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Abstract
The flexoelectric effect is a coupling of polarization and strain gradient, which exists in a wide
variety of materials and may lead to strong size-dependent properties at the nanoscale. Based on
an extension to the classical beam model, this paper investigates the electromechanical coupling
response of piezoelectric nanobeams with different electrical boundary conditions including the
effect of flexoelectricity. The electric Gibbs free energy and the variational principle are used to
derive the governing equations with three types of electrical boundary conditions. Closed-form
solutions are obtained for static bending of cantilever beams. The results show that the
normalized effective stiffness increases with decreasing beam thickness in the open circuit
electrical boundary conditions with or without surface electrodes. The induced electric potential
due to the flexoelectric effect is obtained under the open circuit conditions, which may be
important for sensing or energy harvesting applications. An intrinsic thickness depending on the
material properties is identified for the maximum induced electric potential. The present results
also show that flexoelectricity has a more significant effect on the electroelastic responses than
piezoelectricity at the nanoscale. Our analysis in the present study can be useful for
understanding of the electromechanical coupling in nanobeams with flexoelectricity.

Keywords: flexoelectric effect, piezoelectric nanobeam, electrical boundary, electromechanical
coupling, induced electric potential

(Some figures may appear in colour only in the online journal)

1. Introduction

Electromechanical coupling of materials has been widely
used in the nanoelectromechanical systems (NEMSs) such as
resonators, sensors, actuators and energy harvesters [1]. The
traditional electromechanical coupling mechanisms include
piezoelectricity and electrostriction. Piezoelectricity, which
generally assumes a linear relationship between electric field
and strain, exists only in non-centrosymmetric dielectric
materials. However, the strain gradient or nonuniform strain

distributions could break the local inversion symmetry, which
induces polarization even in centrosymmetric dielectric
materials. This phenomenon is called flexoelectricity, which
exists in liquid crystals, solid dielectrics and living mem-
branes [2–4]. The flexoelectric effect is typically weak com-
pared to the piezoelectric effect in bulk materials. However,
the strain gradient is inversely proportional to the length scale
of structures and could become very large in nanoscales.
Since the induced polarization by the flexoelectric effect is
proportional to the strain gradient, the flexoelectric effect
could be significant at the nanoscale and should be considered
in studying the electromechanical coupling in nano-devices.
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Mashkevich and Tolpygo [5] first predicted the flexoelectric
effect and Tagantsev [6] studied the flexoelectric effect in bulk
crystals theoretically. Ma and Cross [7–9] conducted a series of
experiments to measure the flexoelectric coefficients of piezo-
electric beams. They reported giant flexoelectric coefficients
with high dielectric permittivity in ferroelectric materials. Kwon
et al [10] determined experimentally the flexoelectric coeffi-
cients of barium strontium titanate (BST) thin films. They found
that the transverse flexoelectric coefficient has a very large value
at Curie temperature (∼28 °C). Garten and Trolier-McKinstry
[11] found that the flexoelectricity could be enhanced through
residual ferroelectricity in BST ceramics above the global phase
transition temperature. Recently, several comprehensive reviews
on flexoelectricity of solid crystals, thin films, polymers and
living membranes have been published [12–14]. Jiang et al [15]
summarized the flexoelectricity in various materials with appli-
cations in sensors and actuators as well as their capability of
tuning the ferroelectric thin film properties.

With the development of nanotechnology, nanowires,
nano-beams and nano-plates have been applied as the fun-
damental building blocks in NEMS. Due to the relatively
large flexoelectric effect in dielectric materials at the nanos-
cale, the electromechanical coupling of the nano-beams and
nano-plates with the flexoelectric effect has drawn a surge
of interests. The influence of the flexoelectricity on the elec-
tromechanical coupling properties, such effective bending
rigidity and effective piezoelectricity, of nano-beams and
nano-plates has been studied. Based on the linear piezo-
electricity theory developed by Toupin [16], Majdoub et al
[17, 18] analyzed the model problem of a nanoscale cantilever
beam and discussed the role of flexoelectricity in both
piezoelectric and non-piezoelectric nanostructures. They
reported that the ‘effective’ or ‘apparent’ piezoelectric coef-
ficient and elastic modulus have significant size-dependence
due to the flexoelectric effect. They also verified their pre-
dictions through atomistic calculations on BaTiO3 nano-
beams. Shen and Hu [19] have established a theoretical
framework by a variational principle for nanosized dielectrics
including the electrostatic force, flexoelectricity and surface
effects. They also considered the electric field-strain gradient
coupling in the electric Gibbs free energy density to incor-
porate the flexoelectric effect for nanoscale dielectrics [20].
Based on the internal energy density function, Yan and Jiang
[21] investigated the influence of the flexoelectric effect on
the electromechanical coupling properties of bending piezo-
electric nanobeams. They reported that the flexoelectric effect
was sensitive to the direction of applied electric potential on
the surface electrodes. Considering the flexoelectric and sur-
face effects, Zhang and Jiang [22] studied the size-dependent
electromechanical coupling of piezoelectric ceramics at the
nanoscale. In their work, the internal energy density function
and a modified Kirchhoff plate model have been used to
derive the governing equations and the corresponding
boundary conditions. Based on the electric Gibbs energy,
Liang et al [23] established a Bernoulli–Euler beam model for
piezoelectric beams including the surface and flexoelectric
effects. In their study, the open circuit electrical condition
without surface electrodes, i.e. zero electric displacement on

