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Subject to forces and voltage, a dielectric elastomer may undergo electromechanical phase
transition. A phase diagram is constructed for an ideal dielectric elastomer membrane
under uniaxial force and voltage, reminiscent of the phase diagram for liquid-vapour
transition of a pure substance. We identify a critical point for the electromechanical
phase transition. Two states of deformation (thick and thin) may coexist during the
phase transition, with the mismatch in lateral stretch accommodated by wrinkling of the
membrane in the thin state. The processes of electromechanical phase transition under
various conditions are discussed. A reversible cycle is suggested for electromechanical
energy conversion using the dielectric elastomer membrane, analogous to the classical
Carnot cycle for a heat engine. The amount of energy conversion, however, is limited by
failure of the dielectric elastomer owing to electrical breakdown. With a particular combi-
nation of material properties, the electromechanical energy conversion can be significantly
extended by taking advantage of the phase transition without electrical breakdown.

Keywords: dielectric elastomer; phase transition; electromechanical instability;
energy conversion; electrical breakdown

1. Introduction

While machines in engineering mostly use hard materials, machines in nature are
often soft. Familiar examples include the accommodation of the eye, the beating
of the heart, the sound shaped by the vocal folds and the sound in the ear.
An exciting field of engineering is emerging that uses soft active materials to
create soft machines (Calvert 2009; Suo 2010). Indeed, many soft materials are
apt to mimic the salient feature of life: deformation in response to stimuli. An
electric field can cause an elastomer to stretch several times its length (Pelrine
et al. 2000; Ha et al. 2007; Carpi et al. 2010). A change in pH can cause a
hydrogel to swell many times its volume (Liu & Urban 2010). These soft active
materials are being developed for diverse applications, including soft robots,
adaptive optics, self-regulating fluidics, programmable haptic surfaces and oil
field management.
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Figure 1. Schematic of a dielectric elastomer membrane, (a) reference state; (b) current state,
subject to forces and an electric voltage.

As one particular class of soft active materials, dielectric elastomers are being
developed intensely as transducers in many applications (Shankar et al. 2007;
Carpi et al. 2008; Brochu & Pei 2010; Suo 2010). Figure 1 illustrates the principle
of operation for a dielectric elastomer transducer. A membrane of a dielectric
elastomer is sandwiched between two compliant electrodes. The electrodes have
negligible electrical resistance and mechanical stiffness; a commonly used material
for such electrodes is carbon grease. The dielectric elastomer is subject to forces
and voltage. Charges flow through an external conducting wire from one electrode
to the other. The charges of opposite signs on the two electrodes cause the
membrane to deform. It was discovered that an applied voltage may cause
dielectric elastomers to strain over 100 per cent (Pelrine et al. 2000). As a result,
electric energy may be converted to do mechanical work and vice versa.

Electromechanical instability has been recognized as a mode of failure for
dielectric elastomers subject to increasing voltage (Stark & Garton 1955; Plante &
Dubowsky 2006), which limits the amount of energy conversion by dielectric
elastomers in practical applications (Zhao & Suo 2007; Diaz-Calleja et al. 2008;
Koh et al. 2009, 2011; Leng et al. 2009; Tommasi et al. 2010; Xu et al. 2010).
In particular, an experimental manifestation of the electromechanical instability
was reported by Plante & Dubowsky (2006): under a particular voltage, a pre-
stretched dielectric elastomer membrane deformed into a complex pattern with a
mixture of two states, one being flat and the other wrinkled. This phenomenon
has been interpreted as coexistence of the two states owing to a non-convex
free-energy function of the dielectric elastomer, which leads to a discontinuous
phase transition (Zhao et al. 2007; Zhou et al. 2008). In one state, the membrane
is thick and has a small in-plane stretch. In the other state, the membrane
is thin and has a large in-plane stretch. The two states may coexist at a
specific voltage, so that some regions of the membrane are in the thick state,
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while other regions are in the thin state. To accommodate the mismatch of
in-plane stretches in the two states, the membrane wrinkles in the regions
of the thin state.

While the electromechanical phase transition often leads to failure of the
dielectric elastomer transducers, it may offer an enabling mechanism for
electromechanical energy conversion, analogous to the liquid—vapour phase
transition in a steam engine. For this purpose, it is essential to understand the
processes of electromechanical phase transition in dielectric elastomers along with
the physical limits set by pertinent failure modes. In this paper, we present
a theoretical analysis on the electromechanical phase transition in dielectric
elastomers under various loading conditions. In particular, a phase diagram is
constructed for an ideal dielectric elastomer subject to uniaxial force and voltage,
which closely resembles the liquid—vapour phase transition of a pure substance.
On the phase diagram, we identify a critical point of the electromechanical phase
transition. The membrane can change from a thick state to a thin state by a
discontinuous phase transition along a subcritical loading path. Alternatively,
the membrane can change from a thick state to a thin state by a succession of
gradual changes along a supercritical loading path. By allowing electromechanical
phase transition, one may significantly enhance the amount of energy conversion
by the dielectric elastomer transducers.

The remainder of this paper is organized as follows. Section 2 presents
the equations of state for an ideal dielectric elastomer. In §3, solutions are
presented for homogeneous deformation of a dielectric elastomer under uniaxial
force and voltage. The stability of a homogeneous deformation state against
small perturbations is discussed in §4. Section 5 presents an analysis of
electromechanical phase transition along with graphical representations of the
phase diagram. In §6, two specific processes of phase transition are discussed,
a reversible process cycle is suggested for electromechanical energy conversion,
and the physical limit for energy conversion set by electrical breakdown of the
dielectric elastomer is discussed. Section 7 concludes the present study with a
brief summary.

2. Equations of state

The theory of dielectric elastomers has been developed in various forms (e.g.
Dorfmann & Ogden 2005; Goulbourne et al. 2005; McMeeking & Landis 2005;
Suo et al. 2008; Trimarco 2009). This section reviews the equations of state,
following the notation in Suo et al. (2008).

