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A rich variety of instability patterns have been observed on the surface of hydrogel layers with depth-
wise variation in material properties. In this paper, a state space method and a finite difference method
are developed to predict the critical condition for onset of surface instability for hydrogel layers with
continuously graded material properties in the thickness direction. Both methods are benchmarked by
comparing to analytical solutions for homogeneous hydrogel layers and hydrogel bilayers. While the finite
difference method often requires a large number of nodes to achieve convergence, the state space method
requires relatively fewer sub-layers for continuously graded layers. The results for linearly and exponen-
tially graded hydrogel layers show that the critical swelling ratio and corresponding critical wavelength
both depend on the gradient profile of the crosslink density. The present study may provide theoretical
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guidance for analyzing and designing surface instability and surface patterns in hydrogel layers.
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1. Introduction

A rich variety of swell-induced surface instability patterns have
been observed with polymer gels (Tanaka et al., 1987, 1992; Sultan
and Boudaoud, 2008; Trujillo et al., 2008; Guvendiren et al., 2009).
This phenomenon has been exploited for a range of applications,
including sensors (Schaffer et al., 2000; Stafford et al., 2004), mi-
crofluidic devices (Beebe et al., 2000; Sugiura et al., 2007), micro-
optics (Harrison et al., 2004), and active surfaces (Tokarev and
Minko, 2009). Theoretical studies on the swell-induced surface in-
stability of hydrogels are important for two reasons: (1) they pro-
vide fundamental understanding on the mechanisms for the for-
mation of surface patterns; (2) they offer analytical methods for
the design and exploitation of potential applications.

For a homogeneous hydrogel layer on a rigid substrate, Kang
and Huang (2010a) predicted that the critical swelling ratio for on-
set of surface wrinkling instability varies from about 2.5 to 3.4,
depending on the material parameters (both the polymer net-
work and the solvent). By considering the effect of surface ten-
sion, a characteristic wrinkle wavelength that scales almost lin-
early with the thickness of the hydrogel layer was predicted (Kang
and Huang, 2010b). On the other hand, it was noted that the sur-
face wrinkling of a homogeneous hydrogel layer is highly unstable
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and may be preceded by formation of surface creases. Based on
an energetic consideration and numerical calculations, Weiss et al.
(2013) predicted that the critical swelling ratio for the onset of sur-
face creasing is considerably lower than that for wrinkling.

Recently, a series of experiments by Guvendiren et al. (2009,
2010a, 2010b) have observed a variety of surface patterns (in-
cluding creases and wrinkles) by using hydrogels with depth-wise
crosslink gradients. In their experiments, the critical swelling ra-
tios were reported to be 1.12 for wrinkling and in the range of
1.3~2.0 for creasing, both considerably lower than the counter-
parts for a homogeneous layer. Wu et al. (2013) presented a lin-
ear perturbation analysis for hydrogel layers with material proper-
ties varying in the thickness direction and obtained analytical so-
lutions to the eigenvalue problem for hydrogel bilayers with differ-
ent combinations of material properties. In general, however, the
material properties may vary continuously in the thickness direc-
tion, for which numerical methods are needed to solve the eigen-
value problem. In this paper, we present a state space method
and a finite difference method to predict the critical condition
for onset of swell-induced surface instability for hydrogel lay-
ers with continuously graded material properties in the thickness
direction.

We note that Cao et al. (2012) have considered an elastic sys-
tem consisting of a hard surface layer on an elastically graded
soft substrate and presented analytical solutions for the soft sub-
strate with the elastic modulus varying as a power function and
an exponential function. A similar eigenvalue problem was in-
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Fig. 1. Schematics of a depth-wise graded hydrogel layer on a rigid substrate: (a)
the dry state; (b) a transversely homogeneous swollen state (the dotted line denotes
a perturbation to the surface of the swollen state).

vestigated by a finite element method for an elastic half space
with graded material properties (Lee et al., 2008). Diab and Kim
(2014) presented first and second-order bifurcation analysis for
a neo-Hookean elastic half space with a graded-stiffness, supple-
mented by finite-element analysis, to predict various instability-
order-dependent bifurcations, from stable wrinkling of the first or-
der to creasing of the infinite-order cascade instability. Recently,
a state space method was developed for surface instability of the
elastic layers with arbitrarily graded material properties (Wu et al.,
2014). The state space method was found to be computationally ef-
fective for the elastic layers in comparison with the finite element
method. In the present study, we extend the state space method
for surface instability of hydrogel layers where elastic deformation
is coupled with solvent-induced swelling.

