
qx4

� N
q2w
qx2

� T
qw

qx
; ð2:1Þ

T ¼
qN

qx
; ð2:2Þ

where Ef is the Young’s modulus of the film, nf is the Poisson’s ratio, and N is the in-
plane membrane force given by

N ¼ s0hf þ
Efhf

1� n2f

qu

qx
þ

1

2

qw

qx

� �2
" #

: ð2:3Þ

Note that, both the in-plane displacement and the deflection contribute to the in-
plane membrane force and thus the relaxation of the initial compressive stress. In
particular, the nonlinear term in (2.3) accounts for the length change of the film due
to the large deflection of the film compared to its thickness.

Previous studies (Huang and Suo, 2002a, b) have shown that, while in-plane
displacement and the shear traction have some effects on wrinkling behavior, up to a
factor of 4 in some cases, including them in the analysis is tedious and often leads to
lengthy solutions not convenient for practical use. On the other hand, a common
approximation is to ignore the in-plane displacement and the shear traction (Ortiz
and Gioia, 1994; Gioia et al., 2002; Sridhar et al., 2002; Balint and Hutchinson,
2003). The nonlinearity is retained to the leading order by considering the average
length change of the film due to large deflection. Consider a sinusoidal wrinkle with
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amplitude A and wavelength L ¼ 2p=k, namely

w ¼ A cos kx: ð2:4Þ

The average membrane force is given by

Na ¼ s0hf þ
Efhf

1� n2f

1

L

Z L

0

1

2

qw

qx

� �2

dx: ð2:5Þ

Inserting (2.4) into (2.5) and then into (2.1), we obtain that

p ¼
EfA

12ð1� n2f Þhf

12ð1� n2f Þs0
Ef

k2h2
f þ k4h4

f 1þ 3
A2

h2
f

 !" #
cos kx: ð2:6Þ

It will be noted that this approximation leads to a slightly different equilibrium
wrinkle amplitude for an elastic substrate but identical amplitude for a viscous
substrate compared to previous studies. We caution that a more rigorous analysis
should include the effects of the in-plane displacement and the shear traction for
both linear and nonlinear analysis.

2.2. Viscoelastic deformation of the substrate

The substrate is assumed to be isotropic, linear viscoelastic. The stress–strain
relation takes an integral form (Christensen, 1982):

sijðtÞ ¼ 2

Z t

�1

mðt � tÞ
qeijðtÞ
qt

dtþ dij

Z t

�1

lðt � tÞ
qekkðtÞ
qt

dt; ð2:7Þ

where mðtÞ and lðtÞ are the viscoelastic relaxation moduli. For an elastic substrate,
Eq. (2.7) reduces to Hooke’s law as the relaxation moduli are independent of time.
The Latin indices take values 1, 2, and 3, and a repeated index implies summation
over 1, 2, and 3. Assuming no body force and neglecting inertia for quasi-static
deformation, equilibrium requires that

qsij

qxj

¼ 0: ð2:8Þ

Assuming small deformation, the strain-displacement relation is

�ij ¼
1

2

qui

qxj

þ
quj

qxi

� �
: ð2:9Þ

Eqs. (2.7)–(2.9) form a complete set of governing equations for linear viscoelasticity.
Consider plane-strain deformation of the substrate. The initial condition is taken

to be stress free. The boundary conditions are

s21 ¼ S1ðx; tÞ; s22 ¼ S2ðx; tÞ at y ¼ 0; ð2:10Þ

u2 ¼ u1 ¼ 0 at y ¼ �H : ð2:11Þ

Condition (2.11) assumes fixed boundary at the bottom, and (2.10) assumes a normal
and a shear tractions at the top surface. To specialize, we consider the following
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tractions:

S1ðx; tÞ ¼ A1ðtÞ sin kx; ð2:12Þ

S2ðx; tÞ ¼ A2ðtÞ cos kx; ð2:13Þ

where k is the wave number of the periodic traction, and A1 and A2 are the time-
dependent amplitudes.

We solve the above viscoelastic boundary value problem by the integral transform
method (Christensen, 1982). The Laplace transform of (2.7) is

�sijðsÞ ¼ 2s �mðsÞ��ijðsÞ þ s�lijðsÞ��kkðsÞdij ; ð2:14Þ

where a bar over a variable designates its Laplace transform, and s is the transform
variable. The Laplace transforms of Eqs. (2.8) and (2.9) have the same form as their
originals and are not repeated. The Laplace transform of the boundary conditions are

�s21 ¼ �A1ðsÞ sin kx; �s22 ¼ �A2ðsÞ cos kx at y ¼ 0; ð2:15Þ

�u2 ¼ �u1 ¼ 0 at y ¼ �H: ð2:16Þ

The solution to the Laplace transformed viscoelastic problem can be obtained
directly from the solution to the corresponding elastic problem by replacing the elastic
moduli m and l with s �m and s�l, respectively, the so-called elastic–viscoelastic
correspondence principle. The final solution will be realized upon inverting the
transformed solution. For the present problem, the corresponding elastic solution is
presented in Appendix A, from which we obtain the Laplace transformed
displacements at the surface of the substrate (i.e., y ¼ 0)