(a) Free energy and condition of equilibrium

With reference to figure 1, consider a membrane of dielectric elastomer,
sandwiched between two compliant electrodes. In the reference state, the
membrane is subject to neither force nor voltage, and is of dimensions L, Lo
and Ls. In the current state, the membrane is subject to forces P, P, and Ps3,
while the two electrodes are connected through a conducting wire to a battery
of voltage @. In the current state, the dimensions of the membrane become , b
and /3, and the two electrodes accumulate charges Q.
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Deformation of the elastomer is entropic, and we consider isothermal processes
in the present study. Denote the Helmholtz free energy of the elastomer in
the current state by F, taken to be a function of four independent variables,
F(l, b, L, Q). The potential energy of the forces is —Pylj — Pyly — Psl3, and the
potential energy of the voltage is —® (). The elastomer membrane, the forces and
the voltage together constitute a thermodynamic system. The free energy of this
system, II, consists of the Helmholtz free energy of the elastomer, the potential
energy of the forces and the potential energy of the voltage:

II=F(lL,b,bk,Q)— Pili — Poly — P3sl; — Q. (2.1)

When the forces and the voltage are fixed, the free energy of the system is a
function of the four independent variables, IT(}, b, I3, Q). The state of equilibrium
is then determined by minimizing the free energy with respect to the variables.

(b) Incompressible dielectric elastomers

For the time being, we assume that the membrane undergoes homogeneous
deformation. Define the nominal density of the Helmholtz free energy by
W =F/(Ly, Ly, L3), stretches by Ay =1li/L1, s = b/ Ly and A3 =l3/ L3, stresses by
1= P1/(bly), 0o =Py/(L) and o3 = P3/(Ll), electrical field by E = ®/l;, and
electrical displacement by D= Q/(h k).

When an elastomer undergoes large deformation, the change in the shape of
the elastomer is typically much more significant than the change in the volume.
Consequently, the volume of the elastomer is often taken to remain unchanged
during deformation such that

Adghs =1 (2.2)

Under this assumption of incompressibility, the three stretches are no longer
independent. We regard A; and Ay, along with D, as three independent variables
that describe the state of the elastomer.

As a model of an incompressible dielectric elastomer, the nominal density
of the Helmholtz free energy is assumed to be a function of the three
independent variables:

W = W(A, 2, D). (2.3)

The free energy of the system in (2.1) can then be written in terms of the same
variables:

(A, A2, D) = Ly Lo Ls W (A1, Ay, D) — PiLiAy — PyLos
— P3L3A] A — @Ly Lydy Ao D. (2.4)

When the forces and the voltage are fixed, a state of stable equilibrium is
attained when the function IT(41, 23, D) is minimized with respect to the three
independent variables.
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Setting the first derivatives of the free-energy function to vanish, dI1/9d4; =0,
0I1/dA, =0 and dI1/dD = 0, we obtain that

W (A1, 42, D)

— ED=2A 2.5
01— 03+ 1 an ) (2.5)

OW (A1, A9, D
02—03+ED:A2M (26)

029

dW (A1, 42, D)
d F=———-. 2.7
an D (2.7)

Once the function W(A;, 24y, D) is specified for the incompressible dielectric
elastomer, the four equations, (2.2) and (2.5)—(2.7), constitute the equations
of state. We note however that (2.5)—-(2.7) are necessary but not sufficient to
minimize the free energy I1. As a result, the equilibrium state described by these
equations may be stable or unstable. The stability of the equilibrium state will
be discussed in §4.

(¢) Ideal dielectric elastomers

The free energy in (2.4) suggests two types of electromechanical coupling:
the coupling resulting from the geometric relationship between the charge and
the stretches, Q= LiLsA1A9D, and the coupling resulting from the function
W (21,242, D). An elastomer is a three-dimensional network of long and flexible
polymer chains, held together by covalent cross-links. Each polymer chain consists
of a large number of monomers. Consequently, the cross-links have negligible effect
on the polarization of the monomers—that is, the elastomer can polarize nearly
as freely as a polymer melt. This simple molecular picture is consistent with
the following experimental observation: the permittivity changes by only a few
percent when a membrane of an elastomer is stretched to increase the area by 25
times (Kofod et al. 2003).

As an idealization, the dielectric behaviour of an elastomer is assumed to be
exactly the same as that of a polymer melt—that is, the true electric field relates
to the true electric displacement as:

D=¢E, (2.8)

where ¢ is the permittivity of the elastomer, taken to be a constant independent
of deformation. We note that in general the permittivity of an elastomer may
depend on deformation, especially at an extremely large stretch.

Using (2.8) and integrating (2.7) with respect to D, we obtain that

D2
W = VVS(Al, Ag) -+ % (29)

The constant of integration, Wi(A;,4s), is the Helmholtz free energy associated
with stretching of the elastomer, and the term D?/(2¢) is the Helmholtz
free energy associated with polarization. In this model, the stretches and
the polarization contribute to the free energy independently. Consequently, the
electromechanical coupling is purely a geometric effect associated with the
expression ) = LjLyA; Ao D. This material model is known as the model of ideal
dielectric elastomers (Zhao et al. 2007).
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For a membrane of an incompressible, ideal dielectric elastomer, with (2.8) and
(2.9), the free energy of the system in (2.4) can now be written in the form

11 P1 PQ P3 —149-1 & ()] 2 9
= W) — ek = e <L3> (M)
(2.10)

When the forces and the voltage are fixed, the free energy in (2.10) is a function
of the two stretches, IT(A;, A2). A state of stable equilibrium is attained when the
function IT(2;, A2) is minimized.

Again, setting the first derivatives of the free energy in (2.10) to vanish,
0I1/04, =0 and d11/dA, =0, we obtain that

oL, Y9

AW, (2. A
2] —03+8E2211M (211)
dA
and O Ws(Aq, A
02—0'3+8E2=/12M. (212)
0y

These two equations are commonly justified by identifying eE? as the Maxwell
stress (e.g. Goulbourne et al. 2005; Wissler & Mazza 2005; Plante & Dubowsky
2006). Apparently, the Maxwell stress accounts for electromechanical coupling in
incompressible elastomers with liquid-like dielectric behaviour (Suo et al. 2008).
The general procedure as described above, however, has been extended to other
kinds of elastic dielectrics, as reviewed in Suo (2010).

(d) Limiting stretches

The free energy due to elastic stretching, Wi(41,42), may be selected from a
large menu of well-tested functions in the literature of rubber elasticity (Boyce &
Arruda, 2000). A behaviour of particular significance to electromechanical
instability is stiffening of an elastomer at large stretches. In an elastomer, each
individual polymer chain has a finite contour length. When the elastomer is
subject to no load, the polymer chains are coiled, allowing a large number of
conformations. When stretched, the end-to-end distance of each polymer chain
increases and eventually approaches the finite contour length, setting up a limiting
stretch. On approaching the limiting stretch, the elastomer stiffens steeply.