The remainder of this paper is organized as follows. Section
2 briefly reviews the linear perturbation analysis for hydrogel lay-
ers with material properties varying in the thickness direction. The
state space method and the finite difference method are presented
in Section 3 and Section 4, respectively. The results are discussed
in Section 5, in comparison with the analytical solutions for homo-
geneous hydrogel layers and hydrogel bilayers, followed by linearly
and exponentially graded hydrogel layers. Section 6 concludes the
present study with a short summary.

2. Linear perturbation analysis

This section briefly reviews constrained swelling and linear per-
turbation analysis for a depth-wise graded hydrogel layer attached
to a rigid substrate. More details can be found in Wu et al. (2013).

2.1. Transversely homogeneous, constrained swelling

Consider a depth-wise graded hydrogel layer attached to a rigid
substrate as shown in Fig. 1a. Set a Cartesian coordinate system in
the dry state such that X, = 0 at the hydrogel/substrate interface.
The thickness of the hydrogel layer is H and the other two dimen-

sions are assumed to be infinite. The material properties of the hy-
drogel may vary with respect to X5, i.e., N =N(X3) and x = x (X3),
where N is the effective number of polymer chains per unit vol-
ume of the polymer network in the dry state and x is the Flory
parameter for the interaction between solvent molecules and the
polymer.

Immersed in a solvent, the graded hydrogel layer swells in the
thickness direction but constrained in the in-plane directions (as-
suming perfect bonding at the interface), thus a transversely ho-
mogeneous swelling occurs (Fig. 1b). The local swelling ratio of the
graded hydrogel layer A,(X5) is equivalent to that for a transversely
constrained, homogeneous hydrogel layer with the material prop-
erties N=N(X;) and x = x (X3). The nominal stress in the hydro-
gel layer is obtained as a function of the swelling ratio and the
chemical potential of solvent. By setting the normal stress on the
surface to be the external solvent pressure as the boundary con-
dition, we obtain a nonlinear equation for the local swelling ratio
(Wu et al,, 2013):

1 1 X 1\ pu—-pQ
log(l—rh)+7h+rﬁ+m(xh—k—h)— = (1)

where w is the chemical potential of the solvent, p is the exter-
nal solvent pressure, 2 is the volume per solvent molecule, k is
the Boltzmann constant, and T is the absolute temperature. In the
equilibrium state, the chemical potential of the solvent is a con-
stant in the hydrogel and equal to that of the external solvent, fi.
For given i = /i and p, the local swelling ratio A;, depends on the
graded material properties, N(X;) and x(X3). At equilibrium, the
total thickness of the graded hydrogel layer can be obtained by in-
tegrating the local swelling ratio, i.e., h = f: ApdXz, and the aver-
age swelling ratio is then A = h/H.

The transversely constrained swelling leads to in-plane com-
pressive stresses, Si; = S33 = —NkT[A% —1] - pAp, and sy = —p,
where s; denotes the nominal stress in the hydrogel. The in-plane
compressive stresses may be partly relaxed by buckling. As a result,
the transversely homogeneous swollen state may become unstable,
giving rise to surface wrinkles or creases.

2.2. Linear perturbation analysis

To analyze stability of the constrained swollen state of a hydro-
gel layer, a small perturbation is assumed with displacements from
the swollen state in the general form:

Uy = U1 (X, X2), Uy = Up(Xq,X2). (2)

With reference to the dry state, the deformation gradient tensor
after the perturbation becomes

1+ i ”872 0

F=| 0w u, . (3)
T An (1 + axz) 0
0 0 1

The corresponding nominal stress components can be obtained
from differentiation of the free energy density function of the hy-
drogel as follows (Wu et al., 2013):

ou ou
S~ NkT[(l + AhSh)TXI + A (Ep = Ap) o — A2+ li|

Xy
auz
—p)\,h<1 + 8X2>, (4)
8111 Buz auz
S1p & NkT)\.h (8)(2 + 8x1> TX], (5)
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ou Jau ou
" 20Uy 2 1
So; ~ NkT (Ah %, + 8x1) DPAp—— %, (6)

s22~NkT[(éh—xh> Gt ) o2 }p(na”l) 7)

8X1
S33 %—NkT[)\,%(l+8)—)\.hgh6‘—1]—p)\h(1+8), (8)
where th)\lfh-‘rﬁ()L; 1 —)\]*h—f) and Sy3 =S31 =S33 =S33 =
0.