the surfaces, was assumed. They found that the flexoelectric
effect has a significant influence on the effective bending
rigidity of piezoelectric nanowires. Mao and Purohit [24]
derived the governing equations for a flexoelectric solid
considering strain-gradient elasticity and proved a reciprocal
theorem for flexoelectric materials. The flexoelectric effects
of bending piezoelectric nanobeams and nanoplates have been
investigated by analytical methods in open circuit and closed
circuit electrical boundary conditions. The third electrical
boundary condition, i.e. the surface electrodes with different
electric potentials as a result of mechanical deformation due
to the flexoelectric effect, is also interesting. To interpret the
two-way flexoelectric coupling and complex geometries in
the experiments, Abdollahi et al [25] analyzed computation-
ally the flexoelectric effect in dielectric solids using smooth
meshfree basis functions in a Galerkin method. They reported
that the effective bending rigidity of the piezoelectric beam
with flexoelectricity always increases with decreasing thick-
ness. However, to our knowledge, this effect has not been
considered by any analytical method.

The objective of the present study is to investigate the
electromechanical coupling response of piezoelectric nano-
beams with flexoelectric effects under three electrical
boundary conditions: open circuit without surface electrodes
(OC), closed circuit with a fixed external electric potential
(CCF), and open circuit with surface electrodes and an
induced electric potential by mechanical deformation (OCI).
The constitutive equations of piezoelectric solids with the
flexoelectric effect are derived. The electric Gibbs free energy
and the variational principle are used to derive the governing
equations of nanobeams with the three electrical boundary
conditions. The normalized effective stiffness, the induced
electric potential, electric field and polarization distributions
in the beams are analyzed and discussed, emphasizing the
influence of flexoelectricity on the electromechanical cou-
pling response.

2. Constitutive equations of piezoelectric solids with
the flexoelectric effect

For piezoelectric materials with the flexoelectric effect, the
mathematical modeling based on the extended linear theory is
employed. For simplicity, the contributions of the fifth and
sixth order strain gradient elasticity are neglected [17, 23].
The electric Gibbs free energy density of a piezoelectric solid
can be written as [20, 25]:

k e e e

e e

=- + -

+ + ( )
H E E c e E

f E d E , 1

ij i j ijkl ij kl ijk i jk

ijkl i jk l ijkl i j kl

1

2

1

2

, ,

where Ei is the electric field vector and eij is the strain tensor;
kij is the second-rank dielectric tensor, cijkl is the fourth-rank
elastic modulus, eijk is the third-rank piezoelectric tensor, dijkl

and fijkl are the fourth-rank flexoelectric tensors. In particular,
dijkl is the converse flexoelectric tensor, coupling the gradient
of electric field ( )Ei j, and the strain, while fijkl is the direct
flexoelectric tensor, coupling the strain gradient e( )jk l, and the
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electric filed. Using integration by parts, Sharma et al [26]
defined an effective flexoelectric tensor, h ,ijkl which combines
the two fundamentally different coupling phenomena (strain-
polarization gradient coupling and strain gradient-polarization
coupling) as part of the Helmholtz free energy density func-
tion in terms of strain and polarization. Here, in terms of the
strain and electric field, the two coupling terms in equation (1)
for the electric Gibbs free energy density function may also be
combined into one term with an effective flexoelectric tensor
[25]: m = -d f .ijkl iljk ijkl As a result, the electric Gibbs free
energy can be rewritten as

k e e e m e= - + - - ( )H E E c e E E . 2ij i j ijkl ij kl ijk i jk ijkl i jk l
1

