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Compressing a thin elastic film attached to a thick compliant substrate can lead to buckling
instability. Two commonly observed buckling modes, buckle-delamination and wrinkling,
have each been analyzed separately in previous studies. Recent experiments have observed
that the two modes can co-exist and co-evolve. In this paper, by analytical and finite ele-
ment methods, we present a study on concomitant wrinkling and buckle-delamination for

Keywords: an elastic film on a highly compliant substrate. First, without delamination, we present an
;Yfg::;ggg analytical solution for wrinkling that takes into account the effect of Poisson’s ratio of the
Delamination substrate. In comparison with a nonlinear finite element analysis, an approximate formula
Thin film is derived to estimate the normal traction at the interface and to predict initiation of wrin-

kle-induced delamination. Next, with a pre-existing delamination crack, the critical strain
for the onset of buckling instability is predicted by finite element eigenvalue analysis. For
an intermediate delamination size, a mixed buckling mode is predicted with the critical
compressive strain lower than previous solutions for both wrinkling and buckle-delamina-
tion. Post-buckling analyses show a significant shear-lag effect with an effective load trans-
fer length three orders of magnitude greater than the film thickness. Finally, concomitant
wrinkling and buckle-delamination is simulated to illustrate the interaction between the
two buckling modes, and the results are discussed in view of failure mechanisms and appli-
cations in thin film metrology.

Compliant substrate

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Stiff thin films on compliant substrates are used in a
wide range of technological applications, including flexible
electronics (Lacour et al., 2005; Rogers et al., 2010), thin
film metrology (Chung et al., 2011), and micro/nano-
fabrication (Bowden et al., 1998). Similar material struc-
tures are abundant in nature (Genzer and Groenewold,
2006; Chen and Yin, 2010). The mechanical interaction
between a stiff film and a compliant substrate leads to a
rich variety of phenomena that either limit or inspire
practical applications of the hybrid system integrating
hard and soft materials. For example, early adoption of stiff
skin layers in sandwich panels for aircraft structures had
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motivated studies of compression-induced buckling and
surface wrinkling as potential failure mechanisms (Biot,
1957; Allen, 1969). Recent interests in micro/nano-scale
thin film materials have exploited the mechanical instabil-
ity as an enabling mechanism for novel applications (e.g.,
Watanabe et al., 2002; Harrison et al., 2004; Chan et al.,
2008, 2009). Meanwhile, mechanics of surface wrinkling
has been studied extensively over the last decade (e.g.,
Shield et al., 1994; Groenewold, 2001; Huang and Suo,
2002; Chen and Hutchinson, 2004; Huang and Im, 2006;
Jiang et al., 2007; Lee et al., 2008; Audoly and Boudaoud,
2008; Im and Huang, 2008; Sun et al., submitted for publi-
cation; Cai et al., 2011). While most of these studies have
assumed perfect bonding between the film and the sub-
strate, it has been occasionally pointed out that wrinkling
may cause interfacial delamination (Shield et al., 1994;
Liang et al., 2002; Mei et al.,, 2007; Bazant and Grassl,
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2007; Goyal et al.,, 2010). On the other hand, interfacial
delamination is a necessary condition for buckling of thin
films attached to relatively stiff substrates (Hutchinson
and Suo, 1992; Ortiz and Gioia, 1997; Moon et al., 2002).
Simultaneous buckling and delamination has also been
observed in compressed thin films on compliant substrates
(Cotterell and Chen, 2000; Parry et al., 2005; Vella et al.,
2009). More recently, some experiments have shown both
surface wrinkling and buckle-delamination co-existing in
the same film/substrate system (Mei et al.,, 2007; Nolte
et al., submitted for publication).

The characteristics of the two buckling modes are often
observable, with localized patterns for buckle-delamina-
tion and periodic patterns for surface wrinkling, as illus-
trated in Fig. 1. In a previous work (Mei et al., 2007), we
proposed a quantitative criterion for selection of the initial
buckling mode by comparing the critical conditions for
surface wrinkling and buckle-delamination. The favored
buckling mode at the onset of instability depends on the
elastic mismatch between the film and the substrate as
well as on the size of pre-existing interfacial delamination.
In this paper, we present a study on concomitant wrinkling
and buckle-delamination for an elastic thin film on a very
compliant substrate beyond the initial stage of buckling
instability.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an analytical solution and finite element
analysis for wrinkling with no delamination, based on
which an approximate formula is derived to estimate the
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Fig. 1. Schematic illustration of buckling modes for an elastic thin film on
a compliant substrate. (a) Surface wrinkling with no delamination; (b)
buckle-delamination; (c¢) concomitant wrinkling and buckle-
delamination.

normal traction at the interface and to predict initiation
of wrinkle-induced delamination. In Section 3, a finite ele-
ment eigenvalue analysis is performed to predict the effect
of pre-existing interfacial delamination on the critical con-
dition for onset of buckling instability as well as the buck-
ling mode. Nonlinear post-buckling analysis is presented in
Section 4, emphasizing the long-range interaction via the
compliant substrate and demonstrating concomitant buck-
ling modes. Section 5 discusses implications of the present
results on prediction of failure mechanisms and thin film
metrology.

2. Wrinkling, with no delamination
2.1. Analytical solutions

Consider an elastic thin film on an elastic compliant
substrate, subject to lateral compression. Both the film
and the substrate are taken to be linear elastic and isotro-
pic, restricted to small, plane-strain deformation for the
present study. Let & be the nominal compressive strain, rel-
ative to the stress-free state. When ¢ is relatively small, the
film/substrate bilayer is uniformly compressed and the
surface is flat. When the strain exceeds a critical value,
the film buckles and the substrate deforms coherently,
forming surface wrinkles (Fig. 1a). The interface between
the film and the substrate is assumed to be perfectly
bonded in this section, and the effect of interfacial delam-
ination will be discussed in Section 3. Let h be the thickness
of the film, while the substrate is considered infinitely
thick. A well-known analytical solution predicts the critical
strain for onset of wrinkling (Chen and Hutchinson, 2004;
Huang et al., 2005):

& (kh) = M

1
12 T2knE (1

| g

where k is the wave number so that 2 = 27 /k is the wrinkle
wavelength, E=E/(1 —v?) is the plane-strain modulus
with E for Young’s modulus and v for Poisson’s ratio, and
the subscripts f and s denote the film and substrate,
respectively.