In the absence of body force, the mechanical equilibrium re-
quires that the nominal stress components must satisfy

8511 8512 .
% Mok, T 0, (9)
Os Osn _ g (10)

X M oxy

Substituting Eqs. (4)-(7) into Egs. (9) and (10), we obtain two
coupled linear differential equations in terms of the perturbation
displacements:

02u 0%u
2 1 2
(1 +}"h$h) )"h 8 2 +}"f’l$h 3X]8X2
d d
+f <xz><“1 - ;) —0, (1)
8”2+A<s+x> 2y gl ()
a 2 h\Sh h h hax 8X 2 2
0
+ )5t = (12)

where f,(x)) = p & a5 (AnNQ), f(x2) = s de [NQ (& — Ap)], and

f3x) = m@[NQ@h + Ap)l.
Take the perturbation displacements to be periodic in the x;-
direction, namely

= U; (xy) sinwxy and u, = U, (x3) cos wxq, (13)

where  is the wave number. Substitution of Eq. (13
(11) and (12) yields

MUY+ 1Uf — 0 (14 Ap&p) Uy

) into Egs.

— whpépU; — 0fil, =0, (14)

oMEUT + @ LUy + Ay (En + Ap)UY + f3U) — 0*Uy = 0, (15)

where the single and double primes denote the first and second
derivatives of Uj(xy) and U(x3).

The bottom surface of the hydrogel layer is attached to the rigid
substrate with zero displacements, namely

U =U, =0, atx, = 0. (16)

The top surface of the hydrogel layer is subjected to a pressure
from the external solvent. To the first order of the perturbation,
the nominal traction at the surface is

0 d
le:pTZf and 522:_p<1+8xu:>’ atx, = h. 17)

Thus, by Egs. (5), (7), and (13) the top surface satisfies the

boundary condition:
U —wlUy =0 and (&, — Ap)wUs + (&, + Ap)U; =0, atx, = h.
(18)

The equilibrium Eqgs. (14) and (15) along with the boundary
conditions (16) and (18) constitute an eigenvalue problem for the

constrained swollen state. If there exists a nontrivial solution for
any wave number o, the transversely homogeneous swollen state
of the hydrogel layer becomes unstable. Constrained at the bottom
by the rigid substrate (assuming no debonding), surface instabil-
ity modes (wrinkles or creases) are expected. Thus, by solving the
eigenvalue problem, the critical condition is predicted for the on-
set of swell-induced surface instability. However, for an arbitrarily
graded hydrogel layer with N(X5) and x(X;), the eigenvalue prob-
lem in general cannot be solved analytically. In Sections 3 and 4,
we develop a state space method and a finite difference method to
solve the eigenvalue problem for hydrogel layers with depth-wise
graded material properties.

3. A state space method

The state space method is commonly used in dynamic systems
to analyze multiple inputs and outputs related by differential equa-
tions (also known as the “time-domain approach”) (Elgerd, 1967;
Derusso et al., 1998). Recently, the state space method has been
adopted as an effective analytical approach for surface instability
analysis in elastic layers (Wu et al., 2014; Toh et al., 2015). In this
section, we extend this method to determine the critical condition
for swell-induced surface instability of hydrogel layers.

First consider a homogeneous hydrogel layer. Both material
properties N and y are independent of X, and the quantities A
and &, are constants. From Egs. (5) and (7), we have

8U1 _ p 8u2 S12
xy _<1 " W)Txl NKT A, (19)
uy _ _ NKT (§h — An) — p 0t L S2tP (20)
%2 NKT(&q +Ap)  0x1  NKT (& +Ap)’
Differentiation of Egs. (4) and (6) with respect to x; yields
ds Ju
T = NkT[“ 2 S8 6 ) ( aé)]
0 8“2
Py (sz) 1)

8521 2 0 8u1 azllz 0 8111
Substituting Eqs. (19) and (20) into Eqs. (21) and (22
into Egs. (9) and (10), we obtain that

ds12 | INKT (5 — An) — P] 02U,
0x, { NKT (& +An) NkT("’E’“ " )} X2
_ NKT (§n — Ap) — p 9522

) and then

NKTBn+ An) 0%y (23)
0sy2  NKT P \? 02%u, p 0512
o M[O” W) N (1 + NkT,\h)aT]'
(24)

Based on the assumption of the perturbation displacements in
Eq. (13), the nominal stresses s, and s;, may be written as

— D, S12 = S12(x2) sinwx;. (25)

Inserting Eqs. (13) and (25) into Egs. (19), (20), (23), and (24), a
set of differential equations are obtained in a matrix form as

S22 = S22 (X2) COS WX

NI

S22(x%2 S (x;
dx; | Ua(x2) U(x) [° (26)

S12(x2) S12(x2)
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where A is a four-by-four matrix with the following nonzero ele-
ments:

I __1
Az = —fa = (Nkmh + l)‘”’ Au = N
C[NKT (NKTA+ )]
Az = [ o NkTa, |
NkT(Eh - }"h) - p 1
Ay =-Ap=——>2_""" = Ay = ——
= ie NKT (& +n) 0 "2 NKTGy + )
B 1\ [NKTGE,—A) —pl |
Aa = {NkT(s” AT) NG |

Eq. (26) is a linearized state equation for a homogeneous hydro-
gel layer, which is a set of first-order, homogeneous, and ordinary
differential equations in terms of the perturbation displacements
and associated tractions. By integrating the differential equations,
the state vector, [U; Sy, Uy S12]T, can be determined as

U1 ((Xz)) U] ((0))
Snx2) | _ S»(0
U(x2) [ D(x2) U2(0) [~ 27
S12(x2) 512(0)

where the matrix D(x,) = eA2 can be calculated directly by the
matrix exponential operation (e.g., expm in Matlab).

