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Abstract

For noncentrosymmetric crystals, internal lattice relaxation must be considered for theoretical predictions of elastic

properties. This paper develops a molecular dynamics approach for determination of the internal relaxation displacement

in a single-layer graphene sheet under macroscopically homogeneous in-plane deformation. Based on an analytical

interatomic potential, a generally nonlinear relationship between the internal relaxation displacement and the applied

macroscopic strain is obtained explicitly from molecular dynamics simulations with a rhombic unit cell under finite

deformation. A linear relationship is derived for relatively small strains, which can be conveniently incorporated into a

continuum description of the elastic behavior of graphene. It is found that the internal relaxation has a strong effect on

theoretical elastic moduli of graphene. In addition, the relationship between elastic properties for graphene and carbon

nanotubes is discussed.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A single-wall carbon nanotube (SWCNT) can be considered as rolled up from a planar graphene sheet, with
a specific chirality and a nanoscale radius (Saito et al., 1998). The interests in carbon nanotubes for various
applications continue to grow since their discovery (Iijima, 1991). In particular, mechanical properties of
carbon nanotubes have been a focus of extensive studies, both experimentally and theoretically. Recently,
planar graphene sheets have also attracted tremendous interest for their unusual electron transport properties
(Novoselov et al., 2004; Berger et al., 2004; Y. Zhang et al., 2005; Stankovich et al., 2006). Little attention has
been paid to mechanical properties of planar graphene sheets. However, the ultimate use of graphene sheets in
integrated devices will likely require understanding of the mechanical properties that may affect the device
performance and reliability as well as the intriguing morphology (Geim and Novoselov, 2007; Meyer et al.,
2007; Van den Brink, 2007). One typically assumes that the in-plane elastic moduli of a single-layer graphene
are identical to those for the base plane of hexagonal crystal graphite. However, significant discrepancies have
e front matter r 2007 Elsevier Ltd. All rights reserved.
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been reported between theoretical predictions for in-plane Young’s modulus and Poisson’s ratio of graphene
and those derived from graphite (Arroyo and Belytschko, 2004). It has also been noted that bending of a
graphene sheet of a single atomic layer cannot be simply modeled using continuum plate or shell theories
(Arroyo and Belytschko, 2004; Huang et al., 2006). Further studies are thus necessary in order to develop a
theoretically consistent understanding for the mechanical properties of graphene as well as their relationships
with corresponding properties of carbon nanotubes.

A theoretical approach is developed in the present study to predict the in-plane elastic properties of single-
layer graphene based on an analytical interatomic potential. While similar approaches have been developed
previously (e.g., Zhang et al., 2002; Arroyo and Belytschko, 2004), we herein emphasize the internal lattice
relaxation under macroscopically homogeneous deformation and its effect on the elastic properties. In general,
the method of homogeneous deformation provides a link between atomistic interactions and macroscopic
elastic properties of crystals (Born and Huang, 1954). The Cauchy–Born rule maps an undeformed lattice to a
deformed one by assuming homogeneous deformation at the atomic scale. This, however, requires the crystal
lattice to be centrosymmetric so that internal equilibrium is maintained at every lattice point after
deformation. For non-centrosymmetric crystals, it has been established that the relative displacement of
sublattices leads to internal strain and inner elastic constants that must be accounted for in theoretical
predictions of macroscopic properties (Martin, 1975; Cousins, 1978; Tadmor et al., 1999). The term, internal

relaxation, literally reflects the fact that the internal displacement relaxes the potential energy from a
homogeneously deformed lattice. The non-centrosymmetry in the graphene lattice has been noticed in recent
studies of SWCNTs (e.g., Zhang et al., 2002; Arroyo and Belytschko, 2002, 2004; Jiang et al., 2003; H.W.
Zhang et al., 2005). In these studies, the hexagonal lattice of graphene is decomposed into two simpler
sublattices, each possessing centrosymmetry. The relative displacement between the sublattices is determined
by minimizing the strain energy density under a macroscopic deformation. However, the general relationship
between the internal displacement and the applied macroscopic strain has not been reported, with one
exception in Huang et al. (2006) where a linear relationship was derived at the limit of infinitesimal
deformation. As pointed out by Cousins (1978), the internal displacement not only contributes to the
macroscopic elastic moduli but can also be directly related to experimental observables such as optical mode
frequencies and scattering of X-rays or neutrons. The motivation of the present study is thus to obtain the
internal displacement of graphene under generally finite deformation. This paper is organized as follows.
Section 2 describes the theoretical approach combining a continuum mechanics description and a molecular
dynamics (MD) method for the determination of internal relaxation. The results are presented in Section 3,
with discussions on the effects of internal relaxation on elastic properties of both planar graphene and carbon
nanotubes. Section 4 summarizes the findings.

2. Theory and method

Fig. 1 sketches a planar graphene lattice, with rhombic unit cells. Each unit cell (e.g., ABCD) contains two
carbon atoms (P1 and P2), which replicates periodically in the directions parallel to the two base vectors, b1
and b2. While other types of unit cells have been used in previous studies, we find the rhombic cell to be most
convenient for applying the periodic boundary condition in the study of elastic deformation, as will be
described later.