To take into account the effect of limiting stretches, we use Gent’s free energy
function (Gent 1996):

i P2+ A2 -3
Wi, Je) = =22 1og(1— LAt h s 2r), (2.13)
lim

where u is the small-stress shear modulus, and J;, is a dimensionless
parameter related to the limiting stretch. By the functional form in (2.13),

the stretches are restricted by the condition, 0 < (22 + A2 4+ A;°2,% — 3)/ Jim < 1.
When deformation is small compared with the limiting stretch,(A? + 232 +
Afzkgg —3)/Jim — 0, and the Taylor expansion of (2.13) recovers the free-
energy function for the incompressible neo-Hookean model: W= (u/2)(A* +
2 +/\f2/1; 2 _3). When the elastomer approaches the limiting stretch, (2 +
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Figure 2. Curves of constant voltage and curves of constant axial force on the (1, 22) plane for a
dielectric elastomer membrane. The dashed curve is the boundary set by equation (2.14) for the
limiting stretch of the elastomer (Jjj,, =69). (Online version in colour.)

22 —I—AIZ/\;Q —3)/Jim — 1, the free energy (2.13) diverges, and the stiffness of
the elastomer becomes unbounded. Therefore, the condition for the limiting
stretch is

B4+ 272057 = 3= Jim- (2.14)

Condition (2.14) is plotted in figure 2 on the (A;,A2) plane as the dashed
curve. Unless otherwise noted, in presenting numerical results, we set Jy, =69
throughout this paper. In figure 2, point O represents the unstretched state
(A1 = Ay =1), whereas points A and B represent the limiting stretches under two
different loading conditions. Point A corresponds to the limiting stretch for the
elastomer subject to uniaxial force but subject to no voltage (® =0), for which
the lateral stretch is related to the axial stretch as Ay =+/1/4;. Thus, equation
(2.14) reduces to

2
;\% +—= Jlim + 37 (215)
A
which gives the limiting stretch in the axial direction, A% = 8.5 for Jii,, = 69. Point
B corresponds to the limiting stretch under equal-biaxial condition (41 = 45), for
which equation (2.14) becomes

2,12+i—J- 3 2.16
1 A4—llm+ ) ( )
1

and for Jim =69 we obtain the stretch, AP =6. Thus, the value of Jim
can be determined by measuring one of the limiting stretches. Once Jy, is
known, condition (2.14) sets the boundary on the (4, 42) plane for all possible
deformation states of the elastomer, regardless of the loading conditions.
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With function (2.13), the equilibrium conditions in (2.11) and (2.12) become
B = 227)

01— 03+ ¢eE’ =
P 1= (24 2+ 4,252 = 3)/ Jim

(2.17)

and

p(43 — A7%25°)
1— (B + 242472252 =3)/Jim
Equations (2.2), (2.8), (2.17) and (2.18) constitute a complete set of equations of

state for the specific material model of dielectric elastomers, which we use in the
following analysis.

0y — 03+ B’ = (2.18)

3. Homogeneous deformation

To be specific, we consider a dielectric elastomer membrane subject to a voltage @
and a uniaxial force Py, while P, = P3=0. Recall that the stress a1 = P1/(kl) =
MP1/(LyL3) and the electric field E= @/l = XA ®/L3. With oy =03=0, we
rewrite (2.17) and (2.18) in a dimensionless form:

P M= (3.1)
wloLy  1— (2 + 2+ 42052 — 3)/Jim '
and 9 2 454
@ P b
<_\/E> - 1 2572 . (3.2)
Ly\ 1— (B + 23+ 47247 =3)/Jim

In obtaining (3.1), we have taken the difference between (2.17) and (2.18).
The normalized force P;/(uL2L3) and the normalized voltage ®/(Ls/u/e) are
the dimensionless loading parameters. Once the two loading parameters are
prescribed, (3.1) and (3.2) are coupled nonlinear equations that determine the
stretches A; and Ay in the current state of the elastomer membrane, assuming
homogeneous deformation.

We now return to the (4;,42) plane in figure 2. Subject to a non-negative
uniaxial force in the 1-direction (P; >0) and a voltage, the deformation state
of the elastomer membrane is restricted to a region bounded by three curves:
the limiting-stretch curve AB, the zero-voltage curve OA and the equi-biaxial
curve OB. We plot (3.1) as curves of constant forces and plot (3.2) as curves of
constant voltages. All curves of constant forces start from a point on the zero-
voltage curve OA and meet at point B, the equal-biaxial limiting stretch. The
equi-biaxial curve OB is also the curve of zero axial force. Regardless of the
magnitude of the axial force, point B is approached when the applied voltage is
sufficiently high. Similarly, all curves of constant voltages start from a point on
the zero force curve OB (close to but not exactly point O) and meet at point
A, the limiting stretch caused by the uniaxial force alone. Point A is approached
when the axial force is sufficiently high, regardless of the voltage. Some curves
of constant voltages go beyond the zero-force curve OB, which would require a
compressive force (P; < 0) and is thus practically unattainable as the membrane
typically has negligible resistance to buckling under compression.
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Figure 3. Stretches of a dielectric elastomer membrane caused by uniaxial force and voltage as
predicted by the homogeneous solution. For constant values of the force: (a) ® — 21 and (b) @ — A2

curves. For constant values of the voltage: (¢) Py —2; and (d) Py — 29 curves. (Online version
in colour.)

When a curve of constant force and a curve of constant voltage intersect on
the (A1, 42) plane, the point of intersection represents a state of equilibrium for
the elastomer subject to the specific combination of force and voltage. The state
however could be stable, metastable or unstable. When a curve of constant force
and a curve of constant voltage intersect at multiple points, more than one states
exist for the force—voltage combination, which is indicative of instability and
phase transition, to be discussed later.

Figure 3 plots the stretches of the elastomer membrane as functions of the
uniaxial force and the voltage. Each curve in figure 3a may be interpreted as the
axial stretch caused by variable voltage and a constant force (a dead weight).
When the dead weight is small, e.g. P1/(uloL3) =1, the voltage as a function of
the axial stretch first goes up, then down and then up again. The curve has a local
maximum and a local minimum. The local maximum has long been associated
with the electromechanical instability (Stark & Garton 1955). As the voltage
increases, the membrane thins down, so that the same voltage induces an even
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higher electric field. This positive feedback results in the local maximum of the
® — A; curve. The local minimum results from the requirement that the voltage
diverges as the membrane approaches the equal-biaxial limiting stretch. This
trend was identified by Zhao et al. (2007) and was linked to electromechanical
phase transition, as discussed further in §5.

