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The swelling of a polymer gel is a kinetic process coupling mass transport and mechanical deformation.

Both linear and nonlinear theories have been used to describe the swelling kinetics. Here we present

a comparison between a nonlinear theory for polymer gels and the classical theory of linear

poroelasticity. We show that the two theories are consistent within the linear regime under the

condition of small perturbation from an isotropically swollen state of the gel. The relationship between

the material properties in the linear theory and those in the nonlinear theory is established by

a linearization procedure. Both linear and nonlinear solutions are presented for swelling kinetics of

substrate-constrained and freestanding hydrogel layers. Although the linear poroelasticity theory can

be used to fit experimental data, it is cautioned that the applicability of the linear theory should be

limited to relatively small swelling ratios. To remove the linear limitation, a new procedure is suggested

to fit the experimental data with the nonlinear theory. Finally, we discuss the indentation experiment as

an effective method for characterizing the mechanical and transport properties of polymer gels along

with possible extensions of the method.
1. Introduction

A polymer gel swells significantly when imbibing a large amount

of solvent (e.g., water). Swelling is a kinetic process coupling

mass transport and mechanical deformation, which depends on

the interaction between the polymer network and the solvent.

Both linear and nonlinear theories have been used to describe or

predict the swelling kinetics of polymer gels under various

conditions. Tanaka et al. derived a linear diffusion equation by

treating the gel as a mixture of solid and liquid with a coefficient

of friction for the interaction.1,2 Alternatively, Scherer proposed

a linear theory treating the gel as a continuum phase with the

pore pressure (or solvent concentration) as a state variable.3,4

The linear theory by Scherer is equivalent to the linear poroe-

lasticity theory originally proposed by Biot5 for soil consolida-

tion. The two linear approaches have been compared,6,7 and

considerable differences noted.7 Hui and Muralidharan7

proposed an extension to the approach by Tanaka et al., with

which the two linear theories become identical. Recently, the

theory of linear poroelasticity has been used extensively in

combination with experimental measurements for characterizing

the mechanical and transport properties of polymer gels.8–15
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In spite of remarkable success, it is well known that the linear

theory is limited to relatively small deformation, while large

deformation is common for polymer gels. In contrast, a variety

of nonlinear approaches have been proposed for coupling large

deformation and transport processes in polymer gels.16–25 A

comparison between the linear and nonlinear approaches would

define the range of applicability for the linear theory. Moreover,

a consistent nonlinear theory would extend the properties

determined in the linear regime to the nonlinear regime, provided

that the physical parameters in the nonlinear theory can be

properly related to those in the linear theory.

In the current work we present a comparison between the

nonlinear theory by Hong et al.23 and the linear poroelasticity

theory. We show that the two theories are consistent within the

linear regime under the condition of small perturbation from an

isotropically swollen state of the gel. As specific examples, we

consider swelling kinetics of both substrate-constrained and

freestanding hydrogel layers immersed in a solvent (Fig. 1).

Although the linear poroelasticity theory can be used to fit the

experimental data for both the constrained and free swelling

kinetics,11 it is cautioned that the applicability of the linear theory

should be limited to relatively small swelling ratios. For large

swelling ratios, we suggest a new procedure to fit the experi-

mental data with the nonlinear theory. Finally, we discuss the

indentation relaxation experiment as an effective method for

characterizing the mechanical and transport properties of poly-

mer gels within the linear regime but with possible extensions to

the nonlinear regime.
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Fig. 1 Schematic illustration of a thin hydrogel layer, subject to con-

strained or free swelling. In the present study, the initial state is assumed to

be isotropically swollen from the dry state with h0/H ¼ l0/L¼ w0/W ¼ l0.
2. A nonlinear theory

Here we briefly summarize the nonlinear theory of polymer gels

by Hong et al.23 First, the constitutive behavior of a gel is

described by using a free energy function. For a specific material

model, the free energy density function based on the Flory–

Rehner theory26,27 takes the form
U(F, C) ¼ Ue(F) + Um(C) (2.1)

UeðFÞ ¼ 1

2
NkBT ½FiKFiK � 3� 2lnðdetðFÞÞ� (2.2)

UmðCÞ ¼ kBT

U

�
UCln

UC

1þ UC
þ cUC

1þ UC

�
(2.3)

where FiJ ¼ vxi/vXJ is the deformation gradient mapping the

reference frame XJ to the current frame xi, and C is the nominal

solvent concentration (i.e., number of solvent molecules per unit

volume of polymer). Here, N is the effective number of polymer

chains per unit volume of the polymer, c is the Flory parameter

for interaction between the solvent and the polymer, U is the

volume per solvent molecule, T is the absolute temperature, and

kB is the Boltzmann constant.

Next assume that the volume of the gel changes only by solvent

absorption/desorption so that
1 + UC ¼ det(F) (2.4)

which imposes a constraint coupling deformation (F) with the

solvent concentration (C) in the gel. Eqn (2.4) implies that both

the polymer network and solvent are incompressible. Using

a Lagrange multiplier (P), the free energy density function is re-

written as
U(F, C) ¼ Ue(F) + Um(C) + P[1 + UC � det(F)] (2.5)

The chemical potential and the nominal stress in the gel are

obtained as the thermodynamic work conjugates, namely

m ¼ vU

vC
¼ kBT

"
ln

UC

1þ UC
þ 1

1þ UC
þ c

ð1þ UCÞ2
#
þ UP

(2.6)
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siJ ¼ vU

vFiJ

¼ NkBT

�
FiJ � 1

2

�
1

detðFÞ þ
P

NkBT

�
eijkeJKLFjKFkL

�
(2.7)

where eijk is the alternating unit tensor.