2

1

2 ,

Under an infinitesimal deformation, the constitutive
equations for the piezoelectric solid with the flexoelectric
effect can be derived from the electric Gibbs free energy as

s e

k e m e

= = -

= - = + +

e
¶
¶

¶
¶

( )

c e E

D E e

,

, 3

ij
H

ijkl kl kij k

i
H

E ij j ijk jk ijkl jk l,

ij

i

where sij is the classical Cauchy stress tensor and Di is the
electric displacement vector. Since = +D E Pi i i0 and

k d c= + ,ij ij ij0 we obtain the electric polarization: =Pi

c e m e+ +E e ,ij j ijk jk ijkl jk l, where 0 is the electric permittivity
of vacuum and cij denote the electric susceptibility of the
material. In addition, the higher-order stress tensor arising
from flexoelectricity is

s m= = -
e
¶
¶

( )E . 4ijk
H

lijk l
ij k,

Substituting equations (3) and (4) into equation (2), the
electric Gibbs free energy H can be rewritten as

s e s e= + - ( )H D E . 5ij ij ijk ij k i i
1

2

1

2 ,
1

2

The total electrical enthalpy of the solids can then be
written as [24, 25]

 vf= + - -∭ ∯ ∯ ∯ ( )H V S t u S r v Sd d d d , 6i i i i

where v and f are surface charge density and electric
potential, ti and ui are the traction and displacement on the
surface, ri and vi are the higher-order traction and normal
derivative of displacement on the surface [24, 25]. In general,
we have s=r n ni ijk j k and =v u n ,i i j j, where nj is the outward
unit normal vector on the surface.

3. A Bernoulli–Euler beam model with the
flexoelectric effect

In this section, the classical Bernoulli–Euler beam model is
adopted to study bending piezoelectric nanobeams with dif-
ferent electric boundary conditions. A cantilever piezoelectric
nanobeam with the length L, the width b and the thickness h is
depicted in figure 1, which is mechanically fixed at the left
end and loaded by distributed lateral force, q(x1). The three
electrical boundary conditions considered here are OC, CCF
and OCI conditions, respectively. In the OC condition, the

electric potential is set to zero at the right-end [25] while the
top and bottom surfaces are charge free v =( )0 . In the CCF
condition, the top surface electrode is connected to the ground
and the bottom surface electrode prescribes an external volt-
age V. This is a classical actuator model, which can deform
against the mechanical load due to the electric load and
convert electrical energy to do mechanical work. In the OCI
condition, the top surface electrode is grounded and the bot-
tom surface electrode undergoes a change of electric potential
as a result of mechanical deformation. This is a classical
sensor model and may also be used for energy harvesting by
converting mechanical energy to electricity.

Following the Bernoulli–Euler beam model, the dis-
placement of the beam can be expressed as [21, 23, 25, 27]

= - = =¶
¶

( ) ( )u x v w w x, 0, , 7w

x3 1
1

where v is the displacement in the x2 direction and set to be
zero as in plane strain elasticity. The non-zero components of
the strain and strain gradients are obtained as

e e e= - = - = - ( )x x, , . 8w

x

w

x

w

x11 3
d

d 11,3
d

d 11,1 3
d

d

2

1
2

2

1
2

3

1
3

Note that the strain gradient e = - w xd d11,3
2

1
2 is essen-

tially the curvature of the beam while e = -x w xd d11,1 3
3

1
3 is

proportional to the gradient of curvature. The latter is
assumed to be small compared to the former in the Bernoulli-
Euler beam model and may be neglected for a slender beam
(i.e., L ? h). For the same reason, the electric variables
(electric field and electric displacement) in a slender beam are
predominantly in the thickness direction, while the electric
field ( )E1 and electric displacement ( )D1 components in the

Figure 1. Schematics of cantilever piezoelectric nanobeams. (a) in
the open circuit condition; (b) in the closed circuit condition with a
fixed electric voltage V; (c) in the open circuit condition with surface
electrodes and an induced electric potential f.

3

Smart Mater. Struct. 26 (2017) 095025 Z D Zhou et al



length direction are negligible in three electrical boundary
conditions [17, 21, 23, 28]. Thus, in the present paper, only
the components E3 and D3 are considered for the electric
variables.