2.1. Description of macroscopically homogeneous deformation

We describe a macroscopically homogeneous deformation by a constant displacement gradient tensor,
namely,

H ¼ ru. (1)

For the present study, only the two-dimensional (2D) in-plane displacements and their in-plane gradients are
considered. In general, the displacement gradient is an asymmetric tensor, with four independent components
for 2D deformation. Here we argue that, under the condition of rotational invariance, a symmetric
displacement gradient tensor is sufficient for the description of arbitrary homogeneous deformation.
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Fig. 1. Sketch of the hexagonal lattice of graphene, with the rhombic unit cell ABCD and four neighboring cells denoted by numbers 1–4.
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In classical continuum mechanics (e.g., Marsden and Hughes, 1983; Fung and Tong, 2001), the deformation
gradient, F ¼ Hþ I, maps an infinitesimal vector dX from a reference state to dx in a deformed state, i.e.,
dx ¼ FdX, where I is the identity tensor. An arbitrary deformation gradient can be decomposed into an
orthogonal rotation tensor R and a symmetric stretch tensor D (DT ¼ D) by the polar decomposition theorem,
i.e., F ¼ RD or F ¼ DR (right or left polar decomposition, respectively). For a homogeneous deformation, R
represents a rigid-body rotation. Since elasticity as a physical property of the material is invariant with respect
to any rigid-body motion, we may arbitrarily set R ¼ I to exclude the rotation. As a result, the homogeneous
deformation is fully described by the symmetric tensor D. The corresponding displacement gradient,
H ¼ D� I, is then symmetric too. Therefore, without loss of generality, any homogeneous deformation can be
described by a symmetric displacement gradient tensor. It should be cautioned that this simplification cannot
be applied to general inhomogeneous deformation where the rotation is not necessarily homogeneous
throughout the body.

Incidentally, the symmetric displacement gradient is identical to the linear strain tensor,

e � 1
2
ðHþHTÞ ¼ H. (2)

This simple relationship allows us to use the linear strain tensor as an engineering measure of arbitrary
deformation, although it is typically used for infinitesimal deformation only. As will be shown later, the use of
the linear strain tensor offers a numerically efficient procedure for both infinitesimal and finite deformation.
The relationship between the linear strain and the Green–Lagrange strain is straightforward, namely,

E ¼ eþ 1
2
e2, (3)

again under the condition of rotational invariance with R ¼ I. While commonly used in the study of finite
deformation, the nonlinear relationship makes it less convenient to directly apply the Green–Lagrange strain
to the unit cell for the present study.

Now, using the symmetric displacement gradient tensor or equivalently, the linear strain tensor, we deform
the rhombic unit cell of the graphene lattice by displacing its corners according to

uA ¼ HXA þ u0, (4)

where the subscript A refers to any one of the four corner points with XA being its position vector before
deformation, and u0 is the displacement of an arbitrarily selected point as the origin of the Cartesian
coordinate. For convenience, we select the center of the unit cell (Point O in Fig. 1) as the origin and have the
x1-axis parallel to the base vector b1. For the central unit cell under consideration, we set u0 ¼ 0 to exclude any
rigid-body translation of the lattice. For each of the neighboring cells, the displacements of the corner points
can be determined by using the same position vectors (relative to its own center) together with a translation
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displacement by the periodic boundary condition, namely,

u
ðiÞ
A ¼ HXA þHbðiÞ, (5)

where bðiÞ is the translation vector from the reference unit cell to the neighbor cell i, with i ¼ 1–4 as denoted in
Fig. 1. It can be seen that bð1Þ ¼ b1, b

ð2Þ ¼ b2, b
ð3Þ ¼ �b1, and bð4Þ ¼ �b2. Such a periodic replication of the

deformed unit cell renders the entire graphene lattice under a macroscopically homogeneous deformation with
a constant strain, e ¼ H.
2.2. Internal relaxation

While the deformation of the unit cells can be fully described by the macroscopic strain, the
displacements of individual atoms do not necessarily follow the same rule. In fact, the corner points
of each unit cell do not represent any physical atoms; they merely define the geometry of a virtual frame
for the atoms before and after deformation, essentially a continuum description without concerning the
discrete nature of the atomic structure inside the cells. Should the deformation maintain homogeneity down
to the atomic scale within each unit cell, the displacements of individual atoms could be determined in the
same manner, i.e., uP ¼ HXP for the two atoms in the reference unit cell (P1 and P2), and u