As the dead weight increases, the maximum voltage decreases and then
disappears. This trend is understood as follows. Prior to applying the voltage, the
large dead weight pulls the membrane, so that the membrane stiffens significantly
as it approaches the limiting stretch. With a sufficiently large dead weight,
the stiffening eliminates the local maximum in the @ — A; curve and hence the
electromechanical instability. This behaviour has been used to explain why pre-
stretch increases the voltage-induced strains (Koh et al. 2011; Li et al. 2011), a
well-known phenomenon observed experimentally by Pelrine et al. (2000).

We note a new behaviour when the dead weight is very large. As shown in
figure 2, the limiting axial stretch under zero voltage (A} =8.5) is greater than
the equi-biaxial limiting stretch (A2 =6). Prior to applying the voltage, a large
dead weight, e.g. P;/(uLsL3) = 30, stretches the membrane in the axial direction
beyond the equi-biaxial limit (4, > ){113). Subsequently, as the voltage ramps up,
the axial stretch decreases to approach AP, as shown in figure 3a. That is, applying
the voltage causes the membrane to contract in the axial direction, doing positive
work by lifting the dead weight, a behaviour reminiscent of contractile muscles.
We are unaware of any experimental observation of this contractile behaviour for
dielectric elastomers.

Figure 30 plots the @ — A3 curves when the membranes are subject to constant
uniaxial forces. For all positive values of the axial force, the lateral stretch is less
than 1 at zero voltage and approaches the equal-biaxial limiting stretch (A2 = 6)
at high voltage. When the axial force is relatively large, say, Pi/(uL2L3) =10,
prior to applying the voltage, the axial stretch is close to the equi-biaxial limiting
stretch, but the lateral stretch is far below the limiting stretch. Subsequently,
when the voltage is applied, modest further stretch occurs in the axial direction,
but a large further stretch occurs in the lateral direction. In other words, the
relative axial stretch induced by the voltage is reduced by pre-stretching the
elastomer with a constant force, while the relative stretch in the lateral direction
is enlarged. This behaviour has been observed experimentally (Pelrine et al. 2000).

Figure 3¢ plots the axial force—stretch curves under constant voltages.
When the voltage is low, e.g. @/(Lss/u/e)=0.25, the axial stretch increases
monotonically with the axial force. When the voltage is high, e.g. @/(Ls/n/¢e) =
0.3, however, the force as a function of the axial stretch has a local maximum and a
local minimum, which is again indicative of instability and phase transition. When
the voltage is even higher, e.g. ®/(Lss/u/e)=0.4, the force becomes negative
(compression) for a range of axial stretch. However, owing to negligible bending
stiffness of the membrane, the homogeneous state under compression is unstable
and practically unattainable.

Figure 3d plots the lateral stretch versus the uniaxial force with constant
voltages. When no voltage is applied (® =0), the elastomer under a positive
axial force contracts in the lateral direction simply by Poisson’s effect. For an
incompressible elastomer, the lateral stretch is related to the axial stretch by
Ay =+/1/21, which decreases monotonically as the axial force increases. When a
constant voltage is applied, the lateral stretch depends on the combination of the
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axial force and the voltage. With a relatively high voltage, e.g. ®/(Ls/1/e) = 0.3,
the lateral stretch as a function of the axial force first decreases, then increases
and then decreases again. This behaviour may be understood as a result of
competition between the axial force and the voltage: the axial force tends to
decrease the lateral stretch while the voltage tends to increase the lateral stretch;
the two effects combine in a nonlinear manner.

With the same equations of state, homogeneous deformation of dielectric
elastomers under other loading conditions may be considered. In particular,
when the elastomer membrane is subject to a uniaxial force under an open-
circuit condition, the total charge on the electrodes is conserved while the voltage
changes as the elastomer deforms. This condition is important in forming a
complete process cycle for electromechanical energy conversion as discussed in
§6. In some experiments, the elastomer membrane is fixed with a pre-stretch and
then subject to an increasing voltage (Plante & Dubowsky 2006). In this case, as
discussed in §6a, the axial force in the membrane relaxes with increasing voltage
until it becomes zero. Further increasing the voltage would cause buckling of
the membrane.

4. Stability of a homogeneous state against small perturbation

When a homogeneous deformation state (1, 4y) is perturbed to a nearby state
(A + 041,42 + 042), the free energy of the system changes by oI =11(A; +
0A1, A2 + 0Ay) — II(A1,A2). Express this change in the Taylor series up to the
second-order terms:

oIl oIl 10%11 10%11 9%11
I = =041 + =020 + = —5 (611)% + == (629)°
o o, 2+2ax§( 2 +2axg( ) Snon

(631)(6). (4.1)

For the state (4;,4) to be an equilibrium state stable against an arbitrary
small perturbation (04;,042), the free-energy function IT1(1;,A9) must be a local
minimum. That is, the change in the free energy 611 must be positive-definite for
any small perturbation (64;,042). This requirement sets the first derivatives of
the free energy to vanish, and the sum of the second-order terms in (4.1) to be
positive-definite.

Setting the first derivatives in (4.1) to vanish, we recover (2.11) and (2.12).
Requiring the sum of second-order terms to be positive-definite is equivalent to
requiring that the Hessian matrix,

O?I1 (A1, A)  0*I1(21,A2)

322 92107
H= , (4.2)
PII(1,20) 9T (A1, 2s)
92102 922

be positive-definite. The transition from a local minimum to a saddle point for
the free-energy function occurs when the determinant of the Hessian matrix
becomes zero:

det(H) = 0. (4.3)
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Similar conditions have been used to study electromechanical instability in
dielectric elastomers (Zhao & Suo 2007; Diaz-Calleja et al. 2008; Leng et al. 2009;
Dorfmann & Ogden 2010; Xu et al. 2010; Bertoldi & Gei 2011).

The homogeneous deformation as discussed in §3 includes stable and unstable
states. By condition (4.3), the unstable state can be readily determined. For
example, in figure 3a, between the peak and the valley voltages, there are three
homogeneous states, with small, intermediate and large axial stretches. It can
be shown that the state with the intermediate stretch is unstable against small
perturbations, while the other two states are stable against small perturbations.
However, condition (4.3) does not distinguish stable and metastable states,
as the Hessian matrix is positive-definite in either case. To determine the
thermodynamically stable state of equilibrium, one searches for the global
minimum of the free-energy function, not restricted to small perturbations only.
In the case of discontinuous phase transition, the stable equilibrium state changes
abruptly at the transition point, which is typically beyond the reach of small
perturbation analysis.