�u1ðx; 0; sÞ ¼
1

2 ks �mðsÞ
½g11ðs�n; kHÞ �A1ðsÞ þ g12ðs�n; kHÞ �A2ðsÞ� sinðkxÞ; ð2:17Þ

�u2ðx; 0; sÞ ¼
1

2 ks �mðsÞ
½g21ðs�n; kHÞ �A1ðsÞ þ g22ðs�n; kHÞ �A2ðsÞ� cosðkxÞ; ð2:18Þ

where the dimensionless coefficients gij are given by (A.13)–(A.15) with k ¼ 3� 4s�nðsÞ
and �nðsÞ is the Laplace transform of the Poisson’s ratio of the substrate.

The coupling between (2.17) and (2.18) indicates that, in general, the surface of the
substrate undergoes both out-of-plane and in-plane displacements, even in the cases
with no shear tractions at the surface. Only in one special case, when the substrate is
infinitely thick (kH ! 1) and incompressible (n ¼ 0:5), g12 ¼ g21 ¼ 0, are the two
equations decoupled. Nevertheless, in the same spirit of approximation taken for the
elastic deformation of the film, we neglect the in-plane displacement at the surface of
the substrate. Thus, (2.18) becomes

�u2ðx; 0; sÞ ¼
g22ðs�n; kHÞ

2ks �mðsÞ
�S2ðx; sÞ: ð2:19Þ

The inverse Laplace transform of (2.19) leads to a relation between the normal
traction at the surface and the out-of-plane surface displacement, which will be
coupled with the elastic deformation of the film as below.
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2.3. Coupling between the film and the substrate

Assuming that the film and the substrate are perfectly bonded at the interface, the
displacements and the tractions are continuous across the interface, namely

u2ðx; 0; tÞ ¼ wðx; tÞ; ð2:20Þ

S2ðx; tÞ ¼ �pðx; tÞ: ð2:21Þ

The above conditions, together with (2.6) and (2.19), form a coupled problem that is
nonlinear and time-dependent.
3. Elastic substrates: equilibrium and energetics

Wrinkling of an elastic film on an elastic substrate has been studied previously
(e.g., Allen, 1969; Groenewold, 2001; Chen and Hutchinson, 2004). Here we rederive
the essential results, which play several roles in the present study. For an elastic
substrate, as a special case, the inverse transform of (2.19) gives

u2ðx; 0Þ ¼
g22ðn; kHÞ

2km
S2ðxÞ; ð3:1Þ

which is the equilibrium condition of the substrate. Applying the continuity
conditions (2.20) and (2.21) and the equilibrium condition of the film (2.6), we obtain

Ae ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2f

q
k

�
s0
Ef

�
ðkhf Þ

2

12ð1� n2f Þ
�

2

g22

m
Ef

1

khf


 �1=2
; ð3:2Þ

where Ae designates the equilibrium amplitude of the wrinkle. Note that the
equilibrium amplitude (3.2) is slightly larger than that obtained from energy
minimization (e.g., Eq. (B.8) in Appendix B). The difference is due to the
approximation made in the equilibrium analysis, where the average membrane
force (2.5) is used. A more rigorous analysis would require a non-sinusoidal wrinkle
at equilibrium, which will not be pursued here. Interestingly, the equilibrium
amplitude reduces to that for a pure viscous substrate by setting m ¼ 0 (Huang and
Suo, 2002a, b). Also note that (3.2) includes the effect of substrate thickness through
the coefficient g22, given by (A.14) in Appendix A. Fig. 2 plots the coefficient as a
function of H/L, the ratio between the substrate thickness and the wrinkle
wavelength (L ¼ 2p=k), for various Poisson’s ratios of the substrate. Evidently,
the effect of substrate thickness diminishes if H=L41. At the limit of a thick
substrate, the coefficient depends on the Poisson’s ratio of the substrate as
g22 ¼ 2ð1� nÞ.

The three terms in the bracket of (3.2) compete to determine the stability of the
film. The first term, positive for a compressed film (s0o0), promote wrinkling to
relax the in-plane compression. The second term, always negative, disfavors small
wavelength wrinkles due to the flexural rigidity of the film. The third term, also
negative, disfavors long wavelength wrinkles due to the elastic constraint of the
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substrate. The film is flat and stable if the last two terms win the competition over the
first term for all wavelengths. Otherwise, the film forms wrinkle at an intermediate
wavelength. Fig. 3 plots the equilibrium wrinkle amplitude as a function of
wavelength for three different combinations of film stress and substrate stiffness. For
each combination, there exists a wavelength window, within which a non-zero
equilibrium amplitude exists. Outside the window, the equilibrium amplitude is zero.
The window shrinks as the substrate modulus increases and/or the compressive film
stress decreases. A critical condition exists, under which the equilibrium amplitude is
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zero for all wavelengths and a flat film is stable. The stability condition can be
obtained by setting the maximum amplitude of (3.2) to zero, which in general takes
the form