ðiÞ
P ¼ HXP þHbðiÞ

for the atoms in the neighboring cells. This would lead to deformed interatomic bonds, with changes in
both the bond lengths and the bond angles in general. However, in such a homogeneously deformed lattice,
internal equilibrium may not be maintained for each individual atom. In other words, the interatomic forces
acting on each atom may not be balanced after such a deformation. A simple thought experiment
may be instructive: applying a uniaxial strain �11 to the unit cell, as illustrated in Fig. 2(a), would stretch
the tilted bonds and change the bond angles, while the length of the vertical bond would remain unchanged
by assuming homogeneous deformation within the unit cell. After such a deformation, the interatomic
forces acting on each atom are balanced in the horizontal direction, but not necessarily so in the vertical
direction. Depending on the specific interatomic interactions, whether two-body or many-body, the internal
equilibrium must be maintained by allowing vertical displacements of the atoms that lead to stretching of the
vertical bond, as illustrated in Fig. 2(b). Meanwhile, the overall shape of the deformed unit cell remains the
same as in Fig. 2(a); thus, the deformation is still considered homogeneous at the macroscopic scale. From an
energetic point of view, the internal displacements of the atoms relax the total potential energy without
altering the macroscopic deformation. Therefore, the total displacement of each atom in general can be
Fig. 2. Illustration of a uniaxially strained unit cell: (a) without internal relaxation, the atoms are only displaced in the horizontal

direction; (b) with internal relaxation, the two atoms in the unit cell have a relative vertical displacement in addition to the horizontal

displacement.
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written as

uP ¼ HXP þ uR, (6)

where uR is the internal relaxation displacement in addition to the macroscopic term, HXP.
In early studies of crystal elasticity (e.g., Martin, 1975; Cousins, 1978), the internal displacement was defined

as the relative displacement between centrosymmetric sublattices of non-centrosymmetric crystals. This idea
has been followed in the previous studies of SWCNTs (e.g., Zhang et al., 2002; Arroyo and Belytschko, 2002,
2004; Jiang et al., 2003; H.W. Zhang et al., 2005), where two sublattices of graphene have been identified and
the internal displacement was determined by an energy minimization approach. Here, we develop a MD
approach to directly determine the internal displacement as a function of the macroscopic strain, which will be
shown to be equivalent to the energy minimization approach but with advantages in numerical
implementation for generally finite deformation.
2.3. Molecular dynamics (MD) simulation

Now we describe a mini-scale MD approach to determine the internal displacement under macroscopically
homogeneous deformation. First, the unit cell is deformed according to Eq. (4), with a symmetric
displacement gradient H or equivalently, a linear strain e noting the relation in Eq. (2). The atoms in the
deformed unit cell are displaced accordingly by Eq. (6), with uR ¼ 0 as the initial condition. Then, the MD
simulation starts by calculating the interatomic forces acting on each atom and updating their positions (i.e.,
xP ¼ XP þ uP) by the velocity Verlet algorithm (Swope et al., 1982; Haile, 1992). During the MD simulation,
the base vectors of the deformed unit cell are fixed as ðIþHÞb1;2. The deformed base vectors are used to
determine the atomic positions in the neighboring cells by the periodic boundary condition, i.e.,
x
ðiÞ
P ¼ xP þ ðIþHÞbðiÞ. Therefore, the macroscopic strain to the entire lattice remains constant during the

MD simulation while the atoms search for their equilibrium positions. Ideally, a static molecular mechanics
analysis would be sufficient for the search of the equilibrium positions. However, with generally nonlinear
interatomic interactions, the implementation of a static analysis is not necessarily trivial. On the other hand,
the implementation of the MD simulation is straightforward. Since the rhombic unit cell contains only two
atoms, the MD simulation is computationally inexpensive.

The MD approach presented here is in fact equivalent to the energy minimization method used in the
previous studies (Zhang et al., 2002; Arroyo and Belytschko, 2002, 2004; Jiang et al., 2003; H.W. Zhang et al.,
2005) by two aspects. First, the two atoms in the rhombic unit cell, respectively, belong to the two sublattices
used for energy minimization. Thus, the relative displacement of the two atoms within one unit cell is indeed
the relative displacement between the two sublattices. Second, by the principle of thermodynamics, the
internal equilibrium of the atoms is established at a state of minimum potential energy. The MD simulation
described above is essentially a searching algorithm for the equilibrium positions of the atoms inside a
deformed unit cell, which also minimize the potential energy under the imposed deformation. For this reason,
no temperature control is involved in the MD simulation. A previous study (Jiang et al., 2005) developed a
finite-temperature theory and showed that the elastic properties of graphene are insensitive to the temperature.

While the MD approach can be generally applied for any interatomic potentials, to be specific we use the
Tersoff–Brenner potential (Tersoff, 1988; Brenner, 1990) for the carbon–carbon bond in graphene. The
potential function is in the form of

V ðrijÞ ¼ VRðrijÞ � BijVAðrijÞ, (7)

where rij is the distance between atom i and atom j, VR and VA are the repulsive and attractive terms,
respectively, given by

VRðrÞ ¼
DðeÞ

S � 1
e�

ffiffiffiffi
2S
p

bðr�RðeÞÞf cðrÞ,

VAðrÞ ¼
DðeÞS

S � 1
e�

ffiffiffiffiffiffi
2=S
p

bðr�RðeÞÞf cðrÞ, ð8Þ
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and fc is a smooth cutoff function

f cðrÞ ¼

1; roRð1Þ;

