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ARTICLE INFO ABSTRACT

Keywords: Fracture experiments on polymer gels are often conducted with thin specimens, which are close to plane stress in
Gels two-dimensional models. However, many of the previous theoretical and numerical studies on fracture of
Fracture polymer gels have assumed plane strain conditions. The subtle differences between the plane stress and plane
Poroelasticity strain conditions are elucidated in this paper based on a linear poroelastic formulation for polymer gels, in-
Cohesive zone model cluding the asymptotic crack-tip fields and finite element simulations of steady-state crack growth in long strip
specimens. Moreover, a poroelastic cohesive zone model is adopted to study the rate-dependent fracture process
of polymer gels. It is found that, without the cohesive zone model, the normalized crack-tip energy release rate at
the fast crack limit is greater than the slow crack limit, suggesting reduced poroelastic toughening for fast crack
growth under plane stress conditions, while the two limits are identical under plane strain conditions. With a
solvent-permeable cohesive zone for the case of immersed specimens, solvent diffusion within the cohesive zone
enhances the poroelastic toughening significantly as the crack speed increases, leading to a rate-dependent
traction-separation relation. On the other hand, with no solvent diffusion in the cohesive zone for the not-
immersed case, the poroelastic toughening effect diminishes as the crack speed increases. Based on the present
study, the intrinsic steady-state fracture toughness of a poroelastic gel can be determined using long-strip pure-

shear specimens, which in general is smaller than the applied energy release rate.

1. Introduction

Consisting of cross-linked polymer chains and a large content of
solvent molecules (e.g., water), polymer gels are often brittle with a
fracture toughness on the order of 10 J/m? (Long and Hui, 2016). To
enhance the fracture toughness of polymer gels for engineering appli-
cations such as sensing and actuating components in soft machines and
soft robotics, many types of tough gels have been developed over the
last decade, with the reported fracture toughness up to 10* J/m?>
(Gong et al., 2003; Sun et al., 2012; Zhao, 2014; Creton, 2017). These
material developments have motivated a series of theoretical and
computational studies on the fracture mechanics of polymer gels
(Wang and Hong, 2012; Hui et al.,, 2013; Bouklas et al., 2015;
Noselli et al., 2016; Long et al., 2016; Mao and Anand, 2018; Guo et al.,
2018; Yang and Lin, 2018; Yu et al., 2018a, 2018b; Liu et al., 2019).

Many gels exhibit rate-dependent fracture behaviors
(Baumberger et al., 2006; Seitz et al, 2009; Lefranc and
Bouchaud, 2014; Forte et al., 2015; Long and Hui, 2016). In particular,
Baumberger et al. (2006) found that the measured energy release rate
increased with increasing crack speed for steady-state crack growth in
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gelatin gels by pure-shear experiments (so-called “velocity tough-
ening”). Similar results were reported for other gels (Seitz et al., 2009;
Lefranc and Bouchaud, 2014). The underlying mechanisms for the rate
dependent fracture of polymer gels may be multifaceted with three
primary suspects: rate-dependent fracture processes at the crack tip,
viscoelastic effects, and poroelastic effects. The present study focuses on
the poroelastic effects on steady-state crack growth, including solvent
diffusion in the bulk of the gel and potentially in a cohesive zone ahead
of the crack tip. Previously, Noselli et al. (2016) presented a theoretical
and numerical study on steady-state crack growth in polymer gels,
based on linear poroelasticity. They predicted a poroelastic toughening
effect and proposed a linear poroelastic cohesive zone model. In our
previous study (Yu et al., 2018b), we presented an asymptotic analysis
of the crack-tip fields for steady-state crack growth in polymer gels and
numerical results for a semi-infinite crack in a long strip specimen. The
results are consistent with Noselli et al. (2016) at the limit of “fast”
crack growth when the characteristic diffusion length scale is much
smaller than the specimen size (small-scale diffusion). Both of these
studies assumed plane strain conditions. However, in experiments (e.g.,
Baumberger et al., 2006; Lefranc and Bouchaud, 2014), thin specimens
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are commonly used, which can be modelled more accurately with plane
stress conditions instead of plane strain. To elucidate the subtle dif-
ferences between the plane stress and plane strain conditions, we pre-
sent in this paper asymptotic crack-tip fields and finite element simu-
lations of steady-state crack growth in polymer gels under plane stress
conditions. Moreover, a nonlinear poroelastic cohesive zone model is
proposed to study the rate-dependent fracture process of polymer gels.

The remainder of this paper is organized as follows. Section 2
summarizes the governing equations of linear poroelasticity under
plane stress conditions. A long strip model of steady state crack growth
is presented in Section 3, followed by the asymptotic plane-stress crack-
tip fields in Section 4. In Section 5, we develop a nonlinear poroelastic
cohesive zone model. Similar to the previous work (Yu et al., 2018b), a
stabilized finite element method was implemented (Appendix A), and
numerical results are presented and discussed in Section 6. Section 7
concludes the present study with a brief summary.

2. Linear poroelasticity under plane stress

The linear poroelastic formulation can be derived from the generally
nonlinear theory for polymer gels (Bouklas and Huang, 2012), which
has allowed asymptotic analyses of the crack-tip fields under plane
strain conditions in the previous studies (Yu et al., 2018a, 2018b). Here,
we briefly summarize the formulation of linear poroelasticity for gels
and note the differences between plane-stress and plane-strain condi-
tions.

Let the gel be stress free and isotropically swollen in the initial state,
where the solvent in the gel has a chemical potential, 4 = u,, in equi-
librium with an external solution. Correspondingly, the initial solvent
concentration in the gel (number of solvent molecules per unit volume)
is: o = (1 — 15%)/Q, where Q is the volume of each solvent molecule
and A is the linear swelling ratio of the gel relative to dry state of the
polymer network. The relationship between the swelling ratio (A,) and
the chemical potential (1) can be obtained from the nonlinear theory
(Hong et al., 2008; Kang and Huang, 2010). Considering small de-
formation from the initial state with a displacement field u;, the linear
strain field is

1 aui auj
Eij = — + — |
2 5Xj ox; 2.1)
The volumetric part of the strain is related to the change of solvent

concentration, i.e.,

& = Q(c — co), (2.2)

where c is the solvent concentration in the deformed state.
The Cauchy stress in the gel is related to the strain and chemical
potential as:

v p—p
gj = ZG(EU + 1- szkkéij) - %) 051']', 2.3)

where G is shear modulus and v is Poisson's ratio.*
For quasi-static problems, the linearized mechanical equilibrium
equation (assuming no body force) is:

anj
— =0,
0x; 2.4
and the linearized equation for solvent diffusion is:
5
a_c + i =0,
ot Oxg (2.5)

where the diffusion flux is proportional to the gradient of chemical

! The Poisson's ratio here is often called drained Poisson's ratio in linear
poroelasticity (Biot, 1941; Atkinson and Craster, 1991). The undrained Poisson's
ratio is 0.5 in the present formulation as a result of Eq. (2.2).
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potential as:

) 9
Jk = —Mo—'u,
Ox (2.6)
with a constant mobility M.
Correspondingly, the linearized boundary conditions are:

O = T and jy ng = —w, (2.7)
where ny is the outward unit normal vector on the boundary, z; is the

traction, and w is the in-flux of the solvent across the boundary.
Under plane stress conditions, o33 = 0 and by Eq. (2.3) we obtain

v 1 -2y (U — )
a1+ &) + —————.
et et T (2.8)

Then, Eq. (2.2) becomes

&3 = —

1-—2v
(a1 + &) +
1-v

Qe — ¢) = T—MM

-v  26Q (2.9

Therefore, the solvent concentration ¢ not only depends on the in-
plane normal strains but also depends on the chemical potential under
plane stress conditions. In contrast, the solvent concentration depends
on the in-plane normal strains only under plane strain conditions
(g3 = 0). This subtle difference turns out to be consequential in the
subsequent analysis of the poroelastic crack-tip fields. It should be
noted that, under plane stress conditions, both the solvent concentra-
tion and chemical potential are assumed to be two-dimensional (2D)
fields, with no solvent diffusion in the out-of-plane direction. This im-
plies that the surfaces of the thin specimen are impermeable to solvent
diffusion. On the other hand, if the surfaces are permeable and in
contact with an environment of a constant chemical potential, solvent
diffusion in the out-of-plane direction would take very little time to
maintain the chemical equilibrium so that the chemical potential of
solvent would remain constant everywhere in the gel. In this case, the
gel behaves like an elastic material, and the 2D plane-stress elasticity
solution (with drained Poisson's ratio) would be applicable. Since the
solution for plane-stress elasticity is well known, here we present a
solution for plane-stress poroelasticity with 2D in-plane diffusion. The
real specimens (with finite thickness) could be more complicated, and a
full 3D analysis would be needed to determine the validity of the 2D
approximations, which however is beyond the scope of the present
study.