f
s0
Ef

;
m

Ef
;
H

hf
; n; nf

� �
¼ 0: ð3:3Þ

For the limiting case of a thick substrate (H ! 1), the critical condition reduces to

s0
Ef

� �3

þ
9

16 1� n2f
� 


1� nð Þ
2

m
Ef

� �2

¼ 0: ð3:4Þ

For the other limiting case of a thin substrate (H ! 0), the critical condition reduces
to

s0
Ef

� �2

�
2 1� nð Þ

3 1� n2f
� 


ð1� 2nÞ
m

Ef

hf

H
¼ 0: ð3:5Þ

Fig. 4 plots the critical condition in the plane of the normalized film stress, s0=Ef ,
versus the stiffness ratio, m=Ef , for various thickness ratios between the substrate and
the film. Each line divides the plane into two regions: below the line, the flat film is
stable; above the line, the film wrinkles. For given film and substrate materials, the
critical condition predicts the minimum compressive stress for the film to wrinkle.
For a given compressive stress in the film, the critical condition predicts the
maximum substrate stiffness for the film to wrinkle. The close form solutions for the
limiting cases are plotted in Fig. 4: Eq. (3.4) as dashed lines and Eq. (3.5) as dotted
lines for H=hf ¼ 0:1. We observe that, for the thickness ratio bigger than 10, the
substrate thickness has little effect on the critical condition, and (3.4) can be used. On
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Fig. 4. Critical condition of wrinkling for elastic films (nf = 0.3) on elastic substrates (n = 0.45) with

various thickness ratios. The dashed line is for the limiting case of thick substrates (Eq. 3.4), and the dotted

line is for the limiting case of thin substrate (Eq. 3.5) with the thickness ratio H=hf ¼ 0:1.
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the other hand, because a fixed boundary condition has been assumed at the bottom
of the substrate, a thinner substrate provides more constraints for wrinkling, and
thus larger critical stress. Alternatively, if the bottom of the substrate were free of
tractions, the effect of substrate thickness would be the opposite.

The above solution is obtained from equilibrium consideration, which predicts the
stability condition and the equilibrium wrinkle amplitude. For a blanket film, there
exist infinitely many equilibrium states, with intermediate wavelengths bounded by
two limits as shown in Fig. 3. Equilibrium does not select a particular wavelength. As
in the case of a solid bar under compression, the buckling wavelength depends on the
boundary condition and minimizes the strain energy. For a blanket film without any
in-plane boundary condition, an energetic consideration selects the wavelength that
minimizes the total free energy. Appendix B presents an energetic analysis, which
selects a wavelength, Lm ¼ 2p=km, with km in the form of Eq. (B.9). The wavelength
is a function of the moduli, Poisson’s ratios, and thicknesses of both the substrate
and the film, but independent of the compressive stress. Fig. 5 plots the selected
wavelength as a function of the stiffness ratio, m=Ef , for various thickness ratios. The
corresponding equilibrium amplitude increases as the compressive stress in the film
increases, as shown in Fig. 6. The amplitude is zero below a critical stress and
increases monotonically as the substrate stiffness decreases. The critical stress can be
obtained from the critical condition, Eq. (3.4) for a thick substrate.

The equilibrium and energetics analyses above predict the stability condition,
selected wrinkle wavelength and amplitude for elastic films on elastic substrates,
which agrees with previous studies for the limiting case of thick substrates (e.g.,
Allen, 1969; Groenewold, 2001) and, in addition, includes the effect of substrate
thickness and Poisson’s ratio.
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4. Viscoelastic substrates: classification and kinetics

For a viscoelastic substrate, the relaxation modulus, mðtÞ, is a function of time
(Fig. 7), with the glassy modulus mð0Þ ¼ m0 and the rubbery modulus mð1Þ ¼ m1.
For a typical cross-linked polymer, the modulus varies by four orders of magnitude:
m0 
 109 Pa and m1 
 105 Pa. In general, the Poisson’s ratio is also a function of
time, but the time dependence is much weaker. Here we assume that the Poisson’s
ratio is a constant, independent of time. Wrinkling of an elastic film on such a
viscoelastic substrate becomes a kinetic process. Nevertheless, a classification of the
wrinkling behavior can be made based on the solution for elastic substrates.

At the initial stage (t ¼ 0þ), the glassy state prevails; the critical condition (3.3)
predicts a critical film stress. For a thick substrate, from Eq. (3.4), the critical stress is

sc0 ¼ �Ef
9

16ð1� n2f Þð1� nÞ2

 !1=3
m0
Ef

� �2=3

: ð4:1Þ

At time t ¼ 1, the rubbery state prevails, and the critical stress is

sc1 ¼ �Ef
9

16 1� n2f
� 


1� nð Þ
2

 !1=3
m1
Ef

� �2=3

: ð4:2Þ

For a typical cross-linked polymer, the two critical stresses differ by two orders of
magnitude.