1

2
1þ cos

ðr� Rð1ÞÞp

Rð2Þ � Rð1Þ

� �� �
; Rð1ÞoroRð2Þ;

0; r4Rð2Þ:

8>>><
>>>:

(9)

In addition to the pair potential terms, the parameter B
__

ij ¼
1
2
ðBij þ BjiÞ accounts for the effect of bond angles

that represents a multi-body interaction for the carbon–carbon bonds, and

Bij ¼ 1þ
X

kðai;jÞ

GðyijkÞf cðrikÞ

" #�d
, (10)

where yijk is the angle between bonds i– j and i– k, and the function G is given by

GðyÞ ¼ a0 1þ
c20

d2
0

�
c20

d2
0 þ ð1þ cos yÞ2

" #
. (11)

The second set of the parameters for the interatomic potential given by Brenner (1990) is used in the MD
simulations: D(e)

¼ 6.000 eV, R(e)
¼ 0.1390 nm, b ¼ 21 nm�1, S ¼ 1.22, d ¼ 0.50000, a0 ¼ 0.00020813, c0 ¼

330, and d0 ¼ 3.5. For a undeformed graphene sheet, these parameters lead to B
_

¼ 0:9647, and the equilibrium
interatomic bond length, r0 ¼ 0.145 nm, determined by minimizing the interatomic potential at the ground
state. By using the cutoff radii Rð1Þ ¼ 0:17 nm and Rð2Þ ¼ 0:20 nm in Eq. (9), only the nearest neighbor atoms
are included in the calculation of the potential. For a bond stretch less than Rð1Þ=r0 ¼ 1:17, the cutoff function
f c � 1 for the nearest neighbor atoms.

As an example, Fig. 3 shows the result from a MD simulation with the unit cell subjected to a uniaxial strain
�11 ¼ 0:01, as illustrated in Fig. 2. The two atoms are first displaced horizontally by u1 ¼ �0:0006279 nm with
u2 ¼ 0. At this point, the interatomic forces are balanced in the horizontal direction, while the unbalanced
interatomic forces in the vertical direction move the atoms up and down. The vertical position of one atom
(P1 in Fig. 1) is plotted as a function of time in Fig. 3; the other atom in the unit cell moves symmetrically.
Here, the mass of the carbon atom is taken to be 12 a.m.u. (atomic mass unit, i.e. 1:66� 10�27 kg), and the
time step for the MD simulation is 0.1 fs (i.e. 10�16 s). The MD simulation naturally leads to oscillation of
atoms, while the final equilibrium position of each atom can be determined as the average position that
saturates over a sufficiently long period (e.g., 10 000–50 000 steps; see Figs. 3 and 5). Since the purpose of the
MD simulation is to find the equilibrium atomic positions with the minimum potential energy, we are not
Fig. 3. Vertical position of atom P1 in the unit cell under a uniaxial strain �11 ¼ 0:01 from a MD simulation. The inset shows the

oscillation during the first 100 fs.
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concerned with the kinetic energy of the atoms, or in the other words, the temperature effect is ignored. It can
be seen from Fig. 3 that the atom oscillates like a linear spring, with a well-defined average position at
x2 ¼ 0.03596 nm, where the potential energy is minimized. Compared to the initial position x2 ¼ 0.03625 nm,
the internal relaxation leads to a vertical displacement, u2 ¼ �0.00029 nm, and an inner strain of 0.008 in the
vertical direction, which is comparable to the applied macroscopic strain in the horizontal direction
ð�11 ¼ 0:01Þ. The relative displacement between the two atoms in the unit cell (or equivalently, between the two
sublattices) is then 0.00058 nm for the present case. Apparently, the internal displacement depends on the
applied macroscopic strain as well as the specific interatomic potential used in the MD simulation. More
results will be discussed in Section 3.
2.4. Theoretical elastic moduli

Once the internal displacement of each atom is determined by the MD simulations, the total potential
energy of the unit cell can be calculated, which in general is a function of the macroscopic strain, i.e., V totðeÞ.
By the Cauchy–Born rule (Born and Huang, 1954), this potential energy equals the elastic strain energy. Thus,
the elastic strain energy density (per unit area of the undeformed graphene sheet) is

U ¼
V totðeÞ
O0

, (12)

where O0 ¼ 3
ffiffiffi
3
p

r20=2 is the area of the rhombic unit cell. Here, the linear strain tensor is used interchangeably
with the symmetric displacement gradient by Eq. (2), without loss of generality for finite deformation under
the condition of rotational invariance and macroscopically homogeneous deformation.