With Eq. (2.9), Eq. (2.3) can be rewritten for the in-plane stress
components in terms of the in-plane strain and chemical potential as

v 1 -2y H— My

1-v Q

Oup = 2G I:Eorﬁ + 1 (&1 + 522)5015] - Saps

- (2.10)

where a, 8 = 1, 2 are the indices for the 2D in-plane components.
By inserting Eq. (2.10) into (2.4), we obtain

Pu, 1+v Pug  1-2v 1 du

0xg0xg 1 — v Oxgox, T 1-v @6&1’ (2.11)
which leads to
1-2
2 — 2
Vi =60 U (2.12)
. 32 82
with V2 = sat 2 for 2D analyses.
1
Combining Egs. (2.9) and (2.12), we obtain
QG
Viu = Vac.
H=12 (2.13)
With Egs. (2.6) and (2.13), Eq. (2.5) becomes
oc v
o S DVe (2.14)
« _ Q*GMp . . . - .
where Df = is the effective diffusivity under plane stress condi-

1-—
tions. Note that, under plane strain conditions, the effective diffusivity
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is: D* = 21(1 2”) Q2GM,, which is the same for 3D problems (Hui et al.,
2006; Hu et al., 2011). Thus, the effectlve diffusivity is reduced under
plane stress conditions, i.e., D} = 3 (1 < D* (for v < 0.5).

As in linear elasticity, the equ1hbr1um Eq. (2.4) may be solved by
using the Airy's stress function y under plane strain or plane stress
conditions, with gy = aZT'f, o, = 7122% i?’f, and g9 = —57(;5) as usual.
Then, with the poroelastic stress-strain relation in Eq. (2.3), the strain
compatibility condition requires that

V2V = —BQGV2c, (2.15)

where 8 = 1 for plane stress and § = 2 for plane strain.

Therefore, under plane stress conditions, we may solve Eq. (2.14)
for the solvent concentration and then solve Eq. (2.15) for the stress
function. The chemical potential can then be obtained from Eq. (2.3) as:

2(1 + v)GQ?

_ _y_ Qe
Ko ho= 730 ) (€= c) =3V

(2.16)

for plane stress (o = o, + 0p = V?9), while for plane strain we have
(Yu et al., 2018a, 2018b):

GQ?
1-2v

— Q 2
M= My = (c—co) - EV P 2.17)
We note the differences between plane stress and plane strain for

linear poroelasticity in Egs. (2.9), (2.10), (2.14), (2.15), and (2.16).

3. A plane-stress steady-state crack growth model

In the present study, we consider steady-state crack growth in a long
strip specimen of a polymer gel under plane stress conditions, as op-
posed to plane strain conditions in a previous work (Yu et al., 2018b).
As shown in Fig. 1, the strip width is 2h, with a semi-infinite crack lying
in the mid-plane. Subjected to an opening displacement = A applied to
the upper and lower surfaces of the strip, the crack grows and reaches a
steady state with a constant crack speed d. Similar specimens have been
used in experiments for various materials including gels (Rivlin and
Thomas, 1953; Long and Hui, 2016). In most cases, the specimen is a
thin sheet with a small thickness in comparison to the width, commonly
known as the pure shear test, which is close to the plane stress condi-
tions assumed in this study.

Adopt a moving coordinate system with the origin at the crack tip
(Fig. 1). With respect to the moving coordinate (for an observer tra-
veling with the crack tip), the mechanical equilibrium equation remains
the same as in Eq. (2.4), but the equation for solvent concentration is

time-independent as %= —d% with a constant steady-state crack
speed. Thus, Eq. (2.14) becomes
— aﬁ = D*VZ

ox, 3.1

A steady-state diffusion length scale emerges from Eq. (3.1), namely
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¥

_ 5
Iss = a’ (3.2)

which is inversely proportional to the crack speed.

The steady state crack model (Fig. 1) has two relevant length scales:
the specimen half-width h and the steady-state diffusion length Ilss. The
ratio between the two length scales defines a dimensionless number
Pe = i = d—h,

Iss Df 3.3)

which is called the Péclet number for advection-diffusion problems
(Franca et al., 1992). Note that the Péclet number is slightly different
under plane strain conditions due to the difference in the effective
diffusivity (Yu et al., 2018b).

If the specimen is made of a material that is linearly elastic and
incompressible, the energy release rate for steady state crack growth in
the pure shear test is simply:

J, = 4GE2h. (3.4)

where ¢, = A/h. Correspondingly, the stress intensity factor at the
crack tip under plane stress conditions is:

K, = 2Ges,/3h. (3.5)

Note that, while the steady-state energy release rate is the same for
plane stress and plane strain (Yu et al.,, 2018a), the stress intensity
factors are slightly different.

For a poroelastic gel specimen, part of the energy supplied by the
remote loading is dissipated due to solvent diffusion around the crack
tip. Consequently, the crack-tip energy release rate is generally lower
than that in Eq. (3.4) and may depend on the crack speed. Similarly, the
stress intensity factor in a linearly poroelastic specimen is generally
lower than Eq. (3.5), an effect known as poroelastic shielding
(Atkinson and Craster, 1991; Hui et al., 2013). To calculate the crack-
tip energy release rate in poroelastic gels, a modified J-integral was
derived by Bouklas et al. (2015) in a nonlinear setting, and for linear
poroelasticity it reduces to:

_ A Oug ou
J* = f (¢n1 - aaﬁnﬁa—xl)dl" + { (c— co)a—xldA,

[ (3.6)

where A is the area enclosed by the contour C around the crack tip and
AN
¢ is the free energy density function for linear poroelasticity:

N v
= G| g + g 2]— - ¢ — o).
§ = 6fe + 2 @] - - e - e o
Note that &;&; = £45¢q5 + €55 under plane stress conditions, where &35
is related to the in-plane strain components and the chemical potential

by Eq. (2.8).

u,=A

Fig. 1. Schematic of a long strip specimen with steady-state crack growth in the x; direction.
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4. Asymptotic crack-tip fields under plane stress

Under plane stress conditions, we solve Egs. (3.1) and (2.15) to
obtain an asymptotic solution for the steady-state crack-tip fields in a
linearly poroelastic material. The solution procedure is the same as in
the previous study for plane strain conditions (Yu et al., 2018b), aside
from a few different parameters such as the effective diffusivity (D]
versus D*). Here, we present the asymptotic solution without repeating
the lengthy derivation and emphasize the differences between plane
stress and plane strain conditions.