We now classify the wrinkling behavior of elastic films on viscoelastic substrates.
If the compressive stress in the film is small ðjs0jojsc1j), the flat film is stable at both
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glassy and rubbery states. Consequently, the film does not wrinkle at all. On the
other hand, if the film stress is large (js0j4jsc0j), the film wrinkles immediately at the
glassy state. As time goes on, the wrinkle amplitude grows as the substrate softens.
Meanwhile, the wavelength of the wrinkle evolves, from the selected wavelength at
the glassy state to that at the rubbery state. Consider thick substrates only. From Eq.
(B.10), the selected wavelength is

L0 ¼ 2phf
1� n

6ð1� n2f Þ
Ef

m0


 �1=3
ð4:3Þ

at the glassy state, and is

L1 ¼ 2phf
1� n

6ð1� n2f Þ
Ef

m1


 �1=3
ð4:4Þ

at the rubbery state. For a typical cross-linked polymer, the wavelength increases by
more than an order of magnitude (L1=L0 
 20). For the third case, if the film stress
is intermediate (jsc1jojs0jojsc0j), the flat film is energetically stable at the glassy
state but unstable at the rubbery state. As will be shown by a kinetic analysis later,
the film starts to grow wrinkle even at the glassy state and the growth rate depends
on the viscoelastic behavior of the substrate. A viscous substrate is a limiting case,
where m0 ¼ 1 and m1 ¼ 0. Previous studies (Sridhar et al., 2001; Huang and Suo,
2002a) have shown that a compressed elastic film wrinkles kinetically on a viscous
substrate.

Fig. 8 depicts a map of the wrinkling behavior on the plane spanned by the
compressive stress in the film and the wrinkle amplitude. The two equilibrium
amplitudes at the elastic limits for the glassy and rubbery states divide the plane into
three regions. In region I, the film wrinkles instantaneously at the glassy state, a
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dynamic process. In region II, wrinkle grows gradually, a kinetic process. In region
III, wrinkles (if any) decay. In the following we focus on the kinetics of wrinkling in
region II, which is directly related to the viscoelastic behavior of the substrate.
Depending on the compressive stress in the film, the kinetic wrinkling can either start
from a flat film or start from a wrinkled film following the instantaneous wrinkling at
the glassy state. The two cases have different kinetics and will be studied separately.
4.1. Kinetics of wrinkling I: intermediate stress

Consider an elastic film subjected to an intermediate compressive stress
(jsc1jojs0jojsc0j). Start from the reference state with a flat film (Fig. 1a). Assume
a sinusoidal perturbation in the form of Eq. (2.4), now with a time-dependent
amplitude, A(t). The pressure at the film/substrate interface is given by Eq. (2.6). For
linear perturbation analysis, neglecting the higher order terms of A, we obtain

pðx; tÞ ¼
Ef

12ð1� n2f Þ
12 1� n2f
� 


s0
Ef

k2h2
f þ k4h4

f


 �
AðtÞ

hf
cos kx: ð4:5Þ

Let BðtÞ ¼ dA=dt and the corresponding Laplace transform �BðsÞ ¼ s �AðsÞ � A0,
where A0 is the initial amplitude. Applying the continuity conditions (2.20) and
(2.21) and inserting into Eq. (2.19), we obtain

�BðsÞ ¼
aEf

�mðsÞ
�AðsÞ � A0; ð4:6Þ



ARTICLE IN PRESS

R. Huang / J. Mech. Phys. Solids 53 (2005) 63–8976
where

a ¼
g22ðn; kHÞ

24ð1� n2f Þkhf
�k4h4

f �
12ð1� n2f Þs0

Ef
k2h2

f


 �
: ð4:7Þ

We have assumed that Poisson’s ratio of the substrate (n) is independent of time. The
inverse Laplace transform of Eq. (4.6) leads to an integro-differential equation
governing the growth of the perturbation. In general, numerical methods must be
used to solve the integro-differential equation. In the following, we obtain analytical
solutions for a specific viscoelastic behavior of the substrate.

Experimentally measured viscoelastic relaxation modulus mðtÞ can be interpreted
in terms of a mechanical model consisting of an array of spring-dashpot analogs in
parallel (Fig. 9). To ensure a rubbery elastic limit, one of the parallel branches must
be a spring of modulus m1, with no dashpot. Each of the other parallel branches
comprises a spring of modulus mi and a dashpot of viscosity Zi. The model leads to
the relaxation modulus

mðtÞ ¼ m1 þ
X

i

mi expð�pitÞ; ð4:8Þ

where pi ¼ mi=Zi is the relaxation parameter of one branch. The Laplace transform
of the relaxation modulus is