5. Electromechanical phase transition

With a prescribed uniaxial force (P;) and voltage (@), the free energy in (2.10)
can be written as a function of the stretches (4;,42) in a dimensionless form:

O og (1 R4+ -3
,LLLl L2L3 2 Jlim

P N PR

To illustrate how to determine the states of equilibrium and their stability, the
free-energy function is plotted in figure 4, for Py/(uloLs) =1 and @/(Ls/n/e) =
0.337, which has two local minima and one saddle point. The saddle point
corresponds to an unstable state. The two local minima correspond to two
states of equilibrium deformation, both stable against small perturbations, one
with relatively small stretches and the other with relatively large stretches. For
convenience, the former is called the ‘thick’ state and the latter the ‘thin’ state.
When the free energies of the two states are different, the state with the lower
free energy is thermodynamically stable, while the other state is metastable.
As the force and voltage change, the stable state of the elastomer may change
from one state to the other, a typical behaviour of first-order phase transition.
This transition however cannot be predicted by the local stability condition

in (4.3).

Under special circumstances, the two deformation states of the elastomer may
coexist. Following a recent analysis of phase transition in a temperature-sensitive
hydrogel (Cai & Suo 2011), we develop the conditions for coexistence of the two
states in the elastomer membrane. Suppose that the deformation of the membrane
is no longer homogenous, but is composed of regions in two states, thick and thin.
The thick state has smaller stretches in both the axial and lateral directions than
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Figure 4. Normalized free energy as a function of the stretches for a dielectric elastomer under a
uniaxial force P1/(uL2Ls) =1 and a voltage @/(L3/u/e) =0.337, showing two local minima and
one saddle point. (Online version in colour.)

thin state —g
(wrinkled)

thick state
(flat)

l

Figure 5. A schematic of two states coexisting in a dielectric elastomer membrane subject to
uniaxial tension and voltage. (Online version in colour.)

the thin state. For the two states to coexist, the mismatch in the lateral stretch
(A2) has to be accommodated geometrically. This may be achieved by wrinkling
of the membrane in the thin state, as illustrated in figure 5. With zero force in
the lateral direction and negligible bending rigidity of the membrane, wrinkles
parallel to the axial direction allow the region in the thin state to have a much
larger stretch in the lateral direction than the region in the thick state. The
transitional region between the two states, assumed to be much smaller than the
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regions in the two states, is neglected in this analysis. In the reference state, the
regions of the two states are of lengths L] and L], and the total length of the
membrane is

L+ L =L (5.2)

In the current state, the membrane is subject to an axial force P; and a voltage ®.
The stretches in the two regions are (A}, 4,) and (47, A3), respectively. The total
length of the membrane is then

L2y + L =1 (5.3)
The free energy of the system is
IT = Ly Ly Ly Wi(Ay, A5) + Lo Ly LY Wi(2{, 25) — Py(Ly A + L{A")
@\* e 1R 137 31\2
_ (L_g) S Lol L (0 )* + LY 28)%1 (5.4)

When the force and the voltage are held constant, the free energy (5.4) is
a function of five independent variables: IT(A],45, 4,45, L]). Associated with
variations of the five variables, the free energy varies by

AW, (X, X)) Py ?\>
oIl = Ly L3 L 72 —eX () — 0A
2Ls3 1|: ax Lo Ls edi(43) L 1
LA ) (D>
L L‘ L// _ _ A// A” _ 5}//
+ 24314 ax/l/ L2L3 € 1( 2) L3 1
ELAVRS 2 (2
LoLs L | ————=2 — (X)) A, | — O,
+ Lol 1_ 2, e(47)" 4 Ls 2
" | WS(’V/?X/) /" " @ ? "
+ Lo L3Ly —3/11/2/ 25— e(X))%25 <L_3) :|512
Y AR/ Py / 1"
+ Lo Ly | Ws(41,45) — Wo(2Y, 43) — —— (4] — 4])
LoLs

1 P ? IBYAY/ 1"31\2 l
~ %\ ((A143)7 = (4143)7) | 6Ly (5.5)
For the current state to be a state of stable equilibrium, the free energy in (5.4)
shall be minimized. As a necessary condition, the coefficients in front of the five
variations in (5.5) must vanish, giving that

P D\* AW, )
=) = 5.6
L2L3 +€ 1( 2) <L3) aA/I b ( )
P D\° AW, (N, A

A// A// 2 i — S\ 2 57
oL, Tk <L3> on 57)
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Figure 6. The free energy as a function of the axial stretch for a dielectric elastomer membrane
subject to increasing voltage, with a constant uniaxial force. (Online version in colour.)

@)2= AW (N, 1) (5.8)

2 (£
8( 1) 2 <L3 aA/Q ’
o\®  W(W,A)
A// ZA// i — S 1272 59
sy (1) = (5:9)
Y Py ’ € o 2 Y AR/ Py ”
and I/VS(AUAQ) — _L2L3 Al — 5 <L_3) (11}2)2 = Ws(/.{lle) - _L2L3 /.{1

€ 4 ? 17311\ 2
-5() o 6a0)

Equations (5.6-5.10) are the conditions for the two states to coexist and
equilibrate with each other in the membrane. By (5.6) and (5.7), the axial force in
the two states equal to the applied force, which is simply force balance in the axial
direction. By (5.8) and (5.9), the lateral forces in both states vanish as required
by the boundary condition. Therefore, equations (5.6)—(5.9) simply recover the
homogeneous solution in (3.1) and (3.2) for each state. With reference to (2.10),
we note that by (5.10), the nominal densities of the free energy in the two states
are equal, a condition for the two states to coexist in addition to the requirement
that each state be stable against small perturbations.