Within the general framework of hyperelasticity (Marsden and Hughes, 1983), the first Piola–Kirchhoff
stress is defined as the work conjugate of the deformation gradient, which is, for the homogeneous
deformation of graphene,

P ¼
qU

qH
¼

qU

qe
. (13)

Here, the use of the symmetric displacement gradient or the linear strain tensor gives a symmetric stress tensor
in Eq. (13), although in general the first Piola–Kirchhoff stress is not symmetric. The true (Cauchy) stress, r, is
related to the first Piola–Kirchhoff stress by

r ¼
1

J
PDT ¼

1

J
PðIþ eÞT, (14)

where J ¼ detðIþ eÞ is the Jacobian determinant. A tangent elastic modulus can then be defined as

C ¼
qr
qe

. (15)

Under an infinitesimal deformation, J � 1 and r � P, thus

C ¼
q2U

qeqe
. (16)

Using the reduced notation for the fourth-order modulus tensor, we have

C11 ¼
q2U

q�211
; C22 ¼

q2U
q�222

; C66 ¼
q2U
q�212

,

C12 ¼
q2U

q�11q�22
; C26 ¼

q2U
q�22q�12

; C16 ¼
q2U

q�11q�12
, ð17Þ
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and the 2D in-plane stress–strain relation for the graphene can be written as

s11
s22
s12

0
B@

1
CA ¼

C11 C12 C16

C22 C26

sym C66

0
B@

1
CA

�11

�22

2�12

0
B@

1
CA. (18)

Note that all the partial differentiations in Eq. (17) should be taken at the undeformed state, i.e., e ¼ 0, for the
elastic moduli under infinitesimal deformation. Since no particular thickness is assumed for the single atomic
layer of the graphene sheet, the unit for the stress as well as the elastic moduli is actually force per unit length
(N/m) rather than force per unit area (N/m2 or Pa). The ambiguity for the thickness of graphene and
SWCNTs has been discussed in a previous study (Huang et al., 2006).

For general finite deformation, an incremental approach can be developed to determine the tangent
modulus as a nonlinear function of the finite strain. For each increment, the linearized equation (16) can be
used together with the currently deformed state as the reference configuration for the calculations of O0 in Eq.
(12) and the partial differentiations in Eq. (17). The details will be reported elsewhere (Zhou, 2007).

We note that, by combining the description of macroscopic deformation and the MD simulations, the
present approach makes a direct link between continuum mechanics and an atomistic model. Evidently, for a
single-layer planar graphene sheet under macroscopically homogeneous deformation, the continuum
description is valid to the scale of a unit cell with two atoms, surprisingly close to the atomic scale, although
an atomistic approach must be adopted for anything inside the unit cell. This, however, cannot be generalized
to inhomogeneous deformation, where a much larger representative cell may have to be used and a mesoscopic
description may be necessary to bridge macroscopic deformation and atomistic models (Tadmor et al., 1999;
Arroyo and Belytschko, 2002).

3. Results and discussions

3.1. Internal relaxation displacements

Based on the general approach described in Section 2, MD simulations are conducted to determine the
internal displacements of individual atoms in the unit cell of the graphene lattice subjected to macroscopically
homogeneous in-plane deformation. Under the condition of rotational invariance, the symmetric
displacement gradient or the linear strain tensor has three independent components. In general, the internal
displacement nonlinearly depends on all the three components. For the convenience of discussion, we
decompose the strain tensor into three basic deformation modes as follows:

e ¼
�11 �12

�21 �22

" #
¼ �m

1 0

0 1

� �
þ �d

1 0

0 �1

� �
þ �12

0 1

1 0

� �
, (19)

where �m ¼ 1
2
ð�11 þ �22Þ and �d ¼ 1

2
ð�11 � �22Þ.

The first term on the right-hand side of Eq. (19) represents an equi-biaxial deformation with the mean
strain, and the other two terms correspond to two pure-shear modes (S1 and S2). It is found that, under an
equi-biaxial deformation, i.e., �11 ¼ �22 ¼ �m and �12 ¼ 0, the atomic bonds in the graphene lattice undergo
identical stretching in all directions with no distortion. In this case, the homogeneously deformed lattice
maintains internal equilibrium without any internal relaxation; thus, uR ¼ 0 for arbitrary �m. This is in fact a
special case where the continuum description of the homogeneous deformation is valid at the atomic scale,
even for non-centrosymmetric lattices. Next we focus our attention on internal relaxation under the two shear
deformation modes.

For deformation of the first shear mode (S1), i.e., �11 ¼ �d, �22 ¼ ��d, and �12 ¼ 0, it is found that the
internal relaxation displacement is in the x2-direction only, as the interatomic forces are always balanced in the
x1-direction under the biaxial deformation. MD simulations for mode S1 show similar atomic trajectory as
that in Fig. 3, oscillating in the x2-direction with the average position depending on the magnitude of �d. The
internal displacement, uR2, is determined by comparing the average position of the atom to its initial position
upon homogeneous deformation, which is plotted in Fig. 4 for atom P1 as a function of the strain �d; by
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Fig. 4. Internal relaxation displacement of atom P1 under mode-S1 deformation, with symbols n from MD simulations neglecting the

bond angle effect and symbols J from MD simulations including the bond angle effect. The solid straight line shows the linear fitting,

uR2 ¼ �0:5777�d ðÅÞ, for small strains.
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symmetry, the internal displacement for atom P2 is simply uR2ðP2Þ ¼ �uR2ðP1Þ. For comparison, the results
from MD simulations neglecting the effect of bond angle by setting B

