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a b s t r a c t 

A rich variety of instability patterns have been observed on the surface of hydrogel layers with depth- 

wise variation in material properties. In this paper, a state space method and a finite difference method 

are developed to predict the critical condition for onset of surface instability for hydrogel layers with 

continuously graded material properties in the thickness direction. Both methods are benchmarked by 

comparing to analytical solutions for homogeneous hydrogel layers and hydrogel bilayers. While the finite 

difference method often requires a large number of nodes to achieve convergence, the state space method 

requires relatively fewer sub-layers for continuously graded layers. The results for linearly and exponen- 

tially graded hydrogel layers show that the critical swelling ratio and corresponding critical wavelength 

both depend on the gradient profile of the crosslink density. The present study may provide theoretical 

guidance for analyzing and designing surface instability and surface patterns in hydrogel layers. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

A rich variety of swell-induced surface instability patterns have

been observed with polymer gels ( Tanaka et al., 1987, 1992; Sultan

and Boudaoud, 2008; Trujillo et al., 2008; Guvendiren et al., 2009 ).

This phenomenon has been exploited for a range of applications,

including sensors ( Schaffer et al., 20 0 0; Stafford et al., 2004 ), mi-

crofluidic devices ( Beebe et al., 20 0 0; Sugiura et al., 20 07 ), micro-

optics ( Harrison et al., 2004 ), and active surfaces ( Tokarev and

Minko, 2009 ). Theoretical studies on the swell-induced surface in-

stability of hydrogels are important for two reasons: (1) they pro-

vide fundamental understanding on the mechanisms for the for-

mation of surface patterns; (2) they offer analytical methods for

the design and exploitation of potential applications. 

For a homogeneous hydrogel layer on a rigid substrate, Kang

and Huang (2010a) predicted that the critical swelling ratio for on-

set of surface wrinkling instability varies from about 2.5 to 3.4,

depending on the material parameters (both the polymer net-

work and the solvent). By considering the effect of surface ten-

sion, a characteristic wrinkle wavelength that scales almost lin-

early with the thickness of the hydrogel layer was predicted ( Kang

and Huang, 2010b ). On the other hand, it was noted that the sur-

face wrinkling of a homogeneous hydrogel layer is highly unstable
∗ Corresponding authors. 
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nd may be preceded by formation of surface creases. Based on

n energetic consideration and numerical calculations, Weiss et al.

2013) predicted that the critical swelling ratio for the onset of sur-

ace creasing is considerably lower than that for wrinkling. 

Recently, a series of experiments by Guvendiren et al. (2009,

010a, 2010b ) have observed a variety of surface patterns (in-

luding creases and wrinkles) by using hydrogels with depth-wise

rosslink gradients. In their experiments, the critical swelling ra-

ios were reported to be 1.12 for wrinkling and in the range of

.3 ∼2.0 for creasing, both considerably lower than the counter-

arts for a homogeneous layer. Wu et al. (2013) presented a lin-

ar perturbation analysis for hydrogel layers with material proper-

ies varying in the thickness direction and obtained analytical so-

utions to the eigenvalue problem for hydrogel bilayers with differ-

nt combinations of material properties. In general, however, the

aterial properties may vary continuously in the thickness direc-

ion, for which numerical methods are needed to solve the eigen-

alue problem. In this paper, we present a state space method

nd a finite difference method to predict the critical condition

or onset of swell-induced surface instability for hydrogel lay-

rs with continuously graded material properties in the thickness

irection. 

We note that Cao et al. (2012) have considered an elastic sys-

em consisting of a hard surface layer on an elastically graded

oft substrate and presented analytical solutions for the soft sub-

trate with the elastic modulus varying as a power function and

n exponential function. A similar eigenvalue problem was in-

http://dx.doi.org/10.1016/j.mechmat.2016.11.005
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mailto:zhigenwu@hfut.edu.cn
mailto:ruihuang@mail.utexas.edu
http://dx.doi.org/10.1016/j.mechmat.2016.11.005


Z. Wu et al. / Mechanics of Materials 105 (2017) 138–147 139 

(a)

(b)

substrateRigid

H hydrogelDry 

2X

1X

substrateRigid

h
hydrogelSwollen 

1x

2x

Fig. 1. Schematics of a depth-wise graded hydrogel layer on a rigid substrate: (a) 

the dry state; (b) a transversely homogeneous swollen state (the dotted line denotes 

a perturbation to the surface of the swollen state). 
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estigated by a finite element method for an elastic half space

ith graded material properties ( Lee et al., 2008 ). Diab and Kim

2014) presented first and second-order bifurcation analysis for

 neo-Hookean elastic half space with a graded-stiffness, supple-

ented by finite-element analysis, to predict various instability-

rder-dependent bifurcations, from stable wrinkling of the first or-

er to creasing of the infinite-order cascade instability. Recently,

 state space method was developed for surface instability of the

lastic layers with arbitrarily graded material properties ( Wu et al.,

014 ). The state space method was found to be computationally ef-

ective for the elastic layers in comparison with the finite element

ethod. In the present study, we extend the state space method

or surface instability of hydrogel layers where elastic deformation

s coupled with solvent-induced swelling. 

The remainder of this paper is organized as follows. Section

 briefly reviews the linear perturbation analysis for hydrogel lay-

rs with material properties varying in the thickness direction. The

tate space method and the finite difference method are presented

n Section 3 and Section 4 , respectively. The results are discussed

n Section 5 , in comparison with the analytical solutions for homo-

eneous hydrogel layers and hydrogel bilayers, followed by linearly

nd exponentially graded hydrogel layers. Section 6 concludes the

resent study with a short summary. 

. Linear perturbation analysis 

This section briefly reviews constrained swelling and linear per-

urbation analysis for a depth-wise graded hydrogel layer attached

o a rigid substrate. More details can be found in Wu et al. (2013) .