�mðsÞ ¼
m1
s

þ
X

i

mi

s þ pi

: ð4:9Þ

In the following, we use only the first two terms of Eq. (4.8) for the relaxation
modulus. Substituting the first two terms of Eq. (4.9) into Eq. (4.6) and rearranging
with the relation �B sð Þ ¼ s �AðsÞ � A0, we obtain

�BðsÞ ¼
aEf � m1
m0 � aEf

p1
�AðsÞ � A0; ð4:10Þ
�1
�i �∞

�1 �i

Fig. 9. A mechanical model of viscoelastic substrates.
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where m0 ¼ m1 þ m1 is the glassy modulus. The inverse Laplace transform of
Eq. (4.10) is

dA

dt
¼

aEf � m1
m0 � aEf

p1AðtÞ; ð4:11Þ

which is an ordinary differential equation that has a solution in the form of an
exponential function, namely

AðtÞ ¼ A0 exp
aEf � m1
m0 � aEf

p1t


 �
: ð4:12Þ

Equation (4.12) indicates that, at the initial stage, the wrinkle either grows or
decays exponentially, depending on the sign of the coefficient, b ¼

ðaEf � m1Þ=ðm0 � aEf Þ, which in turn depends on the compressive stress in the film
and the wrinkle wavelength. When the film stress is small (js0jojsc1j), the
coefficient is negative for all wavelengths; a flat film is stable. For an intermediate
film stress (jsc1jojs0jojsc0j), the coefficient is positive within a window bounded by
two critical wavelengths (Fig. 10). A fastest growing mode exists within the window,
which dominates the initial growth. The above linear perturbation analysis does not
apply for the case with a large film stress (js0j4jsc0j) because the film wrinkles
instantaneously at the glassy state, which will be considered in the next section.

As a limiting case, if the substrate is viscous with a constant viscosity Z, the
relaxation modulus is a delta function, mðtÞ ¼ ZdðtÞ, and Eq. (4.12) reduces to (with
m1 ¼ 0, m0 ¼ 1, and m0=p1 ¼ Z)

AðtÞ ¼ A0 exp
aEf

Z
t


 �
; ð4:13Þ

which is identical to the solution in Sridhar et al. (2001). Similarly, Eq. (4.12) can be
reduced for simpler viscoelastic models, such as Maxwell model (m1 ¼ 0) and Kelvin
model (m0 ¼ 1).
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While energetics selects the wrinkle wavelength on an elastic substrate, kinetics
selects the fastest growing mode on a viscoelastic substrate. The wavelength of the
fastest growing mode can be obtained by setting qb=qk ¼ 0, or equivalently,
qa=qk ¼ 0. For a thick substrate, we obtain

Lm ¼ phf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

Ef

ð1� n2f Þs0

s
: ð4:14Þ

Note that the wavelength of the fastest growing mode is independent of the
substrate. Namely, the kinetics selects the same wavelength whether the substrate is
viscous or viscoelastic. Differing from an elastic substrate, the kinetically selected
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wavelength depends on the compressive stress in the film. For a thin viscoelastic
substrate, the selected wavelength weakly depends on the substrate thickness and
Poisson’s ratio, as shown in Fig. 11a. Fig. 11b plots the corresponding growth rate.
A critical thickness exists, below which the growth rate is negative and a flat film is
stable. While the relaxation modulus does not play a role in selecting the fastest
growing mode, it is important in determining the corresponding growth rate. The
growth rate scales with the relaxation parameter p1 and depends on the glassy and
rubbery moduli. As shown in Fig. 12 for a thick substrate (H=hf ¼ 40), the fastest
growth rate approaches infinity as the glassy modulus decreases, entering the regime
of dynamic wrinkling as the critical stress sc0 drops below the compressive stress in
the film s0 (Region I of Fig. 8). At the other end, the growth rate approaches zero as
the rubbery modulus increases and become negative as the critical stress sc1 rises
beyond s0, entering the regime of no wrinkling (Region III of Fig. 8). The growth
rate increases as the ratio between the rubbery modulus and the glassy modulus
decreases, but the effect diminishes as the ratio drops below 0.001.

The linear perturbation analysis above is only valid at the initial stage of
wrinkling. Nonlinear analysis is necessary for long time evolution. Nevertheless, the
evolution process can be understood as follows. At the beginning, the wrinkle grows
exponentially and the fastest growing mode (Lm) dominates. The growth slows down
as the amplitude becomes large compared to the film thickness, and eventually
saturates at an equilibrium amplitude corresponding to that for an elastic substrate
with the rubbery modulus. Fig. 13 schematically illustrates the evolution of wrinkle
amplitude as a function of time. A similar behavior was shown by a nonlinear
analysis for an elastic film on a viscous substrate (Huang and Suo, 2002a), and was
experimentally observed (Yin et al., 2002). Subsequently, the wrinkle evolves toward
the energetically selected mode at the rubbery state with the wavelength L1 and the
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corresponding equilibrium amplitude. The transition of the wrinkling wavelength
from Lm to L1 is slow due to the kinetic constraint of the substrate. A similar
transition has been observed in experiments (Muller-Wiegand et al., 2002; Yoo and
Lee, 2003).