For a given ratio, E/E;, the critical strain in (1) mini-
mizes at a particular wavelength,

E 13
3E;
and the corresponding critical strain is
1(3E\"”
[ =5
=3 (Ef ) ' ®

In deriving the above analytical solution, the shear trac-
tion at the film/substrate interface was assumed to be zero.
Alternatively, by assuming zero tangential displacement at
the interface, a similar analytical solution can be obtained
(Huang, 2005; Audoly and Boudaoud, 2008). The two solu-
tions are identical if the substrate is incompressible
(vs = 0.5), in which case both the shear traction and tangen-
tial displacement are zero. However, when the substrate is
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compressible (vs<0.5), neither the shear traction nor the
tangential displacement is zero at the interface as the
film wrinkles. As a result, neither analytical solution
accurately accounts for the effect of Poisson’s ratio of the
substrate, which could cause considerable errors in
prediction of the critical strain as well as subsequent evo-
lution of wrinkles (Cai et al., 2011). Here we present a more
accurate analytical solution, taking into account both the
shear traction and the tangential displacement at the
interface.

The deformation of the thin film is described by the
linear plate equations, which are sufficient for linear per-
turbation analysis to predict the critical condition for onset
of wrinkling. Assume a small perturbation with normal
deflection (w) and tangential displacement (u) in the film.
The equilibrium condition of the film requires that

 ERd'w  _ dw
— d’u

where g and 7t are the normal and shear tractions at the
film/substrate interface, respectively.

Both the displacements and the tractions are assumed
to be continuous across the interface. Consequently, in
addition to (4) and (5), they are related to each other by
the equilibrium condition for the substrate. Assume a pair
of periodic tractions, T = T,,sin(kx) and q = q,,cos(kx), acting
on the surface of an infinitely thick substrate. By solving
the equations of linear elasticity under the plane-strain
condition (Huang, 2005), the surface displacements of the
substrate are obtained as

1 1-2v .
u(x) = A {Zrm + ﬁqm} sin(kx), (6)
w(x) = k%s {]112vts T + qu} cos(kx). (7)

Inserting (6) and (7) into (4) and (5) results in a linear
eigenvalue problem, namely

E. 1 1-2v
(Ef kh+2>'fm +T\/5qm =0, (8)

= 1
122 {5 (l (kh)? + skh) +2|q, 0. )

11— E 12

By setting the determinant of the coefficient matrix in (8)
and (9) to zero, we obtain the critical strain for wrinkling
as a function of kh,

— — -1
_(khy* 1 (E 1/1-2v\*(E 1
k) ="+ 3t &, 1*5(1_%) £ kh 2

For a very compliant substrate, assuming E;/E; << 2kh, the
critical strain in (10) is approximately

— -1
_(kn?* 1 [E 1/1-2v\2
gc(kh)w 12 +m ff 1*21 l—vs . (11)

Both (10) and (11) reduce to (1) when vs = 0.5.
The critical strain in (11) is minimized at a particular
wavelength

ENCL 1/1-2v\2"
2 =2mh| L 177< - 5) , 12
<3Es> { 4\ 1 - (12)

and the corresponding minimum critical strain is

136\, 1/1-2v\3]""

g =—|= 11— (—=2 : 13
‘ 4<Ef> { 4(1‘)5)] )
Fig. 2 shows the effect of Poisson'’s ratio (vs) on the crit-
ical strain and the wrinkle wavelength, comparing the ana-
lytical solutions in (12) and (13) with those in (2) and (3).
As v, increases, the ratio between the two critical strains,
& /e;, decreases, while the ratio between the two wrinkle
wavelengths, 27/, increases. For an incompressible
substrate (vs=0.5), both ratios are identically one. For a

compressible substrate (v < 0.5), however, Eq. (3) underes-
timates the critical strain and Eq. (2) overestimates the
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Fig. 2. Effects of the substrate Poisson’s ratio on wrinkling: (a) critical
strain for onset of wrinkling; (b) wrinkle wavelength.
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wrinkle wavelength. The difference can be significant, up
to about 20% for the critical strain and nearly 10% for the
wavelength.

Beyond the critical strain, the wrinkle amplitude grows
as a function of the nominal strain &. An approximate solu-
tion for the wrinkle amplitude was obtained previously by
a nonlinear approach that minimizes the strain energy in
the film and the substrate (Huang, 2005; Huang et al.,
2005). For an arbitrary wavelength (1), the equilibrium
wrinkle amplitude is

7

A

Aw() = 2 VE— & (14)

When the wavelength 4 = 1", the equilibrium amplitude
becomes

A, =h 21, (15)
&

Apparently, using an underestimated critical strain would
result in an overestimate of the wrinkle amplitude by
(14), (15). Thus, the prediction of wrinkle amplitude
should also take into account the effect of substrate Pois-
son’s ratio, which however is beyond the analytical
approach.

2.2. Finite element analysis of wrinkling

Next we present results from finite element analysis
(FEA) of wrinkling, in comparison with the analytical solu-
tions. As illustrated in Fig. 3, a two-dimensional (2D)
plane-strain model is constructed using the commercial
FEA package, ABAQUS. Besides the film thickness h, the
thickness of the substrate is H and the length is L in the
FEA model. The effects of H and L on the results will be dis-
cussed. The pre-existing delamination size b is set to zero
for the wrinkling analysis in this section. The film/sub-
strate bilayer is subject to compression by a prescribed
horizontal displacement (1) along the right side, while
the horizontal displacement is zero along the left side.
The nominal compressive strain is thus, ¢ = /L. The shear
traction is zero on both sides. The lower surface of the sub-
strate is subject to zero normal displacement and zero
shear traction, while the upper surface of the film is

iooo/oooo/oo

Fig. 3. Schematic illustration of the finite element model for wrinkling
and buckle-delamination.

traction free. Both the film and the substrate are modeled
by 2D quadrilateral elements (CPE8R). A uniform mesh is
used for the film with at least 4 elements across the film
thickness. The mesh size for the substrate is graded in
the thickness direction, finer near the interface. The mesh
independence of the numerical results was checked and
confirmed. An alternative finite element method is de-
scribed in Appendix A, in which the substrate is treated
analytically as a semi-infinite half plane and the film is
modeled by using one-dimensional (1D) elements. The re-
sults from both methods will be compared. For most
numerical results in the present study, we set the linear
elastic material properties for the film and the substrate
with EfE; = 1000 and vs=vs = 1/3. The high modulus ratio
represents a typical material system with a stiff skin layer
on a soft substrate (Mei et al., 2007).