For both plane strain and plane stress, the leading terms of the
crack-tip stress field (mode I only) are given by

K] r
;= - (0) + T6,:8,; + o] |— |,
Ulj f_z flj( ) 1i%1j O( lSS) (4.1)

where as in linear elastic fracture mechanics (LEFM), K; is the stress
intensity factor, T is the T-stress, and

S = cos(g)[l - sin(%)sin(?)], (4.2)
bl pel2)
fo = cos(%)sin(%)cos(?). (4.9

Correspondingly, the singular part of the crack-tip strain field and
the leading term of the displacement field are identical to those in the
linear elastic solution. In particular, the crack opening displacement is
given by:

4KI\/T (r)
wr, 0=+1)=+—_|— +0|—|
2( ) E V2m lss (4.5)

where E = 2G/(1 — v) for plane strain and E = 2G(1 + v) for plane
stress.
The asymptotic crack-tip field of the solvent concentration is given

by
KI (9) r
cos| =+ Q+o| [— |,
G~ 27r 2 ! \ Iss (4.6)

where h;(v) = 1 — 2v for plane strain and h (v) = (1 — 2v)/(1 + v) for
plane stress.
The asymptotic field of the chemical potential is:

= - () QK [cos(ﬁ) + kcos(g)](L)m + O(L)
K an ? A\ Zﬂlss 2 2 lgs lSS ’
4.7)

where h,(v) = (1 — v)/2 for plane strain and h,(v) = 1/(4(1 + v)) for
plane stress.

Two types of chemical boundary conditions are considered for the
crack faces. If the crack faces are in equilibrium with an external so-
lution (e.g., water), the chemical potential must be zero on the crack
faces (6 = +7) and at the crack tip, i.e., Hp =05 such a crack is called
immersed. Alternatively, if the crack faces are impermeable to solvent
diffusion so that the flux across the crack faces is zero, ¥ = 3 is required
in Eq. (4.7) for the not-immersed case.

The constant term in solvent concentration is related to the T-stress
and the crack-tip chemical potential as:

1—2v [ 3tip
2G ( Q + T)’
1-2v [ 2Hip
26(1+v) Q

(c=c)Q=m®)

plane stress
QC] =

+ T), plane strain
(4.8)

Thus, for either the immersed or not-immersed cases, there are three
independent parameters for the poroelastic crack-tip fields: K;, T, and «
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(immersed) or g, (not-immersed).

With the asymptotic crack-tip fields, it can be shown that the re-
lationship between the modified J-integral in Eq. (3.6) and the stress
intensity factor is identical to that in LEFM (Yu et al., 2018b), namely

_K

T B (4.9)
We note that the plane-stress crack-tip solution should be limited to
the region with r greater than the specimen thickness. In the present
study, with the steady-state diffusion length scale Iss, the plane-stress
solution is limited to the cases where the specimen thickness is small
compared to the diffusion length, so that the effect of triaxiality is
confined within a small region near the crack tip.

J*

5. A poroelastic cohesive zone model

To describe the micromechanics of fracture in gels,
Noselli et al. (2016) proposed a linear poroelastic cohesive zone model
considering both deformation and solvent diffusion in the cohesive
zone. Here, we present a slightly different cohesive zone model for gels
based on a free energy density function and a nonlinear diffusion
equation within the cohesive zone. Cohesive zone models have been
commonly adopted in nonlinear fracture mechanics to describe the
fracture processes at the crack tip, typically with nonlinear traction-
separation relations (Hutchinson and Evans, 2000). Interestingly, it is
found that solvent diffusion within the cohesive zone leads to rate-de-
pendent traction-separation relations, with significantly enhanced
poroelastic toughening as the crack speed increases.

Consider the immersed case first, where the cohesive zone is
permeable to solvent diffusion (Fig. 2). Similar to the free energy
density function of polymer gels in the bulk, we assume a free energy
density function (per unit area) for the solvent-permeable cohesive zone
as:

1 H
8, u) = —ké? — =6,
#.(8, W 5 o (5.1)
where § is the opening displacement, y is the chemical potential of the
solvent in the cohesive zone, and k is the stiffness of the cohesive zone
(assumed to be a constant in the present study). The opening stress and
the solvent concentration in the cohesive zone can then be obtained as:

94 %
= s B
2= 55 Q (5.2)
(%% 8
u Q’ (5.3)

where ¢ is the number of solvent molecules per unit area. Note that
Egs. (5.2) and (5.3) are essentially the same as those in
Noselli et al. (2016).

Solvent transport in the permeable cohesive zone must satisfy mass

Fig. 2. Schematic of a cohesive zone ahead of a crack tip.
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conservation, namely

E+G8) + G =) =0, 5
where j and j; are the solvent flux across the upper and lower in-
terfaces of the cohesive zone at x, = 0 and x; = 07, respectively, and j;
is the flux in the x; direction within the cohesive zone. For mode-I
fracture, by symmetry we have j; = —j} and & = uf — u; = 2uJ,
where u;" and u; are the displacements of the upper and lower inter-
faces. For steady state crack growth, Eq. (5.4) becomes

i %

+— 6) +2j, =0.
axl (G,9) J2

(5.5)

The solvent flux in the cohesive zone is assumed to follow a linear
kinetics:
h= MOa_'u

ox (5.6)
where the mobility constant M, is taken to be the same as that in the
gel.

We note that the second term on the left hand side of Eq. (5.5) is
generally nonlinear, which is different from the linear term in
Noselli et al. (2016) assuming a constant &.

With the solvent-permeable cohesive zone, additional energy dis-
sipation occurs due to solvent diffusion within the cohesive zone. The
modified J-integral in Eq. (3.6) is path independent only if the entire
cohesive zone is enclosed within the contour C. Otherwise, for an ar-
bitrary contour, additional terms should be included in the J-integral to
account for the energy dissipation within the cohesive zone as follows:

_ N Ou; ou 1., M

C

¥ 5 du
+ [ =,
{Q@xl !

where the contour C intersects the cohesive zone at x; = x,. It can be
shown that the modified J-integral in Eq. (5.7) remains path in-
dependent. In particular, by taking an infinitesimal circular contour
around the crack tip with the radius r — 0, we obtain

Xc

(5.7)

s

1 K
JE = I*(r — 0) = (71«52 - fa)
® 2 Q)| (5.8)

which is the crack-tip energy release rate for steady-state crack growth.
For the immersed case, with Hyp =0 and d(x; = 0) = &y, we have:

np —k52, which is the same as that in Noselli et al. (2016). Here, 8f is

taken to be the critical separation for fracture. As a fracture criterion, a
constant §; implies a constant crack-tip energy release rate (J3,), which
may be considered as the intrinsic fracture toughness (independent of
the crack speed?) of the gel. On the other hand, the classical J-integral
(the first term on the right hand side of Eq. (5.7)) over a contour far
away from the crack tip gives the remotely applied energy release rate,
which is the apparent fracture toughness and includes energy dissipa-
tion within the contour due to solvent diffusion in the gel and in the
cohesive zone. Consequently, the apparent fracture toughness is ex-
pected to be greater than the intrinsic toughness, hence poroelastic
toughening (Noselli et al., 2016).