Inserting Eqs (13) and (25) into Eq. (17), the boundary condi-
tions at the upper surface (x, = h) become

S22(h) = —pwU; (h) and S13 (h) = —pwU, (h). (28)

Applying the boundary conditions (16) and (28) to Eq. (27), we
have

Ui (h) 0
—pwU, (h) 512(0)

which leads to an eigenvalue problem in terms of the tractions at
the lower surface of the hydrogel layer:

(D23 + pwD13)S27(0) + (D24 + pwD14)S12(0) =0, (30)

(D43 + pwD33)S72(0) + (Dag + pwD34)S12(0) = 0. (31)

To have a nontrivial solution, the determinant of the coefficient
matrix in the coupled Egs. (30) and (31) must vanish, which can
be expressed explicitly as

(= BIARI — (0F + D[ 1m0l @i
+ O+ BIAALB + (fp + 1)? ][ HPeH el
—16A2B(A% +1) =0, (32)

where 8 = \/(1 + Ahéh)/()»fl + Ap&y). For each dimensionless wave

number wH, Eq. (32) predicts a critical swelling ratio A¢, which de-
pends on the two material properties N2 and x. The correspond-
ing chemical potential 1i¢ is then obtained from Eq. (1) for onset of
surface instability of a homogeneous hydrogel layer. Theoretically,
there exists a short-wavelength limit for a homogeneous hydrogel
layer with wH — oo, for which Eq. (32) becomes

(= BI4AB — (A + D] = 0. (33)

Eqgs. (32) and (33) are consistent with the previous results obtained
by Kang and Huang (2010a) using a different method.

Next consider a hydrogel layer with material properties vary-
ing in the thickness direction such as N(X;) and x(X3). The func-
tions N(X;) and x(X,) may be continuous or discontinuous (such

X2
___________ qd,_
|y _H, ] " Dryhydrogel """
R . S e
——————————— 24 T____"______Xl__________
Rigid substrate
(a)
X2
h,
|, | Swollen hydrogel
e
hy 2
Rigid substrate

(b)

Fig. 2. A graded hydrogel layer divided into n sub-layers: (a) the dry state; (b) a
transversely homogeneous swollen state.

as piecewise constant functions for hydrogel bilayers or multi-
layers). In either case, we would divide the layer into a num-
ber of homogeneous sub-layers (Fig. 2). In the case of a contin-
uously graded hydrogel layer, the functions N(X,) and x(Xy) are
discretized into piecewise constant functions with n sub-layers.
When n approaches infinity and the thickness of each sub-layer
approaches zero, the discretization would eventually converge to-
wards the continuous functions. During the calculation, this graded
hydrogel layer can be analyzed approximately by the discretized
sub-layers with a finite but sufficiently large n. Therefore, regard-
less of continuous or discontinuous variation in material proper-
ties, surface instability of the hydrogel layer can be analyzed by
using the state Eq. (26) for each sub-layer, along with the conti-
nuity conditions at the interfaces between adjacent sub-layers and
the boundary conditions at the top and bottom surfaces.

As shown in Fig. 2a, for the jth sub-layer with thickness H;, the
material properties are approximately taken as

N; =[N(Yi_1) +N(Yp]/2 and  x; =[x (Yj-1) + x (Y)]1/2,
(34)

where Y; = Hy + Hy +--- + Hj and Yy = 0. In the swollen state, the
thickness of the jth sub-layer becomes h; (Fig. 2b), with a swelling
ratio, A; = h;/H;. From the state Eq. (26) for each homogeneous
sub-layer, the state vector at the interface x, = y; is related to that
at xp = yj*l as

R(y;) =D;j(hp)Ry;-1), (35)

where yj=h1+h2+---+hj, Yo =0, R(yj):
[Uq (yj)Szz(yj)Uz(y]—)Slz(yj)]T, D;(hj) = exp(Ajh;), and the matrix
A; is given by Eq. (26) for each sub-layer.