4.2. Kinetics of wrinkling II: large stress

For a film subjected to a large compressive stress (i.e., js0j4jsc0j), the film
wrinkles instantaneously to an equilibrium state at the glassy state. For a thick
substrate (H=hf ! 1), the wavelength L0 is given by (4.3), and the corresponding
equilibrium amplitude A0 is, from (3.2),

A0 ¼ hf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0
sc0

� 1

r
; ð4:15Þ

where sc0 is given by Eq. (4.1). The wrinkle grows as the viscoelastic substrate
softens over time. Assume a small perturbation, namely

wðx; tÞ ¼ ½A0 þ dðtÞ� cos
2px

L0

� �
; ð4:16Þ

where dðtÞ5A0. Substituting Eq. (4.16) into Eq. (2.6) and keeping the leading terms
of dðtÞ only, we obtain that

pðx; tÞ ¼ p0 cos k0x þ
Ef

12ð1� n2f Þ
12ð1� n2f Þs0

Ef
k2
0h2

f þ k4
0h

4
f 1þ 9

A2
0

h2
f

 !" #

�
d tð Þ

hf
cos k0x; (4.17)



ARTICLE IN PRESS

R. Huang / J. Mech. Phys. Solids 53 (2005) 63–89 81
where k0 ¼ 2p=L0, and p0 is the pressure when d ¼ 0. For a thick substrate, using
Eqs. (4.3) and (4.15), we obtain that

p0 ¼ �
m0

1� n
k0A0: ð4:18Þ

For the substrate, Eq. (2.19) gives the Laplace transform of the relation between
the surface traction and the surface displacement. Substituting Eqs. (4.16) and (4.17)
into the continuity conditions (2.20) and (2.21) and then into Eq. (2.19), we obtain
that

s�dðsÞ ¼
Ef

�mðsÞ
a�

3g22k3
0hfA

2
0

8ð1� n2f Þ

� �
�dðsÞ �

g22p0

2k0s �mðsÞ
� A0; ð4:19Þ

where a is given by Eq. (4.7). Again, we assume that the Poisson’s ratio of the
substrate is independent of time, and use the first two terms in Eq. (4.8) for the
relaxation modulus. Substituting the first two terms of Eq. (4.9) into Eq. (4.19), we
obtain that, after rearranging,

s�dðsÞ ¼
a0Ef � m1
m0 � a0Ef

p1
�dðsÞ þ

m0 � m1
m0 � a0Ef

p1

s
A0; ð4:20Þ

where

a0 ¼ a�
3g22k3

0hfA
2
0

8ð1� n2f Þ
: ð4:21Þ

At the limit of a thick substrate (H=hf ! 1), using Eqs. (4.1), (4.7), and (4.15), we
obtain

a0 ¼
m0
Ef

4� 3
s0
sc0

� �
: ð4:22Þ

Inverse transform of Eq. (4.20) leads to

dd
dt

¼
a0Ef � m1
m0 � a0Ef

p1dðtÞ þ
m0 � m1
m0 � a0Ef

p1A0: ð4:23Þ

Solving Eq. (4.23), we obtain the wrinkle amplitude as a function of time

AðtÞ ¼ A0 þ A0
m0 � m1
a0Ef � m1

exp
a0Ef � m1
m0 � a0Ef

p1t

� �
� 1


 �
: ð4:24Þ

Solution (4.24) only applies for large compressive stress (i.e., js0j4jsc0j), because
the initial equilibrium amplitude A0 would be imaginary otherwise. For an elastic
substrate (m0 ¼ m1), the wrinkle amplitude becomes a constant as expected. For a
viscoelastic substrate, depending on the stress level, there are three characteristic
growth behaviors. When a04m1=Ef , the growth is accelerating. When a0om1=Ef ,
the growth is decelerating. In between, when a0 ¼ m1=Ef , the wrinkle grows linearly
with time. The parameter a0 decreases as the stress increases, and a0om0=Ef when
js0j4jsc0j. Fig. 14 shows the three growth behaviors for an elastic film on a thick
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viscoelastic substrate (H=hf ! 1), where the stress for linear growth is given by

s�0 ¼
4

3
sc0 1�

m1
4m0

� �
: ð4:25Þ

The above linear perturbation analysis is only valid for a short time at the initial
stage of kinetic wrinkling. The wrinkle amplitude eventually saturates at the
equilibrium state corresponding to the rubbery limit. Subsequently, the wavelength
and the amplitude of wrinkle evolve simultaneously, toward the energetically
selected mode (L0 ! L1) for an elastic substrate with the rubbery modulus. The
subsequent evolution is kinetically constrained and may take a long time. A
nonlinear analysis is needed to further understand the process of mode transition.
5. Conclusion