A linear eigenvalue analysis is performed with the finite
element model to predict the critical strain for onset of
wrinkling and the corresponding eigenmode. To compare
with the analytical solution for an infinitely thick sub-
strate, we examine the effect of the substrate thickness
(H) in the finite element model and use a sufficiently large
thickness for the subsequent analysis. Fig. 4a shows the
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Fig. 4. Effect of substrate thickness on the finite element analysis of
wrinkling: (a) critical strain; (b) wrinkle wavelength. The material
properties are EfE;=1000, and vf=v;=1/3. The horizontal dashed lines
indicate the analytical solutions for an infinitely thick substrate.
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Fig. 5. Critical strain for wrinkling from the finite element eigenvalue
analysis, in comparison with the analytical solution in (11), with Egf
E;=1000 and vy= v,

critical strain as a function of H by the finite-element
eigenvalue analysis, and Fig. 4b shows the corresponding
wrinkle wavelength of the eigenmode. Both the critical
strain and the wrinkle wavelength become independent
of the substrate thickness for H > 20h, while the wrinkle
wavelength is about 40h. Similar thickness effect was pre-
dicted by an analytical model (Huang et al., 2005). To sim-
ulate an infinitely thick substrate, we set H=100h in the
2D finite element model unless noted otherwise.

Fig. 5 compares the FEA results with the analytical solu-
tion in (11) for different values of Poisson’s ratio (v;). Each
eigenvalue analysis predicts a set of eigenvalues and eigen
modes, based on which the critical strain for each eigen-
mode of a particular wavelength is obtained. To satisfy
the prescribed boundary conditions, the wavelengths of
permissible eigen modes take discrete values such that L/
A=n/2 (n=1,2,...). For a finite length L, e.g., L =120h in
the present model, the critical strain is obtained as discrete
points in Fig. 5. On the other hand, the analytical solution
for the critical strain in (11) is plotted as continuous solid
lines. The numerical results agree closely with the analyt-
ical solution, showing an appreciable dependence on Pois-
son’s ratio. In particular, for vs=vf=1/3, the minimum
critical strain predicted by the analytical solution in (13)
is & =0.00543 and the corresponding wrinkle wave-
length is 1™ = 42.6h. With a discrete set of eigen modes
for the finite element model, the wavelength of the first ei-
gen mode is 4 =40h, with the critical strain & = 0.00556.
Due to the slightly different wavelength, the minimum
critical strain obtained by FEA is slightly higher than the
analytical solution. The agreement can be improved by
using a larger value of L or by choosing L to be a multiple
of the predicted wrinkle wavelength (1™). The results from
the 2D and 1D finite element methods are practically indis-
tinguishable for the eigenvalue analysis.

To simulate wrinkle growth beyond the critical strain, a
nonlinear post-buckling analysis is performed with the 2D
finite element model. The first eigenmode obtained from
the linear analysis is used as the initial geometric imper-
fection to trigger buckling instability. Fig. 6 shows the
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Fig. 6. Wrinkle amplitude as a function of the nominal strain, comparing
the results from post-buckling finite element analysis with the analytical
solution in (14) for EfEs; = 1000 and vs= vy =1/3.

wrinkle amplitude as a function of the nominal strain.
For comparison, the approximate analytical solution in
(14) is plotted as a continuous solid line with A =40h and
& = 0.00556 for the first eigenmode. The numerical results
vary slightly as the amplitude of the initial imperfection
(Ao/h) varies. The onset of wrinkling at the critical strain
becomes less abrupt if the amplitude of the initial imper-
fection is relatively large. Using a small initial imperfection
(Ao/h =10%), the numerical results compare closely with
the analytical solution, with an abrupt transition at the
critical strain. In the 1D finite element model, instead of
the geometric imperfection, we introduce a displacement
perturbation for the post-buckling analysis, and the wrin-
kle amplitude is found to be in excellent agreement with
the analytical solution with no dependence on the pertur-
bation amplitude. It is thus concluded that the analytical
solution (14) is a good approximation for the wrinkle
amplitude as long as the critical strain and the wrinkle
wavelength are used accurately. By setting 1= 1" and
& = & in (14), we obtain that

&

ok
8C

Ay =h 1. (16)
The effect of the substrate Poisson’s ratio on the wrinkle
amplitude is thus fully accounted for by using the critical
strain in (13) instead of (3).

2.3. Wrinkle-induced delamination

As the wrinkle amplitude grows, the normal and shear
tractions acting on the film/substrate interface increase,
which may cause delamination (Shield et al., 1994; Liang
et al., 2002; Mei et al., 2007; Goyal et al., 2010). To estimate
the interfacial tractions in the nonlinear post-buckling re-
gime, we assume zero tangential displacement in (6) so
that the maximum shear traction is linearly related to
the maximum normal traction, namely

1-—2v

Tm:—man (17)
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Fig. 7. The maximum normal and shear tractions at the film/substrate
interface, in comparison with the analytical solutions in (17) and (18). The
tractions are normalized by the substrate modulus E;.

Inserting (17) into (7) along with (14) for the wrinkle
amplitude, we obtain the maximum normal traction as a
function of the nominal strain:

41 -v)’E

Alternatively, the normal traction may be estimated by
assuming zero shear traction in (7). By comparing to the
FEA results, as shown in Fig. 7, it is found that the zero tan-
gential displacement assumption offers a better approxi-
mation for estimating the wrinkle-induced tractions at
the interface. The maximum normal traction by FEA fol-
lows (18) remarkably well. While the formula in (17)
underestimates the maximum shear traction, it is clear
that the shear traction is not zero at the interface.

The close agreement for the maximum normal traction
in Fig. 7 suggests that the formula (18) may be used as a
good approximation to estimate the critical strain for initi-
ation of wrinkle-induced interfacial delamination. In a sep-
arate study using a cohesive zone model (Mei, 2011), it is
found that initiation of delamination is predominantly
determined by the strength of the interface subject to the
normal traction. Similar results have been reported by
Goyal et al. (2010). By setting the maximum normal trac-
tion in (18) equal the interfacial strength (6,¢), we obtain
the critical strain for initiation of wrinkle-induced delami-
nation (WID), namely

. 2
3 — 4y, aim> (19)

Ewip = & + (4(1 - Vs)2 E,
where & is the critical strain for wrinkling with no delam-
ination as given in (10), and &;,, is the peak stress in the
normal traction-separation relation for the interface as de-
scribed by a cohesive zone model (Hutchinson and Evans,
2000). Beyond the critical strain &yyp, the interfacial delam-
ination grows concomitantly with wrinkling. As a result,
the two buckling modes, wrinkling with no delamination

and buckle-delamination, may co-exist and interact with
each other.