In the absence of body forces, mechanical equilibrium of the

gel requires

vsiJ

vXJ

¼ 0 (2.8)

When the gel reaches a state of chemical equilibrium, the

chemical potential is a constant everywhere. In the transient

state, however, the gradient of the chemical potential drives

solvent migration. By a diffusion model, the true flux of solvent

at the current state is given as:23

jk ¼ � cD

kBT

vm

vxk

(2.9)

where D is a constant for solvent diffusivity, c is the true solvent

concentration which is related to the nominal concentration as

c ¼ C/det(F).

The nominal flux by definition is related to the true flux as:

JKNKdS0 ¼ jknkdS, where NK and nk are the unit normals in the

reference and current frames, respectively. The differential areas,

dS0 and dS, are related as FiKnidS ¼ det(F)NKdS0. Thus, by (2.9)

the nominal flux is obtained as

JK ¼ detðFÞ vXK

vxk

jk ¼ �MKL

vm

vXL

(2.10)

through which a nominal mobility tensor is defined as

MKL ¼ D

UkBT

�
vXK

vxk

vXL

vxk

�
½detðFÞ � 1� (2.11)

By conservation of solvent molecules, the evolution equation

for the nominal solvent concentration is

vC

vt
¼ � vJK

vXK

¼ v

vXK

�
MKL

vm

vXL

�
(2.12)

Therefore, a complete set of governing equations by the

nonlinear theory includes the field equations in (2.8) and (2.12)

along with the constitutive relations in (2.6), (2.7), and (2.10). In

such a theory, the intrinsic material properties of the gel are

specified by four independent quantities: N, c, U, and D.
3. A linear theory

The theory of linear poroelasticity, originally developed by Biot5

for soil consolidation, has been extended to gels.3,4,6–15 In this

section, by linearizing the equations of the nonlinear theory at

the vicinity of an isotropically swollen state, we derive a set of

linear equations for comparison with the theory of linear

poroelasticity. With this, the relationship between the nonlinear

and linear theories is established, and the material properties

used in the linear theory are defined consistently based on the

nonlinear theory.

The gel is assumed to be stress free and isotropically swollen at

the initial state, with a swelling ratio l0 relative to the dry state in

all directions. By setting siJ ¼ 0 in (2.7), the Lagrange multiplier
Soft Matter, 2012, 8, 8194–8203 | 8195



P is obtained, and by (2.6) the corresponding chemical potential

for the initial state is

m0

kBT
¼ ln

l30 � 1

l30
þ 1

l30
þ c

l60
þNU

 
1

l0
� 1

l30

!
(3.1)

Now consider a small perturbation to the initial state with

a displacement field ui. Relative to the initial state, a linear strain

field is defined as

3ij ¼ 1

2

�
vui

vxj

þ vuj

vxi

�
(3.2)

By (2.4), the volumetric part of the strain is related to the

change of solvent concentration, namely

3kk ¼ U(c � c0) (3.3)

where the concentration c is the number of solvent molecules per

unit volume of the gel, and c0 is the initial concentration that is

related to the initial swelling ratio as Uc0 ¼ 1 � l�3
0 .

Next we linearize the constitutive equations (2.6) and (2.7) at

the vicinity of the initial state. For the chemical potential, we

obtain that

mzm0 þ kBT

"
1

l30
�
l30 � 1

�� 2c

l60

#
3kk þ UdP (3.4)

where dP is the perturbation of the Lagrange multiplier associ-

ated with the displacement field.

The Cauchy stress in the gel is related to the nominal stress as

sij ¼ siKFjK/det(F). After linearization, we obtain

sijz
2NkBT

l0
3ij � ðP03kk þ dPÞdij (3.5)

where

P0 ¼ NkBT

 
1

l0
� 1

l30

!
(3.6)

Combining (3.4) and (3.5) to eliminate dP, we obtain the

Cauchy stress in the form

sij ¼ 2G
h
3ij þ n

1� 2n
3kkdij

i
� m� m0

U
dij (3.7)

where

G ¼ 1

l0
NkBT (3.8)

n ¼ 1

2
�NU

2

"
1

l20
�
l30 � 1

�þNU

l20
� 2c

l50

#�1

(3.9)

As shown in Appendix A (ESI†), G and n are the shear

modulus and Poisson’s ratio, respectively, of the isotropically

swollen gel in the linear elastic regime; similar relations were

obtained by Hu et al.12

Furthermore, linearizing the mechanical equilibrium equation

in (2.8) leads to

vsij

vxj

¼ 0 (3.10)
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By (2.9), the solvent flux at the vicinity of the initial state is

approximately

jk ¼ � c0D

kBT

vm

vxk

¼ �M0

vm

vxk

(3.11)

where

M0 ¼ D

UkBT

l30 � 1

l30
(3.12)

By mass conservation, a linear evolution equation for the

solvent concentration is obtained as

vc

vt
¼ � vjk

vxk

¼ M0

v2m

vxkvxk

(3.13)

Therefore, based on the nonlinear theory, a complete set of

linear equations can be developed, consisting of (3.10) and (3.13)

for the field equations along with (3.7) and (3.11) as the consti-

tutive relations. The linear kinematics is described by (3.2) and

(3.3). Moreover, three material parameters for the linear equa-

tions are defined in (3.8), (3.9), and (3.12), which depend on the

swelling ratio (l0) at the initial state.