.1. Transversely homogeneous, constrained swelling 

Consider a depth-wise graded hydrogel layer attached to a rigid

ubstrate as shown in Fig. 1 a. Set a Cartesian coordinate system in

he dry state such that X 2 = 0 at the hydrogel/substrate interface.

he thickness of the hydrogel layer is H and the other two dimen-
ions are assumed to be infinite. The material properties of the hy-

rogel may vary with respect to X 2 , i.e., N = N( X 2 ) and χ = χ( X 2 ) ,

here N is the effective number of polymer chains per unit vol-

me of the polymer network in the dry state and χ is the Flory

arameter for the interaction between solvent molecules and the

olymer. 

Immersed in a solvent, the graded hydrogel layer swells in the

hickness direction but constrained in the in-plane directions (as-

uming perfect bonding at the interface), thus a transversely ho-

ogeneous swelling occurs ( Fig. 1 b). The local swelling ratio of the

raded hydrogel layer λh ( X 2 ) is equivalent to that for a transversely

onstrained, homogeneous hydrogel layer with the material prop-

rties N = N( X 2 ) and χ = χ( X 2 ) . The nominal stress in the hydro-

el layer is obtained as a function of the swelling ratio and the

hemical potential of solvent. By setting the normal stress on the

urface to be the external solvent pressure as the boundary con-

ition, we obtain a nonlinear equation for the local swelling ratio

 Wu et al., 2013 ): 

og 

(
1 − 1 

λh 

)
+ 

1 

λh 

+ 

χ

λ2 
h 

+ N�
(
λh −

1 

λh 

)
= 

μ − p�

kT 
, (1) 

here μ is the chemical potential of the solvent, p is the exter-

al solvent pressure, � is the volume per solvent molecule, k is

he Boltzmann constant, and T is the absolute temperature. In the

quilibrium state, the chemical potential of the solvent is a con-

tant in the hydrogel and equal to that of the external solvent, ˆ μ.

or given μ = ˆ μ and p , the local swelling ratio λh depends on the

raded material properties, N ( X 2 ) and χ ( X 2 ). At equilibrium, the

otal thickness of the graded hydrogel layer can be obtained by in-

egrating the local swelling ratio, i.e., h = 

∫ H 
0 λh d X 2 , and the aver-

ge swelling ratio is then λ = h/H. 

The transversely constrained swelling leads to in-plane com-

ressive stresses, s 11 = s 33 = −NkT [ λ2 
h 

− 1] − p λh , and s 22 = −p,

here s ij denotes the nominal stress in the hydrogel. The in-plane

ompressive stresses may be partly relaxed by buckling. As a result,

he transversely homogeneous swollen state may become unstable,

iving rise to surface wrinkles or creases. 

.2. Linear perturbation analysis 

To analyze stability of the constrained swollen state of a hydro-

el layer, a small perturbation is assumed with displacements from

he swollen state in the general form: 

 1 = u 1 ( x 1 , x 2 ) , u 2 = u 2 ( x 1 , x 2 ) . (2)

With reference to the dry state, the deformation gradient tensor

fter the perturbation becomes 

˜ 
 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

1 + 

∂ u 1 

∂ x 1 
λh 

∂ u 1 

∂ x 2 
0 

∂ u 2 

∂ x 1 
λh 

(
1 + 

∂ u 2 

∂ x 2 

)
0 

0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. (3) 

The corresponding nominal stress components can be obtained

rom differentiation of the free energy density function of the hy-

rogel as follows ( Wu et al., 2013 ): 

 11 ≈ NkT 

[
(1 + λh ξh ) 

∂ u 1 

∂ x 1 
+ λh ( ξh − λh ) 

∂ u 2 

∂ x 2 
− λ2 

h + 1 

]

− p λh 

(
1 + 

∂ u 2 

∂ x 2 

)
, (4) 

 12 ≈ NkT λh 

(
∂ u 1 

∂ x 2 
+ 

∂ u 2 

∂ x 1 

)
+ p 

∂ u 2 

∂ x 1 
, (5) 
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s 21 ≈ NkT 

(
λ2 

h 

∂ u 1 

∂ x 2 
+ 

∂ u 2 

∂ x 1 

)
+ p λh 

∂ u 1 

∂ x 2 
, (6)

s 22 ≈ NkT 

[
( ξh − λh ) 

∂ u 1 

∂ x 1 
+ ( ξh + λh ) 

∂ u 2 

∂ x 2 

]
− p 

(
1 + 

∂ u 1 

∂ x 1 

)
, (7)

s 33 ≈ −NkT [ λ2 
h (1 + ε) − λh ξh ε − 1] − p λh (1 + ε) , (8)

where ξh = 

1 
λh 

+ 

1 
N� ( 1 

λh −1 
− 1 

λh 
− 2 χ

λ2 
h 

) , and s 13 = s 31 = s 23 = s 32 =
0 . 

In the absence of body force, the mechanical equilibrium re-

quires that the nominal stress components must satisfy 

∂ s 11 

∂ x 1 
+ λh 

∂ s 12 

∂ x 2 
= 0 , (9)

∂ s 21 

∂ x 1 
+ λh 

∂ s 22 

∂ x 2 
= 0 . (10)

Substituting Eqs. (4)–(7) into Eqs. (9) and (10) , we obtain two

coupled linear differential equations in terms of the perturbation

displacements: 

(1 + λh ξh ) 
∂ 2 u 1 

∂x 2 
1 

+ λ2 
h 

∂ 2 u 1 

∂x 2 
2 

+ λh ξh 

∂ 2 u 2 

∂ x 1 ∂ x 2 

+ f 1 ( x 2 ) 

(
∂ u 1 

∂ x 2 
+ 

∂ u 2 

∂ x 1 

)
= 0 , (11)

∂ 2 u 2 

∂x 2 
1 

+ λh ( ξh + λh ) 
∂ 2 u 2 

∂x 2 
2 

+ λh ξh 

∂ 2 u 1 

∂ x 1 ∂ x 2 
+ f 2 ( x 2 ) 

∂ u 1 

∂ x 1 

+ f 3 ( x 2 ) 
∂ u 2 

∂ x 2 
= 0 , (12)

where f 1 ( x 2 ) = 

λh 
N�

d 
d x 2 

( λh N�) , f 2 ( x 2 ) = 

λh 
N�

d 
d x 2 

[ N�( ξh − λh )] , and

f 3 ( x 2 ) = 

λh 
N�

d 
d x 2 

[ N�( ξh + λh )] . 