3. Onset of buckling, with delamination

For a thin film bonded to a stiff substrate, wrinkling is
unlikely, due to the effect of substrate constraint that re-
quires a high critical strain for wrinkling without delami-
nation. However, with defects at the film/substrate
interface, such as partial delamination of the film, buckling
of the film under compression may occur, which in turn
drives growth of delamination (Fig. 1b), known as
buckle-delamination (Hutchinson and Suo, 1992; Ortiz
and Gioia, 1997; Moon et al., 2002). For a compliant sub-
strate, with the presence of interfacial delamination, both
wrinkling and buckle-delamination are possible and they
may co-exist (Mei et al., 2007; Nolte et al., submitted for
publication). In this section, we discuss the effect of pre-
existing interfacial delamination on the critical strain for
buckling and transition of the initial buckling mode.

Early studies of buckle-delamination often assumed a
fixed-end condition at the edge of delamination, which
essentially neglected the effect of elastic deformation in
the substrate (Hutchinson and Suo, 1992). Under such a
condition, the critical strain for onset of buckling is identi-
cal to that for a freestanding sheet with clamped edges,
namely

n? (h\?

where b is the half-width of the delamination (see Fig. 1b).

Recent studies (Cotterell and Chen, 2000; Yu and
Hutchinson, 2002; Parry et al., 2005) have shown that
the critical strain for buckling can be significantly lower
than that predicted by (20) when elastic deformation of
the substrate is taken into account, especially for relatively
compliant substrates. By a semi-analytical approach, Yu
and Hutchinson (2002) derived an implicit formula for
the critical strain of buckling (&p):

& Gy _Th( ah
\/%tan (TC 83) T 12b ((111 +b/h a22)~ (21)

The dimensionless coefficients a;; in (21), which depend on
the ratio b/h and the elastic mismatch between the film
and the substrate, are determined numerically, either by
solving an integral equation or by finite element calcula-
tions. In the present study, a finite element method is used
to calculate these coefficients as summarized in Appendix
B. Table 1 lists the values of these coefficients for
Ef/Es=1000 and vg=vs=1/3.

Table 1

Coefficients aj for EfE; = 1000 and vy=v,=1/3.
blh 1 5 10 20 50
an 467.12 604.88 691.77 807.32 1028.55
s 78.23 75.23 74.57 74.29 74.18
a1 =0y 27.71 20.72 17.77 1532 12.83
as 409.77 404.63 391.65 373.58 357.94
as; 319.08 279.43 262.41 252.51 248.50
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The above semi-analytical solution has two limitations.
First, the delamination size must be much larger than the
film thickness so that the beam equations are applicable
for the delaminated film segment. Second, the buckling
mode is prescribed as the localized buckle-delamination,
which may not be the critical mode for a very compliant
substrate. By introducing an interfacial crack in the 2D fi-
nite element model (Fig. 3), we perform a linear eigenvalue
analysis to predict the critical strain for onset of buckling
with delamination. By symmetry, only half of the delami-
nation crack is modeled. Here, since the film is modeled
by 2D solid elements, relatively short interfacial cracks
can be considered. Moreover, the buckling mode is not pre-
scribed in the finite-element eigenvalue analysis, which
searches for all possible eigen modes that satisfy the
boundary conditions. The eigenvalue for the first eigen
mode gives the critical strain for onset of buckling
instability.

Fig. 8 shows the results from two sets of the finite ele-
ment analysis (FEA). First, for Ef/E = 1000, the critical strain
is obtained as a function of b/h. Second, for b/h =10, the
critical strain is calculated as a function of EfE,. In both
cases, vf=vs=1/3. Remarkably, the numerical results col-
lapse onto one single curve in Fig. 8, where the critical
strain is scaled by &, the critical strain for wrinkling as gi-
ven in Eq. (13), and the delamination width is scaled by 7™,
the wrinkle wavelength in Eq. (12). For comparison, the
analytical solution in (20) and the semi-analytical solution
in (21) are plotted in the same manner. Thus, the critical
strain for onset of buckling can be written in a compact
form

= 1(): 22)

Kok
8C

which takes into account both the effect of delamination
width and the effect of elastic mismatch on the critical
strain.

10 O----ARR
ER7S)N

*%

SL 107}

o FEA (E/E_=1000)
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Fig. 8. Comparison of the critical strain for buckling between analytical
solutions and the finite-element eigenvalue analysis. The open circles are
for EfE; = 1000 with varying b/h, and the open triangles are for b/h =10
with varying E¢E,. The critical strain for wrinkling (¢;*) and the wrinkle
wavelength (4*) are used to scale the critical strain and the delamination
width.

As shown in Fig. 8, the FEA results agree closely with the
prediction by (21) for relatively large delamination width
(e.g., b/A**>0.5). Both the FEA results and the semi-
analytical solution approach the analytical solution in
(20) when b/i**>2. For relatively short delamination
cracks, however, the FEA results deviate from the semi-
analytical solution. As b/.** decreases, the FEA-predicted
critical strain approaches a plateau that corresponds to
the critical strain for wrinkling with no delamination, i.e.,
&y /e — 1. Fig. 9 shows the eigen modes for three differ-
ent delamination widths with EjE; = 1000, which reveals
a transition from the localized mode of buckle-delamina-
tion to the periodic wrinkling mode. When b/h is large,
buckling occurs predominantly at the location of delami-
nation. When b/h is small, buckling is not restricted to
the delaminated part and periodic wrinkles form. The
smooth transition of the critical strain shown in Fig. 8
suggests that a mixed mode of buckling occurs with an
intermediate delamination length (0.1 < b/A**<0.5), for
which the analytical solutions for both buckle-delamina-
tion and wrinkling overestimate the critical strain. The
results from the 1D finite element model (Appendix A)
are in close agreement with the 2D FEA results.

4. Post-buckling analysis with delamination

Beyond the critical strain, the buckle amplitude in-
creases with the nominal strain, and the delamination
crack may grow. For an elastic film on a rigid substrate,
the buckle amplitude is obtained analytically (Chai et al.,
1981; Hutchinson and Suo, 1992) as

_2h ey
=V "

where &3 is the critical strain for onset of buckling as given
in (20). The energy release rate driving growth of the inter-
facial delamination is

G=Gof —%B)(H%) (24)

where Go = Efhe?/2. The delamination grows when the
energy release rate exceeds the interfacial toughness and
arrests when it drops below the toughness.