In comparison with Biot’s theory of linear poroelasticity, we

note that the linear relation in (3.7) is identical to its counterpart

in linear poroelasticity with the pore pressure, p ¼ (m � m0)/U.

Furthermore, Darcy’s law in linear poroelasticity is equivalent to

(3.11) by setting

M0 ¼ k

hU2
(3.14)

where k is the permeability of the polymer network and h is the

viscosity of the solvent. All the other equations then become

identical to Biot’s theory. Therefore, the linear poroelasticity

theory may be considered as a specialization of the nonlinear

theory in the linear regime. In addition to the linear elastic shear

modulus and Poisson’s ratio in (3.8) and (3.9), the linear

poroelastic property, k/h, is related to the intrinsic diffusivity D

and the swelling ratio l0 by (3.14) and (3.12).

The linear equations can be further reduced by inserting (3.7)

into (3.10):

G

�
v2ui

vxjvxj

þ 1

1� 2n

v2uj

vxjvxi

�
¼ 1

U

vm

vxi

(3.15)

Next inserting (3.15) into (3.13), we obtain that

vc

vt
¼ D* v2c

vxjvxj

(3.16)

which takes the form of a linear diffusion equation in terms of the

solvent concentration, with an effective diffusivity

D* ¼ 2ð1� nÞU2GM0

1� 2n
(3.17)

Note that the effective diffusivity defined in (3.17) differs from

the intrinsic diffusivity introduced in (2.9) for the

nonlinear theory. The effective diffusivity (also called the coop-

erative diffusion coefficient8) is a combined quantity that

depends on the initial state for the development of the linear

theory.
This journal is ª The Royal Society of Chemistry 2012



4. Swelling of hydrogel layers

In this section we consider swelling kinetics in two cases (Fig. 1),

one for a hydrogel layer laterally constrained by a rigid substrate

and the other for a freestanding hydrogel layer immersed in

a solvent. In both cases, we assume that the lateral dimensions of

the hydrogel layer are much larger than the thickness (L, W [

H) and hence ignore the edge effects. In each of the two cases we

solve the transient problem based on the nonlinear theory and

compare with the corresponding solution based on the linear

theory. The detailed solution procedure is presented in Appendix

B (ESI†), and the main results are discussed here.
Fig. 2 Evolution of (a) stretch and (b) swelling induced compressive

stress in a constrained hydrogel layer by the nonlinear theory, withNU¼
0.001, c ¼ 0.4, and l0 ¼ 1.4. The time is normalized by s1 ¼ H2/D.
4.1. Constrained swelling

Consider a layer of hydrogel with one face (X ¼ 0) attached to

a rigid substrate and the other face (X¼H) exposed to a solvent,

where H is the layer thickness in the dry state. Initially the gel is

swollen isotropically with a swelling ratio l0. As more solvent

molecules migrate into the gel, the gel swells in the direction of

the thickness while the lateral dimensions are fixed by the

substrate. Therefore, the stretch in the thickness direction is

a function of time and position, l2 ¼ l2(X2, t), whereas

l1 ¼ l3 ¼ l0. By the nonlinear theory, the thickness swelling ratio

can be obtained by solving a nonlinear diffusion equation

l20
vl2

vt
¼ D

v

vX2

�
x
vl2

vX2

�
(4.1)

where

xðl2Þ ¼ 1

l 2
0 l

4
2

� 2c
�
l 2
0 l2 � 1

�
l 4
0 l

5
2

þNU

�
l 2
0 l2 � 1

��
l22 þ 1

�
l 2
0 l

4
2

(4.2)

Eqn (4.1) is to be solved with the initial condition, l2(t ¼ 0) ¼
l0, and the boundary conditions including: (i) s22(X2 ¼ H) ¼ 0;

(ii) m(X2 ¼ H) ¼ 0; and (iii) J2(X2 ¼ 0) ¼ 0. The first two

boundary conditions together require an instantaneous equilib-

rium swelling ratio at the upper surface, l2(X2 ¼H) ¼ lcN, which

can be obtained by solving a nonlinear algebraic equation

ln

 
l20l

c
N � 1

l20l
c
N

!
þ 1

l20l
c
N

þ c

l40
�
lcN
�2 þNU

l20

�
lcN � 1

lcN

�
¼ 0 (4.3)

The zero flux condition at the lower surface requires that�
vl2

vX2

�
X2¼0

¼ 0 (4.4)