Take the perturbation displacements to be periodic in the x 1 -

direction, namely 

u 1 = U 1 ( x 2 ) sin ω x 1 and u 2 = U 2 ( x 2 ) cos ω x 1 , (13)

where ω is the wave number. Substitution of Eq. (13) into Eqs.

(11) and ( 12 ) yields 

λ2 
h U 

′′ 
1 + f 1 U 

′ 
1 − ω 

2 (1 + λh ξh ) U 1 − ω λh ξh U 

′ 
2 − ω f 1 U 2 = 0 , (14)

ω λh ξh U 

′ 
1 + ω f 2 U 1 + λh ( ξh + λh ) U 

′′ 
2 + f 3 U 

′ 
2 − ω 

2 U 2 = 0 , (15)

where the single and double primes denote the first and second

derivatives of U 1 ( x 2 ) and U 2 ( x 2 ). 

The bottom surface of the hydrogel layer is attached to the rigid

substrate with zero displacements, namely 

 1 = U 2 = 0 , at x 2 = 0 . (16)

The top surface of the hydrogel layer is subjected to a pressure

from the external solvent. To the first order of the perturbation,

the nominal traction at the surface is 

s 12 = p 
∂ u 2 

∂ x 1 
and s 22 = −p 

(
1 + 

∂ u 1 

∂ x 1 

)
, at x 2 = h. (17)

Thus, by Eqs. (5) , ( 7 ), and ( 13 ) the top surface satisfies the

boundary condition: 

 

′ 
1 − ω U 2 = 0 and ( ξh − λh ) ω U 1 + ( ξh + λh ) U 

′ 
2 = 0 , at x 2 = h. 

(18)

The equilibrium Eqs. (14) and ( 15 ) along with the boundary

conditions ( 16 ) and ( 18 ) constitute an eigenvalue problem for the
onstrained swollen state. If there exists a nontrivial solution for

ny wave number ω, the transversely homogeneous swollen state

f the hydrogel layer becomes unstable. Constrained at the bottom

y the rigid substrate (assuming no debonding), surface instabil-

ty modes (wrinkles or creases) are expected. Thus, by solving the

igenvalue problem, the critical condition is predicted for the on-

et of swell-induced surface instability. However, for an arbitrarily

raded hydrogel layer with N ( X 2 ) and χ ( X 2 ), the eigenvalue prob-

em in general cannot be solved analytically. In Sections 3 and 4 ,

e develop a state space method and a finite difference method to

olve the eigenvalue problem for hydrogel layers with depth-wise

raded material properties. 

. A state space method 

The state space method is commonly used in dynamic systems

o analyze multiple inputs and outputs related by differential equa-

ions (also known as the “time-domain approach”) ( Elgerd, 1967;

erusso et al., 1998 ). Recently, the state space method has been

dopted as an effective analytical approach for surface instability

nalysis in elastic layers ( Wu et al., 2014; Toh et al., 2015 ). In this

ection, we extend this method to determine the critical condition

or swell-induced surface instability of hydrogel layers. 

First consider a homogeneous hydrogel layer. Both material

roperties N and χ are independent of X 2 , and the quantities λh 

nd ξ h are constants. From Eqs. (5) and ( 7 ), we have 

∂ u 1 

∂ x 2 
= −

(
1 + 

p 

NkT λh 

)
∂ u 2 

∂ x 1 
+ 

s 12 

NkT λh 

, (19)

∂ u 2 

∂ x 2 
= −NkT ( ξh − λh ) − p 

NkT ( ξh + λh ) 

∂ u 1 

∂ x 1 
+ 

s 22 + p 

NkT ( ξh + λh ) 
. (20)

ifferentiation of Eqs. (4) and ( 6 ) with respect to x 1 yields 

∂ s 11 

∂ x 1 
= NkT 

[
(1 + λh ξh ) 

∂ 2 u 1 

∂x 2 
1 

+ λh ( ξh − λh ) 
∂ 

∂ x 1 

(
∂ u 2 

∂ x 2 

)]

− p λh 

∂ 

∂ x 1 

(
∂ u 2 

∂ x 2 

)
, (21)

∂ s 21 

∂ x 1 
= NkT 

[
λ2 

h 

∂ 

∂ x 1 

(
∂ u 1 

∂ x 2 

)
+ 

∂ 2 u 2 

∂x 2 
1 

]
+ p λh 

∂ 

∂ x 1 

(
∂ u 1 

∂ x 2 

)
. (22)

ubstituting Eqs. (19) and ( 20 ) into Eqs. (21) and ( 22 ) and then

nto Eqs. (9) and ( 10 ), we obtain that 

∂ s 12 

∂ x 2 
= 

{
[ NkT ( ξh − λh ) − p] 

2 

NkT ( ξh + λh ) 
− NkT 

(
ξh + 

1 

λh 

)}
∂ 2 u 1 

∂x 2 
1 

−NkT ( ξh − λh ) − p 

NkT ( ξh + λh ) 

∂ s 22 

∂ x 1 
, (23)

∂ s 22 

∂ x 2 
= 

NkT 

λh 

[(
λh + 

p 

NkT 

)2 

− 1 

]
∂ 2 u 2 

∂x 2 
1 

−
(

1 + 

p 

NkT λh 

)
∂ s 12 

∂ x 1 
. 

