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ABSTRACT 
 

A stressed epitaxial film can undergo surface instability. The stress field and the interface 
interaction have profound effects on the dynamics of surface evolution that leads to self-
assembled quantum dots. In this paper, by using a nonlinear evolution equation, we investigate 
pattern evolution of self-assembled quantum dots under general biaxial stresses. It is found that 
the shape of quantum dots and their spatial ordering are strongly influenced by the relative 
magnitudes of the biaxial stresses. Linear perturbation analysis and nonlinear numerical 
simulations are conducted to elucidate the effect of stress anisotropy on the process of self-
assembly that selects different patterns. 
 

INTRODUCTION 
 
 Self-assembled nanostructures in epitaxial systems are of great interests for both 
theoretical understanding and practical applications. An epitaxial thin film is inherently stressed 
due to lattice mismatch between the film and the substrate. The competition between surface 
energy and strain energy drives surface instability of an initially flat film [1-3]. In addition, the 
interface between the film and the substrate plays an important role in the later stage of surface 
evolution [4]. Recently, we developed a nonlinear evolution equation [5] taking into account the 
effects of the second-order stress field and a nonlinear wetting potential. Numerical simulations 
showed that the nonlinear stress field alone induces “blow-up” instability, leading to crack-like 
grooving in 2D and circular pit-like morphology in 3D. With the wetting potential, the blow-up 
is suppressed, leading to an array of discrete islands on top of a thin wetting layer. Under an 
equi-biaxial stress, the system is isotropic (material anisotropy was ignored), and the model 
predicted self-assembly of circular islands with no spatial ordering (as shown in Figure 1). 
 
 
 
 
 
 
 
 
 
Figure 1. Evolution of surface morphology from a numerical simulation under an equi-biaxial 
stress ( 1=c ), starting from a random initial perturbation at t = 0. A bright spot represents a crest 
of the surface. The time is normalized by a time scale τ , and the length by a length scale L , 
both defined in text.  
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It has been shown that material anisotropy (e.g., crystal elasticity, surface energy, and 

surface mobility) plays a significant role in the processes of self-organization and shape 
transition of epitaxial quantum dots [6,7]. On the other hand, the effect of anisotropy in the 
general biaxial stress state has received less attention. Recently, Berger et al. [8] and Paret [9] 
showed that, during a melting-crystallization process, a biaxially stressed semi-infinite solid can 
develop into a rich variety of patterns, especially when the applied stress is tensile in one 
direction and compressive in the orthogonal direction. In this paper, we investigate pattern 
evolution of self-assembled quantum dots under general biaxial stresses. A linear analysis and 
nonlinear numerical simulations are conducted to elucidate the effect of stress anisotropy on the 
shape of quantum dots and their spatial organization. 

 
EVOLUTION EQUATION 
 

In a previous study [5], a nonlinear evolution equation was derived for surface evolution 
of a stressed epitaxial film, which takes into account the contributions from the second-order 
stress field and a nonlinear wetting potential. A compact form of the equation can be written as 
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where ),,( 21 txxhh =  is the evolving thickness profile of the film, ββ xhh ∂∂=  the surface 

gradient, 22
βββ xhh ∂∂=  the surface curvature to the first order, )(n

EU  the nth-order elastic strain 

energy density at the surface, γ  the surface energy density, WU  the wetting potential, Ω  the 
atomic volume, and M the atomic mobility at the surface. A repeated Greek subscript implies 
summation over 1 and 2 for the in-plane coordinates x1 and x2.  

At the reference state, the film surface is flat (i.e., 0hh = ), and the stress is uniform. 

Under a general biaxial stress ( 1
)0(

11 σσ = , 2
)0(

22 σσ = , and 0)0(
12 =σ ), the strain energy density is 
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where fE  is Young’s modulus of the film and fν  Poisson’s ratio. The material of the film is 

assumed to be isotropic. 
In our previous study [5], the first and second-order strain energy densities were obtained 

via an asymptotic approach for equi-biaxial stresses (i.e., 21 σσ = ). Under general biaxial 
stresses, the results are 
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where the first and second-order surface displacements are obtained in the form of Fourier 
transform: 
 

hCiku ˆˆ )0()1(
βγαβγα σ= ,       (5) 

φϕ αβαβα
ˆˆˆ 3

)2( CCu += .       (6) 

In the above, γβγβ σϕ h)1(= , βααβσφ hh)0(= , and ijC  is a 3-by-3 matrix accounting for the stiffness 

of the substrate as given in the previous study [5]. 
Based on a transition-layer model [10], the wetting potential takes the form 
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where sf γγγ −=∆  is the change in the surface energy density over a transition layer of 

thickness b . 
A two-dimensional spectral method was developed to solve the evolution equation [5]. 

Figure 1 shows the result from a numerical simulation, where the film is subjected to an equi-

biaxial stress at the reference state (i.e., 021 σσσ == ). The length is scaled by 
2
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=  is the plane-strain modulus of the substrate. The 

parameters used in the simulation are: 1.1/ =sf EE , 2.1/ =fs γγ , Lh 1.00 = , Lb 001.0= , and 

25.0== sf νν . As discussed before, in this case, the film breaks up into circular islands on a 

thin wetting layer, with no spatial ordering. 
 

SYMMETRY BREAKING DUE TO STRESS ANISOTROPY 
 

For a general biaxial stress, let 12 σσ=c  as the factor of stress anisotropy. A linear 
analysis of the evolution equation (1) leads to  
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where ),,(ˆ 21 tkkh  is the Fourier transform of the thickness profile and  
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Figure 2. Contour plots of the growth rate ),( 21 kks  under different stress states. From left to 
right: (a) c = 1 (equi-biaxial), (b) c = 0 (uniaxial), and (c) c = -1 (pure shear). 
 