For an elastic compliant substrate, both the buckle
amplitude and the energy release rate can be significantly
greater than the predictions by the rigid-substrate model
(Cotterell and Chen, 2000; Yu and Hutchinson, 2002; Parry
et al., 2005). Following Yu and Hutchinson (2002), a semi-
analytical approach is summarized in Appendix B, which
takes into account the effects of substrate compliance on
the buckle amplitude and energy release rate. However,
as discussed in Section 3, the semi-analytical approach
tends to overestimate the critical strain for onset of buck-
ling, which in turn affects the prediction of post-buckling
behavior, especially for relatively short cracks and very
compliant substrates. Using the finite element model with
delamination (Fig. 3), we perform a nonlinear post-buck-
ling analysis to study the evolution of the buckling mode
beyond the critical strain. The eigenmode obtained by the

Ag (23)
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Fig. 9. Eigen modes of an elastic thin film on an elastic compliant substrate with pre-existing interfacial delamination of different sizes (b/h =10, 5, and 1).

linear analysis in Section 3 is used as the initial imperfec-
tion with a small amplitude (Ao/h = 10~%).

Fig. 10a shows the evolution of the buckling profile as
the nominal strain increases. For b/h = 10, the critical strain
predicted by the eigenvalue analysis is 0.00284. The film
remains flat when ¢ < 0.00284. Beyond the critical strain,
the buckling deformation is predominantly localized near
the location of delamination, and the film remains flat far
away from the delamination. As the film buckles, the sub-
strate surface is pulled up significantly near the edge of
delamination, as shown by the dashed lines. The film de-
forms with both out-of-plane displacement and rotation
at the edge of delamination. Beyond the edge, the film first
bends down and then up, forming a valley before it be-
comes nearly flat. Far away from the delamination, the film
and the substrate surface moves up slightly due to Pois-
son’s effect. We define the buckle amplitude Ag as the dif-
ference between the vertical displacement at the peak and
that at the valley. Fig. 10b plots the buckle amplitude as a

function of the nominal strain for b/h =1, 5, 10, and 20. As
b/h increases, the critical strain for onset of buckling de-
creases, and the buckling amplitude increases. For small
b/h, the buckling profile becomes periodic wrinkles, and
as expected the buckle amplitude approaches twice the
wrinkle amplitude predicted by the analytical solution in
(14). It is noted that the presence of even a short interfacial
delamination could raise the apparent wrinkle amplitude
beyond the analytical prediction.

It is found that the results from the post-buckling anal-
ysis strongly depend on the ratio, L/b, in the finite element
model. As shown in Fig. 11a, the buckle amplitude in-
creases with increasing L/b, while the critical strain for on-
set of buckling is independent of L/b. Correspondingly, the
energy release rate for buckle-driven delamination, calcu-
lated by the method of J-integral (Rice, 1968), also in-
creases as L/b increases (Fig. 11b). For comparison, the
rigid-substrate solutions in (23) and (24) are plotted as
the thick dashed lines, and the semi-analytical solutions
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Fig. 10. (a) Out-of-plane displacements of the film (solid lines) and the
substrate surface (dashed lines) by the post-buckling finite element
analysis for b/h =10 and L/h = 120. (b) Buckle amplitude as a function of
the nominal strain for different b/h. The dashed line in (b) shows twice of
the wrinkle amplitude with no delamination as predicted by the
analytical solution in (14).

by Yu-Hutchinson approach are plotted as the thick solid
lines. It is expected that the FEA results eventually con-
verge towards the semi-analytical solution for a suffi-
ciently large L/b. Such convergence can be easily achieved
for a relatively stiff substrate (e.g., Ef/Es < 100). For a com-
pliant substrate, however, the convergence can be very
slow. Fig. 12 shows the energy release rate, normalized
by the semi-analytical solution (G..), as a function of L/b
for different modulus ratios. For EfE = 100, the calculated
energy release rate agrees closely with G, for L/b =60 and
beyond. With EfEs = 1000, the convergence is not reached
for L/b up to 100. Such a slow convergence may be qualita-
tively understood as the shear-lag effect. The stress in the
film is partly relaxed by buckling at the delamination but
unaffected far away from the delamination. In between,
the stress in the film varies over a characteristic length
scale for load transfer, depending on the stiffness of the
substrate as defined in a shear lag model (Xia and Hutchin-
son, 2000). The length scale is much longer for a compliant
substrate than for a stiff substrate. For the finite element
model with L smaller or comparable to the shear lag
length, due to interaction between buckle-delamination
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Fig. 11. (a) Buckle amplitude and (b) energy release rate for b/h = 20. Two
different finite element models are used and compared along with the
semi-analytical solution (thick solid lines). The results from the 2D model
are the open symbols, and those from the 1D model are the dashed lines.
The thick dashed lines are the rigid-substrate solution in (23) and (24).
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Fig. 12. Dependence of the energy release rate for buckle-delamination
on the length ratio (L/b) and the modulus ratio (EfEs).

at one end of the film and the boundary conditions at the
other end, both the buckle amplitude and the energy
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release rate depend on L. Alternatively, the results in
Figs. 11 and 12 may be understood as the post-buckling
behavior for a periodic array of buckle-delamination with
a spacing 2(L — b) between the adjacent delamination
cracks, for which the effect of spacing is similar to that
for a periodic array of channeling cracks in an elastic thin
film on a compliant substrate (Xia and Hutchinson, 2000;
Huang et al., 2003).

The thickness of the substrate in the 2D finite element
model must be sufficiently large to simulate an infinitely
thick substrate. As shown in Fig. 4, the thickness ratio H/
h =100 is sufficient for the wrinkling analysis. For buckling
with delamination, the thickness ratio depends on the
delamination size, and H/h =200 is found to be sufficient
for b/h up to 50 in the present study. For comparison, the
results from the 1D finite element method (Appendix A)
are shown in Fig. 11, in which the substrate is modeled ex-
actly as an infinite half plane. The results from both finite
element methods are in close agreement for the wrinkling
analysis and for the eigenvalue analysis of buckling with
delamination. For the post-buckling analysis, the two
methods agree closely for the buckle amplitude but differ
slightly for the energy release rate. The discrepancy may
be attributed to the calculation of the J-integral with differ-
ent models for the film (i.e., 2D solid elements vs 1D beam
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6 o 1
£ 4 50 100 15-‘-0 200 )
=
2f 1
O L ]
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Fig. 13. Concomitant wrinkling and buckle-delamination of a thin film on
a compliant substrate (Ef/E; = 1000) with (a) b/h = 10 (L/h = 800) and (b) b/
h =50 (L/h = 1000). The dashed line indicates the substrate surface. The
insets show the local view near the edge of delamination.

elements) and for the substrate (i.e., finite thickness vs
infinite).