(24)

Based on the assumption of the perturbation displacements in

q. (13) , the nominal stresses s 22 and s 12 may be written as 

 22 = S 22 ( x 2 ) cos ω x 1 − p, s 12 = S 12 ( x 2 ) sin ω x 1 . (25)

Inserting Eqs. (13) and ( 25 ) into Eqs. (19) , ( 20 ), ( 23 ), and ( 24 ), a

et of differential equations are obtained in a matrix form as 

d 

d x 2 

⎧ ⎪ ⎨ 

⎪ ⎩ 

U 1 ( x 2 ) 
S 22 ( x 2 ) 
U 2 ( x 2 ) 
S 12 ( x 2 ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= A 

⎧ ⎪ ⎨ 

⎪ ⎩ 

U 1 ( x 2 ) 
S 22 ( x 2 ) 
U 2 ( x 2 ) 
S 12 ( x 2 ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, (26)
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Fig. 2. A graded hydrogel layer divided into n sub-layers: (a) the dry state; (b) a 

transversely homogeneous swollen state. 
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here A is a four-by-four matrix with the following nonzero ele-

ents: 

A 13 = −A 24 = 

(
p 

NkT λh 

+ 1 

)
ω, A 14 = 

1 

NkT λh 

, 

 23 = 

[
NkT 

λh 

− (NkT λh + p) 
2 

NkT λh 

]
ω 

2 , 

 31 = −A 42 = −NkT ( ξh − λh ) − p 

NkT ( ξh + λh ) 
ω, A 32 = 

1 

NkT ( ξh + λh ) 
, 

 41 = 

{
N kT 

(
ξh + 

1 

λh 

)
− [ N kT ( ξh − λh ) − p] 

2 

N kT ( ξh + λh ) 

}
ω 

2 . 

Eq. (26) is a linearized state equation for a homogeneous hydro-

el layer, which is a set of first-order, homogeneous, and ordinary

ifferential equations in terms of the perturbation displacements

nd associated tractions. By integrating the differential equations,

he state vector, [ U 1 S 22 U 2 S 12 ] 
T , can be determined as 

 

 

 

 

 

U 1 ( x 2 ) 
S 22 ( x 2 ) 
U 2 ( x 2 ) 
S 12 ( x 2 ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= D ( x 2 ) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

U 1 (0) 
S 22 (0) 
U 2 (0) 
S 12 (0) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, (27)

here the matrix D ( x 2 ) = e A x 2 can be calculated directly by the

atrix exponential operation (e.g., expm in Matlab). 

Inserting Eqs (13) and ( 25 ) into Eq. (17) , the boundary condi-

ions at the upper surface ( x 2 = h ) become 

 22 (h ) = −pω U 1 (h ) and S 12 (h ) = −pω U 2 (h ) . (28)

pplying the boundary conditions ( 16 ) and ( 28 ) to Eq. (27) , we

ave 
 

 

 

 

 

U 1 (h ) 
−pω U 1 (h ) 

U 2 (h ) 
−pω U 2 (h ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= D (h ) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 

S 22 (0) 
0 

S 12 (0) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, (29)

hich leads to an eigenvalue problem in terms of the tractions at

he lower surface of the hydrogel layer: 

( D 22 + pω D 12 ) S 22 (0) + ( D 24 + pω D 14 ) S 12 (0) = 0 , (30)

( D 42 + pω D 32 ) S 22 (0) + ( D 44 + pω D 34 ) S 12 (0) = 0 . (31)

To have a nontrivial solution, the determinant of the coefficient

atrix in the coupled Eqs. (30) and ( 31 ) must vanish, which can

e expressed explicitly as 

( λh − β)[4 λ3 
h β − (λ2 

h + 1) 2 ][ e (1+ λh β) ωH + e −(1+ λh β) ωH ] 

+ ( λh + β)[4 λ3 
h β + (λ2 

h + 1) 2 ][ e (1 −λh β) ωH + e −(1 −λh β) ωH ] 

− 16 λ2 
h β(λ2 

h + 1) = 0 , (32) 

here β = 

√ 

(1 + λh ξh ) / (λ
2 
h 

+ λh ξh ) . For each dimensionless wave

umber ωH , Eq. (32) predicts a critical swelling ratio λc , which de-

ends on the two material properties N � and χ . The correspond-

ng chemical potential μc is then obtained from Eq. (1) for onset of

urface instability of a homogeneous hydrogel layer. Theoretically,

here exists a short-wavelength limit for a homogeneous hydrogel

ayer with ωH → ∞ , for which Eq. (32) becomes 

( λh − β)[4 λ3 
h β − (λ2 

h + 1) 2 ] = 0 . (33)

qs. (32) and ( 33 ) are consistent with the previous results obtained

y Kang and Huang (2010a) using a different method. 

Next consider a hydrogel layer with material properties vary-

ng in the thickness direction such as N ( X 2 ) and χ ( X 2 ). The func-

ions N ( X ) and χ ( X ) may be continuous or discontinuous (such
2 2 
s piecewise constant functions for hydrogel bilayers or multi-

ayers). In either case, we would divide the layer into a num-

er of homogeneous sub-layers ( Fig. 2 ). In the case of a contin-

ously graded hydrogel layer, the functions N ( X 2 ) and χ ( X 2 ) are

iscretized into piecewise constant functions with n sub-layers.

hen n approaches infinity and the thickness of each sub-layer

pproaches zero, the discretization would eventually converge to-

ards the continuous functions. During the calculation, this graded

ydrogel layer can be analyzed approximately by the discretized

ub-layers with a finite but sufficiently large n . Therefore, regard-

ess of continuous or discontinuous variation in material proper-

ies, surface instability of the hydrogel layer can be analyzed by

sing the state Eq. (26) for each sub-layer, along with the conti-

uity conditions at the interfaces between adjacent sub-layers and

he boundary conditions at the top and bottom surfaces. 

As shown in Fig. 2 a, for the j th sub-layer with thickness H j , the

aterial properties are approximately taken as 

 j = [ N( Y j−1 ) + N( Y j )] / 2 and χ j = [ χ( Y j−1 ) + χ( Y j )] / 2 , 

(34) 

here Y j = H 1 + H 2 + · · · + H j and Y 0 = 0 . In the swollen state, the

hickness of the j th sub-layer becomes h j ( Fig. 2 b), with a swelling

atio, λ j = h j / H j . From the state Eq. (26) for each homogeneous

ub-layer, the state vector at the interface x 2 = y j is related to that

t x 2 = y j−1 as 

 ( y j ) = D j ( h j ) R ( y j−1 ) , (35)

here y j = h 1 + h 2 + · · · + h j , y 0 = 0 , R ( y j ) =
 U 1 ( y j ) S 22 ( y j ) U 2 ( y j ) S 12 ( y j )] T , D j ( h j ) = exp( A j h j ) , and the matrix 

 j is given by Eq. (26) for each sub-layer. 