With the boundary conditions (4.3) and (4.4), a finite differ-

ence method is used to numerically integrate the nonlinear

diffusion equation (4.1) (Appendix B, ESI†). Fig. 2a shows the

numerical results, with l2 as a function of X2 for increasing time,

where the time is normalized by the characteristic time scale of

diffusion, s1¼H2/D. Apparently, a sharp gradient of the swelling

ratio develops near the upper surface at the early stage of

swelling. Correspondingly, the solvent concentration,

C¼ (l20l2� 1)/U, and the swelling-induced compressive stress are

both inhomogeneous at the transient state. In particular, the

compressive stress as shown in Fig. 2b may cause surface insta-

bility of the gel to form wrinkles and creases as observed

experimentally.28,29 For the present study we assume the surface
This journal is ª The Royal Society of Chemistry 2012
to remain flat during swelling. After a long time (t / N),

the hydrogel approaches the homogeneous equilibrium state

with l2 ¼ lcN everywhere. By (4.3), the equilibrium swelling ratio

depends on the initial swelling ratio (l0) as well as two dimen-

sionless parameters, NU and c.

With the transient swelling ratio l2(X2, t), the thickness of the

hydrogel layer can be calculated as

hðtÞ ¼
ðH
0

l2ðX2; tÞdX2 (4.5)

Fig. 3a plots the relative thickness swelling ratio, h(t)/h0, as

a function of time for different values of c, with initial thickness

h0 ¼ l0H. In all cases, the thickness increases rapidly at the early

stage and eventually approaches the equilibrium state with

hN/h0 ¼ lcN/l0. As the equilibrium swelling ratio increases with

decreasing c, the time to reach the equilibrium state increases.

At the limit of short time (t / 0), the diffusion equation (4.1)

can be linearized, yielding a self-similar solution, namely

l2 � l0

lcN � l0
¼ erfc

 
l0ðH � X2Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðl0ÞDt

p
!

(4.6)

The change in thickness of the hydrogel layer is then

obtained as
Soft Matter, 2012, 8, 8194–8203 | 8197



Fig. 3 (a) Thickness swelling ratio as a function of time for constrained

hydrogel layers with NU ¼ 0.001, l0 ¼ 1.4, and different values of c. The

horizontal dashed lines indicate the equilibrium swelling ratio, hN/h0 ¼
lcN/l0. (b) Normalized thickness change as a function of time, in

comparison with the self-similar solution (dashed lines).
DhðtÞ ¼
ðH
�N

ðl2 � l0ÞdX2 ¼ 2

�
lcN
l0

� 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðl0ÞDt

p

r
(4.7)

As shown in Fig. 3b, the thickness change obtained numeri-

cally by the finite difference method scales with
ffiffi
t

p
in a window,

roughly 0.1 < t/s1 < 10. The accuracy of the numerical method is

limited by the spatial step DX. To reduce the numerical error in

the early stage (t/s1 < 0.1), we may reduce DX, which however

would require a smaller time step Dt and thus higher computa-

tional cost for the numerical method to be stable. Alternatively,

an unconditionally stable implicit method may be used to

improve the numerical solution. It is found that the self-similar

solution (4.7) tends to overestimate the swelling rate in the

window 0.1 < t/s1 < 10 due to the use of x(l0). As shown in

Fig. 2a, the swelling ratio l2 is sharply graded between l0 and lcN
near the surface during the early stage of swelling. By taking

x ¼ x(l0/2 + lcN/2) in (4.7), the self-similar solution agrees closely

with the numerical solution for 0.1 < t/s1 < 10 as shown in

Fig. 3b.

The same problem of constrained swelling was solved by using

the linear poroelasticity theory,11,30,31 which predicts the thick-

ness change of the hydrogel layer as
8198 | Soft Matter, 2012, 8, 8194–8203
DhðtÞ ¼ ð1� 2nÞðm̂� m0Þh0
2ð1� nÞGU

�
(
1� 8

p2

XN
n¼0

1

ð2nþ 1Þ2 exp
�
� ð2nþ 1Þ2p

2t

4s2

�) (4.8)

where s2 ¼ h20/D
* defines a time scale for the linear theory and m̂ is

the chemical potential of the solvent in the environment. After

a long time (t / N), the gel reaches the equilibrium with m ¼ m̂,

and the equilibrium thickness change is

Dc
N ¼ ð1� 2nÞðm̂� m0Þh0

2ð1� nÞGU (4.9)

At the limit of short time (t/s2 � 1), a self-similar solution

predicts that11

DhðtÞ ¼ 2Dc
N

h0

ffiffiffiffiffiffiffiffi
D*t

p

r
(4.10)

The results by the nonlinear and linear theories will be

compared in Section 5.
4.2. Free swelling

Without the substrate constraint, solvent molecules enter the gel

layer from both upper and lower surfaces, and the gel swells in

both the thickness and in-plane directions. Again, we neglect the

edge effects so that the solvent molecules migrate in the thickness

direction only. By symmetry, the layer remains flat (no bending),

with l2 ¼ l2(X2, t) and l1 ¼ l3 ¼ l1(t); the stretch in the in-plane

direction is a function of time only. Based on the nonlinear

theory, we obtain that

l 2
1

vl2

vt
þ 2l1l2

dl1

dt
¼ D

v

vX2

�
x
vl2

vX2

�
(4.11)

where

xðl1; l2Þ ¼ 1

l 2
1 l

4
2

� 2c
�
l 2
1 l2 � 1

�
l 4
1 l

5
2

þNU

�
l 2
1 l2 � 1

��
l 2
2 þ 1

�
l 2
1 l

4
2

(4.12)

Furthermore, with no constraint, the in-plane stress must be

self-balanced, namely ðH
0

s11dX2 ¼ 0 (4.13)

which leads to

l 2
1 ¼ 1

H

ðH
0

l 2
2 dX2 (4.14)

Thus, the in-plane swelling ratio equals the root-mean-square

(RMS) average of the out-of-plane swelling ratio.

