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3D Integration
Memory stacks (Samsung) Multicore processors (Intel)

TSV memory in mobile 

phones, 30% thinner

3D integration provides 

the memory bandwidth 

required for processors

Si Interposer

J. Bautista, 3D Technology 

Workshop 2009

Thermomechanical issues:

� Stresses induced by TSVs

� Wafer thinning

� Wafer bonding/Chip-package interactions (CPI)



The University of Texas at Austin    3

Thermo-Mechanical Issues for TSVs

� Stress in vias

● plastic deformation

● stress voiding

� Stress in Si:

● cracking of Si

●mobility change 

● keep-out zone

� Stress at the interfaces:

● interfacial delamination

● TSV extrusion (pop-up)

S. Cho, RTI workshop, 

Dec, 2010

TSV

K. Athikulwongse,

IEEE, 2010 

TSV pop-up
Cu leakage

Keep-out zone

Via last TSV (Fraunhoefer)
Handbook of 3D Integration

Top-Si (~10 µµµµm)

Bottom-Si (~630 µµµµm)
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Stresses near Wafer Surface

Cu Si

� Concentration of shear stress at 
the surface/interface junction

SiCu

σ
rz

Cu Si

� Positive opening stress along Cu/Si 

interface

SiCu

σ
r

Near-surface stresses are 3D in nature with distinct distribution in the radial 
and depth directions,  which may cause degradation of carrier mobility and 
device performance.  

S.-K. Ryu, et al., IEEE TDMR 2011.

Cooling: 
∆∆∆∆T = -250ºC

Contour Stressrσ Contour Stressrzσ
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Experimental Measurements

• Precision wafer curvature technique

• Micro-Raman Spectroscopy

• Other methods (indentation, synchrotron, etc.)

Challenges:
• Complex geometry – non-uniform stress and deformation

• Material aspects – Si anisotropy, Cu plasticity (nonlinearity), 

temperature/history-dependent

• Interfacial properties – largely unknown
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Precision Wafer Curvature Technique

� Measure the global (averaged) 

deformation (curvature)

� In-situ measurement during 

thermal cycling.

�Direct evidence of nonlinear 

thermomechanical behavior 

�Data may be used to study 

temperature-dependent 

deformation mechanisms in Cu 

TSVs
Negative Curvature

(Heating)

Si
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TSV Specimen

● Via Diameter ~ 10 µm

● Via Height ~ 55 µm

● Via pitch 40~50 µm

● Si thickness ~ 700 µm

H
eig

h
t ~

 5
5

µ
m

~50 µm

Top View

X-Section View

Work in collaboration with H. Y. 

Son and K. Y. Byun of Hynix.
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Curvature-Temperature Behavior

● The curvature difference between the two specimens is attributed to 

the stress in Cu TSVs.

● Linear thermo-elastic behavior (no hysteresis) except for the first 

cycle heating.

● Zero curvature difference at around 100 oC, which is taken as the

reference temperature.

S.-K. Ryu, et al., Appl. Phys. Lett. 2012. 
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High-Temperature Behavior

● 4 thermal cycles

1st: RT � 200oC

2nd: RT � 200oC 

3rd: RT � 350 oC

4th: RT � 400 oC

●Nonlinear behavior when heating beyond the highest temperature 

in the previous cycles

● Linear during cooling and subsequent cycles

●Residual stress at RT depends on the thermal history.
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Deformation Mechanisms: 
Thin film vs TSV

Electroplated Cu thin film:

• Hysteresis loop – evidence of 

plasticity

• Grain growth and diffusional 

creep may occur at high T

Cu TSVs:

• No hysteresis loop 

• Grain growth during heating 

at high T
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Stress and Plasticity

Max. Von-Mises

= 491 MPa

Max. Von-Mises

= 320 MPa

∆T = 200 oC

Cu thin film:

• Uniform, equi-biaxial stress

• High von Mises stress

• Plastic yield lowers the stress  

and curvature (both heating 

and cooling)

Cu TSV:

• Non-uniform, tri-axial stress

• Relatively low von Mises

stress (in Cu)

• Plastic yield occurs locally 

within a small volume, which 

has negligible effect on overall 

curvature 
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Cu Grain Structures

� Similar curvature behavior during the first thermal cycle
� FIB images show that the average grain size increases with the 

temperature

T. Jiang, et al., in press. 
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Electron Backscatter Diffraction (EBSD)

● Average grain size increases 

with temperature

● A large fraction of twin 

boundaries (60º)

● No preferred grain orientation 

(macroscopically isotropic).
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From Curvature to Stress

(a) BB Specimen

(b) Deformation (c) Lateral stress● The volume-averaged stress in the Cu TSVs is assumed to be 

linearly proportional to the curvature difference 

● A linear elastic FEA model agrees reasonably with the curvature 

slope in the linear region
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● Raman frequency shift gives a local measure of the near-surface 

stress in Si

● Correlation between the local Raman measurements and the 

global curvature measurements offers a complementary approach 

for thermomechanical characterization of TSV structures.

Micro-Raman Spectroscopy
Work in collaboration with 

Michael Hecker of GF-

Dresden.