Noting the continuity of the state vector (displacements and

ractions) across all interfaces between the adjacent sub-layers, we

btain the following relation: 

 ( y n ) = KR (0) , (36)
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where K = 

1 ∏ 

j= n 
D j ( h j ) , with R (0) and R ( y n ) being the state vectors

at the bottom surface ( x 2 = 0 ) and the top surface ( x 2 = y n = h ),

respectively. 

Applying the boundary conditions ( 16 ) and ( 28 ), we obtain ⎧ ⎪ ⎨ 

⎪ ⎩ 

U 1 ( y n ) 
−pω U 1 ( y n ) 

U 2 ( y n ) 
−pω U 2 ( y n ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= K 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 

S 22 (0) 
0 

S 12 (0) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, (37)

which leads to an eigenvalue problem in terms of the tractions at

the lower surface of the hydrogel layer: 

( K 22 + pω K 12 ) S 22 (0) + ( K 24 + pω K 14 ) S 12 (0) = 0 , (38)

( K 42 + pω K 32 ) S 22 (0) + ( K 44 + pω K 34 ) S 12 (0) = 0 . (39)

Similar to the case of a homogeneous hydrogel layer, the crit-

ical condition for onset of surface instability of the laminated hy-

drogel layer is determined by having a non-trivial solution in Eqs.

(38) and ( 39 ), which requires that ∣∣∣∣K 22 + pω K 12 K 24 + pω K 14 

K 42 + pω K 32 K 44 + pω K 34 

∣∣∣∣ = 0 . (40)

Eq. (40) presents an implicit relation between the critical chem-

ical potential μc and the wave number ω, which is associated with

the discretized material properties ( N j �, χ j ) and thickness ( H j ) of

all sub-layers. By using a dimensionless wave number ωH and the

normalized thickness of each sub-layer H j / H , the critical condition

can be written as 

μc = f n (ωH, N j �, χ j , H j /H; j = 1 , 2 , · · · , n ) . (41)

For each dimensionless wave number ωH , we solve Eq. (40) to

find the critical chemical potential μc . The corresponding swelling

ratio of each sub-layer under the critical condition is then com-

puted from Eq. (1) , which varies with the material properties of

the sub-layer. Subsequently, the critical swelling ratio for the mul-

tilayered hydrogel is obtained approximately as: 

λc = 

h 

H 

= 

1 

H 

n ∑ 

j=1 

λ j ( μc ) H j . (42)

4. A finite difference method 

Alternatively, the general eigenvalue problem can be solved by a

finite difference method to determine the critical condition for sur-

face instability in graded hydrogel layers. Since the material prop-

erties ( N and χ ) are usually provided as functions of the coordi-

nate X 2 referring to the dry state, it is convenient to implement a

uniform discretization in the dry state. However, the equilibrium

Eqs. (14) and ( 15 ) as well as the boundary condition ( 18 ) are dif-

ferential equations with respect to the coordinate x 2 in the swollen

state. For the finite difference method, we re-write the equilibrium

equations and the boundary condition in the reference coordinate

and normalize the coordinate by the dry-state thickness of the hy-

drogel layer, H . By the chain rule, we have 

d 

d x 2 
= 

1 

λh 

d 

d X 2 

= 

1 

H λh 

d 

d ̄X 2 

, (43)

d 

2 

d x 2 
2 

= 

1 

H 

2 λ2 
h 

d 

2 

d ̄X 

2 
2 

− 1 

H 

2 λ3 
h 

d λh 

d ̄X 2 

d 

d ̄X 2 

, (44)
here X̄ 2 = X 2 /H. Therefore, Eqs. (14) and ( 15 ) can be re-written

s 

d 

2 U 1 

d ̄X 

2 
2 

+ λ−2 
h 

[
f 1 ( ̄X 2 ) − λh 

d λh 

d ̄X 2 

]
d U 1 

d ̄X 2 

− ω̄ 

2 (1 + λh ξh ) U 1 

−ω̄ ξh 

d U 2 

d ̄X 2 

− ω̄ λ−1 
h 

f 1 ( ̄X 2 ) U 2 = 0 , (45)

¯  ξh 

d U 1 

d ̄X 2 

+ ω̄ λ−1 
h 

f 2 ( ̄X 2 ) U 1 + λ−1 
h 

( ξh + λh ) 
d 

2 U 2 

d ̄X 

2 
2 

+ λ−2 
h 

[
f 3 ( ̄X 2 ) − ( ξh + λh ) 

d λh 

d ̄X 2 

]
d U 2 

d ̄X 2 

− ω̄ 

2 U 2 = 0 , (46)

here ω̄ = ωH, f 1 ( ̄X 2 ) = 

λh 
N�

d 
d ̄X 2 

( λh N�) , f 2 ( ̄X 2 ) = 

λh 
N�

d 
d ̄X 2 

[ N�( ξh −

h )] , f 3 ( ̄X 2 ) = 

λh 
N�

d 
d ̄X 2 

[ N�( ξh + λh )] . Correspondingly, the bound-

ry condition ( 18 ) becomes 

d U 1 

d ̄X 2 

− ω̄ λh U 2 = 0 and ω̄ λh ( ξh − λh ) U 1 + ( ξh + λh ) 
d U 2 

d ̄X 2 

= 0 , 

t X̄ 2 = 1 . (47)

The number of nodes is taken as m and the spacing between

ny two adjacent nodes is then 
X = 1 / (m − 1) in the reference

onfiguration. The nodes may be numbered from 1 at the bot-

om surface of the layer ( ̄X 2 = 0 ) to m at the top surface ( ̄X 2 = 1) .

y applying the central difference formulae to the node k in the

omain (1 < k < m ), the normalized equilibrium Eqs. (45) and

46) are discretized as 

 1 U 

(k −1) 
1 

+ A 2 U 

(k −1) 
2 

+ A 3 U 

(k ) 
1 

+ A 4 U 

(k ) 
2 

+ A 5 U 

(k +1) 
1 

+ A 6 U 

(k +1) 
2 

= 0 , 

(48)