The two nonlinear equations (4.11) and (4.14) can be solved

simultaneously using a numerical method (Appendix B, ESI†),

with the initial and boundary conditions: (i) l2(t ¼ 0) ¼ l1(t ¼ 0)

¼ l0; (ii) s22(X2 ¼ 0, H) ¼ 0; and (iii) m(X2 ¼ 0, H) ¼ 0. The

boundary conditions require that the swelling ratios at the

surfaces (X2 ¼ 0 and H) satisfy
This journal is ª The Royal Society of Chemistry 2012



Fig. 4 Numerical results for free swelling of a hydrogel layer by the

nonlinear theory (c ¼ 0.4, NU ¼ 0.001, l0 ¼ 1.4): (a) swelling ratio in the

thickness direction; (b) in-plane swelling ratio (l1) and the average

thickness ratio (h/H); (c) nominal stress in the in-plane direction.
ln

 
l 2
1 l2 � 1

l 2
1 l2

!
þ 1

l 2
1 l2

þ c

l 4
1 l

2
2

þNU

l 2
1

�
l2 � 1

l2

�
¼ 0 (4.15)

Unlike constrained swelling, however, the swelling ratio l2 at

the surface is not a constant value for free swelling. Instead, it

depends on l1 and is a function of time. Fig. 4 shows the

numerical results, with l2 as a function of X2 for increasing time

in (a) and l1 as a function of time in (b). By (4.5), the thickness of

the hydrogel layer is calculated as a function of time, which is

also plotted in Fig. 4b. Apparently, the thickness swelling ratio,

h(t)/H, follows closely with l1(t), but not exactly, as expected

from (4.14). Experimentally, the difference was found to be

small, indistinguishable within the experimental uncertainty.11,32

In Fig. 4c, the nominal in-plane stress (s11) is plotted as a func-

tion of X2 for increasing time. Due to the inhomogeneous

swelling ratio at the transient state, the stress is compressive near

the surfaces but tensile near the center, with zero resultant force.

After a long time (t / N), the gel approaches the homogeneous

equilibrium state, with an isotropic swelling ratio and zero in-

plane stress. The equilibrium swelling ratio can be obtained by

solving eqn (4.15) with l2 ¼ l1 ¼ lfN.

By the linear poroelasticity theory, the kinetic equation for free

swelling of a hydrogel layer becomes11

vm

vt
þ 4GU

d311

dt
¼ D*v

2m

vx2
2

(4.16)

In addition, by setting s22 ¼ 0, we obtain

2G

�
1� n

1� 2n

�
vu2

vx2

þ 4G
	 n

1� 2n



311 ¼ m� m0

U
(4.17)

By requiring a vanishing resultant force in the in-plane direc-

tion, the in-plane strain is obtained as

311ðtÞ ¼ u2ðh0; tÞ � u2ð0; tÞ
h0

(4.18)

A numerical method is used to solve (4.16)–(4.18) for the

transient kinetics of free swelling (Appendix B, ESI†). In

particular, no self-similar solution is found at the early stage of

free swelling, and the thickness change at equilibrium (t / N)

can be obtained from (4.17) and (4.18) by setting m ¼ m̂:

Df
N ¼ ð1� 2nÞðm̂� m0Þh0

2ð1þ nÞGU
(4.19)

5. Results and discussions

5.1. Linear poroelastic properties of gels

Under the condition of small deformation, the mechanical

behaviour of a gel can be described by the theory of linear

poroelasticity.3–15 The physical parameters used in the linear

theory, including the shear modulus (G), Poisson’s ratio (n), and

permeability (k), are generally not intrinsic properties of the gel.

Instead, they depend on the current state of the gel. On the other

hand, the physical parameters in the nonlinear theory (N, c, U,

and D) are based on a microscopic model26,27 and thus may be

considered as intrinsic properties. For example, the shear

modulus of a gel as defined in (3.8) depends on the initial swelling
This journal is ª The Royal Society of Chemistry 2012
ratio l0 in addition to the polymer network, which has an initial

shear modulus NkBT in the dry state. Since the swelling ratio

depends on the chemical potential, as predicted in (3.1) by the

nonlinear theory, the shear modulus of the gel, which may be

measured by shear rheology, depends on the chemical potential

of the environment. At the equilibrium chemical potential

(m ¼ 0), the shear modulus depends on the equilibrium swelling

ratio, which in turn depends on the intrinsic parameters (c and

NU). Similarly, Poisson’s ratio as defined in (3.9) also depends on

the initial swelling ratio (l0) as well as the intrinsic properties, as

shown in Fig. 5a. Since the polymer network is assumed to be

incompressible, the Poisson’s ratio is 0.5 in the dry state (l0 ¼ 1).
Soft Matter, 2012, 8, 8194–8203 | 8199



As the swelling ratio increases, the Poisson’s ratio decreases; the

gel becomes compressible due to solvent absorption/desorption.