For the not-immersed case, we assume that the cohesive zone is
impermeable to solvent diffusion so that the free energy density func-
tion (per unit area) is simply: ¢, = %kéz, and the opening stress is:
0y, = ké. Then, the modified J-integral becomes:

2 More generally, the critical separation and the intrinsic fracture toughness
may depend on the crack speed due to rate-dependent fracture processes of the
gel.
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_ A 6u,» a,u 1 >
r=f (¢n1 - anja—m)dr + { (c = co)gndA + (Eka )

Cc

5

xe (5.9)

and for a circular contour around the crack tip with r — 0, we obtain

Jh,=J*(r—-0) =

1
ip 51{5},

(5.10)
where & is the critical separation at the crack tip. Note that the critical
separation (dy) could be different for the immersed and not-immersed
cases, which would then lead to different intrinsic fracture toughnesses.
Moreover, with no solvent diffusion in the cohesive zone for the not-
immersed case, it is expected that the effect of poroelastic toughening is
reduced compared to the immersed case.
With the cohesive zone model, a length scale can be defined as

=7 (5.11)
which characterizes the size of the cohesive zone near the crack tip
although the linear elastic interaction theoretically extends to infinity.
It can be shown that this length scale is similar to that for a typical
cohesive zone model (Bao and Suo, 1992; Li et al., 2004): [. ~ =5 w1th

a peak stress o, = k& and a fracture energy I' = Jj, = kdj Here we
assume [, < h (i.e., small-scale bridging). With this length scale, the
plane-stress assumption is further limited to the cases where the spe-
cimen thickness is small compared to L.

By dimensional considerations, the normalized energy release rate
J*/J. for the steady-state crack model (Fig. 1) depends on four di-
mensionless parameters: the applied strain (e, = A/h), the Péclet
number (Pe = h/l), the Poisson's ratio (v), and the normalized cohesive
length (I./h), namely

*
]— = A(Pe,sm, l—c, V).
J. h

e

(5.12)

When [./h — 0 (no cohesive zone), the problem becomes linear and
all the fields are proportional to the applied strain ¢..; in this case, the
ratio J*/J, depends on two dimensionless parameters only: the Péclet
number (Pe) and the Poisson's ratio (v). The nonlinearity in the present
study appears only in the poroelastic cohesive zone model for the im-
mersed case.

We note that Wang and Hong (2012) used a cohesive zone model
with nonlinear springs to calculate the crack-tip energy release rate for
stationary, impermeable cracks (not-immersed) in nonlinear viscopor-
oelastic gels. Similarly, Yang and Lin (2018) used a linear cohesive zone
model for both permeable (immersed) and impermeable (not-im-
mersed) cracks in linear poroviscoelastic media, without considering
solvent diffusion in the cohesive zone.

6. Numerical results and discussion

In this section we present numerical results obtained with a stabi-
lized finite element method (see Appendix A) for the steady-state crack
growth model in Fig. 1, first without and then with the cohesive zone.
By symmetry, only half of the strip is modeled with the finite element
method. A constant displacement u, = he,, is applied at the top of the
strip (% = h), where the displacement is zero in the x; direction.” The
crack face (3 < 0, x = 0) is traction free. At the two ends of the strip
(% = +a), the displacement in the x; direction is zero and the traction
in the x, direction is zero. The finite element mesh is similar to the
previous study (Yu et al., 2018b), with quadrilateral 8u4p Taylor-Hood
elements everywhere except for the elements around the crack tip,
where the collapsed quarter-point Taylor-Hood elements (6u3p) are

3 This is different from the plane strain model in the previous study (Yu et al.,
2018b), where the displacement in the x; direction had to be relaxed due to
incompressible deformation far ahead of the crack tip.
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used. With the cohesive zone model, the use of the quarter-point crack-
tip elements is unnecessary, but the same mesh is used nevertheless for
comparison.

To simulate a semi-infinite crack in an infinitely long strip, the half-
strip model must be sufficiently long. This requires that a > max(h, L
). In the finite element model, we use a = 10max(h, L, L.) for all cases.
With the crack tip at x; = 0, the gel at the left end (x; = —a) is fully
unloaded with the chemical potential equal to the initial value, i.e.,
H = 0. At theright end (x; = a), the gel is stretched in the x, direction
with the strain .. while the solvent concentration remains constant
(c = ¢p), and the gel behaves as an incompressible elastic solid. Under
plane stress conditions, we obtain u,, = —2GQe,, and oy, = 4Gey,." The
chemical potentials, u =0 and u, =—-2GQe,, are imposed at
X = +a as boundary conditions. Along the top face, zero normal flux is
assumed for solvent diffusion, i.e., j, = 0 at x, = h. Along the crack face
(¢ < 0,x% = 0), the chemical potential is set to be zero for the im-
mersed case whereas the normal flux is zero (j, = 0) for the not-im-
mersed case. On the plane ahead of the crack tip (x; > 0, % = 0),
symmetry conditions are applied if there is no cohesive zone. With the
cohesive zone model, the weak form of the finite element method in-
cludes additional terms (see Egs. A.1 and A.2 in Appendix A) for the
traction-separation and solvent diffusion within the cohesive zone.

In the finite element model, all lengths are normalized by the half
width (h = 1). The crack speed is normalized as ah/D{, which is equal
to the Péclet number (Pe = h/l). The stress is normalized by the shear
modulus G, the chemical potential by QG, and the normalized solvent
concentration is Qc.

6.1. Results without cohesive zone

Without the cohesive zone, the numerical results are compared to
the asymptotic crack-tip fields in Section 4, which confirm both the
angular and radial distributions of the stress, solvent concentration, and
the chemical potential, similar to the previous work for steady-state
crack growth under plane strain conditions (Yu et al., 2018b). The
crack-tip parameters, including the stress intensity factor and the T-
stress, are determined as shown in Fig. 3. Compared to the elastic so-
lution in Eq. (3.5), the normalized stress intensity factors for both the
immersed and not-immersed cases in Fig. 3a are smaller due to por-
oelastic shielding. Compared to the plane strain results (Yu et al.,
2018b), the dependence of the stress intensity factor on the normalized
crack speed is different under plane stress. At the slow crack limit
(Pe <« 1), the stress intensity factors for both the immersed and not-
immersed cases approach a constant, Ki/(Geh) = 2J(1 + »)/(1 — v)
(see Appendix C), which is slightly smaller than that under plane strain.
As the Péclet number increases, the stress intensity factor increases
monotonically for the not-immersed case but non-monotonically for the
immersed case. At the fast crack limit (Pe > 1), the stress intensity
factor approaches another constant, Ki/(GewVh) = 4(1 + v)/\3
(Appendix B), which is greater than that under plane strain. The T-
stress is negative (Fig. 3b) with a smaller magnitude compared to the
plane strain results.

The angular distribution of the chemical potential in Eq. (4.7) de-
pends on the parameter x, which is 3 for the not-immersed case but
depends on the Péclet number for the immersed case (Fig. 3c). The
parameter x governs the solvent flux across crack faces near the crack
tip: when x > 3, solvent flows into the gel; when x < 3, solvent flows
out of the gel. For the immersed case, Fig. 3c shows that x > 3 for small
Péclet numbers (Pe < 1) and « < 3 for large Péclet numbers (Pe = 10)
under plane stress, whereas x < 3 for all Péclet numbers under plane
strain (Yu et al., 2018b). For the not-immersed case, the chemical

*With the cohesive zone model, the chemical potential at X; = a is slightly
different and depends on I./h for both immersed and not-immersed cases. This
effect however is negligible when I.,/h < 1 (small-scale bridging).
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potential at the crack tip (i) depends on the Péclet number (Fig. 3d),
which is negative for slow crack growth but becomes positive for fast
crack growth under plane stress, whereas (1, > 0 for all Péclet numbers
under plane strain (Yu et al., 2018b).