 1 U 

(k −1) 
1 

+ B 2 U 

(k −1) 
2 

+ B 3 U 

(k ) 
1 

+ B 4 U 

(k ) 
2 

+ B 5 U 

(k +1) 
1 

+ B 6 U 

(k +1) 
2 

= 0 , 

(49)

here the superscript refers to the node number and the coeffi-

ients, A i (ωH, X̄ (k ) 
2 

) and B i (ωH, X̄ (k ) 
2 

) , are evaluated at the node k

ith X̄ (k ) 
2 

= (k − 1) / (m − 1) as 

 1 = (m − 1) 2 − 1 

2 

(m − 1) λ−2 
h 

[
f 1 ( ̄X 2 ) − λh 

d λh 

d ̄X 2 

]
, 

 2 = −A 6 = −B 1 = B 5 = 

1 

2 

(m − 1) ̄ω ξh , 

 3 = −2 (m − 1) 2 − ω̄ 

2 (1 + λh ξh ) , 

 4 = −ω̄ λ−1 
h 

f 1 ( ̄X 2 ) , 

 5 = (m − 1) 2 + 

1 

2 

(m − 1) λ−2 
h 

[
f 1 ( ̄X 2 ) − λh 

d λh 

d ̄X 2 

]
, 

 2 = (m − 1) 2 λ−1 
h 

( ξh + λh ) 

− 1 

2 

(m − 1) λ−2 
h 

[
f 3 ( ̄X 2 ) − ( ξh + λh ) 

d λh 

d ̄X 2 

]
, 

 3 = ω̄ λ−1 
h 

f 2 ( ̄X 2 ) , 

 4 = −ω̄ 

2 − 2 (m − 1) 2 λ−1 
h 

( ξh + λh ) , 
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c  

o  
 6 = (m − 1) 2 λ−1 
h 

( ξh + λh ) 

+ 

1 

2 

(m − 1) λ−2 
h 

[
f 3 ( ̄X 2 ) − ( ξh + λh ) 

d λh 

d ̄X 2 

]
. 

It should be noted that the coefficients A i and B i ( i = 1 , 2 , · · · , 6 )

nclude differentiations of λh and ξ h with respect to X̄ 2 at each

ode. For given functions N ( X 2 ) and χ ( X 2 ), λh at each node is ob-

ained by solving Eq. (1) and the corresponding ξ h is calculated

ccordingly. Differentiations of λh and ξ h are then calculated by

entral difference. 

At the bottom surface of the layer ( ̄X 2 = 0 ), the boundary con-

ition ( 16 ) requires that 

 

(1) 
1 

= U 

(1) 
2 

= 0 , (50)

hich is used directly in Eqs. (48) and ( 49 ) for k = 2 . 

At the top surface of the layer ( ̄X 2 = 1 ), Eqs. (48) and ( 49 ) for

 = m include displacements at a fictitious node k = m + 1 . By dis-

retizing the boundary condition ( 18 ) with central difference, we

btain 

 

(m +1) 
1 

= U 

(m −1) 
1 

+ C 1 U 

(m ) 
2 

, (51)

 

(m +1) 
2 

= U 

(m −1) 
2 

+ C 2 U 

(m ) 
1 

, (52)

here C 1 = 2 (m − 1) −1 ω̄ λh and C 2 = −2 (m − 1) −1 ω̄ λh 
ξh −λh 
ξh + λh 

. Sub-

tituting Eqs. (51) and ( 52 ) into Eqs. (48) and ( 49 ) for k = m , we

btain that 

( A 1 + A 5 ) U 

(m −1) 
1 

+ ( A 2 + A 6 ) U 

(m −1) 
2 

+ ( A 3 + A 6 C 2 ) U 

(m ) 
1 

+ ( A 4 

+ A 5 C 1 ) U 

(m ) 
2 

= 0 , (53) 

( B 1 + B 5 ) U 

(m −1) 
1 

+ ( B 2 + B 6 ) U 

(m −1) 
2 

+ ( B 3 + B 6 C 2 ) U 

(m ) 
1 

+ ( B 4 

+ B 5 C 1 ) U 

(m ) 
2 

= 0 . (54) 

Therefore, by Eqs. (48) and ( 49 ) with k = 2 , 3 , . . . , m − 1 as well

s Eqs. (53) and ( 54 ), a set of algebraic equations are obtained in a

atrix form as 

U = 0 , (55) 

here M is a 2(m − 1) × 2(m − 1) matrix, and U =
 U 

(2) 
1 

, U 

(2) 
2 

, · · · , U 

(m ) 
1 

, U 

(m ) 
2 

] T . The eigenvalue problem in 

ection 2.2 is thus discretized, and a nontrivial solution re-

uires that the determinant of the coefficient matrix vanish,

amely 

et M = f m 

( ̄ω , μc ) = 0 . (56)

Similar to Eq. (40) by the state space method, Eq. (56) presents

n implicit relation between the critical chemical potential μc and

he dimensionless wave number ω̄ , which depends on the dis-

retized material properties N 

( k ) � and χ ( k ) . The critical swelling

atio at each node λ(k ) 
c is then computed from Eq. (1) with μ = μc .

he average critical swelling ratio for the graded hydrogel layer is

btained approximately as 

c = 

1 

m − 1 

m ∑ 

k =1 

λ( k ) 
c − λ(1) 

c + λ(m ) 
c 

2(m − 1) 
. (57) 

By this method, a large number of nodes are often used in or-

er to achieve convergence, and we employ a bisection method for

olving the nonlinear Eq. (56) . 
. Results and discussion 

In this section, by using the state space method ( Section 3 ) and

he finite difference method ( Section 4 ), we consider swell-induced

urface instabilities for homogeneous hydrogel layers, hydrogel bi-

ayers, and continuously graded hydrogel layers. For both methods,

onvergences of the approximate solutions are demonstrated by in-

reasing the number of sub-layers or discrete nodes, in compar-

son with the analytical solutions for homogeneous layers ( Kang

nd Huang, 2010a ) and bilayers ( Wu et al., 2013 ). 