This paper studies the wrinkling process of compressed elastic films on viscoelastic
substrates, where both energetics and kinetics play important roles. Depending on
the stress level in the film and the viscoelastic property of the substrate, the film can
be stable or unstable, and, for the unstable cases, can grow wrinkles kinetically or
first dynamically then kinetically. At different stress levels, the wrinkling kinetics is
different. Fig. 15 summarizes the wrinkling kinetics in a schematic map spanning the
glassy modulus of the substrate and the compressive stress in the film, assuming a
constant ratio between the rubbery modulus and the glassy modulus. The three
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boundary lines in the map are robustly defined by the elastic properties of the
substrate at the glassy and rubbery limits, e.g., Eqs. (4.1), (4.2), and (4.25) for thick
substrates. Of particular interest is the selection of a wavelength at the initial stage
and the transition to another wavelength after a long time. The results from the
present study may be used to characterize viscoelastic properties of thin polymer
films and to control the length scale of the ordered patterns generated by wrinkling
of an elastic film on a polymeric substrate.

The present study has focused on the wrinkling kinetics at the initial stage.
Modeling long time evolution of wrinkles requires a nonlinear analysis. Further-
more, a blanket film often wrinkles in all directions, for which the plane strain
condition does not hold. Results from nonlinear analyses on buckling blisters of
debonded films (Ortiz and Gioia, 1994, 1997; Belgacem et al., 2000, 2002) may help
subsequent studies of wrinkling on viscoelastic substrates in the nonlinear regime.
Shortly after this paper was submitted, a numerical method was developed to
simulate the evolution of two-dimensional wrinkle patterns by assuming a simplified
viscoelastic behavior for the substrate (Huang et al., 2004a, b). Comparisons
between the linear and nonlinear analyses as well as between modeling and
experiments are in progress to further understand the evolution of wrinkling
patterns.
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Appendix A. Solution to an elastic layer under periodic surface tractions

Consider an elastic layer of thickness H subjected to plane strain deformation. The
elastic boundary value problem can be solved by using the stress and displacement
potentials, following the similar procedures in Huang and Suo (2002b) for a viscous
layer. The general solution to the stresses and displacements are

s22 ¼ � ½C1 coshðkyÞ þ C2 sinhðkyÞ þ C3ky coshðkyÞ

þ C4ky sinhðkyÞ� cosðkxÞ; (A.1)

s21 ¼
C1 sinhðkyÞ þ C2 coshðkyÞ

þC3ðcoshðkyÞ þ ky sinhðkyÞÞ þ C4ðsinh ðkyÞ þ ky coshðkyÞÞ

" #

� sinðkxÞ; (A.2)

u1 ¼
1

2mk

C1 coshðkyÞ þ C2 sinhðkyÞ þ C3
1þk
2

sinhðkyÞ þ ky coshðkyÞ
� 


þC4
1þk
2

coshðkyÞ þ ky sinhðkyÞ
� 


" #

� sinðkxÞ; (A.3)

u2 ¼ �
1

2mk

C1 sinhðkyÞ þ C2 coshðkyÞ þ C3
1�k
2

coshðkyÞ þ ky sinhðkyÞ
� 


þC4
1�k
2

sinhðkyÞ þ ky coshðkyÞ
� 


" #

� cosðkxÞ; (A.4)

where k ¼ 3� 4n, m is the shear modulus, and n the Poisson’s ratio.
Assume the bottom surface is fixed and the top surface is subjected to a periodic

traction, namely

u2 ¼ u1 ¼ 0 at y ¼ �H : ðA:5Þ

s22 ¼ A2 cos kx and s21 ¼ A1 sin kx at y ¼ 0: ðA:6Þ

Applying the boundary conditions, we obtain

C1 ¼ �A2; ðA:7Þ

C2 ¼ �
ðkHÞ

2
� ð1� k2Þ=4

k cosh2ðkHÞ þ ðkHÞ
2
þ ðð1� kÞ=2Þ2

A1

�
ðk=2Þ sinhð2kHÞ � kH

k cosh2ðkHÞ þ ðkHÞ
2
þ ðð1� kÞ=2Þ2

A2; (A.8)
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C3 ¼
k cosh2ðkHÞ þ ð1� kÞ=2

k cosh2ðkHÞ þ ðkHÞ
2
þ ðð1� kÞ=2Þ2

A1

þ
ðk=2Þ sinhð2kHÞ � kH

k cosh2ðkHÞ þ ðkHÞ
2
þ ðð1� kÞ=2Þ2

A2; (A.9)

C4 ¼
ðk=2Þ sinhð2kHÞ þ kH

k cosh2ðkHÞ þ ðkHÞ
2
þ ðð1� kÞ=2Þ2

A1

þ
k cosh2ðkHÞ þ ð1� kÞ=2

k cosh2ðkHÞ þ ðkHÞ
2
þ ðð1� kÞ=2Þ2

A2: (A.10)