_

¼ 0:9647 as a constant are also plotted
in Fig. 4. It is found that neglecting the bond–angle effect overestimates the internal displacement, especially
for large deformation. The relationship between the internal displacement and the macroscopic strain is
nonlinear in general and asymmetric for positive and negative �d. This is a reflection of the nonlinear nature of
the interatomic potential, which is asymmetric for attraction and repulsion between two atoms. For small
strains, a linear fitting of the MD results gives that

uR2 ¼ �0:5777�d ðÅÞ, (20)

which is a good approximation in the range �0:1o�do0:05.
For the second shear mode (S2), i.e., �m ¼ �d ¼ 0, we find that the internal displacement is predominantly in

the x1-direction, while the relaxation in the x2-direction is negligible for �0:1o�12o0:1. In this case, the atoms
oscillate in both x1 and x2-directions. Fig. 5 shows the oscillation of atom P1 in both directions under a shear
strain, �12 ¼ 0:01. The average position in the x1-direction has a shift from the initial position, while the shift in
the x2-direction is negligibly small. Fig. 6 compares the relaxation displacement uR1 as a function of the shear
strain �12 from the MD simulations with and without the bond angle effect. Again, neglecting the bond–angle
effect overestimates the internal displacement. The relationship between the internal relaxation displacement
and the macroscopic shear strain, while nonlinear in general, is symmetric with respect to the positive and
negative shear strains. This is a reflection of the symmetry of the graphene lattice. For relatively small shear
strains, a linear relationship can be obtained by fitting:

uR1 ¼ �0:5779�12 ðÅÞ, (21)

which agrees well with the MD results in the range �0:05o�12o0:05.
It is noted that the coefficients in the linear relations (20) and (21) are nearly identical. Indeed, it can be

shown theoretically that the six-fold symmetry of the hexagonal lattice requires identical coefficients in the
linear relations for the two shear modes under small deformation. In essence, the relationship must remain
invariant upon a rotation of 7601 for the lattice or the coordinates. This is independent of the specific
interatomic potential used in the MD simulations, while the exact value for the coefficient does depend on the
interatomic potential. The small difference between the coefficients in Eqs. (20) and (21) is believed to be
numerical rather than physical. Incidentally, a recent study by Huang et al. (2006) derived an analytical
formula for the internal relaxation under infinitesimal deformation, which predicts a coefficient of �0.5767 Å
for the linear relations using the same interatomic potential; the agreement between the present MD results
and the analytical solution is excellent in the linear regime. It should also be noted that, while internal
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Fig. 5. Oscillation of atom P1 in the unit cell under a shear strain �12 ¼ 0:01 from a MD simulation. The insets show the oscillation during

the first 100 fs.

Fig. 6. Internal relaxation displacement of atom P1 under mode-S2 deformation, with symbols n from MD simulations neglecting the

bond angle effect and symbols J from MD simulations including the bond angle effect. The solid straight line shows the linear fitting,

uR1 ¼ �0:5779�12 ðÅÞ, for small strains.

J. Zhou, R. Huang / J. Mech. Phys. Solids 56 (2008) 1609–16231618



ARTICLE IN PRESS
J. Zhou, R. Huang / J. Mech. Phys. Solids 56 (2008) 1609–1623 1619
relaxation reflects underlying symmetry of the lattice, it is intrinsically anisotropic. This can be observed by
comparing the internal displacements under pure shear deformation in different directions (modes S1 and S2
for two instances). On the other hand, as will be shown in the next section, the macroscopic elastic property of
graphene is isotropic under infinitesimal in-plane deformation, despite the anisotropic internal relaxation.

Furthermore, although the internal relaxation under the three simple deformation modes in Eq. (19) can be
analyzed separately, it should be noted that the internal relaxation under an arbitrary deformation in general
cannot be simply obtained by linear superposition. Only in the range of small deformation, where the linear
relationship between the internal displacement and the strain is applicable, should the linear superposition
apply. As will be discussed in the next section, the linear relations are indeed sufficient for the prediction of
theoretical elastic moduli under infinitesimal deformation. Nevertheless, the MD results as shown in Figs. 4
and 6 are valid for finite deformation under the simple deformation modes, and similar MD simulations can
be carried out to determine the internal relaxation under arbitrary in-plane deformation.
3.2. Effect of internal relaxation on elastic moduli

For infinitesimal deformation, the in-plane elastic moduli in Eq. (18) are calculated under three different
conditions for the purpose of comparison. First, the bond–angle effect is ignored by setting B

_

¼ 0:9647 as a
constant and no internal relaxation is included in the calculation of the potential energy. This leads to a simple
analytical result:

Cð1Þ ¼ C0

3 1 0

1 3 0

0 0 1

0
B@

1
CA, (22)

where

C0 ¼
3r20
8O0

d2VR

dr2
� B

d2VA

dr2

� �
r¼r0

. (23)

Using the parameters listed in Section 2.3, we obtain C0 ¼ 100:56N=m. The relationship among the moduli,
i.e., C11 � C12 ¼ 2C66, implies isotropic in-plane elasticity. Under a uniaxial stress (actually force per unit
length), the in-plane Young’s modulus is Eð1Þ ¼ 8

3
C0 ¼ 268:17N=m, and the in-plane Poisson’s ratio is

nð1Þ ¼ C12=C11 ¼
1
3
.