.1. Surface instability of a homogeneous hydrogel layer 

For a homogeneous hydrogel layer, the critical condition for on-

et of surface instability was predicted by an analytical method

 Kang and Huang, 2010a ). As shown in Fig. 3 , for given material

roperties, the critical chemical potential and the corresponding

ritical swelling ratio depend on the normalized perturbation wave

umber. The minimum critical swelling ratio is obtained at the

hort wave limit ( ωH → ∞ ), as predicted by Eq. (33) . By the state

pace method, only one sublayer ( n = 1) is necessary in this case

nd the result is identical to the analytical solution. By the finite

ifference method, however, a large number of nodes are needed

o achieve convergence. As shown in Fig. 4 , the finite difference

ethod converges more quickly for the long-wave modes than for

he short-wave modes. To obtain the critical swelling ratio at the

hort-wave limit ( ωH → ∞ ), m = 20 0 0 is found to be sufficient.

learly, the state space method is more efficient than the finite dif-

erence method for the case of a homogeneous layer. 

.2. Surface instability of hydrogel bilayers 

For a hydrogel bilayer, the critical condition of surface instabil-

ty depends on material properties in the two sub-layers ( Wu et al.,

013 ). Since the material properties are discontinuous at the inter-

ace between the upper layer (film) and the underlayer (substrate),

oth N � and χ and their differentiations with respect to X̄ 2 are

ncertain at the interface, and thus the finite difference method is

nsuitable in this case. Approximate solutions may be obtained by

he finite difference method by replacing the sharp interface with a

mooth transition, which however would require a very large num-

er of nodes to converge to the bilayer solution. On the other hand,

y the state space method, only two sub-layers ( n = 2) are needed,

nd the results are identical to the previous analytical solution ( Wu

t al., 2013 ), as shown in Fig. 5 . Two types of bilayers are consid-

red. For the soft-on-hard bilayer, the underlayer is stiffer than the

pper layer ( N 1 > N 2 ), and the minimum critical swelling ratio is

btained at the short wave limit ( ωH → ∞ ), similar to the homo-

eneous case. In such a case, numerical simulation in the previous

tudy ( Wu et al., 2013 ) showed creasing of the upper surface, pos-

ibly because surface wrinkling of any finite wavelength would be

nstable and tend to collapse into localized creases. For the hard-

n-soft bilayer ( N 1 < N 2 ), the underlayer is softer and the mini-

um swelling ratio corresponds to a long-wave wrinkling mode

 ωH ≈ 6). In such a case, numerical simulation ( Wu et al., 2013 )

howed wrinkling of the upper layer at the onset of surface insta-

ility. Clearly the state space method is quite effective for the case

f hydrogel bilayers, and it can be readily extended to multilayer

ydrogels. 

.3. Hydrogel layers with continuously graded material properties 

To predict onset of surface instability for hydrogel layers with

ontinuously graded material properties, we consider two types

f graded hydrogel layers: one with linearly graded and the other
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Fig. 3. (a) The critical chemical potential and (b) the corresponding swelling ratio for a homogeneous hydrogel layer, comparing the results by the state space method ( n = 1) 

and the finite difference method ( m = 20 0 0) with the analytical solutions by Kang and Huang (2010a) . 

Fig. 4. Convergence of the finite difference method for a homogeneous hydrogel layer: (a) the critical chemical potential; (b) the corresponding swelling ratio. 
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with exponentially graded crosslink density in the thickness direc-

tion. Since the effective number of polymer chains per unit volume

is proportional to the crosslink density, we have 

N( ̄X 2 ) = N b + ( N t − N b ) ̄X 2 , (58)

or 

N( ̄X 2 ) = N b + ( N t − N b ) 
e ηX̄ 2 − 1 

e η − 1 

, (59)

where N b = N( ̄X 2 = 0) , N t = N( ̄X 2 = 1) , and the parameter η is a

shape factor for the exponential function. When η = 0 , the expo-

nential function in Eq. (59) reduces to the linear function in Eq.

(58) . The Flory parameter is assumed to be a constant, χ = 0 . 4 , in

both cases. Fig. 6 presents the dimensionless material property N �

varying from the bottom surface with N b � = 0 . 001 to the top sur-

face with N t � = 0 . 01 for η = −5 , 0, 5, and 10. 

Fig. 7 shows the critical condition for surface instability of a

linearly graded hydrogel layer with N b � = 0 . 001 and N t � = 0 . 01 .

By the state space method, the layer is divided into n = 10 , 20,

50, 100 uniform sub-layers. The critical chemical potential μc and

the corresponding swelling ratio λc are obtained as functions of

perturbation wave number ωH . The state space solution converges

fairly quickly with the increasing number of sub-layers n . The re-

sults for n = 50 and n = 100 are indistinguishable. Similar to the

case of a hard-on-soft bilayer ( Fig. 5 ), the minimum swelling ratio

corresponds to a long-wave wrinkling mode ( ωH ≈ 2), and thus
rinkling is expected at the onset of surface instability. The finite

ifference method can also be used in this case. For convergence,

he linearly graded layer is discretized into 20 0 0 nodes as for the

omogeneous layer. As shown in Fig. 7 , the results obtained by

oth methods are in excellent agreement. To our knowledge, no

nalytical solution or other numerical results can be found in the

iterature for the continuously graded hydrogel layers. 

Figure 8 shows the critical chemical potential and the corre-

ponding swelling ratio for three linearly graded hydrogel layers

ith different dimensionless material property N t � and the same

 b �. As N t � increases, the swelling ratio decreases, and the cor-

esponding wave number at the minimum critical swelling ratio

ecreases as well. Again, the results obtained by the state space

ethod ( n = 50) and the finite difference method ( m = 20 0 0) are

n close agreement. 