By the constitutive relations in equations (3) and (4), the
corresponding components of Cauchy stress, high-order stress
and electric displacement can be obtained as

s e
s m

k e m e

= -
=-
= + + ( )

c e E
E

D E e

,
,

. 9

11 11 11 311 3

113 3113 3

3 33 3 311 11 3113 11,3

In the absence of free body charges, Gauss’s law of
electrostatics requires that

= ( )D 0. 103,3

Substituting equation (9) into equation (10), we obtain

= -
k

¶ F
¶

( ), 11
x

e w

x

d

d

2

3
2

311

33

2

1
2

where the electric potential F is related to the electric field by

= -¶F
¶

E .
x3

3
Let F = =( ) ( )x V xh

3 2 1 1 and F = - =( )x h
3 2

( )V x2 1 on the top and bottom surfaces of the beam,
respectively. Setting f = -( ) ( ) ( )x V x V x1 2 1 1 1 and solving
equation (11), we obtain

F = - - +
k

f( ) ( ) ( )( )x x x x C x, , 12e w

x

x

h1 3 2

d

d 3
2

3 1
311

33

2

1
2

1

where ( )C x1 is a function of x .1 Therefore, the electric field,
electric displacement, stress, high-order stress and polariza-
tion can be obtained (see appendix for details), with which the
electric Gibbs free energy density is obtained in terms of the
deflection ( )w x1 and the surface electric potential f ( )x .1 We
note that f ( )x1 is assumed to be a slow-varying function of x1

so that the electric field in the length direction of the beam is
relatively small.

4. Static bending of a cantilever piezoelectric beam

By the variational principle [23], d = 0 is required for
mechanical and electrostatic equilibrium of the nanobeam.
With equation (A.6) along with equation (8), we obtain

ò

ò

d
k

m
f

d

m k
f

df

k
m f d

k
m

f
d

= +

+

+ -

+ + +

- + +

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

∭
( )

( )

( )

( )

( )

H V
bh

c
e w

x

b
x

x
w x

b
w

x
b

x

h
x

bh
c

e w

x
b x

w

x

bh
c

e w

x
b

x

x
w

d
12

d

d

d

d
d

d

d
d

12

d

d

d

d

12

d

d

d

d
.

13

L

L

L

L

0 3

11
311
2

33

4

1
4

3113

2
1

1
2 1

0
3113

2

1
2 33

1
1

3

11
311
2

33

2

1
2 3113 1

1
0

3

11
311
2

33

3

1
3 3113

1

1
0

Assume only the lateral force ( )q x1 loading on the top

surface (figure 1) so that òd d=∯ ( )t u S q x w xd di i

L

0
1 1 and

d =∯ r v Sd 0.i i If there are no electrodes on the top, bottom

surfaces and left end, the free charges v are zero on these
surfaces. Meanwhile, df = 0 on the right end and v = 0 on

the left end. Thus we have vdf =∯ Sd 0 for the OC con-

dition. If there are electrodes on the top and bottom surfaces
and an external voltage V is applied, then df = 0 on both
surfaces. In this case, both ends are open circuit where the

free charge v is zero. So again we have vdf =∯ Sd 0 for

the CCF condition. For the OCI condition, however, no
external voltage V is applied to the electrodes. In this case, an
electric potential f is generated, which is independent
of x1 but would change with the mechanical load. Therefore,

vdf ¹∯ Sd 0 for the OCI condition. In this section,

we discuss these electrical boundary conditions and
develop analytical solutions for bending of the piezoelectric
nanobeams.

4.1. OC condition

Using equation (13) and the corresponding electric and
mechanical boundary conditions, we obtain
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Due to the arbitrariness of dw and df, the governing
equations can be obtained as

m+ =f ( ) ( )( )G b q x a, 15E
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bh e

12 11
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33
is the effective bending rigidity

of the piezoelectric nanobeam without considering flex-
oelectricity. By equation (14), the boundary conditions at the
ends of the cantilever beam are
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Combining equations (15a) and (15b), the governing
equation for the cantilever piezoelectric nanobeam can be
rewritten as

= ( ) ( )G q x , 17D
w

x

d

d 1
4

1
4

where = +
m

k
G G bhD E

3113
2

33
is the effective bending rigidity of

the piezoelectric nanobeam with the flexoelectric effect,
which is larger than G .E Clearly, the normalized effective

bending rigidity ¢ = = +
m
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G 1G