Noting the continuity of the state vector (displacements and
tractions) across all interfaces between the adjacent sub-layers, we
obtain the following relation:

R(yn) = KR(0), (36)
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1
where K= [] D;(h;), with R(0) and R(ys) being the state vectors
Jj=n
at the bottom surface (x, = 0) and the top surface (x, =yn, = h),
respectively.
Applying the boundary conditions (16) and (28), we obtain

Ui (Yn) 0
_pl;lz)l(-];n(.)yn) =K 5220(0) , (37)
—pwU; (Yn) 512(0)

which leads to an eigenvalue problem in terms of the tractions at
the lower surface of the hydrogel layer:

(K22 + pwKi2)S22(0) + (Kza + pawKis)S12(0) =0, (38)

(Kg2 4+ pwK33)S22(0) + (Kag + pwKz4)S12(0) = 0. (39)

Similar to the case of a homogeneous hydrogel layer, the crit-
ical condition for onset of surface instability of the laminated hy-
drogel layer is determined by having a non-trivial solution in Eqs.
(38) and (39), which requires that

Ky + pwkKip

Koy + pa)K14 _
K2 + pwks; 0 (40)

Kag + pwKsq| —

Eq. (40) presents an implicit relation between the critical chem-
ical potential . and the wave number w, which is associated with
the discretized material properties (N;€2, x;) and thickness (H;) of
all sub-layers. By using a dimensionless wave number wH and the
normalized thickness of each sub-layer H;/H, the critical condition
can be written as

,LLCan(a)H,NjQ,Xj,Hj/H;j:1,2, ~~~,n). (4])

For each dimensionless wave number wH, we solve Eq. (40) to
find the critical chemical potential .. The corresponding swelling
ratio of each sub-layer under the critical condition is then com-
puted from Eq. (1), which varies with the material properties of
the sub-layer. Subsequently, the critical swelling ratio for the mul-
tilayered hydrogel is obtained approximately as:

h 18
he =g =5 2_Mi(HoH;. (42)
j=1

4. A finite difference method

Alternatively, the general eigenvalue problem can be solved by a
finite difference method to determine the critical condition for sur-
face instability in graded hydrogel layers. Since the material prop-
erties (N and y) are usually provided as functions of the coordi-
nate X, referring to the dry state, it is convenient to implement a
uniform discretization in the dry state. However, the equilibrium
Egs. (14) and (15) as well as the boundary condition (18) are dif-
ferential equations with respect to the coordinate x, in the swollen
state. For the finite difference method, we re-write the equilibrium
equations and the boundary condition in the reference coordinate
and normalize the coordinate by the dry-state thickness of the hy-
drogel layer, H. By the chain rule, we have

d 1d 1 d

G = M@ Higd%, )
@1 @1y d (44)
dx}  H2A2 dX2  H?A7 dX, dX,’

where X, = X,/H. Therefore, Eqs. (14) and (15) can be re-written
as
dZU] d)‘h dU] -
- Xp) — A — — @*(1 + Ap&p)U
dX2 |:f1( 2) "ax, | 4% (1+ Angp)Us
du
= sh—z — ok fi(Xp)Up = (45)

wfh X +a))» 'fH(Xo)Us + Ay (§h+)»h)dU2

— &%, =0, (46)

|:f3 X2) — (& dkhi| %

2

where @ = wH, f1 Xy) = NQ dX (MNQ), fr(X0) = NQ % 4 INQ(&, -

Al (X)) = Nde [NQ(&, + Ap)]. Correspondingly, the bound-
ary condition (18) becomes

v,
2
at X2 =1. (47)

The number of nodes is taken as m and the spacing between
any two adjacent nodes is then AX =1/(m —1) in the reference
configuration. The nodes may be numbered from 1 at the bot-
tom surface of the layer (X, = 0) to m at the top surface (X, = 1).
By applying the central difference formulae to the node k in the
domain (1 < k < m), the normalized equilibrium Egs. (45) and
(46) are discretized as

du:
—&hylz =0 and @hy(§y =AU + (& +An) - 2 -0,

AU AUED £ AUP 4+ AU + AsURY 1 AU = 0,
(48)

B]U](k—l) +BZU2(’H) +B3U1(k) +B4U2(k) +B5U](k“) +BGU2("H) -0,
(49)

where the superscrlpt refers to the node number and the coeffi-
cients, A;(wH, X ) and B;(wH, X ) are evaluated at the node k

with X = (k - 1)/(m —1)as

Av=(m—1)? = 2 (m - 1) [fl(xz)— fm

Ay =-As=-B1=B5= %(m— 1 wé&y,

As = —2(m—1)% = @*(1 + Ap&p).

Ay =~ i (),

As = (m= 17+ 2 (m—1)3;? [ﬁ(xz)— jjd
= =125 G )

—;(m—mhz[fa(xz)— j;ﬂ

By = @A, fo(Xa).