Here the length scale L and the time scale τ  (with 1σ  in place of 0σ ) are used for normalization, 

and 2
2

2
1 kkk += . Therefore, in the linear regime, each Fourier component of the surface profile 

grows (or decays) exponentially, with the growth rate, s, as a function of the wave vector ),( 21 kk  
in the Fourier space.   

Figure 2 plots the growth rate as contours in the plane of ),( 21 kk . When 1=c , the system 
is isotropic, and the contours are concentric circles. The growth rate is positive in an annular 
region (bounded by the black edges), and the fastest growing mode corresponds to a circle (dash-
dotted blue). The rotational symmetry leads to a chaotic pattern in the early stage of evolution 
and circular dots in the later stage, as shown in Figure 1.  

The symmetry is broken when 1≠c . As shown for 0=c  (uniaxial stress), the fastest 
growing mode corresponds to two points (the white spots) located on the axis of 1k  (i.e., 02 =k ). 
This suggests that the initial evolution would develop parallel striped patterns perpendicular to 
the direction of the uniaxial stress. In general, when 01 >> c , 02 =k  for the fastest growing 

mode; when 1>c , 01 =k . Therefore, the direction of the striped pattern depends on the relative 
magnitudes of the two stress components. Figure 3 shows surface evolution from a nonlinear 
numerical simulation for 0=c . As predicted by the linear analysis, a parallel stripe pattern 
emerges at the initial stage. After a long time, however, the striped pattern coarsens and 
eventually breaks up into elongated islands. The aspect ratio of the island is found to be 
dependent upon the parameter c. 

 
 

 
 

 
 
 
 
 
Figure 3. Evolution of surface morphology from a numerical simulation under a uniaxial stress 
( 0=c ).The time is normalized by a time scale τ , and the length by a length scale L , both 
defined in text.  
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BIFURCATION OF GROWTH MODE 
 

When 0<c , a bifurcation occurs at a critical value. As shown in Figure 2(c) for 1−=c , 
the fastest growing mode corresponds to four points located at an angle 4/π± ; the two white 
spots in (b) split into four in (c). Define an angle θ  for the wave vector so that θcos1 kk =  and 

θsin2 kk = . By setting 0=∂∂ θs , we obtain that 
 

( ) ( )( ) ( )[ ] 0cossin2cos1111 =−−+−− θθθνν ccc ss .   (10) 
 

Evidently, under an equi-biaxial stress ( 1=c ), 0=∂∂ θs  for all angles. Thus, the growth rate is 
independent of the angle, as shown by the circular contours in Figure 2(a). When 1≠c , the 
growth rate depends on the angle and reaches extreme values at specific angles satisfying Eq. 
(10). The angle of the fastest growing mode can then be determined by examining the second 
derivative of the growth rate, which is plotted in Figure 4 as a function of the stress anisotropy. 
There exist three cases: (1) When )21(1 sc ν−−>> , 0sin =θ  for the fastest growing mode, 

which gives 0=θ  or equivalently πθ ±= . (2) When 1>c  or 1)21( −−−< sc ν , the fastest 

growing mode corresponds to 0cos =θ , which gives 2/πθ ±= . Case (2) is equivalent to Case 

(1) by simply switching the roles of 1σ  and 2σ . (3) When )21()21( 1
ss c νν −−<<−− − , the 

angle of the fastest growing mode is given by 
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Consequently, a bifurcation of the fastest growing mode is predicted. When 1−=c , the biaxial 
stress is equivalent to a pure shear stress, and the angle 4/πθ ±= . 

Figure 5 shows the evolution of surface morphology from a numerical simulation with 
1−=c . As predicted by the linear analysis, the initial growth selects the fastest growing mode, in 

this case, with the angles 4/πθ ±= . A diamond type pattern emerges and ensues until the film 
breaks up into islands, as predicted by Berger et al. [8]. Subsequent evolution beyond the linear 
regime shows coarsening of the islands and eventually formation of a tilted stripe pattern. The 
competition of the two tilting directions leads to co-existing of long and short (broken) stripes. 

 

Figure 4: The angle of the fastest growing 
mode at the initial stage as a function of the 
stress anisotropy ( 25.0=sν ).  



 
 
 

 
 

 
 

 
 
Figure 5. Evolution of surface morphology from a numerical simulation with 1−=c . The time 
is normalized by a time scale τ , and the length by a length scale L , both defined in text.  

SUMMARY 
 

We have theoretically shown that, under general biaxial stresses ( 1≠c ), the rotational 
symmetry in an otherwise isotropic system is broken, leading to parallel striped patterns in the 
early stage of evolution and elongated islands in the late stage. Furthermore, a bifurcation of the 

growth mode is predicted when )21()21( 1
ss c νν −−<<−− − , in which case a diamond pattern 

and tilted stripes are predicted. This offers a rich variety of patterns for self-assembled surface 
structures that can be achieved by controlling the stress state. As of today, limited experimental 
evidences have been reported in exploring stress anisotropy (as well as other approaches of 
symmetry breaking) for self-assembled nanostructures [11-13]. Further studies are in progress to 
experimentally implement stress anisotropy (e.g., by using elastically anisotropic substrate 
surfaces such as Si(113), by patterned surface templates, or by strain engineering). 
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