G c e h

12 1D

E
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2

33 11 311
2 2 increases with

decreasing thickness due to the flexoelectric effect. The same
result was obtained in [23], where zero electric displacement
condition on the beam surfaces was assumed. Since
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2 by equation (15b), the boundary conditions

in equation (16b) can be simplified as
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4.2. CCF condition

In this case, f ( )x1 is a constant (ΔV ) and independent of x1 or
the mechanical load. Using equation (13), we have

ò k
d

k
m d

k
d

+ -

+ + + D

- + =

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

( )

( )

∣

∣ ( )

bh
c

e
q x w x

bh
c

e
b V

bh
c

e
w

12
d

12

12
0. 19

L

w

x

w

x

w

x
L

w

x
L

0 3

11
311
2

33

d

d 1 1

3

11
311
2

33

d

d 3113
d

d 0

3

11
311
2

33

d

d 0

4

1
4

2

1
2

1

3

1
3

The governing equation can then be obtained as
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which is same as the result without the flexoelectric effect.
While the boundary conditions at the left end =( )x 01 remain
the same as equation (16a), the boundary conditions at the
right end depend on the flexoelectric effect, i.e.

m+ D = = =( ) ( )G b V x L0 and 0 . 21E
w
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d 3113
d

d 1
2
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The effective bending rigidity GE is independent of the
flexoelectric effect, whereas the flexoelectric effect induces an
effective bending moment through the boundary condition in
equation (21). The present result is different from the previous
result in [21], where the effective bending rigidity was
derived from an internal energy density function. Their
bending rigidity, which is affected by the flexoelectricity, is a
smaller value than that of the conventional piezoelectric
beam. When the beam thickness is several nanometers for
barium titanate, their effective bending rigidity becomes
negative [21]. It was argued that atomistic simulations should
be used to determine the accurate properties at the nano
scales. However, for some other materials with giant flexo-
electric coefficients and low elastic moduli [10, 12], the
effective bending rigidity as defined in [21] would become

negative when the beam thickness is less than several
micrometers, which appears to be questionable. In contrast,
the effective bending rigidity GE in the present model remains
positive under the CCF condition, independent of the beam
thickness.

4.3. OCI condition

In this case, no external voltage is applied while the induced
electric potential f changes with the mechanical load on the
surfaces. We assume =V 01 and f=V ,2 which is indepen-
dent on x1 but depends on the mechanical load. For the can-
tilever beam subjected to the lateral load ( )q x1 on the top
surface, we have
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Due to the arbitrariness of dw, the equilibrium equation is

= ( ) ( )G q x , 23E
w

x

d

d 1
4

1
4

which is same as equation (20) for the CCF condition. The
boundary conditions at the ends of the beam are also the
same, except that the electric potential f is to be determined
under the OCI condition:

m f+ = = =( ) ( )G b x L0 and 0 . 24E
w

x

w
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d

d 3113
d

d 1
2

1
2

3

1
3

The difference between the OCI and CCF conditions lies
in the electrical boundary condition on the electrode surfaces
of the beam. For CCF, the applied voltage is specified and as
a result there would be surface charges on the electrodes (e.g.,
supplied by a battery). For OCI, since df is independent of x1

in equation (22), we obtain

ò m k v- + =f( ) ( )xd 0. 25
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Under the open circuit condition, ò v =xd 0
L

0 1 (no
supply of charges to the electrodes) and thus

ò m k- =f( ) ( )xd 0, 26
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with which the induced electric potential f can be determined.
From equations (23) and (24), we obtain

= - - m f( ) ( )x L , 27w
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q
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2

E E

2
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2

3113

where the uniform lateral force q has been used for simplicity.
Substituting equation (27) into the boundary condition (26),
we obtain the induced electric potential due to the mechanical
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bending as

f = m

m k+
( )

( )
q. 28

hL

bh G6 E

3113
2

3113
2

33

It is interesting to note that the contribution due to pie-
zoelectricity appears to vanish for the induced electric
potential in equation (28) except for its contribution to the
effective bending rigidity G .E This is a result of the pure
bending deformation assumed in equation (7). In particular,
the strain e11 depends linearly on x3 so that the electric field
( )E3 induced by piezoelectricity takes opposite signs (but
equal amplitude) in the upper and lower halves of the beam,
leading to zero total electric potential f by piezoelectricity.
Substituting equation (28) into (24), the boundary condition
of the cantilever beam is only related to material coefficients
and the external mechanical load.