For relatively fast crack growth in the immersed case, with Pe > 1
or lss < h, an elastic K-field exists between the poroelastic crack-tip
field and the far field. As noted in previous studies (Noselli et al., 2016;
Yu et al.,, 2018b), at a distance away from the crack tip (roughly
r > Igs), the solvent concentration remains a constant (¢ = ¢;), and the
chemical potential, u ~ r~1/2, is predicted by the elastic crack-tip so-
lution (incompressible with v = 0.5). Hence, for lss < h, the poroelastic
crack-tip field first transitions to the elastic crack-tip field and then to
the homogeneous far field, as shown in Fig. 4a for different values of Pe.
For each case with Pe > 1 (Iss < h), the elastic crack-tip field is
characterized by an elastic stress intensity factor. Under plane stress
conditions, the elastic crack-tip solution leads to a chemical potential:

= 20K cos9
32mr 2] (6.1)

which is slightly different from that under plane strain conditions
(Noselli et al., 2016; Yu et al., 2018b). It is found that the elastic stress
intensity factor in Eq. (6.1) is identical to that for a linearly elastic strip
as given in Eq. (3.5) and is independent of the crack speed
(K, = 2Ge,\3h). According to Eq. (4.7) and Eq. (6.1), the chemical
potential is re-scaled in Fig. 4b, where the numerical results for dif-
ferent Péclet numbers nearly collapse onto one curve except for the
homogeneous far field (x;/lss > Pe). Remarkably, for a relatively large
Péclet number (Pe > 1), the poroelastic crack-tip solution (Eq. (4.7))
intersects with the elastic crack-tip solution (Eq. (6.1)) almost exactly at
X = lss, where the chemical potential is the lowest. As a result, the two
stress intensity factors can be related approximately as:

_ 2

K= =1+ v)K,,

3 (6.2)
where « = 3 is used in Eq. (4.7) for Pe > 1. Hence, with v < 0.5,
K; < K, and the stress intensity factor at the crack tip is reduced by
poroelastic shielding. Eq. (6.2) is confirmed numerically by a crack-tip
model for the fast crack limit with Pe > 1 (see Appendix B).

For relatively slow crack growth, with Pe < 1 or lss > h, the elastic
crack-tip field does not exist and a different transition from the por-
oelastic crack-tip field to the homogeneous far field is observed in
Fig. 5. In this case, the chemical potential follows the poroelastic crack-
tip solution up to approximately x; = h and becomes a constant for
Xx; > Igs. In between (h < x; < Igg), the magnitude of the chemical
potential increases almost linearly (i.e., 4 ~ r). Such a transition can be
predicted by a one-dimensional (1D) diffusion model for both the im-
mersed and not-immersed cases (see Appendix C), which is essentially
the same as the results in the previous study under plane strain con-
ditions (Yu et al., 2018b). As shown in Fig. 5, the chemical potential
and the opening stress ahead of the crack tip (x; > h) are well predicted
by the 1D model for the cases with Pe < 1.

Without a cohesive zone, the crack-tip energy release rate for steady
state crack growth can be calculated by the modified J-integral in
Eq. (3.6) or by Eq. (4.9) with the stress intensity factors in Fig. 3a. As in
previous studies (Bouklas et al., 2015; Yu et al., 2018b), the domain
integral method is implemented to calculate the modified J-integral as a
function of the Péclet number. As shown in Fig. 6, the trend is similar to
the stress intensity factor in Fig. 3a. At the slow crack limit (Pe <« 1),
the energy release rate approaches a constant, J*/J, = ﬁ
(Appendix C), for both the immersed and not-immersed cases, which is
exactly the same as for plane strain (although the corresponding stress
intensity factors are slightly different). At the fast crack limit (Pe > 1),
the energy release rate approaches another constant, J*/J, = 2(1 + v)/3
(Appendix B), which is larger than that for plane strain. The larger J*/J,
suggests that the poroelastic shielding is weaker under plane stress
conditions.
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6.2. Results with a cohesive zone

With the cohesive zone model in Section 5, the finite element
method is slightly modified to account for the traction-separation and
solvent diffusion in the cohesive zone (Appendix A). Here, we first
present the numerical results for the case of small-scale bridging with a
relatively small cohesive length (I./h = 10~°) and then discuss the effect
of the cohesive length scale.

Fig. 7 plots the angular distributions of the stress and solvent

concentration at two different radii around the crack tip for the im-
mersed case with Pe =10 and ¢, = 0.001. At a radial distance
r/h = 1073, about two orders of magnitude larger than the cohesive
zone length scale (I./h = 107°) yet small in comparison to the specimen
size, the numerical results agree well with the asymptotic crack-tip
solution in Section 4. However, at a radial distance smaller than the
cohesive zone length scale, r/h = 107%, the angular distributions differ
markedly from the asymptotic solution. For this particular case, the
cohesive zone (r < [) near the crack tip is enclosed by the poroelastic
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zone (r < L), and the poroelastic crack-tip solution prevails in the
annular region [, < r < . Closer to the crack tip (r < ), the results
are influenced by the cohesive zone with reduced stress and solvent
concentration. Farther away (r > L), the poroelastic crack-tip field
transitions to the elastic K-field and then to the far field, similar to that
shown in Fig. 4. Fig. 8a shows the crack opening displacement in-
cluding the opening in the cohesive zone (4 > 0, x = 0). With the
cohesive zone model, the crack opening is larger than the prediction by
the asymptotic solution in Eq. (4.5). Re-plotting the crack opening be-
hind the crack tip (x; < 0) on a log-log scale (Fig. 8b) shows clearly a
transition from the asymptotic solution in the annulus (I. < r < L) to
the solution influenced by the cohesive zone near the crack tip (r < ).
A similar transition is seen for the opening stress and chemical potential
ahead of the crack tip in Figs. 8 (c-d). In particular, Fig. 8c shows that,
with the cohesive zone, the stress near the crack tip (r — 0) is reduced
and not singular.

With the cohesive zone model, the crack-tip energy release rate can
be calculated directly by Eq. (5.8) or (5.10) with Jg, = %ké‘fz for both the
immersed and not-immersed cases, where the crack-tip opening (&y)
depends on the applied strain (¢..) nonlinearly for the immersed case
but linearly for the not-immersed case. Fig. 9 shows the normalized
energy release rate as a function of the Péclet number with ¢, = 1073,
Compared to Fig. 6, the presence of a small-scale cohesive zone
(I./h = 1075) has no effect on the energy release rate for relatively slow
crack growth with Pe < 100. In this case, . < L, and the cohesive zone

is largely enclosed by the diffusion zone. For fast crack growth
(Pe > 100), however, the diffusion zone size (l;) becomes comparable
to or even smaller than the cohesive length scale (l.), and the por-
oelastic effect is influenced by the cohesive zone. For the immersed
case, the crack-tip energy release rate decreases as the Péclet number
increases, whereas the trend is opposite for the not-immersed case.
For very fast crack growth (Pe > 10°), the diffusion length is
smaller than the cohesive length (I < I. < h). In this case, a very fine
mesh is required at the crack tip to resolve both length scales.
Alternatively, for the immersed case, a crack tip model can be used with
the elastic K-field imposed as the remote boundary condition, similar to
the crack-tip model without the cohesive zone (Appendix B). With the
poroelastic cohesive zone model, however, the problem becomes non-
linear. By dimensional considerations, the normalized energy release
rate in the crack-tip model is a function of three dimensionless groups:

A =f K. , l—c, v |

NA G\/E L (6.3)
To be consistent with the long strip model, the same parameters,

I./h =107, v = 0.2414 and K, = 2Ge,,+/3h, are used in the crack-tip

model. As a result, the dimensionless loading parameter is:

Ke

G = 200+/30 ¢4, Which is 1.095 for ¢, = 0.001. Correspondingly, the
Vie

Péclet number is related to the ratio of the two length scales as:
le

L= 10~°Pe. Note that, without the cohesive zone, the normalized en-
ergy release rate from the crack-tip model (Appendix B) depends only
on Poisson's ratio (Eq. B.3).