Similar results are obtained for the exponentially graded hydro-

el layers. The minimum critical swelling ratio λ∗
c and the corre-

ponding wavelength L ∗ = 2 π/ ω 

∗, normalized by the thickness H ,

re plotted in Fig. 9 as functions of the shape factor η. The results

y both the state space method and the finite difference method

re in excellent agreement. Remarkably, with the same values of

 b � and N t �, the critical swelling ratio and the corresponding

avelength depend on grading profile via the shape factor η. As

increases, the critical swelling ratio λ∗
c decreases monotonically,

hich can be considerably lower than that predicted for a homo-
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Fig. 5. (a) The critical chemical potential and (b) the corresponding swelling ratio versus the perturbation wave number for two types of hydrogel bilayers (A: N 2 � = 

5 × 10 −4 ; B: N 2 � = 2 × 10 −3 ), both with N 1 � = 10 −3 for the underlayer, χ1 = χ2 = 0 . 4 , and H 1 / H 2 = 9 for the thickness ratio. 

Fig. 6. The linear and exponential variations of the material property ( N �) in the 

thickness direction of a hydrogel layer with N b � = 0 . 001 and N t � = 0 . 01 . 
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eneous layer in the range of 2.5 ∼3.4 ( Kang and Huang, 2010a ).

n the other hand, the corresponding critical wavelength depends

n the shape factor η non-monotonically ( Fig. 9 b). This result sug-
ig. 7. Convergence of the state space method for a linearly graded hydrogel layer: (a) The

ith the finite difference results denoted by “×”. 
ests that the critical condition and the surface instability pattern

epend on how the material properties vary in the hydrogel layers.

Fig. 10 plots the critical swelling ratio λ∗
c and the corresponding

ormalized wavelength L ∗/ H for the exponentially graded hydrogel

ayers with N t � ranging from 2 × 10 −5 to 0.1 whereas N b � = 10 −5 

nd η = 5 . As N t � increases, the minimum critical swelling ra-

io λ∗
c decreases. Meanwhile, the corresponding normalized wave-

ength L ∗/ H increases monotonically with the increasing N t � as

hown in Fig. 10 b. Therefore, by controlling the crosslink density

ear the top surface and the depth-wise variation in the hydrogel

ayer, different critical wavelength of swell-induced surface insta-

ility can be obtained. 

.4. Surface instability of graded hydrogel bilayers 

To compare with the experiments in Guvendiren et al. (2009) ,

e consider a bilayer model with a graded top layer on a uniform

ottom layer. The top layer is assumed to have a linearly graded

aterial property, namely 

( X 2 ) = 

{
N b + ( N t − N b ) 

X 2 −H b 
H−H b 

, H b < X 2 < H 

N b , 0 < X 2 < H b 

(60) 

here N b and N t refer to the effective numbers of polymer chains

er unit volume at the bottom and top surfaces, respectively, H b 
 critical chemical potential and (b) the corresponding swelling ratio, in comparison 
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Fig. 8. (a) The critical chemical potential and (b) the corresponding swelling ratio versus the perturbation wave number for a linearly graded hydrogel layer obtained by the 

state space method, in comparison with the finite difference results denoted by “×”. 

Fig. 9. (a) The critical swelling ratio and (b) the corresponding wavelength for exponentially graded hydrogel layers versus the shape factor η ranging from −5 to 10. 

Fig. 10. (a) The critical swelling ratio and (b) the corresponding wavelength for exponentially graded hydrogel layers with N t � ranging from 2 × 10 −5 to 10 −1 . 
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is the thickness of the bottom layer. The Flory parameter χ is as-

sumed to be the same in both layers. By the state space method,

the graded top layer is divided into 50 sub-layers, while a sin-

gle sublayer is used for the bottom layer. The predicted critical

swelling ratio and the corresponding wavelength are presented in

Fig. 11 , in which N t � is varied, but N b � = 0 . 001 and H b /H = 2 / 3
re fixed. The critical swelling ratio λ∗
c decreases with increas-

ng N t �, while the corresponding wavelength L ∗/ H increases. In

articular, the critical swelling ratio drops below 1.2 for N t � >

.05, comparable to the critical value of ∼1.12 as observed in ex-

eriments ( Guvendiren et al., 2010a ). However, Guvendiren et al.

2009 ) suggested that the top surface has a lower crosslink density
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Fig. 11. (a) The critical swelling ratio and (b) the corresponding wavelength for a linearly graded top layer on a uniform bottom layer. 

i  

i  

t  

c  

w  

h  

w  

p  

i  

h

6

 

m  

b  

t  

t  

s  

w  

W  

b  

m  

t  

t  

g  

c  

o  

g  

f

A

 

t  

a  

d

R

B  

 

C  

 

D  

D  

E
G  

 

G  

 

G  

H  

K  

K  

L  

 

S  

S  

 

 

S  

 

S  

T  

 

T  

T  

T  

T  

W  

W  

 

W  

 

n their experiments with the PHEMA films due to diffused oxygen

nhibiting photopolymerization and crosslinking of the polymer. If

hat was the case, based on the present stability analysis, the criti-

al swelling ratio would be much larger and the critical wavelength

ould be much shorter (approaching zero), similar to the soft-on-

ard bilayer case as shown in Fig. 5 . As a result, instead of the

rinkles as observed in their experiments, creases would be ex-

ected. Therefore, the prediction of the present stability analysis

s consistent with the experiments only if the top surface actually

ad a higher crosslink density. 

. Summary 

In this paper, a state space method and a finite difference

ethod were developed for predicting the onset of surface insta-

ility in hydrogel layers with material properties varying in the

hickness direction. Both methods were verified by comparing to

he analytical solutions of homogeneous hydrogel layers. The re-

ults from the state space method are also in complete agreement

ith the corresponding analytical solution for hydrogel bilayers.

hile the finite difference method often requires a large num-

er of nodes to achieve convergence, the state space method is

ost efficient for multilayers with discontinuous variations in ma-

erial properties and requires relatively fewer sub-layers for con-

inuously graded layers. The results for linearly and exponentially

raded hydrogel layers show that the critical swelling ratio and

orresponding critical wavelength depend on the gradient profile

f the crosslink density. The present study may provide theoretical

uidance for analyzing and designing surface instability and sur-

ace patterns in hydrogel layers. 
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