Solving the governing equations of the three conditions
with corresponding boundary conditions, the deflections of
the piezoelectric nanobeams are
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The analytical solutions obtained in the present study
clearly show that the influences of flexoelectricity on the
electroelastic behavior of the piezoelectric beams are different
with different electrical boundary conditions. The deflections
of the nanobeams due to the flexoelectric effect are always
smaller than that without the flexoelectricity in the OC and
OCI conditions. In contrast, the deflection of the nanobeams
in the CCF condition can be smaller or larger, depending on
the direction of the applied electric voltage.

5. Numerical results and discussion

In the present numerical examples, we assume the slen-
derness ratio of the beam is L/h = 20, and the width b = h.
The electromechanical coupling response of the piezo-
electric beam is loaded by a uniformly distributed pressure,
q = −0.1 N m−1, on the top surface. The material BaTiO3 is
chosen to study the effects of flexoelectricity with different
electric boundary conditions. The flexoelectric coefficient
of BaTiO3 can be obtained from experimental results
[21, 29], which may also be estimated to be around
10−5

–10−7 -C m 1 near the phase transition [8]. In this case,
we choose m3113 =

- -10 C m .6 1 The other material properties
for BaTiO3 are: =c 131GPa,11 k = - -12.48 nC V m ,33

1 1

= - -e 4.4 C m311
2 and c = - -12.46 nC V m .33

1 1

5.1. The normalized effective stiffness in three boundary
conditions

As discussion in section 4, the effective bending rigidities of
piezoelectric nanobeams with three electrical boundary con-
ditions (OC, CCF and OCI) are different due to flexoelec-
tricity. In the OC condition, the normalized effective bending
rigidity ¢ =G G

G
D

E
increases with decreasing thickness due

to the flexoelectric effect. However, the apparent bending
rigidity in the CCF and OCI conditions depends on the
applied electric potential or the induced electric potential. In
order to discuss the size-dependent effective elasticity due
to flexoelectricity, we define the normalized effective
stiffness [25]

= ò

ò

e e

e e
( )Y , 30

c

c

e e

f f

1
2 11

1
2 11

where ef and ee are the strains obtained from the present
model with and without consideration of flexoelectricity. In
equation (30), the integral is over the volume of the beam.
Figure 2(a) gives Y as a function of beam thickness h in
three electric boundary conditions. It is observed that the
normalized effective stiffness is greater than 1 and increases
rapidly with decreasing beam thickness in the OC condition.
In the OCI condition, the normalized effective stiffness
increases slowly with decreasing beam thickness and
approaches a plateau value as h → 0. The reason is that the
induced electric potential decreases with decreasing beam
thickness when the beam thickness is small, which will be
discussed further in the next section. In the CCF condition,
the normalized effective stiffness first increases and then
decreases with decreasing beam thickness when subjecting
to a negative electric voltage. With consideration of flex-
oelectricity, the elastic strain energy is smallest as the
thickness h = 45 nm with V = −0.3 V. Figure 2(b) shows
the normalized deflection w w0 ( =w qL G8 E0

4 is the
deflection at the free end without the flexoelectric effect) for
the beam thickness h = 30, 45, and 100 nm, corresponding
to the three points a, b and c in figure 2(a). From figure 2(b),
we can see that the average curvature of the beam is the
smallest for h = 45 nm. When the thickness decreases, the
normalized deflection has a large reversed deformation and
the average curvature of the curve increases, in which the
elastic energy would increase. When subjecting to a positive
electric voltage, the normalized effective stiffness decreases
monotonically with decreasing beam thickness. It is
noted that the peak values of the normalized effective
stiffness in OCI and CCF conditions are nearly the same,
independent of the magnitude of the external negative
electric voltage.

In order to discuss the effect of flexoelectricity on the
effective bending stiffness of the beam, we defines the nor-
malized bending stiffness K as

=
ò

ò
( )

( )

K . 31
w x

w x

d

d

L

L
i

0 0 1

0 1
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In the three electric boundary conditions, the variation
of the normalized stiffness K with the beam thickness h is
showed in figure 3(a). It is observed that variation of the
normalized stiffness K has the similar trend to the normal-
ized effective stiffness Y in the OC and OCI conditions.
However, in the CCF condition with V = −0.3 V, the
average deflection along the beam length is nearly zero when
the beam thickness is about 25 nm, which can be observed in
figure 3(b). As a result, the normalized stiffness approaches
infinity. When the beam thickness is sufficiently small, the
large external voltage would cause the nanobeam to deflect
reversely, in which case the absolute value of the average
deflection along the beam length increases as shown in
figure 3(b). It is clear from figures 2(a) and 3(a) that both Y
and K approach 1 for all three electric boundary conditions
with sufficiently large thickness, where the effect of flex-
oelectricity is negligible.