In the finite element simulations for the crack tip model, we set
I, =1 to normalize all the lengths, while the diffusion length () is
varied for different crack speeds (a). The radius of the semicircular
domain is chosen to be much larger than both . and L, i.e.,r = 10max
(I, k). The normalized energy release rate obtained from the crack-tip
model is plotted as a function of [/l in Fig. 10a. For I/l < 1, the
normalized energy release rate approaches the fast crack limit (Pe > 1)
without the cohesive zone; in this case, the presence of the cohesive
zone has negligible effect. On the other hand, as I/l increases, the
normalized energy release rate decreases and approaches zero when [,/
Is > 1. Qualitatively similar results were obtained by
Noselli et al. (2016) using a linear poroelastic cohesive zone model.

The results from the crack-tip model can be compared to that for the
long strip model with the relation: I/l = 10~°Pe for I./h = 107>, which
extends the range of the Péclet number up to 10'° as shown in Fig. 10b.
Apparently, for relatively fast crack growth (Pe > 100), the crack-tip
energy release rate decreases with increasing crack speed under the
same applied strain (g, = 0.001). This can be understood as a result of
the poroelastic cohesive zone model for the immersed case, where
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Fig. 7. Angular distributions of the stress components (a-c) and solvent concentration (d) for the immersed case with the nonlinear poroelastic cohesive zone model

(Pe = 10, £, = 0.001, v = 0.2414, I./h = 1075).

solvent diffusion within the cohesive zone dissipates additional energy.
By Eq. (5.7), with a contour far away from the crack tip, the third term
on the right-hand side is negligible and the fourth term accounts for the
energy dissipation within the cohesive zone. It is found that, with in-
creasing Péclet number, the opening separation in the cohesive zone
decreases under the same applied strain (Fig. 11a), but the magnitude
of the chemical potential and its gradient (di/0x;) in the cohesive zone
increase more significantly, leading to more energy dissipation. The
opening separation in the cohesive zone is related to the solvent con-
centration by Eq. (5.3) and thus constrained by the kinetics of solvent
diffusion when the crack speed is high. In particular, the crack-tip
opening decreases with increasing crack speed under the same applied
strain for the immersed case (Fig. 11a).

For the not-immersed case, with no solvent diffusion in the cohesive
zone, the numerical results show the opposite trend for the crack-tip
energy release rate (Fig. 9) and the opening displacement (Fig. 11b).
Evidently, as the Péclet number increases, the effect of poroelastic
shielding decreases in the not-immersed case, leading to a larger crack-
tip energy release rate and a larger crack-tip opening. Here, solvent
diffusion is restricted to a small region near the crack tip, where the
presence of a cohesive zone reduces solvent concentration and asso-
ciated energy dissipation. In the limiting case of very fast crack growth
with Pe > 1 or L < [, the energy dissipation by solvent diffusion
vanishes and the crack-tip energy release rate approaches the elastic
limit (J*/J, — 1) as shown in Fig. 9.

In general, for both the immersed and not-immersed cases, the

normalized crack-tip energy release rate for steady state crack growth
in the long strip model can be written as a function of four parameters
in Eq. (5.12). With the nonlinear poroelastic cohesive zone model for
the immersed case, the normalized energy release rate depends on the
applied strain as shown in Fig. 12, where the ratio J*/J, increases with
the applied strain for fast crack growth (e.g., Pe = 10°) but is nearly a
constant for relatively slow crack growth (e.g., Pe = 102). As noted
earlier, the presence of a small-scale cohesive zone (I./h = 10~°) has
negligible effect on slow crack growth. For the not-immersed case, with
a linear cohesive zone model (no solvent diffusion), the ratio J*/J, is
independent of the applied strain.

The effect of the cohesive length scale on the normalized crack-tip
energy release rate is shown in Fig. 13. Under the condition of small-
scale bridging (I./h < 1), the normalized energy release rate decreases
with increasing cohesive length for the immersed case due to increasing
energy dissipation by solvent diffusion in the permeable cohesive zone.
On the other hand, with no solvent diffusion in the cohesive zone for
the not-immersed case, the energy release rate increases and ap-
proaches the elastic limit (J*/J, — 1) for fast crack growth (Pe = 10°
and 10%). When I./h > 1072, the trend starts to change in both cases. For
the immersed case, the normalized energy release rates for fast crack
growth (Pe = 10° and 10°) start increasing, possibly due to reduced
energy dissipation by solvent diffusion in the bulk of the gel. In con-
trast, the normalized energy release rate decreases with increasing I./h
(> 1072) for the not-immersed case, which is a result of effectively re-
duced stiffness due to the elastic cohesive zone. Far ahead of the crack



Y. Yu, et al.
) x107°
o ‘ ‘ :
\°o° o FEM
h = -Eq. (4.5)
L (o)
1.5 \N O,
%
£
w1
5
0.5
a
0 ‘ . ""u.wul.....
-1 0.5 0 0.5 1
x,/h x10™
9 o FEM
N - -Eq. (4.1)
0 \
10°;
Q
N 10'1
&)
102
N
C \
103 : : 2
107 10 1073 107" 10"
r’h

Mechanics of Materials 143 (2020) 103320

o FEM ]
[ 7/
B} Eq. (4.5) ,
1073+
~ 10
=)
107t
v
¢ P b
Vd
10
107 107 103 107" 10"
r’h
102 : g
o FEM 7
/7
- -Eq. (4.7)
c
910'4 ’
3
7
/oo
d
10°%0
1077 10 1073 107" 10"
r’h

Fig. 8. (a) and (b): Opening displacement in linear and log-log scales; (c) and (d): opening stress and chemical potential straight ahead of the crack tip, for the
immersed case with the poroelastic cohesive zone model (Pe = 10, &, = 0.001, v = 0.2414, I./h = 107°).

1 , : ,
not immersed

immersed

0

1072 102 10 10°

Pe
Fig. 9. Normalized crack-tip energy release rates as functions of the Péclet
number for the immersed and not-immersed cases with the cohesive zone
model (¢, = 0.001, [./h = 10~°, and v = 0.2414). The dotted and dashed lines are

for the slow and fast crack limits without the cohesive zone.

10°

10

tip, with the elastic cohesive zone, the opening stress is related to the
applied strain by:

4Gey,
2\ "
(1+%)
With the reduced stiffness, the remotely applied energy release rate
is also reduced:

On =
(6.49)

e
20\
(1+3%)
As shown in Fig. 13b, the numerical results for J*/J, converge onto
Jo/J. for the not-immersed cases, indicating negligible energy dissipa-

tion by solvent diffusion (independent of the crack speed for
I./h > 1071).

Jo =
(6.5)

6.3. Discussion

Without the cohesive zone model, the condition for steady state
crack growth at a particular crack speed may be established by setting
the crack-tip energy release rate equal to an intrinsic steady-state
fracture toughness, i.e., J* = I}, where the intrinsic toughness may also
be a function of the crack speed as a result of rate-dependent fracture
processes (Long and Hui, 2016). Using the long-strip pure-shear spe-
cimen, the steady-state crack speed a can be measured as a function of
the applied strain ¢... Then, by Eq. (5.12), the intrinsic steady-state
toughness can be determined as a function of the crack speed as



Y. Yu, et al. Mechanics of Materials 143 (2020) 103320

1 1 :
a b
08 08" ﬂ """"" |
e 0.6| o 0.6+ } 1
” 04 2 04l
0.2 02+ |
—long strip model
o crack tip model
0 : : : 0 . ‘ ‘
10° 10" 10" 10° 10 10° 10° 10"
IC /ISS Pe

GK”T = 1.095, v = 0.2414); (b) Comparison of the crack-tip model and the long strip model for
vie

the immersed case with a poroelastic cohesive zone (I./h = 1075). The dotted and dashed lines are for the slow and fast crack limits without the cohesive zone.