Next, including the multibody interaction through the bond–angle effect, still without considering internal
relaxation, Eq. (16) leads to

Cð2Þ ¼ Cð1Þ �
1

O0

X3
k¼1

2
qB
ðkÞ

qe
qV
ðkÞ
A

qe
þ VAðr0Þ

q2B
ðkÞ

qeqe

" #
e¼0

, (24)

where k ¼ 1–3 for the three interatomic bonds in each unit cell. Using the same set of parameters for the
interatomic potential, we now obtain that

Cð2Þ ¼

347:25 54:99 0

54:99 347:25 0

0 0 146:13

0
B@

1
CA ðN=mÞ: (25)

Again, the elastic moduli are isotropic with C11 � C12 ¼ 2C66. But the in-plane Young’s modulus Eð2Þ ¼

338:54N=m is higher than Eð1Þ, and the in-plane Poisson’s ratio nð2Þ ¼ 0:1584 is now lower than nð1Þ.
Finally, including both the bond–angle effect and the internal relaxation, we obtain that

Cð3Þ ¼ Cð2Þ �
l2

O0

C2 �C2 C3

�C2 C2 �C3

C3 �C3 C1

0
B@

1
CA, (26)
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where l ¼ �0:5778 Å is the average of the coefficients in the linear equations (20) and (21), and
C1 ¼ q2V tot=qu2

R1, C2 ¼
1
4q

2V tot=qu2
R2, C3 ¼

1
2q

2V tot=quR1quR2. Since the total potential energy is a minimum
at the zero strain, we have C1;C240 and C3 ¼ 0. Plugging in the parameters for the Tersoff–Brenner
potential, we obtain that

Cð3Þ ¼

284:56 117:69 0

117:69 284:56 0

0 0 83:43

0
B@

1
CA ðN=mÞ: (27)

It turns out that C1 � C2, which retains isotropy for the elastic moduli in Eq. (27). The internal relaxation,
however, leads to a lower in-plane Young’s modulus, Eð3Þ ¼ 235:88N=m, and a larger in-plane Poisson’s
ratios, nð3Þ ¼ 0:4136.

Table 1 lists the in-plane Young’s moduli and Poisson’s ratios from the present study in comparison with
other studies. Al-Jishi and Dresselhaus (1982) presented a lattice dynamics study of pristine graphite using a
Born–von Karman model. They obtained both in-plane and out-of-plane elastic constants of graphite in good
agreement with measured values. Under the condition of plane stress, the in-plane elastic constants for the
base plane of the primitive graphite lattice derived from their results are

Cð4Þ ¼

353:0 58:2 0

58:2 353:0 0

0 0 147:4

0
B@

1
CA ðN=mÞ: (28)

Here, the interplane distance, 3.35 Å, for the graphite lattice is used to convert the bulk moduli (N/m2) to the
2D in-plane moduli (N/m). The in-plane Young’s modulus from Eq. (28) is: Eð4Þ ¼ 343:4N=m, and the in-
plane Poisson’s ratio is nð4Þ ¼ 0:165. Apparently, these elastic moduli are in close agreement with Eq. (25),
obtained from the present approach without consideration of internal relaxation. With internal relaxation, the
elastic moduli in Eq. (27) from the present study show significant discrepancy with Eq. (28). However, this
does not suggest that the internal relaxation should not be accounted for in the prediction of theoretical
moduli. Rather, one possible cause for this discrepancy could be the use of the empirical Tersoff–Brenner
potential and the fitted parameters. Using the same potential and parameters, Zhang et al. (2002) and Arroyo
and Belytschko (2004) obtained the elastic moduli in close agreement with the present study, as listed in
Table 1. Arroyo and Belytschko (2004) also reported that using the second-generation Brenner potential
(Brenner et al., 2002) leads to little improvement. On the other hand, they found that, with slight adjustments
to the parameters of the potential, the same approach predicts elastic moduli in close agreement with those
derived from graphite as well as an ab initio study (Kudin et al., 2001). This demonstrates the necessity for
further validation of the empirical potential and the fitting parameters used in many theoretical studies of
Table 1

Comparison of theoretical predictions for the in-plane Young’s modulus and Poisson’s ratio of a single-layer graphene sheet