5.2. The induced electric potential, electric field and
polarization in three boundary conditions

The induced electric potential can be very significant for
nanobeams in the OCI condition. Moreover, the induced
electric potential plays an important role in energy harvesting
[30–32]. Equation (28) predicts that the induced electric
potential depends nonlinearly on the beam thickness and the
flexoelectric coefficient, as shown in figure 4. When a = /L h
and b = /b h are fixed, the induced electric potential
approaches zero as the beam thickness approaches zero or
infinity. In between, there exists a maximum induced electric
potential at a particular thickness for each flexoelectric coef-
ficient. By setting f¶ ¶ =h 0, we obtain the thickness ho for
the maximum induced electric potential:

=
m

k +
( )h . 32o c e

12 3113
2

11 33 311
2

Figure 2. (a) Variation of normalized effective stiffness Y as a function of the beam thickness h: OC, CCF and OCI conditions; (b) variation
of the normalized deflection (h = 30, 45, 100 nm) in the CCF condition (ΔV = −0.3 V).

Figure 3. (a) Variation of the normalized stiffness K as a function of the beam thickness h: OC, CCF and OCI conditions; (b) variation of the
normalized deflection (h = 20, 25, 50 nm) in CCF condition (V = −0.3 V).
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Interestingly, the thickness ho is independent of the
aspect ratios (α and β) of the beam; it is an intrinsic length
scale that depends on the material properties only. The opti-
mal beam thickness increases with increasing flexoelectric
coefficient with typical values around 100 nm (figure 4(a)).
Similarly, for each beam thickness h, the magnitude of the
induced electric potential is maximized at a particular flexo-
electric coefficient (figure 4(b)). The optimal flexoelectric
coefficient depends on the beam thickness as

m = k + ( )h . 33o
c e

12
11 33 311

2

By equation (28), the induced electric potential approaches
zero as the flexoelectric coefficient m( )3113 approaches zero or
infinity. This is a result of the competition between the two terms
in the denominator of equation (28). When the first term dom-
inates (i.e., m kbh GE3113

2
33), the induced electric potential

decreases with increasing flexoelectric coefficient. Under the
OCI condition, the induced electric potential is to oppose the
bending by the mechanical load. Hence, when the flexoelectric
coefficient is large (or equivalently, thickness is small), the
induced electric potential is small to oppose the same mechan-
ical load. On the other hand, when the flexoelectric coefficient is
very small (or thickness is very large), the second term dom-
inates (i.e., k mG bhE 33 3113

2 ) and the induced electric poten-
tial increases linearly with the flexoelectric coefficient.

With equations (32) or (33), the maximum amplitude of
the induced electric potential can be obtained as

f = a

b k +
( )

( )
. 34q

c e
max

12

2

11 33 311
2

With fixed values of α and β, the maximum induced
electric potential predicted by equation (34) is independent of
the flexoelectric coefficient or the beam thickness, which can
be seen in figures 4(a) and (b) for α = 20 and β = 1. Hence,
for energy harvesting considering the flexoelectric effect,
there exists an optimal beam thickness ho for each material to
reach the maximum output electric potential. After the
thickness has been determined, the output electric potential
increases with the ratio a b.2

In figure 5, the electric field E3 of piezoelectric nano-
beams (at =x L 21 ) in the CCF condition is plotted for the
beam thicknesses of 100 nm and 1000 nm, respectively. The
results for these cases with and without flexoelectricity are
compared. As the applied voltage is −0.3 V, the change of
the electric field with flexoelectricity is smaller than that
without the flexoelectricity. For the smaller thickness, the
flexoelectric effect has a significant effect on the electric
field as shown in figure 5(a). However, when the beam
thickness increases to 1000 nm, the flexoelectric effect
becomes negligible and the change of the electric field is
mainly due to the piezoelectric effect and external voltage.
In the OCI condition, the induced electric potential is uni-
form along the beam length. However, the electric field is a
function of x1 and x ,3 which can be obtained from
equation (A.1). Figure 6 presents the distribution of the
electric field in the OCI condition, in which beam thickness
is 100 nm. The magnitude of electric field is the greatest at
the lower corner near the fixed end =( )x 01 as shown in
figure 6(a). Figure 6(b) shows the electric field vector dis-
tribution in the whole beam. The results show that the
magnitude of electric field decreases on the bottom surface
and increases on the top surface from =x 01 to =x L.1 It
should be noted that, since the nonlocal electrical coupling
between the electric field and electric field gradient is
neglected in the present study, the electric field varies line-
arly along the thickness direction without any nonlinear
effect near the surfaces of the beam [22, 33].