For a very compliant substrate, it is found that local-
ized buckle-delamination and periodic wrinkles may co-
exist when L/b is sufficiently large. Fig. 13 shows two
examples, one for b/h =10 and the other for b/h=50. In
both cases, the onset of buckle-delamination occurs first,
followed by formation of periodic wrinkles. The buckle
amplitude is much larger than the wrinkle amplitude,
and the film is nearly flat in a region between buckle-
delamination and periodic wrinkles. The wrinkle wave-
length agrees closely with the prediction by the analyti-
cal solution in (12). Fig. 14 shows the surface contours
for b/h=50 at two different strain levels, mimicking
what may be observed in experiments by an optical
micrograph (Nolte et al, submitted for publication).
When the nominal strain is low, only the localized
buckle is observable at the location of pre-existing
delamination. At a higher strain, periodic wrinkles form
at a distance away from the delamination. Between the
wrinkles and buckle-delamination is a region of interac-
tion, where the compressive stress in the film is partly
relaxed by buckle-delamination at one side and by wrin-
kling at the other side. The stress varies over a distance
that depends on the size of delamination (b/h) as well as
the substrate compliance by the shear lag effect. The
stress variation is reflected by the variation of the wrin-
kle amplitude from zero to nearly constant (Fig. 13). We
note that the numerical results (e.g., buckle amplitudes)
depend on the model size (L/b) due to the long shear-
lag length of interaction for the compliant substrate in
these simulations, but the characteristics of the interac-
tion between the two buckling modes shall remain the
same as long as L/b is sufficiently large for both buckling
modes to coexist.

Fig. 15a plots the buckle amplitude as a function of the
nominal strain for the case with b/h =50 and L/b = 20, and
Fig. 15b plots the energy release rate for growth of the
delamination. The critical strain for onset of buckling in
this case is very small (~0.00026). Beyond the critical
strain, the buckle amplitude and the energy release rate in-
crease. For comparison, the rigid-substrate solution in (23)
and (24) are plotted as the thick dashed lines, and the
semi-analytical solutions by the Yu-Hutchinson approach
are plotted as the thick solid lines. Both the buckle ampli-
tude and the energy release rate by the finite element
model are lower than the semi-analytical solution, because
the ratio L/b = 20 is not large enough to simulate an infinite
substrate as assumed by the semi-analytical solution. Fur-
thermore, when the nominal strain reaches around 0.0092,
both the buckle amplitude and the energy release rate stop
increasing. This change of behavior coincides with the on-
set of wrinkling away from the delamination (Fig. 15a). On
the other hand, we note that the nominal strain for onset of
wrinkling is greater than the analytical prediction by (13).
Therefore, while the growth of wrinkling reduces the
buckle amplitude and the energy release rate, the presence
of buckle-delamination delays onset of wrinkling. With a
very compliant substrate, the two buckling modes interact
over a long range with a length scale more than three or-
ders of magnitude greater than the film thickness.
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Fig. 14. Gray-scale contour plots of the surface profiles for b/h = 50 at two different strain levels: (a) ¢ = 0.0032; (b) ¢ = 0.0118. The red dashed lines indicate
the edges of delamination. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Discussions
5.1. Co-evolution of wrinkling and buckle-delamination

In the present study, we have considered two scenarios
for concomitant wrinkling and buckle-delamination of an
elastic thin film on a compliant substrate under compres-
sion. First, if the film/substrate interface is perfectly
bonded, wrinkling occurs beyond a critical strain. Subse-
quently, nucleation of interfacial delamination may occur
at a larger nominal strain when the wrinkle-induced nor-
mal traction at the interface exceeds the strength of the
interface. The growth of the interfacial delamination how-
ever requires further studies, for which a cohesive zone
model may be adopted for the interface (Goyal et al.,
2010). Second, with pre-existing interfacial delamination,
the initial buckling mode depends on the size of the pre-
existing delamination. With a relatively large delamina-
tion, localized buckle-delamination occurs first, followed
by wrinkling away from the delamination. Again, the

growth of interfacial delamination is not considered in
the present study, but the critical condition for the pre-
existing delamination to grow may be predicted by com-
paring the energy release rate with the interface tough-
ness. These two scenarios qualitatively agree with the
experimental observations (Mei et al., 2007; Nolte et al,,
submitted for publication).

Two failure criteria are suggested for hybrid systems
with stiff thin films on compliant substrates. First, for
applications that require perfect bonding at the interface,
the strength criterion may be used to determine the critical
nominal strain for wrinkle-induced nucleation of interfa-
cial delamination, as given in Eq. (19). Second, to prevent
pre-existing delamination from growing, the toughness
criterion may be used by comparing the calculated energy
release rate with the interface toughness (or adhesion en-
ergy). It is shown that the calculation of the energy release
rate is sensitive to the substrate size, especially for a very
compliant substrate. Moreover, the growth of wrinkling
away from the delamination can significantly affect the
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Fig. 15. (a) Amplitudes of buckling and wrinkling for b/h =50 (L/b =20
and H/h = 200). (b) Energy release rate for delamination. The thick solid
lines are the semi-analytical solution, and the thick dashed lines are the
rigid-substrate solution in (23) and (24). The thick dotted line in (a) is
twice the wrinkle amplitude by (16) assuming no delamination.

energy release rate and thus the growth of delamination. It
seems possible that in some cases the pre-existing delam-
ination could be pinned by the wrinkles, as the energy re-
lease rate stops increasing once wrinkles start to grow
(Fig. 15b). However, it is cautioned that, since both the
wrinkling and buckle-delamination are highly nonlinear
processes, many metastable equilibrium states may exist
and snap-through instability may occur during co-evolu-
tion, posing challenges for numerical simulations.