1

3
(MPa) 470 (cm )

r
-θθθθσ σ ωσ σ ωσ σ ωσ σ ω −−−−+ = ∆+ = ∆+ = ∆+ = ∆

[110]

S.-K. Ryu, et al., J. Appl. Phys. 2012. 
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Effect of Silicon Anisotropy 

Isotropic Si (001) Si

Si

C
u

 T
S

V

40 µm
50 µm

3-D FEA Model

∆T = -100 oC
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Raman Measurement for TSV (I)

∆T = -70 oC

● Reference frequency: ω0 = 

520.39 cm-1

● Thermal load: ∆T = -70 oC

● Stress interaction between 

neighboring vias is notable.
V

ia

V
ia
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Raman Measurement for TSV (II)

●The specimen was annealed at 300oC for 1 hour, and then 

cooled down to RT  

● ∆T = -270 oC in the elastic FEA model

●Higher stress in Si correlates with higher curvature and 

higher stress in Cu too.

1hr
V

ia

V
ia

V
ia
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Via Extrusion

Via pop-up

● Local plastic deformation allows via extrusion.

● Yield strength depends on grain size and temperature.

σy = 300 MPa and ∆T = 270oC

Elastic-Plastic FEA Model

Plastic zone
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Extrusion or Sinking
Elastic-Plastic ModelElastic Model

Heating 

(∆T > 0)

Cooling 

(∆T < 0)
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Ratcheting?

● Why was via extrusion observed at RT?

● Plastic ratcheting may induce net deformation (extrusion) 

after each cycle and accumulate over many cycles

● Grain growth leads to softening (Hall-Patch effect)

● Strain hardening?

● Interfacial sliding/delamination?
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TSV Reliability: Potential Fracture Modes

Si Si

Si
CuCu

R-crack C-crack
Interfacial crack

� R-crack may grow in Si during heating (∆T > 0) when the circumferential 
stress is tensile (σθ > 0).

� C-crack may grows in Si during cooling (∆T < 0) when the radial stress is 
tensile (σr > 0). 

� Interfacial crack can grow during both heating (by shear) and cooling (by 
shear and opening modes).

Cu
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S. Cho, RTI 3D Workshop 12/2010 
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� Energy release rate (G): thermodynamic driving force for 

crack growth, i.e., the elastic strain energy released per unit 

area of the crack; calculated by FEA or other methods.

� Fracture toughness (ΓΓΓΓ): material resistance against cracking, 
an intrinsic property of the material or interface; measured by 

experiments.

� Numerical methods are well established, e.g. FEA and 

cohesive zone modeling.

� Experimental techniques, test structures and metrology 

for measuring Γ Γ Γ Γ have to be developed....

Basic Fracture Mechanics

G > or < Γ Griffith Criterion
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Via extrusion by interfacial delamination

� A cohesive zone model is used to simulate crack nucleation and 

propagation along the interfaces.

∆T > 0

Via

(Cu)

Si
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TSV Interfacial Fracture

� Heating cycle: ∆∆∆∆T > 0:

� Interfacial crack driven by shear stress σσσσrz

� Cooling cycle: ∆∆∆∆T < 0:

� Crack driven by both shear stress σσσσrz and radial stress σσσσr

� Mixed mode (Mode I + Mode II)

SiCu

σrz

r

z

σrz

r

z

σr

Shear stress σrz

concentration near surface

Cu            Si

σrz

r

z
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Energy Release Rate
Effect of Via Diameter, Df Effect of Wafer Thickness, H

∆T = -250 oCcylindrical crack

Steady-State ERR:









∆∆= Sim

Si

m
fSiSS

E

E
TDEG ννφα ,,)(

4

1 2

heating

SS

cooling

SS GG >

Control parameters:

� Thermal mismatch

� Thermal load

� Via diameter

� Elastic mismatch

S.-K. Ryu, et al., IEEE TDMR 2011.
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Effect of TSV Metals

TSV Df = 20 µm

Material
CTE 

(ppm/K)

Young’s
Modulus 

(GPa)

Poisson’s
Ratio

Al 20 70 0.35

Cu 17 110 0.35

Ni 13 207 0.31

W 4.4 400 0.28

Si 2.3 130 0.28

� The effect of thermal mismatch dominates the effect of elastic 
mismatch. 

� The advantage of W over Cu may be partly compromised  by higher 
thermal load and lack of plasticity (lower adhesion). 









∆∆= Sim

Si

m
fSiSS

E

E
TDEG ννφα ,,)(

4

1 2
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A Shear-Lag Cohesive Zone Model

Three stages:

i) ∆T < ∆Tc1: no damage  

ii) ∆Tc1 < ∆T< ∆Tc2 : damage evolution  

iii) ∆T > ∆Tc2: crack growth

Two critical temperatures

l1

l2

ξ

No-damage 

zone

Damage 

zone

Crack 

zone
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Critical Temperatures
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Critical TSV Dimensions 

� The critical temperature depends on both the via diameter and the via 

depth

� Given the material properties and the thermal load, the critical dimensions 

can be determined.

S. Cho (Samsung)
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Summary

� Thermomechanical reliability of TSV structures has to be addressed by 
combining experimental characterization with modeling and simulations.

� Precision wafer curvature technique provides in-situ measurements of 
global deformation during thermal cycles.

� Micro-Raman spectroscopy provides local measurements of near-
surface stress in Si, which can be correlated with the curvature 
measurements.

� Via extrusion may be induced by either local plastic deformation or 
interfacial delamination, to be further studied.

� Interfacial reliability of TSVs has been studied theoretically; More works 
are needed to characterize the interfacial properties and correlate 
modeling with experiments. 
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