For the CCF and OCI conditions, figures 7(a)–(c) shows
the polarizations of the nanobeams varying with the beam
thickness h. Figure 7(a) shows that the polarization is
positive and decreases with increasing beam thickness at
both the fixed end =( )x 01 and the free end =( )x L1 with a
positive external voltage V = 0.3 V. Without flexoelectricity,
the polarization is induced primarily by the dielectric term
(the third term on the right hand side of equation (A.5)) due
to the electric potential, which is nearly independent of x1

under the CCF condition. The first term of equation (A.5) is

Figure 4. Variation of the induced electric potential with (a) beam thickness h for various flexoelectric coefficients and (b) flexoelectric
coefficient m3113 for different beam thicknesses.
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the polarization induced by piezoelectricity, which is very
small, about - - -–10 10 C m3 4 2 on top and bottom surfaces
when the thickness is 20–500 nm. With flexoelectricity (the
second term of equation (A.5)), the polarization is con-
siderably larger. When the applied voltage is negative
(V = −0.3 V), the polarization is positive at the fixed end

=( )x 01 and negative at the free end =( )x L .1 The magni-
tude of polarizations at the fixed and free ends increase
with decreasing beam thickness, as shown in figure 7(b). For
the OCI condition, figure 7(c) shows the polarization as a
function of the thickness at the fixed and free ends,
respectively. In the present mechanical loading, the induced
electric potential is always negative. As a result, the

polarization has the similar trend to the polarization in the
CCF condition with a negative external voltage. Figure 7
also shows that the magnitude of polarization at the fixed
end is larger than that at the free end. In contrast, if without
flexoelectricity, the polarization induced by the piezoelectric
effect is negligibly small - -( )about 10 C m4 2 for the OCI
condition.

6. Conclusions

In this paper, classical Bernoulli–Euler beam model is
extended to investigate the flexoelectric effect in piezoelectric
nanobeams with three different electric boundary conditions.
The electric Gibbs free energy and a variational principle are
used to derive the governing equations and boundary condi-
tions. The static bending of cantilever beams are considered
analytically. The analytical solutions of the deflections are
obtained under different electrical boundary conditions. A
nearly uniform electric potential distribution is generated by
mechanical deformation due to the flexoelectric effect in the
OCI condition. This uniform electric potential depends on the
beam thickness and the flexoelectric coefficients with a peak
value, which is very important to energy harvesting. Inter-
estingly, there is an intrinsic length scale h ,o which depends
on the material properties only. At this thickness h ,o the
maximum output electric potential is dependent on the aspect
ratios of the beam and independent on the flexoelectric
coefficients. In addition, the normalized effective stiffness Y
and normalized stiffness K due to the flexoelectric effect are
discussed with respect to a range of beam thickness. The
present results indicate that at the nanoscale, the induced
electric potential, the electric field and polarization of nano-
beams are considerably influenced by the flexoelectric effect.
The present results could be helpful to understand the influ-
ence of the flexoelectric effect at nano-scales and to design
nano-devices utilizing the flexoelectric effect.

Figure 5. The electric field distribution along thickness direction in the CCF boundary condition (V = −0.3 V): (a) 100 nm, (b) 1000 nm.

Figure 6. In the OCI condition, (a) the electric field distribution
along the thickness direction at = /x L L0, 2,1 and (b) the electric
field vector distribution in the whole beam.
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Appendix A. The constitutive equations for a piezo-
flexoelectric beam

Using equation (12), the electric field, electric displacement,
stress, high-order stress and polarization of the beams can be
obtained as:

e= - +
k

f ( )( )E , A.1e x

h3 11
311

33
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m e k= + f ( )( )D , A.2x

h3 3113 11,3 33
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Substituting the stress, strain, electric field, electric dis-
placement, strain gradient and higher-order stress into
equation (5), we obtain the electric Gibbs free energy as:
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