By = —@* —2(m— 1)1, (&, + Ap).



Z. Wu et al./ Mechanics of Materials 105 (2017) 138-147 143

Bs = (m—1)*A;" (& + An)
P =132 F(R) - o+ ha)
2 h 3\A2 h h d)-(z .

It should be noted that the coefficients A; and B; (i=1,2,---,6)
include differentiations of A, and &, with respect to X, at each
node. For given functions N(X;) and x(X;), A, at each node is ob-
tained by solving Eq. (1) and the corresponding &}, is calculated
accordingly. Differentiations of A, and & are then calculated by
central difference.

At the bottom surface of the layer (X, = 0), the boundary con-
dition (16) requires that

ulP =uM = o, (50)

which is used directly in Eqgs. (48) and (49) for k = 2.

At the top surface of the layer (X, = 1), Eqs. (48) and (49) for
k = m include displacements at a fictitious node k = m + 1. By dis-
cretizing the boundary condition (18) with central difference, we
obtain

uim =y L qum, (51)

U™ = g™ 4 U™, (52)

where C; =2(m—1)"'@A, and G = —2(m — 1)~ 2237- Sub-
n
stituting Eqs. (51) and (52) into Eqgs. (48) and (49) for k = m, we

obtain that

(A1 +AU™ Y 1 (A + As)US™ D 4 (A3 + AsC)UM™ + (Ag
+AsCHU™ =0, (53)

(B1 +Bs)U™ ™ 4 (B + Be)US™ ™V + (B3 + BsCo)U™ + (By
+BsCHU™ = 0. (54)

Therefore, by Eqs. (48) and (49) with k=2,3, ...,m—1 as well
as Egs. (53) and (54), a set of algebraic equations are obtained in a
matrix form as

MU = 0, (55)

where M is a 2(m-1)x2(m-1) matrix, and U=
[Ul(z),Uz(z),--- ,U](m),Uz('")]T. The eigenvalue problem in
Section 2.2 is thus discretized, and a nontrivial solution re-
quires that the determinant of the coefficient matrix vanish,
namely

detM = fi (@, jc) = 0. (56)

Similar to Eq. (40) by the state space method, Eq. (56) presents
an implicit relation between the critical chemical potential w. and
the dimensionless wave number @, which depends on the dis-
cretized material properties NKQ and x(). The critical swelling
ratio at each node Aék) is then computed from Eq. (1) with @ = .
The average critical swelling ratio for the graded hydrogel layer is
obtained approximately as

1 m (k) )\.El) + )\.gm)
b= T 2 Sy 57)

By this method, a large number of nodes are often used in or-
der to achieve convergence, and we employ a bisection method for
solving the nonlinear Eq. (56).

5. Results and discussion

In this section, by using the state space method (Section 3) and
the finite difference method (Section 4), we consider swell-induced
surface instabilities for homogeneous hydrogel layers, hydrogel bi-
layers, and continuously graded hydrogel layers. For both methods,
convergences of the approximate solutions are demonstrated by in-
creasing the number of sub-layers or discrete nodes, in compar-
ison with the analytical solutions for homogeneous layers (Kang
and Huang, 2010a) and bilayers (Wu et al., 2013).

5.1. Surface instability of a homogeneous hydrogel layer

For a homogeneous hydrogel layer, the critical condition for on-
set of surface instability was predicted by an analytical method
(Kang and Huang, 2010a). As shown in Fig. 3, for given material
properties, the critical chemical potential and the corresponding
critical swelling ratio depend on the normalized perturbation wave
number. The minimum critical swelling ratio is obtained at the
short wave limit (wH — oo), as predicted by Eq. (33). By the state
space method, only one sublayer (n=1) is necessary in this case
and the result is identical to the analytical solution. By the finite
difference method, however, a large number of nodes are needed
to achieve convergence. As shown in Fig. 4, the finite difference
method converges more quickly for the long-wave modes than for
the short-wave modes. To obtain the critical swelling ratio at the
short-wave limit (wH — oo), m = 2000 is found to be sufficient.
Clearly, the state space method is more efficient than the finite dif-
ference method for the case of a homogeneous layer.