5.2. Implications on thin film and interface metrology

It has been suggested that the phenomena of wrinkling
and buckle-delamination may offer a convenient method
to measuring elastic properties of thin film materials
(Chung et al., 2011) as well as adhesion energy of the inter-
face (Vella et al., 2009; Aoyanagi et al., 2010). Based on the
present study, we would make the following comments.

e The wrinkle wavelength is a reliable quantity for the
measurement of elastic properties, as long as the nom-
inal strain is within the limit of linear elasticity. Unless

the substrate is nearly incompressible (v~ 0.5), the
effect of Poisson’s ratio should be taken into account
by using Eq. (12) instead of Eq. (2).

e The wrinkle amplitude is less reliable as it depends sen-
sitively on pre-existing delamination (Fig. 10), which is
often unavailable from experiments.

e To determine the interface toughness or adhesion
energy from buckle-delamination, both the delamina-
tion width and the nominal strain are needed for the
calculation of energy release rate, which equals the
interface toughness when the delamination crack is
arrested. Measurement of the buckle amplitude could
help to infer one of the two quantities, but no explicit
relationships are obtained for either the buckle ampli-
tude or the energy release rate. In particular, we are
not able to confirm the simple formula obtained by a
scaling analysis (Vella et al., 2009).

e With concomitant wrinkling and buckle-delamination,
it is possible to simultaneously determine the elastic
property of the thin film and the interfacial properties.
First, by measuring the wrinkle wavelength far away
from the buckle-delamination, the elastic modulus of
the thin film can be determined by Eq. (12), assuming
that the elastic properties of the substrate are known.
Second, if the critical strain for wrinkle-induced nucle-
ation of buckle-delamination can be measured, the
strength of the interface may be determined by Eq.
(19). As shown by Goyal et al. (2010), the buckle ampli-
tude increases abruptly at the critical strain, which may
be practically measurable. Third, once the delamination
crack has arrested at a particular strain level, the inter-
face toughness can be determined by calculating the
energy release rate with the measured delamination
width and the buckle amplitude.

6. Summary

As two commonly observed buckling modes, buckle-
delamination and wrinkling have been analyzed separately
in previous studies. In this paper, by analytical and finite
element methods, we present a study on concomitant
wrinkling and buckle-delamination for an elastic thin film
on a compliant substrate. First, based on an analytical solu-
tion and finite element analyses of wrinkling, an approxi-
mate formula is derived to estimate the normal traction
at the interface and to predict initiation of wrinkle-induced
interfacial delamination. Next, the effect of pre-existing
delamination on the critical strain for onset of buckling
instability is examined by finite element eigenvalue analy-
ses, showing a smooth transition between the two buck-
ling modes. For an intermediate delamination size, a
mixed mode of buckling is predicted with the critical com-
pressive strain lower than previous solutions for both
wrinkling and buckle-delamination. Nonlinear post-buck-
ling analyses by two different finite element methods
show a significant shear-lag effect with an effective load
transfer length over three orders of magnitude greater than
the film thickness. Finally, concomitant wrinkling and
buckle-delamination is simulated to illustrate the long-
range interaction between the two buckling modes.
The results are discussed in view of predicting failure
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mechanisms in the hybrid systems as well as implications
for thin film and interface metrology.
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Appendix A. A finite element method for post-buckling
analysis

One of the methods to analyze the post-buckling
behavior of wrinkling and buckle-delamination is based
upon coupling a linear elastic semi-infinite substrate to
a nonlinear beam described by the von Karman theory.
Due to the nonlinearity and the coupling between the
normal and transverse displacements, we must resort
to numerical methods to investigate the post-buckling
behavior. Since the substrate is linear elastic and the
beam is represented as 1D line elements, it is possible
to generate solutions to this system with a 1D mesh
without a 2D finite element mesh for the substrate. To
accomplish this we draw upon the work of Carka and
Landis (2011) to develop the finite element equations,
summarized here as follows.

The principle of virtual work for the film/substrate sys-
tem is written as

/ (NS&w + Mor)dx + / (U + gow)dx = 0. (A1)

Here, N is the axial force in the film, M is the bending
moment, u and w are the tangential and normal
displacements at the film/substrate interface,
& = U + (W)?/2 —w"h/2 is the axial strain at the mid-
plane of the film, Kk =w” is the curvature, T and q are
the tangential and normal tractions at the interface.
The constitutive response of the film is taken as,
N = Efhew/(1 - vf) and M = E-h’k/12(1 — v#). The nov-
elty of the present method is in the treatment of the sec-
ond term on the left-hand side of this equation. The
method is based upon the realization that the solution
in the substrate can be obtained analytically as an
infinite series. Specifically, the displacement and the
traction at the film/substrate interface can be written
in the form

2u’ = i{[An + Bn(2 — 2vs)] sin(nmx)
n=0
— [Ca + Dn(2 — 2v)] cos(nmx) } + 2 4 X, (A.2a)

2uw’ = i{—[An — B, (1 — 2v5)] cos(nmx)
n=0

— [Ch = Dn(1 = 2v5)] cos(nmx)}, (A.2b)

T= Y {-nn[A; + By sin(nnx) + nn[C, + Dy) cos(nmx)},
n=0

(A2¢)

q= Z{nnAn cos(nmx) + nnC, sin(nmx)}, (A.2d)

n=0

where y is the substrate shear modulus, v; is the substrate
Poisson’s ratio, ¢ is the nominal strain, and A, B,, C, and D,
are unknown coefficients that must be determined by link-
ing to the finite element solution. This link is established
by enforcing the weak form of displacement continuity at
the interface as,

/ [ — u)5T + (WFE — w¥)og]dx = 0. (A3)

Eq. (A.3) is used to relate the unknown coefficients A,,
B, C, and D, to the nodal displacements, 1/ and W/, from
the finite-element solution. Note that u' and w't are
interpolated from ' and W through the shape functions
N as uff=>" N and w =3 Nw. The procedure re-
quired to execute this step is detailed in Carka and Lan-
dis (2011). Ultimately the process leads to the result,

/ (Tou + qow)dx = {su} [K){u"} + {su"} {F*}, (A4)

where [K*] is the stiffness of the semi-infinite substrate,
{F’} is a set of nodal forces associated with the nominal
strain ¢, and {u"} is the array of nodal displacements. Note
that the stiffness contribution relates the nodal displace-
ments on the interface to the conjugate forces supplied
by the substrate. This stiffness matrix is fully dense and
symmetric.

For the buckling analysis, a standard eigenvalue analy-
sis procedure is implemented first. A standard Newton-
Raphson method is implemented to deal with the nonlin-
earity associated with the first term of Eq. (A.1) for post-
buckling analyses. Perturbations in the initial displacement
fields are introduced using the eigen modes. Unlike the
geometric imperfections used in the 2D finite element
model, the initial displacement perturbations do not affect
the equilibrium solution. The 1D finite element method is
computationally more efficient than the 2D model. In addi-
tion, it eliminates the dependence on the substrate thick-
ness in the 2D model. On the other hand, the use of the
analytical solution in (A.2) is restricted to linear kinematics
for the substrate.