For each gel with specific intrinsic properties (c and NU), the

Poisson’s ratio at the equilibrium swelling ratio corresponding to

m¼ 0 is plotted in Fig. 5b as a function of c for different values of

NU. Interestingly, a sharp transition of the equilibrium Poisson’s

ratio is observed at c z 0.5, especially for gels with relatively

small NU. Thus, the Poisson’s ratio of a gel is closely related to

the intrinsic interaction between the polymer and the solvent.

With a good solvent (c < 0.5), the swelling ratio is high, and the

gel is highly compressible (n ¼ 0.2 to 0.25) at the equilibrium

swollen state.

By linear poroelasticity, the swelling kinetics depends on the

ratio between permeability (k) and viscosity (h). By (3.12) and

(3.14), we obtain that

k

h
¼ UD

kBT

l30 � 1

l30
(5.1)

Assuming a constant viscosity for the solvent, the permeability

of the gel depends on the intrinsic diffusivity D as well as the

swelling ratio l0. The permeability is zero in the dry state (l0 ¼ 1)

and increases with increasing swelling ratio. Intuitively, it may be

understood that the permeability increases as a result of an

increasingly open polymer network due to swelling.

It is noted here that the classical theory of linear poroelasticity

assumes an isotropic behavior.5 Taking an isotropically swollen
Fig. 5 (a) Poisson’s ratio of polymer gels, as a function of the initial

swelling ratio; (b) Poisson’s ratio at the equilibrium swelling ratio as

a function of c.
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state as the initial state, we recover the classical theory by line-

arizing the nonlinear theory. In general, however, the initial state

is not necessarily isotropic. When swelling is constrained in one

or two directions, the gel swells anisotropically.33 The con-

strained swelling of a hydrogel layer on a rigid substrate is

a common example. With an anisotropic initial state, lineariza-

tion of the nonlinear theory would lead to a set of linear equa-

tions for anisotropic poroelasticity. Theories of anisotropic

poroelasticity have been developed for geomaterials34–37 and

biomaterials (e.g., bones),38,39 while few studies have considered

poroelastic anisotropy in gels.
5.2. Linear vs. nonlinear analysis of swelling

In Section 4, we present the analysis for constrained and free

swelling of a hydrogel layer based on the nonlinear theory and

the linear poroelasticity theory. For comparison, we plot in Fig. 6

the thickness ratio as a function of time for the constrained

swelling, where the thickness is normalized by the initial thick-

ness h0 and the time is normalized by the time scale s1. By eqn

(3.8), (3.12), and (3.17), the time scale for linear poroelasticity, s2,
is converted to s1 as

s2 ¼ s1
ð1� 2nÞl60

2ð1� nÞ�l 3
0 � 1

�
NU

(5.2)

For a specific gel with the intrinsic properties (c and NU), the

swelling kinetics depends on the initial swelling ratio l0, governed

by eqn (4.1) according to the nonlinear theory. On the other

hand, the solution based on linear poroelasticity, as given in eqn

(4.8), depends on the initial chemical potential (m0), which can be

determined by (3.1). In addition, all the linear poroelastic

properties, including G, n, and the time scale s2, depend on the

initial swelling ratio. As seen in Fig. 6, the linear theory agrees

with the nonlinear theory at the early stage of swelling, both

predicting a self-similar swelling with Dhf
ffiffi
t

p
, which is expected

following the linearization procedure in Section 3. However, the

equilibrium thickness change (Dc
N ¼ hN � h0) predicted by the

linear theory, as given in eqn (4.9), underestimates the equilib-

rium swelling in comparison with the nonlinear theory, as shown
Fig. 6 Comparison between the nonlinear theory and the linear

poroelasticity for constrained swelling of a hydrogel layer (c ¼ 0.4 and

NU ¼ 0.001).

This journal is ª The Royal Society of Chemistry 2012



in Fig. 7. The discrepancy is significant when the relative swelling

ratio, hN/h0, is much greater than 1. As a result, the swelling

kinetics by the linear theory deviates from the nonlinear theory

beyond the early stage. Apparently, the linear theory is appli-

cable only for relatively small swelling ratios from the initial

state. The same conclusion can be drawn for the kinetics of free

swelling.
5.3. Comparison with experiments

Recently, Yoon et al.11 reported measurements of swelling

kinetics of thin poly(N-isopropylacrylamide) (PNIPAM)