To illustrate the process of electromechanical phase transition in the dielectric
elastomer, we plot in figure 6 the normalized free-energy density (5.1) as a
function of the axial stretch A; subject to a constant uniaxial force Py /(uLyL3) = 1.
As shown in figure 2, the lateral stretch A is uniquely determined for each axial
stretch under a prescribed force. Consequently, A9 can be solved as a function of 4,
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Figure 7. An electromechanical phase diagram for a dielectric elastomer membrane subject to
uniaxial force and voltage. The phase-transition line separates regions of two phases—the thick
phase and the thin phase, and terminates at the critical point. (Online version in colour.)

by (3.1) for the prescribed uniaxial force, reducing the independent variables in
(5.1) to one. When the voltage is low, e.g. ®/(L3/u/e) =0.3, the free-energy
density as a function of A; has a single minimum, corresponding to a stable
thick state of homogeneous deformation. As the voltage increases, another local
minimum appears at a much larger stretch, corresponding to the thin state.
When @/(L3/u/e) =0.32, the free-energy density of the thin state is higher
than the thick state. Thus, the thick state remains stable and the thin state is
metastable. When @/(Lsy/u/e) = 0.337, the free-energy densities in the two states
are equal; the two states may coexist. Further increasing the voltage results in a
transition of the stable state from the thick state to the thin state. Apparently,
such a transition resembles a discontinuous first-order phase transition, and the
transition voltage can be determined by the condition for coexistence of the two
states in (5.6)—(5.10).

The transition voltage as a function of the prescribed force is plotted in figure 7,
which represents an electromechanical phase diagram on the force—voltage plane.
Below the transition line, the thick state of the elastomer is stable; above the
transition line, the thin state is stable. The two states may coexist when the
force and voltage are on the transition line, which is determined by (5.6-5.10).
Interestingly, the transition line terminates at a critical point, Py/(uLsL3) =5.1
and @/(Lgs/n/e) =0.268 for Ji, =69; no phase transition is predicted beyond
the critical point. As shown in figure 3a, when the force is small (subcritical),
Py/(nLloL3) < 5.1, there exists a local maximum and a local minimum in the
voltage-stretch curve, and the transition voltage is in between. On the other
hand, when P;/(uLsLs) > 5.1 (supercritical), the voltage-stretch curve becomes
monotonic, and the homogeneous solution is unique and stable for all voltages.
Therefore, following a supercritical path in the phase diagram, the membrane
can undergo a succession of gradual changes from one state to another, whereas

Proc. R. Soc. A (2012)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on February 29, 2012

1030 R. Huang and Z. Suo

(b)

thin state

1 2 3 4 5 6 0 100 200 300
axial stretch, 4, O/L,L, 1212

Figure 8. Voltage-induced phase transition under a constant force Py /(ulLoL3) =1, with a transition
voltage at ®@/¢/u/L3 =0.337. (Online version in colour.)

a discontinuous phase transition occurs along a subcritical loading path. The
electromechanical phase diagram, with the presence of a critical point, is a
close reminiscent of the pressure—temperature diagram for liquid-vapour phase
transition of pure substances (Cengel & Boles 2010).

With reference to figure 7, we discuss two types of phase transition in the
dielectric elastomer. First, for a membrane subject to a constant force, e.g.
Py/(nLy L) =1, phase transition occurs when the applied voltage crosses the
transition line in figure 7. As shown in figure 8a, the thick state is stable below
the transition voltage, @/(Ls+/u/e) =0.337, and the thin state is stable above
the transition voltage. The transition between the two states, from A to B or
vice versa, is indicated by the horizontal line. Figure 80 shows the normalized
charge versus the voltage. The total charge accumulated in the electrodes changes
drastically before and after the phase transition. It can be shown that, for
the states A and B to have equal free-energy density, the shaded area above
the transition voltage in figure 80 must be equal to the shaded area below the
transition voltage, which is the well-known Maxwell’s rule in thermodynamics of
a pure substance (Wisniak & Golden 1998).

For the second type of phase transition, consider a membrane subject to a
constant voltage, e.g. ®/(Lss/u/e)=0.3. In this case, phase transition occurs
when the applied force crosses transition line in figure 7. As shown in figure 9aq,
the thick state is stable below the transition force, Py/(uLsL3) = 3.1, while the
thin state is stable above the transition force. Figure 90 plots the normalized
charge versus the force. Again, the transition between the two states, from A to
B or vice versa, results in a drastic change in the total charge. By Maxwell’s rule,
the shaded area above the transition force in figure 9a equals the shaded area
below the transition force. As can be seen from the phase diagram in figure 7, the
force-induced phase transition occurs only when the voltage is within a window,
0.268 < @/(L3/u/e) < 0.356 for Jim, = 69.

Figure 10 plots phase diagrams on planes of different coordinates. As a
common practice in thermodynamics, various phase-transition processes can be
represented graphically using these diagrams. The phase-transition line in figure 7
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Figure 9. Force-induced phase transition under a constant voltage, @./e/u/Ls=0.3, with a
transition force at Py/(uLaLz)=3.1. (Online version in colour.)
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Figure 11. A three-dimensional representation of the electromechanical phase diagram for a
dielectric elastomer membrane. (Online version in colour.)

splits into two branches in each of the four diagrams in figure 10. Each diagram
consists of two single-phase regions and a region in between for mixture of two
states. In particular, the processes of voltage-induced phase transition under the
condition of constant forces are represented by the horizontal lines in figure 10a,b.
Similarly, the force-induced phase transition processes under constant voltages
are represented by the horizontal lines in figure 10¢,d. For each horizontal line,
the two ends represent the two homogeneous states (thick and thin), analogous
to the saturated liquid and vapour phases of a pure substance. In between, the
two states coexist, with a specific proportion depending on the average stretch or
the average charge density. The familiar lever rule can be used to determine the
proportion of each phase at any point on the horizontal line, as discussed in §6.

In analogy to the liquid—vapour transition of a pure substance, the deformation
state of the dielectric elastomer is determined by two independent variables. For
example, with the voltage and the axial stretch as the independent variables,
the axial force is determined and the behaviour of the elastomer can be
represented as a surface in the three-dimensional space, P — A; — @, similar to the
pressure—volume—temperature (P—v—T) surface in thermodynamics. Figure 11
shows the transition line in the three-dimensional diagram. The two-dimensional
diagrams (P; — @ in figure 7, @ — A; in figure 10a and P; — 4y in figure 10c¢) are
simply the two-dimensional projections of the three-dimensional diagram onto
corresponding planes.