Appendix B. A semi-analytical approach for buckle-
delamination

Following the approach by Yu and Hutchinson (2002),
the plane-strain buckle-delamination problem is solved
by considering two parts as illustrated in Fig. B1. The del-
aminated part of the film is modeled by the nonlinear
von Karman plate theory, and the remaining film/substrate
system is treated as a linear elasticity problem. The two
parts are coupled by requiring continuity of displacements
and rotation at the delamination edge.

The governing equations for the delaminated part of the
film are:
=13 4 2
ﬂd—WJer—W:O, (B.1)

12 dx* = dx’
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Fig. B1. Schematic illustration of the semi-analytical approach to solving
the plane-strain problem for buckle-delamination.

du 1 /dw\? T
bl ddd - _¢| = B.2
dx+2<dx> +(th 8) 0, (B.2)
where u and w are the in-plane and out-of-plane displace-
ments of the film, ¢ is the nominal strain at the unbuckled
state (¢ > 0 for compression), and T is the in-plane mem-
brane force.
The boundary conditions are:

3 2
d—‘;V =0 and d_\;v
dx dx

M

257
x=b

dw

Fri (B.3)

x=0

where M is the bending moment at the edge of delamina-
tion and D = Esh®/12.

Solving (B.1) and (B.2) with the boundary conditions,
we obtain that

u(x) = (8 - Ef%)x - (%)2 {x 2b} sin (2?)}, (B.4)

w(x) = A; 1;/171)2 oS (%), (B.5)

" DJ%cos ).
where 2 = b,/T/D, and A, is a constant to be determined.
The rotation at the edge of delamination is then
dw Mb
0=——| =-—tan(l). B.6
&, =i ) (B.6)
For the remaining part of the film/substrate system,
by dimensional considerations, the in-plane displace-
ment, rotation and out-of plane displacement of the
film at the edge of delamination can be written in
form of

F M
ux=>b) =ay1=+ap;= B.7
( ) “Ef 12th (B.7)
F M
0x=Db)=ay1=—+ap=—, B.8
( ) MER T2 E N (B.8)
F M
—b) = — — B.9
W(x =b) = as Ef+a32 Eh (B.9)

where F =T — hEpe, and the coefficients a; are to be
determined numerically. By the reciprocal theorem,
a1 =dq2.

Assuming continuity of the displacements and rotation
at the edge of delamination, we combine Eqs. (B.4)-(B.9)
and obtain that

boo \F g, M b sin2 Mb \*
) Eh 12*;12 h 2, )J\2Dicoss) —

(B.10)
a i+(a +£btan/1)ﬂfo (B.11)
“Eh P h N '

F 12b M
a + | as + — = Aj. B.12
31 = E < R >E Pt ( )

B.1. Critical strain

Neglecting the nonlinear term, (B.10) and (B.11) form a
linear eigenvalue problem, which predicts the critical con-
dition for onset of buckling:

2
fhb tan(2) — ﬁ — . (B.13)
Recall that 4 = b+/T/D. The critical membrane force T, is
determined by the critical value of . obtained from
(B.13). The critical nominal strain (&;) for onset of buck-
ling is then predicted by the relation T. = E;hej. Rewrit-
ing (B.13) in terms of the critical strain, we obtain Eq.
(21).

B.2. Post-buckling analysis

From (B.11), we have

M F a
L — (B.14)
th th “h tan/ + (159)

Inserting (B.14) into (B.10) results in a nonlinear
equation,

b, dh (b sin2i)/ 6b ’
Rt Lbtanji+ay) h 2. h’.cos

dain 2 ;Lzhz
—-&| =0 B.15
% <% tan 4+ (122) <12b2 ) ' ( )

from which 4 can be solved as a function of ¢. The mem-
brane force T is then obtained as 2 = b+/T/D.

When ¢ > ¢, it can be shown that T < Eshe. In other
words, the membrane force is partly relaxed by buckling.
With F =T — hEse, the bending moment M is obtained
from (B.14). Next, inserting (B.12) into (B.5), we obtain
the buckle amplitude as

T M M 1
A=wkx=0)= ha31(fh )+a3zgfh T<1—@>.

(B.16)
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Fig. B2. Schematic of the finite element model used to calculate the
coefficients a; and the energy release rate. The crack length d is zero for
calculating a;. A symmetric boundary condition is assumed at the center
of the delamination (x = 0), while the remote boundary at the right end is
traction free. A mixed boundary condition is assumed at the bottom of the
substrate with zero vertical displacement and zero shear traction.

B.3. Calculating the coefficients a;;

To calculate the coefficients a; in (B.7), (B.8), (B.9), Yu
and Hutchinson (2002) used an integral equation method.
In the present study, they are calculated by a finite element
method. As illustrated in Fig. B2, a 2D plane-strain finite
element model is constructed using ABAQUS. To simulate
a semi-infinite substrate, the thickness and length of the
substrate in the finite element model must be sufficiently
large. In our calculations, we set L = H=1000h. The crack
length d is zero for this calculation. The edge of the film
at x = b is subjected to an axial force F and a bending mo-
ment M. The average displacements and rotation at the
edge are calculated from the nodal displacements as

u(x="b) = % / u(y)dy, (B.17)
0(x=Db) = h—f / u(y)ydy, (B.18)
w(x =b) = % / w(y)dy. (B.19)

By applying an arbitrary force F with M =0, the coeffi-
cients a;; (i=1,2,3) can be determined. Similarly, by apply-
ing an arbitrary moment M with F =0, the coefficients a;,
can be determined.

B.4. Energy release rate

The energy release rate for growth of the interfacial
crack may be calculated from the stress intensity factors
(Yu and Hutchinson, 2002). However, the approach works
only when the stress field at the crack tip exhibits the
square-root singularity without oscillation (Hutchinson
and Suo, 1992). For the present study, with vs=vy=1/3,
we calculate the energy release rate directly by the method
of J-integral. For this purpose, a short crack (d=h/2) is
introduced at the interface in the finite element model
(Fig. B2). Quarter-point singular elements are used at the

crack tip. The axial force F and the bending moment M, ob-
tained from the post-buckling analysis in (B.15) and (B.14),
are applied at the edge of the film.
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