hydrogel layers under both constrained and freestanding condi-

tions. Remarkably, they found that the measured swelling

kinetics compared closely with the predictions based on the

theory of linear poroelasticity, despite the fact that the relative

swelling ratio (hN/h0) was up to 1.8, which is apparently beyond

the linear regime by the assumption of small deformation. The

excellent agreement could be a fortuitous result of the fitting

procedure. First, the Poisson’s ratio was determined by

comparing the measured thickness change at equilibrium for

constrained swelling with that for free swelling. By linear

poroelasticity, the ratio between the two equilibrium thickness

changes, as given in (4.9) and (4.19), depends only on Poisson’s

ratio. However, as shown in Fig. 7, the linear poroelasticity

theory underestimates the equilibrium swelling ratio in

comparison with the nonlinear theory, especially for the cases

with relatively large swelling ratios (hN/h0 > 1.05). By the

nonlinear theory, the equilibrium swelling ratios, which can be

determined from (4.3) and (4.15) respectively for the constrained

and free swelling, depend on the intrinsic properties of the gel (c

and NU) as well as the initial swelling ratio (l0). The ratio

between the two equilibrium thickness changes, Dc
N/Df

N, is

plotted in Fig. 8 as a function of l0 for NU ¼ 0.001 and different

values of c. The predictions by the linear and the nonlinear

theories agree only when the initial swelling ratio is close to the

equilibrium free swelling ratio (l0 z lfN). With the measured

ratio Dc
N/Df

N ¼ 2, we cannot determine the three parameters (l0,

c and NU) in the nonlinear theory.
Fig. 7 Comparison of the equilibrium swelling ratio for a constrained

hydrogel layer (NU ¼ 0.001 and c ¼ 0.4), as predicted by the nonlinear

theory and the linear poroelasticity.

This journal is ª The Royal Society of Chemistry 2012
Next, the effective diffusivity (D*) in the linear poroelasticity

theory was determined by fitting the self-similar solution in (4.10)

to the data for constrained swelling at the early stage.11 This is

plausible since the linear theory is expected to be applicable at the

early stage of swelling. With the self-similar kinetics at the early

stage and the measured equilibrium thickness ratio (Dc
N/h0 ¼

0.80), the kinetics of constrained swelling was well described by

the linear theory, despite the relatively large degree of swelling.

With the same set of linear poroelastic parameters (n, D*, and

Dc
N/h0), the kinetics of free swelling as predicted by the linear

theory was also found to be in good agreement with the experi-

ment. However, it is cautioned that the results should be inter-

preted within the fundamental limits of linear poroelasticity.

Here we suggest an alternative procedure to fit the experi-

mental data using the nonlinear theory, which is applicable for

large swelling ratios. To fully describe the swelling kinetics for

both constrained and freestanding hydrogel layers, four param-

eters are to be determined: l0, c, NU, and D. In addition to the

measurement of swelling kinetics, Yoon et al.11 performed

independent measurements of the shear modulus of the same gel

by shear rheology. In principle, by measuring the shear modulus

of the gel in the unswelled state (just after polymerization) and in

the equilibrium state after free swelling, we obtain by (3.8): G0 ¼
NkBT/l0 and GN ¼ NkBT/l

f
N. The measured values for the

PNIPAM gel were: G0 ¼ 1.3 kPa and GN ¼ 0.5 kPa.11 However,

the ratio between the two moduli, G0/GN ¼ 2.6, does not agree

with the ratio, lfN/l0 ¼ 1.4, as measured from the free swelling

experiment.11 The discrepancy raises questions regarding the

nonlinear theory as well as experimental uncertainties. Never-

theless, to illustrate the procedure of data fitting, we take one of

the measured shear moduli (e.g., G0 ¼ 1.3 kPa) and disregard the

other. The three parameters, l0, c, and NU, can then be deter-

mined from the three measurable quantities, G0, Rc ¼ hcN/h0, and

Rf ¼ hfN/h0, by solving the following three equations

simultaneously:

NU

l0
¼ UG0

kBT
(5.3)
Fig. 8 The ratio between the equilibrium thickness changes for con-

strained and free swelling, predicted by the nonlinear theory as a function

of the initial swelling ratio for NU ¼ 0.001 and c ¼ 0.1–0.5, in compar-

ison with the prediction by the linear poroelasticity theory (dashed lines).
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Fig. 9 A comparison between the nonlinear theory and experimental

results for kinetics of constrained and free swelling. The dashed lines

reproduce the predictions of linear poroelasticity using the parameters

determined by Yoon et al.11 to fit their experimental data. The solid lines

are numerical results based on the nonlinear theory using the parameters

determined from (5.3) to (5.6): l0 ¼ 2.474, c ¼ 0.4724, NU ¼ 7.821 �
10�5, and D ¼ 1.098 � 10�7 m2 s�1.
ln
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Using the measured values from Yoon et al.,11 G0 ¼ 1.3 kPa,

Rc ¼ 1.8 and Rf ¼ 1.4, along with U ¼ 10�28 m3 and T ¼ 298 K,

we obtain l0 ¼ 2.474, c ¼ 0.4724, and NU ¼ 7.821 � 10�5. The

corresponding Poisson’s ratio at the initial state is n ¼ 0.47 by

definition in (3.9). Using the same parameters, the Poisson’s ratio

at the fully swollen state is n ¼ 0.27, which compares closely with

reported values for PNIPAM gels from various measure-

ments.40,41 As noted in Fig. 5a, Poisson’s ratio may change

considerably from the initial state to the equilibrium state.

To determine the diffusivity (D), we compare the self-similar

solution in (4.7) with the data for constrained swelling at the

early stage. Using the effective diffusivity D* ¼ 1.5 � 10�11 m2 s�1

obtained by Yoon et al.,11 we obtain that

D ¼ D*

x
�
l*0
� ¼ 1:098� 10�7 m2 s�1 (5.6)

Here l*0 ¼ (l0 + lcN)/2 ¼ 3.464 has been used to account for

instantaneous swelling near the surface as discussed in Section 4.