6. Discussions

(a) Phase transition with a fired axial stretch

As depicted in figure 5, when the thick and thin states coexist in an elastomer
membrane, the region in the thin state forms wrinkles to accommodate the
mismatch with the thick state in the lateral stretch. Wrinkling of an elastomer
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membrane was observed in experiments by Plante & Dubowsky (2006), where the
membrane was under a fixed biaxial pre-stretch. Now consider a slightly different
condition, where the elastomer membrane is first stretched by a uniaxial force and
subsequently subject to increasing voltage with the total axial stretch fixed. No
constraint is imposed on the lateral stretch so that the uniaxial stress condition is
maintained in the membrane. With reference to the phase diagram in figure 10a,
as the voltage increases, the deformation state of the elastomer changes along
a vertical path in the @ — A; plane. The membrane is in a stable homogeneous
state before it reaches the transition line. Slightly above the transition line, the
membrane bifurcates into two states, thick and thin, with the region in the thin
state wrinkled. As the voltage increases, each state evolves along the transition
line, with the axial stretch decreasing in the thick state (4]) and increasing in the
thin state (1]). To maintain the fixed total stretch (2}"), it requires that

L2+ LI = LA (6.1)
Combining (6.1) with (5.2) gives the volume fractions of the two states:
A A R B L

ot RS A 4 ==L 7
[ T VA P T T

(6.2)

which is the familiar lever rule. Consequently, the volume fractions of the two
states evolve with increasing voltage.

Figure 12a plots the evolution of axial stretches with a fixed total stretch
A =2, and the volume fraction of the thin state is shown in figure 12b. In
this case, the phase transition starts at @/(Ls+/u/¢) =0.325, beyond which the
volume fraction of the thin state increases as the voltage increases. Meanwhile, as
shown in figure 12¢, the axial force in the membrane drops abruptly, following the
transition line from A to B. At @/(Ls+/u/¢) =0.356, the axial force becomes zero,
corresponding to a slack state of the membrane. Further increasing the voltage,
no homogeneous solution exists for the thick state, and thus the membrane takes
on a homogeneous thin state. However, since the axial stretch in the thin state is
much larger than the prescribed total stretch, the elastomer membrane buckles,
resulting in essentially zero force in the axial direction. As shown in figure 120,
the volume fraction of the thin state undergoes a continuous transition at A and
a discontinuous transition at B. Figure 12d plots the normalized total charge
(Q=D'LiLy+ D"L]Ly) in the electrodes as a function of the applied voltage.
Over the entire process in this case, as the end-to-end distance of the membrane
is fixed, no mechanical work is done by the elastomer, while the voltage does
electrical work to increase the internal free energy of the elastomer (pumping
charge onto the electrodes). An inverse process would convert the internal free
energy to do electrical work (e.g. charging a battery).

(b) Phase transition with an open circuit

Analogous to the adiabatic process in thermodynamics, we next consider the
electromechanical process in a dielectric elastomer membrane under an open-
circuit condition for which the total charge in the electrodes is conserved. The
charge may be pumped onto the electrodes by a battery when the elastomer
membrane is subject to zero force (P; =0). Depending on the voltage of the
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Figure 12. Phase transition of a pre-stretched dielectric elastomer membrane. (a) The axial stretch
bifurcates into two branches (4’B" and A”B”) during phase transition, while the average stretch
remains constant (11" =2). (b) The volume fraction of the thin state undergoes a continuous
transition at point A and a discontinuous transition at B. (¢) The axial force decreases as the
voltage increases. The dashed line shows the homogeneous solution, which becomes unstable at the
transition voltage (point A). (d) The normalized charge versus normalized voltage. The nominal
charge density bifurcates into two states at the transition voltage and evolves along two separate
branches (the thick dashed lines), while the total charge follows the solid line from A to B. (Online
version in colour.)

battery, the membrane may be in a single state (thick or thin) or a mixture of
two states (figure 10b). With a prescribed total charge, the state or the volume
fraction of each state in the mixture is uniquely determined. At this point,
disconnect the membrane from the battery and load the membrane with a uniaxial
force. With reference to figure 10d, as the force increases, the voltage decreases,
following a vertical path in the P; — @) plane. When the prescribed charge is in
the range 0.4 < Q/(Li Ly /u€) <225, the membrane is a mixture of two states
before the force is applied. With increasing force, the charge density in each state
evolves, and the volume fraction can be obtained by a lever rule similar to (6.2),

Ly Q/(LiLy) — D" Ll Q/(LiLs) =D
S — and A= &

6.3
L D — D’ L D —-D (6:3)
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Figure 13. Phase transition under open-circuit condition in a charged dielectric elastomer
membrane. (a) The nominal charge density has two branches (A’B’ and A”B”) for the two
coexistent states, while the total charge remains a constant, Q/(L1La./ue) =100. (b) Evolution of
the volume fractions of the two states. (¢) Normalized axial force versus voltage, initially following
the transition line from A to B, with a mixture of two states. Beyond B, the elastomer is in a single
homogeneous state. The dashed line shows the homogeneous solution, which is unstable below
the transition force (point B). (d) Axial stretch versus normalized force: the stretches in the two
states are shown as the thick dashed lines and the average stretch is shown as the thick solid line.
(Online version in colour.)

where D' = Q'/(LjLy), D" = Q"/(L]{Ly), @ and Q" are the charge accumulated
on the electrodes over the two homogeneous states. Eventually, the membrane
takes on a single-phase homogeneous state when the force is sufficiently high.
As an example, figure 13a shows the evolution of charge densities (D" and D")
in the thick and thin states, with a prescribed total charge Q/(LiLy./ue) =
100. The volume fractions are plotted in figure 13b. In the voltage—force plane
(figure 13¢), the voltage decreases with increasing force, first following the
transition line from A to B and then the homogeneous solution for the thin state.
Figure 13d plots the total axial stretch versus the axial force. The total stretch
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Figure 14. A reversible cycle for electromechanical energy conversion: (a) voltage—charge diagram
and (b) axial force-stretch diagram. Process 1-2: reversible iso-voltage contraction at a low voltage
(¥1) and a high force (Pg); process 2-3: reversible iso-charge contraction with an open circuit;
process 3—4: reversible iso-voltage charging at a high voltage (®y) and a low force (Py,); process
4-1: reversible iso-charge stretching with an open circuit. The area within the cycle in the voltage—
charge diagram is the net input electric work, and the area in the force-stretch cycle is the net
output mechanical work. (Online version in colour.)

is obtained from the axial stretches in the thick and thin states by (6.1), with
the volume fraction determined by (6.3). During this process, the axial force does
mechanical work to the membrane. Part of this work brings the opposite charges
on electrodes closer so that the voltage decreases, analogous to the temperature
change in an adiabatic process in classical thermodynamics.