Fig. 10. (a) Normalized energy release rate from the crack-tip model (

-5 -5
1 x10 ‘ ' 1 x10 ‘
—— = 2
Pe=10 ——Pe = 10°
0.8 “Pe=10° 0.8
——Pe =10°
2
0.6 0.6/
< £
o )
0.4} 04}
0.2} 0.2}
0 : ' G 0 : '
10 107 107 10 107 107
x1/h x1/h

Fig. 11. The opening displacement in the cohesive zone with increasing crack speed under the same applied strain (¢, = 0.001, [./h = 1075, v = 0.2414): (a) for the
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1 ‘ ‘ ' ‘ Lx(d) = LA(Pey), (6.6)

where J, = 4Ge2 h and the function A(Pe, v) can be calculated as shown
08" 1 in Fig. 6 for v = 0.2414. Typically, without considering the poroelastic
effect, J, is reported as the fracture toughness, which is greater than the
intrinsic toughness. Moreover, Eq. (6.6) implies that the apparent
0.6 M ] toughness J, would generally depend on the specimen size through the
o Péclet number (Pe = ah/D;") whereas the intrinsic toughness I'y; should
JE———. be independent of the specimen size.
With the cohesive zone model (Section 4), the crack-tip energy re-

lease rate for steady state crack growth is related to the opening dis-
placement at the crack tip: Jj, = %kéﬁ, which implies an intrinsic

JJ

0.4+

——Pe = 10°
0.2¢ ——pe = 10°| 1 steady-state fracture toughness: Ty = %kéfz. To measure the intrinsic
—=—pe = 10° toughness, in addition to the crack speed and the applied strain, another
parameter must be determined due to the cohesive zone: I./h. For ex-

: : ' : ample, the crack-tip opening displacement may be measured as a
0 0.002 0.004 0.006 0.008 0.01 function of the crack speed, dy(a), which can be related to the applied

€ strain and the cohesive length scale as:
00

Fig. 12. Normalized crack-tip energy release rates as functions of the applied 8 () = 2he,-g (Pe,goo, l—c, V),

strain for the immersed case (I./h = 1075, v = 0.2414). h (6.7)

where g(Pe,ey, % v) is a dimensionless function as shown in Fig. 14.
Under a given applied strain, the crack-tip opening increases with in-
creasing cohesive length. For the immersed case, the normalized crack-

11
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tip opening depends on the Péclet number and the applied strain due to
the nonlinear poroelastic cohesive zone model. For the not-immersed
case with a linear elastic cohesive zone model, the normalized crack-tip
opening is independent of the applied strain, and interestingly, it ap-
pears to be insensitive to the Péclet number (Fig. 14b). In either case,
the cohesive length (I./h) can be determined from the measured crack-
tip opening displacement the along with the crack speed and the ap-
plied strain. Then, the intrinsic toughness can be obtained by Eq. (5.12)
as:

I(a@) = JcA(Pe,sm, % V),

(6.8)
where the dimensionless function A(Pe,c,, %, v) can be calculated as
shown in Fig. 9.

If the intrinsic fracture toughness (I'ys) is known for the gel, Eq. (6.6)
or (6.8) may be used to predict the steady-state crack speed in a long
strip pure-shear specimen subject to an applied strain ... Further, if I'
is a constant independent of the crack speed, the results in Fig. 6
(without a cohesive zone) suggest that the crack growth is unstable in
the not-immersed case because the crack-tip energy release rate in-
creases with increasing crack speed. In the immersed case, stable
growth is possible for fast crack speeds (Pe > 100) when the crack-tip
energy release rate decreases slightly with increasing crack speed. With
the cohesive zone model, the numerical results in Fig. 9 suggest that the
crack growth remains unstable for the not-immersed case unless the
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intrinsic fracture toughness (I's;) increases with increasing crack speed.
For the immersed case, however, significant poroelastic toughening is
predicted and the crack growth is stable for Pe > 100. As shown in
Fig. 15a, the crack-tip energy release rate increases as the applied strain
increases at each crack speed. Assuming a constant I (e.g.,
I, = 107*Gh), the applied strain required for the steady-state crack
growth at each speed can be determined by setting J* = I};. Fig. 15b
shows the applied energy release rate (J, = 4Ge2h) thus obtained as a
function of the crack speed. Evidently, for the immersed case, the effect
of poroelastic toughening increases with increasing crack speed (“ve-
locity  toughening”). A similar effect was predicted by
Noselli et al. (2016) in terms of the applied stress intensity factor in a
crack-tip model, where the toughening ratio (J./Tss or K./Ky;) is rela-
tively small. Experimentally, Lefranc and Bouchaud (2014) found that
the measured energy release rate increased significantly with increasing
crack speed in agar gels, which may include effects from both por-
oelastic toughening and rate-dependent intrinsic toughness.

To further understand the effect of poroelastic toughening asso-
ciated with the solvent-permeable cohesive zone model for the im-
mersed case, we show in Fig. 16 (a-c) the opening displacement, the
opening stress, and the chemical potential in the cohesive zone ahead of
the crack tip at different crack speeds, corresponding to the same in-
trinsic toughness ([y; = 107*Gh). Remarkably, the numerical results
suggest a rate-dependent traction-separation relation as shown in
Fig. 16d. For relatively slow crack growth (Pe = 100), the chemical
potential in the cohesive zone is small and the traction-separation

-3
10
107

1073 107"

[ /h
c

Fig. 14. Normalized crack-tip opening as a function of the cohesive length scale (I./h) for the (a) immersed and (b) not-immersed cases (¢, = 0.001, v = 0.2414).
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Fig. 15. (a) The crack-tip energy release rate versus the applied strain for the immersed case with I./h = 1073 and v = 0.2414. (b) The applied energy release rate

= 4Gs°2°h) as a function of the Péclet number for Iy, = 10~*Gh.

relation is linear (02, = k&). As the crack speed increases, the magni-
tude of chemical potential increases and adds significantly (as a nega-
tive pore pressure) onto the opening stress following Eq. (5.2). As a
result, the traction-separation relation becomes nonlinear and depen-
dent on the crack speed. For very fast crack growth (Pe = 10°), the

5 x107° ' '
i ——pe = 10°
41 % ——Pe =10°| -
—=—Pe = 10°

10 : : :
10 107 10 10°
x1/h

opening stress reaches a peak ahead of the crack tip where the chemical
potential is the lowest. Correspondingly, the traction-separation rela-
tion becomes non-monotonic with apparent softening after the peak.
With the same intrinsic toughness (Iy; = 107*Gh and [./h = 1075), the
opening displacement and stress at the crack tip (q =0) are

7
——Pe = 10°

6 5| 1
—+—Pe =10
——pe = 10°

0lé

Fig. 16. (a) Opening displacement, (b) opening stress, and (c) chemical potential in the solvent-permeable cohesive zone at different crack speeds for the immersed
case with Iy = 107*Gh and I./h = 107>, (d) Corresponding steady-state traction-separation relations at different crack speeds.
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independent of the crack speed, but the trajectory of the traction-se-
paration relation depends on the fracture process including the effect of
chemical potential and solvent diffusion within the cohesive zone. In-
terestingly, by integrating the traction-separation relation we would
obtain a rate-dependent fracture energy that includes not only the in-
trinsic toughness but also the poroelastic contribution due to the sol-
vent-permeable cohesive zone; while the former is assumed to be in-
dependent of crack speed here, the latter is inherently rate dependent.
We note that, despite the small-scale bridging condition (I./h = 1075),
the effect of the poroelastic cohesive zone is significant when the dif-
fusion length (I;/h = 1/Pe) is equally small or even smaller in the case
of fast crack growth (Pe > 1).

Finally, to put the theoretical results into physical perspective, we
estimate the Péclet numbers in typical experiments. Taking D to be
10! m?/s and assuming h to be on the order of 10 mm, for crack
speeds ranging from 0.001 to 10 mm/s (Lefranc and Bouchaud, 2014),
the Péclet numbers are in the range of 10> to 10”. However, the value of
D} could vary significantly for different gels.