5.2. Surface instability of hydrogel bilayers

For a hydrogel bilayer, the critical condition of surface instabil-
ity depends on material properties in the two sub-layers (Wu et al.,
2013). Since the material properties are discontinuous at the inter-
face between the upper layer (film) and the underlayer (substrate),
both N2 and x and their differentiations with respect to X, are
uncertain at the interface, and thus the finite difference method is
unsuitable in this case. Approximate solutions may be obtained by
the finite difference method by replacing the sharp interface with a
smooth transition, which however would require a very large num-
ber of nodes to converge to the bilayer solution. On the other hand,
by the state space method, only two sub-layers (n=2) are needed,
and the results are identical to the previous analytical solution (Wu
et al., 2013), as shown in Fig. 5. Two types of bilayers are consid-
ered. For the soft-on-hard bilayer, the underlayer is stiffer than the
upper layer (N7 > N,), and the minimum critical swelling ratio is
obtained at the short wave limit (wH — oo), similar to the homo-
geneous case. In such a case, numerical simulation in the previous
study (Wu et al., 2013) showed creasing of the upper surface, pos-
sibly because surface wrinkling of any finite wavelength would be
unstable and tend to collapse into localized creases. For the hard-
on-soft bilayer (N; <N;), the underlayer is softer and the mini-
mum swelling ratio corresponds to a long-wave wrinkling mode
(wH ~ 6). In such a case, numerical simulation (Wu et al.,, 2013)
showed wrinkling of the upper layer at the onset of surface insta-
bility. Clearly the state space method is quite effective for the case
of hydrogel bilayers, and it can be readily extended to multilayer
hydrogels.

5.3. Hydrogel layers with continuously graded material properties

To predict onset of surface instability for hydrogel layers with
continuously graded material properties, we consider two types
of graded hydrogel layers: one with linearly graded and the other



144 Z. Wu et al./Mechanics of Materials 105 (2017) 138-147

0
=
< o State space
(8]
_(‘: -0.005 x  Finite difference
b= Analytical
2
g oo NQ = 0.001
_8 v=04
€
2 -0.015
[}
=
O
& -0.02
0 2 4 6 8 10

Perturbation wave number »H

(a)

55
o 5 o State space
‘: = Finite difference
5 Analytical
= 45
2
s NQ = 0.001
% 4 X = 0.4
©
o
G 35
3
0 2 4 6 8 10

Perturbation wave number »H

(b)

Fig. 3. (a) The critical chemical potential and (b) the corresponding swelling ratio for a homogeneous hydrogel layer, comparing the results by the state space method (n=1)
and the finite difference method (m =2000) with the analytical solutions by Kang and Huang (2010a).
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Fig. 4. Convergence of the finite difference method for a homogeneous hydrogel layer: (a) the critical chemical potential; (b) the corresponding swelling ratio.

with exponentially graded crosslink density in the thickness direc-
tion. Since the effective number of polymer chains per unit volume
is proportional to the crosslink density, we have

N(X3) = Ny + (Ne — Np) Xz, (58)
or

— e']xz -1
N(X3) =N, + (N; — Nb)ﬁ,
where Ny = N(X; =0), No=N(X, = 1), and the parameter 7 is a
shape factor for the exponential function. When n = 0, the expo-
nential function in Eq. (59) reduces to the linear function in Eq.
(58). The Flory parameter is assumed to be a constant, y = 0.4, in
both cases. Fig. 6 presents the dimensionless material property N2
varying from the bottom surface with N, = 0.001 to the top sur-
face with N2 = 0.01 for n = -5, 0, 5, and 10.

Fig. 7 shows the critical condition for surface instability of a
linearly graded hydrogel layer with N, =0.001 and N:Q2 = 0.01.
By the state space method, the layer is divided into n = 10, 20,
50, 100 uniform sub-layers. The critical chemical potential . and
the corresponding swelling ratio A are obtained as functions of
perturbation wave number wH. The state space solution converges
fairly quickly with the increasing number of sub-layers n. The re-
sults for n =50 and n = 100 are indistinguishable. Similar to the
case of a hard-on-soft bilayer (Fig. 5), the minimum swelling ratio
corresponds to a long-wave wrinkling mode (wH ~ 2), and thus

(59)

wrinkling is expected at the onset of surface instability. The finite
difference method can also be used in this case. For convergence,
the linearly graded layer is discretized into 2000 nodes as for the
homogeneous layer. As shown in Fig. 7, the results obtained by
both methods are in excellent agreement. To our knowledge, no
analytical solution or other numerical results can be found in the
literature for the continuously graded hydrogel layers.

Figure 8 shows the critical chemical potential and the corre-
sponding swelling ratio for three linearly graded hydrogel layers
with different dimensionless material property N2 and the same
Np 2. As N2 increases, the swelling ratio decreases, and the cor-
responding wave number at the minimum critical swelling ratio
decreases as well. Again, the results obtained by the state space
method (n=50) and the finite difference method (m=2000) are
in close agreement.