(¢) Electromechanical energy conversion

To discuss electromechanical energy conversion in the elastomer membrane,
we construct a cycle of reversible processes analogous to the Carnot cycle in
thermodynamics, as shown in figure 14 (P, — A4y and @ — D diagrams). Similar
cycles have been described by Koh et al. (2009, 2011) without considering
the electromechanical phase transition. Here, we extend the discussion to
include the phase transition, which may significantly increase the amount of
electromechanical energy conversion. The four reversible processes that make up
the cycle are described as follows.

Process 1-2: reversible iso-voltage contraction with a low voltage (&r) and a
large force (Py). The electrodes of the elastomer membrane are connected to a
battery that serves as a reservoir of electric charges and maintains a constant
voltage. The membrane is highly stretched at state 1 (e.g. by hanging a large
weight) and tends to contract by electromechanical phase transition from 1 to 2.
As charges flow from the electrodes to the battery, the average axial stretch of the
membrane decreases. During this process, the membrane does both mechanical
work by pulling the weight and electric work by charging the battery.

Process 2-3: reversible iso-charge contraction with an open circuit. At state 2,
disconnect the electrodes from the battery so that the total charge is conserved.
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By gradually reducing the axial force to Pp, (state 3), the membrane continues
to contract, doing mechanical work. Meanwhile, the voltage increases from @y, to
@p. This is an inverse process to that discussed in §6b.

Process 3—4: reversible iso-voltage charging with a high voltage (®y) and a low
force (Pr,). At state 3, connect the electrodes to another battery of voltage @y. As
the membrane is being stretched by the force P, charges flow from the battery
to the electrodes until the total charge equals the charge in state 1. During this
process, external work is done to the membrane by both mechanical stretching
and electric charging.

Process 4-1: reversible iso-charge stretching with an open circuit. At state 4,
disconnect the battery again and gradually increase the weight to stretch the
membrane further. As the average stretch increases, the voltage drops from @y
to @, returning to state 1 and closing the cycle. This process is similar to that
discussed in §6b.

The area enclosed by the path of the process cycle (1-2-3-4-1) in the P-4
diagram (figure 14b) is the net mechanical work done to the weights by the
elastomer membrane, while the area enclosed by the path in the @-D diagram
(hgure 14a) is the net electric work done to the elastomer membrane by the
batteries. As a result, the electrical energy is converted to do mechanical work
in this cycle. As all processes in the cycle are reversible, an inverse cycle (4-3-2-
1-4) may be used to convert mechanical energy to charge the battery. Like the
Carnot cycle, thermodynamically reversible cycles cannot be achieved in practice
because the irreversibility associated with the processes cannot be completely
eliminated. However, the theoretical heat engine that operates on the Carnot
cycle is the most efficient engine operating between two specific temperature
limits. Similarly, a reversible cycle as depicted in figure 14 is the most efficient
cycle operating between two specific voltage limits for electromechanical energy
conversion by the dielectric elastomer membrane.

(d) Electrical breakdown

One physical limit for the elastomer membrane as an electromechanical
transducer is electrical breakdown when the true electrical field reaches a critical
value (Kollosche & Kofod 2010). For the electromechanical phase transition to
occur without electrical breakdown, the true electrical field in the thin state must
be lower than the breakdown field. This is also a necessary condition for the
reversible cycle in figure 14 to operate. Otherwise, the net energy that can be
converted by the elastomer membrane is drastically reduced as the process cycle
is limited within the region of the thick state in the P;—A; and ®-D diagrams
(figure 10b,c). In particular, the thick state is stable in a very narrow region in the
P12, diagram (figure 1¢), meaning that very little mechanical work can be done
by the elastomer membrane without phase transition, although the deformation
can be large.

Consider the breakdown field (Ep) as an intrinsic material property of the
dielectric elastomer, which sets an upper limit for the true electrical field, namely,
®/A3L3 < Ep. In the dimensionless form, we have

(0] F
Z /g5 e (6.4)
LV p  AdV
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Figure 15. Electrical breakdown limits in (a) voltage-charge and (b) force-stretch diagrams,
for Epy/e/u=1.785 (Fpy), 3.570 (Ep2), 5.355 (Ep3) and 8.925 (Ep4). The red curves are the
electromechanical phase-transition lines (Jj, =69). (Online version in colour.)

Figure 15 plots the electrical breakdown limits in the voltage—charge and force—
stretch diagrams, along with the electromechanical phase-transition lines. Each
thick blue line represents the limit by one particular value of the normalized
breakdown field. The intersection between the line of electrical breakdown (blue)
and the line of phase transition (red) in the voltage—charge diagram sets the
upper limit for the voltage in the thin state of the elastomer membrane. The
similar intersection in the force—stretch diagram sets the lower limit for the axial
force in the thin state. Electromechanical phase transition may occur without
electrical breakdown under the condition of high axial force and low voltage.
When the normalized breakdown field is sufficiently high (e.g. Ep+/e/u = 8.925),
the entire transition line is in the region of no breakdown, and thus can be
used for electromechanical energy conversion. The normalized breakdown field
may be increased by increasing the dielectric permittivity (¢) of the elastomer
while maintaining low mechanical stiffness (u) and high breakdown field (Eg), as
demonstrated recently by Stoyanov et al. (2010).

7. Summary

We present a theoretical analysis on electromechanical phase transition of
dielectric elastomers. A phase diagram is constructed for a dielectric elastomer
membrane under uniaxial force and voltage, with two states of deformation
(thick and thin), exhibiting a close resemblance to the phase diagram for liquid—
vapour phase transition of a pure substance. In particular, a critical point is
identified in the electromechanical phase diagram, with which both subcritical
and supercritical loading paths can be devised for the membrane to deform from
one state to another. The processes of phase transition under various conditions
are discussed. A reversible process cycle is suggested for electromechanical energy
conversion using the dielectric elastomer membrane, analogous to the Carnot

Proc. R. Soc. A (2012)


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on February 29, 2012

Phase transition in dielectric elastomer 1039

cycle for a heat engine. However, using the electromechanical phase transition
for energy conversion may be limited by failure of the dielectric elastomer
owing to electrical breakdown. With a particular combination of the material
properties (e.g. Ep+/e/u and Jyy), electromechanical phase transition can be
used to significantly enhance the amount of energy conversion by dielectric
elastomer transducers.
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