7. Concluding remarks

Based on a linear poroelastic formulation, we present a theoretical
and numerical study on steady-state crack growth in polymer gels under
plane stress conditions, including the asymptotic crack-tip fields and a
nonlinear poroelastic cohesive zone model. A stabilized finite element
method was implemented to simulate steady-state crack growth in long
strip pure-shear specimens. It is found that, without the cohesive zone
model, the normalized crack-tip energy release rate at the fast crack
limit is greater than the slow crack limit, suggesting reduced poroelastic
toughening for fast crack growth under plane stress conditions, while
the two limits are identical under plane strain conditions in a previous
study (Yu et al., 2018b). With a solvent-permeable cohesive zone for the
case of immersed specimens, solvent diffusion within the cohesive zone
enhances the poroelastic toughening significantly as the crack speed
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increases, leading to rate-dependent traction-separation relations. On
the other hand, with no solvent diffusion in the cohesive zone for the
not-immersed case, the poroelastic effect diminishes as the crack speed
increases. Based on the present study, the intrinsic steady-state tough-
ness of a poroelastic gel can be determined as a function of the crack
speed using long-strip pure-shear specimens by measuring the crack
speed and the applied strain as well as the crack-tip opening.

It should be noted that the linear poroelastic analysis is limited to
the cases where large deformation of the gel is confined within a small
region around the crack tip, similar to the small-scaling yielding con-
dition for the linear elastic fracture mechanics. Such cases may be found
in many brittle gels with fracture toughness less than ~10 J/m? (e.g.,
Lefranc and Bouchaud, 2014). For gels with higher toughness, we ex-
pect qualitatively similar effects from poroelasticity in terms of rate-
dependent toughening due to solvent diffusion, but quantitatively dif-
ferent due to the nonlinear coupling between large deformation and
solvent diffusion (similar to large-scale yielding). Specifically, the
asymptotic crack-tip fields would be different and analytically in-
tractable, the modified J-integral can be readily extended to the non-
linear cases (Bouklas et al., 2015), and similar cohesive zone models
can be adopted to study crack growth with large deformation and
nonlinear fracture processes.
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Appendix A: Formulation of a Stabilized Finite Element Method

The solution to the steady-state boundary value problem as described in Section 3 consists of a vector field of displacements and a scalar field of
chemical potential, u(x) and u(x). Similar to the previous work (Yu et al., 2018b), the weak form of Egs. (2.4) and (2.5) (replacing dc/ot with
— adc/dx for the steady state) is obtained by using the test functions @(x) and fi(x) with the divergence theorem, namely

S avigia+ [ (Zkuz - %)ﬁzdx = [ wadr,
Co

A 0

f (Calk - é_]k)ﬂde - Eé (—d% + %];)Teﬂ,ldA

Ao

a . 3
+ é{ (duz + QMouz%”l)gldx = b/'(cm + é)ﬂdl“
0

(A1)

(A.2)

where the second term of Eq. (A.2) is for the consistent streamline-upwind-Petrov-Galerkin (SUPG) stabilization (Brooks and Hughes, 1982;
Franca et al., 2006). The second term of Eq. (A.1) and the third term of Eq. (A.2) account for the cohesive zone (for the immersed case only) ahead of
the crack tip. For the not-immersed case with an impermeable cohesive zone, the second term of Eq. (A.1) is simpler (with 2ku, in the bracket) and
the third term of Eq. (A.2) is not needed. Without a cohesive zone, both terms are dropped.

Similar to our previous studies (Yu et al., 2018a & 2018b), the 8u4p Taylor-Hood elements with biquadratic serendipity interpolation for
displacement and bilinear interpolation for chemical potential are used to alleviate numerical oscillations. Upon discretization, the weak form in Egs.
(A.1) and (A.2) leads to a system of nonlinear equations for the immersed case, which are solved numerically by the standard Newton-Raphson
method. For the not-immersed case, a system of linear equations are obtained and solved by using an open-source package PETSc (Balay et al., 2017).

Appendix B: Fast crack limit (Pe > 1) by a crack-tip model

Similar to the previous studies (Noselli et al., 2016; Yu et al., 2018b), a crack-tip model may be constructed for the fast crack limit with Igs < h,
where the elastic crack-tip solution can be applied as the boundary condition. Under plane stress conditions, the displacements in the elastic K-field
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Fig. 17. Effect of Poisson's ratio on the stress intensity factor by the crack-tip model, comparing plane stress and plane strain.

are (Rice, 1968):

u = K. Lcos(g) a—1+ 2Sin2(9) s
2G\ 2w 2 2 (B.1)

Ke : ! (e) 2(6)
U =—|—sin|—|la+ 1 — 2cos*|— ||,
2G\ 27 2 2 (B.2)

where a = (3 — v)/(1 + v). For gels, the elastic K-field exists only in a transition region beyond the poroelastic crack-tip field (see Fig. 4), where the
solvent concentration remains a constant (¢ = c,) and the gel is effectively incompressible (v = 0.5). Thus, we have a = 5/3. In addition, the chemical
potential in the elastic K-field is obtained in Eq. (6.1), which satisfies the boundary conditions on the crack faces for the immersed case. For the not-
immersed case, the elastic K-field is strictly not applicable. Nevertheless, the numerical results (Fig. 3a and Fig. 6) suggest that the stress intensity
factor and the energy release rate approach the same fast crack limits for both the immersed and not-immersed cases. In the crack-tip model, we
apply the boundary conditions in terms of the displacement and chemical potential for the immersed case only.

The finite element mesh for the crack-tip model is the same as that in the previous study (Yu et al., 2018b). The displacement boundary
conditions are applied at the circular outer boundary (r = nlss and n > 10) using Egs. (B.1) and (B.2) with a stress intensity factor K,. Similarly, the
chemical potential at the outer boundary is set by Eq. (6.1). Therefore, K, is the single loading parameter in the crack-tip model, and the resulting
crack-tip stress intensity factor is linearly proportional to K. Hence, in the fast crack limit (Pe > 1), the crack-tip model predicts that K;/K, = f (v),
where the effect of Poisson's ratio is found to follow Eq. (6.2) as shown in Fig. 17. Correspondingly, by Eq. (4.9), the crack-tip energy release rate at
the fast crack limit is:

]
=20+ (B.3)

Appendix C: Slow crack limit (Pe << 1) by a 1D model

For the slow crack limit, Igs > h and the solvent diffusion is primarily one-dimensional (1D) in the x; direction. Interestingly, it is found that the
approximate 1D model for the slow crack limit under plane stress conditions (immersed or not) is the same as the 1D model under plane strain
conditions in the previous study (Yu et al., 2018b). In particular, the chemical potential for x; > 0 is obtained from the 1D model as

efr-o )
() #w[ eXp( 20— ), ©

where u = —2QGe,. The opening stress ahead of the crack tip is:

B 1= v _ X1
o () = 4Ges, [1 2(1 — v)\,Xp( 2(1 — V)lss):|.

(C.2)

The predictions by Egs. (C.1)-(C.2) compare closely with the numerical results in the region x; > h for the cases with h < Igs (Pe < 1), as shown
in Fig. 5. Note that, because D = ﬁ and I = DJ/a, the steady-state diffusion length under plane strain is: 2(1 — v)l.
With the 1D approximation, the crack-tip energy release rate can be calculated by the modified J-integral for the slow crack limit (Pe <« 1) as:

[ 2Ge2h __
1-v 21 -v) (C.3)

where J, = 4Ge2 h. Correspondingly, the slow crack limit of the stress intensity factor under plane stress is:

— (1 +v)h
K; = VEJ* = 2Geg ,|—————.
! ; \/ 1—v (C.4)
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