Substituting Eqs. (A.7)–(A.10) into Eqs. (A.3) and (A.4), we obtain the
displacements at the top surface (i.e., y = 0):

u1ðx; 0Þ ¼
1

2mk
½g11A1 þ g12A2� sinðkxÞ; ðA:11Þ

u2ðx; 0Þ ¼
1

2mk
½g21A1 þ g22A2� cos ðkxÞ; ðA:12Þ

where the dimensionless coefficients are given by

g11 ¼
1þ k
4

k sinhð2kHÞ þ 2kH

k cosh2ðkHÞ þ ðkHÞ
2
þ ðð1� kÞ=2Þ2

; ðA:13Þ

g22 ¼
1þ k
4

k sinhð2kHÞ � 2kH

k cosh2ðkHÞ þ ðkHÞ
2
þ ðð1� kÞ=2Þ2

; ðA:14Þ

g12 ¼ g21 ¼ �
ðkð1� kÞ=2Þ sinh2ðkHÞ þ ðkHÞ

2

k cosh2ðkHÞ þ ðkHÞ
2
þ ðð1� kÞ=2Þ2

: ðA:15Þ

For an infinitely thick elastic layer (kH ! 1), Eqs. (A.11) and (A.12) become

u1ðx; 0Þ ¼
1

2mk
½2ð1� nÞA1 þ ð1� 2nÞA2� sinðkxÞ; ðA:16Þ

u2ðx; 0Þ ¼
1

2mk
½ð1� 2nÞA1 þ 2ð1� nÞA2� cos ðkxÞ: ðA:17Þ

Furthermore, if the elastic material is incompressible, i.e., n ¼ 0:5, the surface
displacements reduce to

u1ðx; 0Þ ¼
1

2mk
A1 sinðkxÞ; ðA:18Þ

u2ðx; 0Þ ¼
1

2mk
A2 cosðkxÞ: ðA:19Þ

In this special case (kH ! 1 and n ¼ 0:5), the shear and normal surface
displacements are decoupled, namely, a normal traction causes only normal
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displacement at the surface and a shear traction causes only shear displacement at
the surface. In general, however, the two displacements are coupled as in Eqs. (A.11)
and (A.12).
Appendix B. Energetics for wrinkling of elastic films on elastic substrates

Consider an elastic film on an elastic substrate. Assume a sinusoidal wrinkle
(Eq. (2.4)), and neglect in-plane displacement. The elastic strain energy in the
film consists of two parts, corresponding to bending and in-plane
compression, respectively. The energy densities (energy per unit area of a flat film)
are given by

UB ¼
Efh

3
f

24ð1� n2f Þ
q2w
qx2

� �2

; ðB:1Þ

UC ¼
ð1� nÞs20hf

Ef
þ

1

2
s0hf

qw

qx

� �2

þ
Efhf

8ð1� n2f Þ
qw

qx

� �4

: ðB:2Þ

The strain energy in the substrate equals the work done by the surface traction,
namely

U s ¼
1

2
S2ðxÞu2ðx; 0Þ: ðB:3Þ

By the continuity condition (2.20) and relation (3.1), we have

U s ¼
1

g22
mkw2; ðB:4Þ

where g22 is given by (A.14).
Substituting Eq. (2.4) into Eqs. (B.1), (B.2), and (B.4) and integrating over one

period of the wrinkle and then dividing by the wavelength, we obtain the average
strain energy per unit area:

�UB ¼
Efh

3
f

48ð1� n2f Þ
k4A2; ðB:5Þ

�UC ¼
ð1� nÞs20hf

Ef
þ

1

4
s0hfk

2A2 þ
3Efhf

64ð1� n2f Þ
k4A4; ðB:6Þ

�U s ¼
1

2g22
mkA2: ðB:7Þ
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For a given wave number k, minimizing the total energy, we obtain

Ae ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1� n2f Þ

q
3k

�
s0
Ef

�
ðkhf Þ

2

12ð1� n2f Þ
�

2

g22

m
Ef

1

khf


 �1=2
; ðB:8Þ

which is slightly smaller than the equilibrium amplitude in Eq. (3.2) as noted before.
Substituting Eq. (B.8) into Eqs. (B.5)–(B.7) and further minimizing the total strain

energy with respect to k, we obtain the wave number that minimizes the total strain
energy, which takes the form

km ¼
1

hf
F

m
Ef

;
H

hf
; n; nf

� �
; ðB:9Þ

where the dimensionless number F is independent of the film stress. In the limiting
case for a thick substrate (H=hf ! 1), (B.9) reduces to

km ¼
1

hf

6ð1� n2f Þ
1� n

m
Ef


 �1=3
: ðB:10Þ

In the other limiting case for a thin substrate (H=hf ! 0), Eq. (B.9) reduces to

km ¼
1

hf

24ð1� n2f Þð1� nÞ
1� 2n

m
Ef

hf

H


 �1=4
: ðB:11Þ

The corresponding wrinkle amplitude of the selected wave number can be obtained
by substituting Eq. (B.9) into Eq. (B.8).
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