On the other hand, by (3.17) and (3.12), the diffusivity can also

be obtained as

D ¼ D* ð1� 2nÞkBT
2ð1� nÞUG0

l30

l30 � 1
¼ 2:74� 10�8 m2 s�1 (5.7)

which however underestimates the swelling rate. Since the

surface of the hydrogel layer swells instantaneously to a large

degree (lcN/l0 ¼ 1.8), the linear theory with all properties defined

at the initial state cannot correctly predict the swelling kinetics

near the surface even at the early stage.

With all the parameters determined from (5.3) to (5.6), Fig. 9

compares the swelling kinetics by the nonlinear theory with the

linear theory. Using the parameters determined by Yoon et al.,11

the linear theory agrees closely with the experimental data. Thus,

Fig. 9 can be considered as a comparison between the nonlinear

theory and the experiment. As expected from the data fitting

procedure, the nonlinear theory reproduces the two equilibrium

swelling ratios and the kinetics of constrained swelling at the

early stage. The kinetics of free swelling at the early stage, not

used for data fitting, is correctly predicted by the nonlinear

theory.50 However, relatively large discrepancy is notable beyond

the early stage, although it is comparable to the scattering of the

experimental data.

5.4. The indentation method

Indentation experiments have been demonstrated recently as an

effective method for characterizing poroelastic properties of

gels.8–15 By imposing relatively shallow indentation displace-

ments into a saturated gel and measuring force relaxation as

a function of time, the linear poroelastic properties can be fully

determined without ambiguity. Such a method is efficient from

both experimental and theoretical points of view. The procedure

of the indentation experiment is relatively simple, and the
8202 | Soft Matter, 2012, 8, 8194–8203
analysis of the data is fairly straightforward within the theoret-

ical framework of linear poroelasticity due to small deformation.

As shown by Hu et al.,12 the measured elastic constants (G and n)

can be interpreted within the Flory–Huggins theory for

nonlinear analysis. Since the gel is fully saturated with the

solvent, the swelling ratio l0 is determined by the intrinsic

properties (c andNU) of the gel as given in eqn (3.1) with m0 ¼ 0.

Thus the elastic constants measured by the indentation method

are the linear properties at the vicinity of the fully swollen state of

the gel. Furthermore, the effective diffusivity (D*) measured by

the indentation method can be converted to the intrinsic diffu-

sivity D in the nonlinear theory, as given in (5.7). Therefore, all

the intrinsic properties in the nonlinear theory can be determined

from the indentation method, which would then enable predic-

tion of the nonlinear behaviour of the gel with large deformation.

In particular, a comparison between a full nonlinear analysis of

the force relaxation during indentation and the linear poroelas-

ticity solution would be useful to quantitatively define the

shallow indentation requirement for the linear analysis.

As noted by Hui et al.,8 it is possible to extend the analysis of

the indentation experiment to include the effect of adhesion.

Polymer gels are often sensitive to adhesive interactions with

other materials coming into contact. Contact mechanics with the

effect of adhesion has been developed and widely used to char-

acterize adhesive interactions between surfaces.42,43 However,

most studies have assumed elastic behavior of the interacting

solids, and extension to poroelastic solids would be desirable for

the study of adhesion between polymer gels. In addition, many

applications use gels in the form of thin layers.13 Constrained

swelling of thin layers results in an anisotropic swollen state.33

Indentation upon such a gel layer should be analyzed using an

anisotropic poroelasticity theory. The linearization procedure in

Section 3 of the present work can be easily extended to develop

a set of linear equations for anisotropic poroelasticity consistent

with the nonlinear theory. Then the anisotropic poroelastic
This journal is ª The Royal Society of Chemistry 2012



contact problem may be solved by extending the solution to the

corresponding elastic contact problem for anisotropic mate-

rials.44,45 Further extension of the indentation method may be

developed to characterize polymer gels in the form of patterned

lines and particles.46–49 The analysis would be necessarily

complicated due to the geometry and likely inhomogeneous

swelling. Numerical analysis based on the nonlinear theory

would be required along with experimental measurements, which

may be used to probe the effects of size and shape on the

mechanical and transport properties of polymer gels.

6. Conclusion

In summary, we present a comparison between a nonlinear

theory for polymer gels and the classical theory of linear

poroelasticity. We show that the two theories are consistent

within the linear regime under the condition of small perturba-

tion from an isotropically swollen state of the gel. The relation-

ship between the material properties in the linear theory and

those in the nonlinear theory is established by a linearization

procedure. Both linear and nonlinear solutions are presented for

swelling kinetics of substrate-constrained and freestanding

hydrogel layers. Although the linear poroelasticity theory can be

used to fit the experimental data, it is cautioned that the appli-

cability of the linear theory should be limited to relatively small

swelling ratios. For large swelling ratios, a new procedure is

suggested to fit the experimental data with the nonlinear theory.

Finally, we discuss the indentation experiment as an effective

method for characterizing the mechanical and transport prop-

erties of polymer gels in the linear regime along with possible

extensions of the method.
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