In-plane Young’s modulus (N/m) In-plane Poisson’s ratio

Present study 268.17a 0.3333a

338.54b 0.1584b

235.88c 0.4136c

Arroyo and Belytschko (2004) 337.8b 0.1580b

235.8c 0.4123c

Zhang et al. (2002) 236c –

Al-Jishi and Dresselhaus (1982) 343.4d 0.165d

Kudin et al. (2001) 345e 0.149e

aNo bond–angle effect and no internal relaxation.
bWith bond–angle effect, but no internal relaxation.
cWith bond–angle effect and internal relaxation.
dFrom a lattice dynamical model for graphite.
eFrom an ab initio model.
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graphene and carbon nanotubes. Furthermore, it is noted that the lattice dynamics model by Al-Jishi and
Dresselhaus (1982) included the interactions up to the fourth nearest in-plane neighbors, while the
Tersoff–Brenner potential used in the present study includes only the first nearest neighbors. This suggests that
a higher-order interatomic potential could be necessary to give consistent results from different approaches.
Another possibly weak effect comes from the interlayer interactions in graphite, which may lead to physical
difference between the in-plane elastic moduli for bulk graphite crystal and those for the single-layer graphene.
This speculation, however, would have to be justified by experimental measurements or ab initio calculations
for graphene.

3.3. On elastic properties of single-wall carbon nanotubes

From a planar sheet of single-layer graphene to a SWCNT, two effects on the elastic properties must be
considered. First, as the graphene is bent into a small radius of curvature to form the SWCNT, the nonlinear
elasticity of graphene under finite deformation leads to radius-dependent elastic properties in SWCNTs. As
noted recently (Arroyo and Belytschko, 2004; Huang et al., 2006), the bending of graphene of a single atomic
layer is conceptually different from bending of a continuum plate or shell. In particular, the bending stiffness
of the graphene is not directly related to its in-plane stiffness since no particular thickness can be defined
unambiguously for the single atomic layer. Instead, the bending stiffness results directly from the multibody
interactions of carbon bonds, as included in the Tersoff–Brenner potential through the bond angle effect.
Similar to the in-plane deformation considered in the present study, internal relaxation occurs under bending
deformation. Theoretically, the 3D nature of the bending deformation requires both in-plane and out-of-plane
internal relaxation. Interestingly, it was found that the out-of-plane internal relaxation is negligibly small for
graphene subjected to bending (Y. Huang, private communication). Nevertheless, the bending deformation
and associated internal relaxation define a specific ground state for each SWCNT, with the interatomic bonds
and bond angles deformed from the planar graphene lattice. Consequently, the elastic moduli for a SWCNT,
even under infinitesimal deformation relative to its ground state, are different from those for a planar
graphene sheet. In terms of nonlinear elasticity or hyperelasticity as discussed in Section 2.4, the elastic moduli
for a SWCNT are essentially the tangential moduli of the graphene under a finite bending deformation. As the
tangential moduli in general vary nonlinearly with deformation, the elastic moduli of SWCNTs necessarily
depend on the magnitude of the bending curvature, which is directly related to the tube radius, i.e., k ¼ R�1.
The smaller the tube radius, the larger is the bending deformation, and thus the stronger is the radius
dependence of the elastic property. Many previous studies of SWCNTs have shown radius-dependent elastic
moduli (e.g., Robertson et al., 1992; Yao and Lordi, 1998; Hernandez et al., 1998; Chang and Gao, 2003; Jiang
et al., 2003; H.W. Zhang et al., 2005), while a few others showed otherwise (Lu, 1997; Jin and Yuan, 2003).

In addition to the radius dependence, the finite bending deformation of graphene can also lead to
anisotropic elastic behavior in SWCNTs. Although the hexagonal lattice gives isotropic elastic behavior for
graphene under infinitesimal deformation, a finite deformation, in-plane or bending, breaks the hexagonal
symmetry. As a reflection of such anisotropy, the elastic moduli of SWCNTs would depend on the chirality
(Robertson et al., 1992). Another interesting anisotropic phenomenon is the coupling between axial and shear
deformation. Both stretch-induced torsion and the reverse coupling have been reported for SWCNTs
(Gartstein et al., 2003; Liang and Upmanyu, 2006; Geng and Chang, 2006). As a physical consequence of
nonlinear elasticity under finite deformation, it is not surprising that the coupling depends on both the radius
and the chirality of SWCNTs. In fact, even for a planar graphene sheet, we found that the tangent elastic
moduli become anisotropic under a finite in-plane deformation, with a nonzero coupling constants depending
on the direction of axial deformation (Zhou, 2007). More quantitative understanding on the finite
deformation induced nonlinear, anisotropic elastic behavior of graphene and carbon nanotubes is a subject for
future studies.

4. Summary

To summarize, the present study develops a MD-based approach for the determination of the internal
relaxation displacements in single-layer graphene under finite in-plane deformation. The relationships between
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the internal relaxation and the macroscopic strain are obtained explicitly for simple deformation modes, based
on the Tersoff–Brenner potential. While no internal relaxation under an equi-biaxial deformation, the two
shear deformation modes lead to internal displacement in two perpendicular directions. Two linear relations
are obtained for small deformation by fittings of the MD results. They are incorporated in the calculations of
the potential energy for the prediction of elastic moduli of graphene under infinitesimal deformation. Finally,
we emphasize the effect of multibody interaction and internal relaxation on the theoretical elastic moduli, and
discuss the relationship between the elastic properties for graphene and SWCNTs.
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