Similar results are obtained for the exponentially graded hydro-
gel layers. The minimum critical swelling ratio A} and the corre-
sponding wavelength L* = 27 /w*, normalized by the thickness H,
are plotted in Fig. 9 as functions of the shape factor 5. The results
by both the state space method and the finite difference method
are in excellent agreement. Remarkably, with the same values of
N, and N:€2, the critical swelling ratio and the corresponding
wavelength depend on grading profile via the shape factor 7. As
n increases, the critical swelling ratio A} decreases monotonically,
which can be considerably lower than that predicted for a homo-
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Fig. 6. The linear and exponential variations of the material property (NQ2) in the
thickness direction of a hydrogel layer with N,©2 = 0.001 and N2 = 0.01.

geneous layer in the range of 2.5~3.4 (Kang and Huang, 2010a).
On the other hand, the corresponding critical wavelength depends
on the shape factor n non-monotonically (Fig. 9b). This result sug-
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gests that the critical condition and the surface instability pattern
depend on how the material properties vary in the hydrogel layers.

Fig. 10 plots the critical swelling ratio A# and the corresponding
normalized wavelength L*/H for the exponentially graded hydrogel
layers with N¢§2 ranging from 2 x 10— to 0.1 whereas N,Q = 10>
and n=>5. As Nt increases, the minimum critical swelling ra-
tio A} decreases. Meanwhile, the corresponding normalized wave-
length L*/H increases monotonically with the increasing N:Q as
shown in Fig. 10b. Therefore, by controlling the crosslink density
near the top surface and the depth-wise variation in the hydrogel
layer, different critical wavelength of swell-induced surface insta-
bility can be obtained.

5.4. Surface instability of graded hydrogel bilayers

To compare with the experiments in Guvendiren et al. (2009),
we consider a bilayer model with a graded top layer on a uniform
bottom layer. The top layer is assumed to have a linearly graded
material property, namely
Ny + (Ne = Ny) B2 Hy < Xo <H

Ny, 0 <X, < Hy

where N, and N; refer to the effective numbers of polymer chains
per unit volume at the bottom and top surfaces, respectively, Hy

NX;) = { (60)
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Fig. 7. Convergence of the state space method for a linearly graded hydrogel layer: (a) The critical chemical potential and (b) the corresponding swelling ratio, in comparison

with the finite difference results denoted by “x”.
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Fig. 9. (a) The critical swelling ratio and (b) the corresponding wavelength for exponentially graded hydrogel layers versus the shape factor n ranging from —5 to 10.
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Fig. 10. (a) The critical swelling ratio and (b) the corresponding wavelength for exponentially graded hydrogel layers with N2 ranging from 2 x 10~> to 10~'.

is the thickness of the bottom layer. The Flory parameter x is as-
sumed to be the same in both layers. By the state space method,
the graded top layer is divided into 50 sub-layers, while a sin-
gle sublayer is used for the bottom layer. The predicted critical
swelling ratio and the corresponding wavelength are presented in
Fig. 11, in which N is varied, but N,2 = 0.001 and H,/H = 2/3

are fixed. The critical swelling ratio A} decreases with increas-
ing N2, while the corresponding wavelength L*/H increases. In
particular, the critical swelling ratio drops below 1.2 for N;Q >
0.05, comparable to the critical value of ~1.12 as observed in ex-
periments (Guvendiren et al., 2010a). However, Guvendiren et al.
(2009) suggested that the top surface has a lower crosslink density
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Fig. 11. (a) The critical swelling ratio and (b) the corresponding wavelength for a linearly graded top layer on a uniform bottom layer.

in their experiments with the PHEMA films due to diffused oxygen
inhibiting photopolymerization and crosslinking of the polymer. If
that was the case, based on the present stability analysis, the criti-
cal swelling ratio would be much larger and the critical wavelength
would be much shorter (approaching zero), similar to the soft-on-
hard bilayer case as shown in Fig. 5. As a result, instead of the
wrinkles as observed in their experiments, creases would be ex-
pected. Therefore, the prediction of the present stability analysis
is consistent with the experiments only if the top surface actually
had a higher crosslink density.

6. Summary

In this paper, a state space method and a finite difference
method were developed for predicting the onset of surface insta-
bility in hydrogel layers with material properties varying in the
thickness direction. Both methods were verified by comparing to
the analytical solutions of homogeneous hydrogel layers. The re-
sults from the state space method are also in complete agreement
with the corresponding analytical solution for hydrogel bilayers.
While the finite difference method often requires a large num-
ber of nodes to achieve convergence, the state space method is
most efficient for multilayers with discontinuous variations in ma-
terial properties and requires relatively fewer sub-layers for con-
tinuously graded layers. The results for linearly and exponentially
graded hydrogel layers show that the critical swelling ratio and
corresponding critical wavelength depend on the gradient profile
of the crosslink density. The present study may provide theoretical
guidance for analyzing and designing surface instability and sur-
face patterns in hydrogel layers.
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