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Abstract  
 
This paper develops a theoretical model for wrinkling of an elastic film on a viscoelastic 
layer. The film is elastic and subjected to a compressive residual strain. The viscoelastic 
layer is sandwiched between the film and a rigid substrate. The nonlinear von Karman 
plate theory is employed to model the film, and a thin-layer approximation is adopted 
for the viscoelastic layer. The stability of the system and the kinetics of structural 
evolution are studied first by a linear perturbation analysis and then by numerical 
simulations, both for plane strain deformation only. Three stages of evolution are 
identified: initial growth of the fastest growing mode, intermediate growth with mode 
transition, and finally an equilibrium wrinkled state. The results qualitatively agree with 
experimental observations of wrinkling in metal/polymer bilayer films. 
 
 
1. Introduction 
 
Complex wrinkle patterns have been observed in thin film systems with integrated 
compliant layers. The wrinkles are a nuisance in some applications (Iacopi et al., 2003; 
Yin et al., 2003), but may be used as stretchable interconnects for flexible electronics 
(Watanabe et al., 2002; Lacour et al., 2003), or biological assays (Cerda and 
Mahadevan, 2003). The wrinkle pattern can be controlled by engineering the surface 
structures or chemistry for micro to nanoscale fabrication (Bowden et al., 1998; Chua et 
al., 2000). It is also possible to extract mechanical properties (e.g., Young’s modulus 
and residual stress) of thin film materials from wrinkle patterns (Martin et al., 2000; 
Stafford et al., 2004).  

The underlying mechanism of wrinkling has been understood as a stress-driven 
instability, similar to Euler buckling of an elastic column under compression. For a 
solid film bonded to a substrate, however, the instability is constrained. If the substrate 
is elastic, there exists a critical compressive stress, beyond which the film wrinkles with 
a particular wavelength selected by minimizing the total elastic energy in the film and 
the substrate (Groenewold, 2001; Chen and Hutchinson, 2004; Huang et al., 2004). If 
the substrate is viscous, wrinkling becomes a kinetic process (Sridhar et al., 2001; 
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Huang and Suo, 2002A). Since the viscous substrate does not store elastic energy, a 
compressed blanket film is always unstable energetically. The viscous flow in the 
substrate controls the kinetics, selecting a fastest growing wavelength. More generally, 
if the substrate is viscoelastic, both energetics and kinetics play important roles. A 
spectrum of evolving wrinkle patterns has been observed experimentally in 
metal/polymer bilayers (Yoo and Lee, 2003), exhibiting a peculiar kinetic process. A 
linear perturbation analysis has shown that the viscoelastic property of the substrate 
significantly influences the wrinkling kinetics, even at the initial stage (Huang, 2005). 
This paper goes beyond the linear perturbation analysis and simulates the evolution of 
wrinkles in an elastic film on a thin viscoelastic layer. 
 
 
2. Model Formulation 

Figure 1 shows a model structure, an elastic film of thickness  lying on a viscoelastic 
layer of thickness H, which in turn lies on a rigid substrate. At the reference state (Fig. 
1a), both the elastic film and the viscoelastic layer are flat, and the film is subjected to 
an in-plane biaxial compressive stress 

fh

0σ  (i.e, 00 <σ ). Upon wrinkling (Fig. 1b), the 
film undergoes both in-plane and out-of-plane displacements, and the viscoelastic layer 
deforms concomitantly, with the interface assumed to remain bonded.  
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Figure 1. Schematic of a model structure 

 
2.1 DEFORMATION OF AN ELASTIC FILM 
 
Let w be the lateral deflection of the film, u  the in-plane displacement (α 2,1=α ),  
the pressure at the interface, and 

p

ατ  the shear tractions. Employing the nonlinear von 
Karman plate theory, equilibrium requires that  

α
α

βα
αβ

ββαα

τ
x
w

xx
wN

xxxx
wDp f ∂

∂
−

∂∂
∂

−
∂∂∂∂

∂
=

24

,    (1) 

β

αβ
ατ x

N
∂

∂
= ,               (2) 

where 



 
 
 
 
 

WRINKLING OF AN ELASTIC FILM ON A VISCOELASTIC LAYER                  3

 

)1(12 2

3

f

ff
f

hE
D

ν−
= ,            (3) 

[ ]αβγγαβαβαβ δενεν
ν

δσ ff
f

ff
f

hE
hN +−

−
+= )1(

1 20 ,    (4) 

βαα

β

β

α
αβε

x
w

x
w

x
u

x
u

∂
∂

∂
∂

+










∂

∂
+

∂
∂

=
2
1

2
1 .       (5) 

Here  is the Young’s modulus of the film,  the Poisson’s ratio,  the in-plane 

membrane force, 
fE fν αβN

αβε  the in-plane strain, αβδ  the Kronecker delta. The Greek 
subscripts α and β  take on the values of in-plane coordinates 1 and 2, and a repeated 
Greek subscript implies summation over 1 and 2. Note that, both the in-plane 
displacements and the deflection contribute to the relaxation of the compressive stress. 
The nonlinear term in Eq. (5) accounts for moderately large deflection of the film. 
 
2.2 DEFORMATION OF A VISCOELASTIC THIN-LAYER  
 
The underlayer material is assumed to be isotropic, linear viscoelastic, with a relaxation 
modulus )(tµ  and Poisson’s ratio )(tν . The layer is stress free initially ( ) and 
subjected to a normal and a shear traction at the top surface for , namely 

0=t
0>t

),( 1131 txS=σ  and ),( 1333 txS=σ  at 03 =x .      (6) 
At the lower surface, the displacement is fixed: 

031 == uu  at Hx −=3 .           (7) 
Consider a periodic traction in the form of 

111 sin)(),( kxtAtxS = ,            (8) 

113 cos)(),( kxtBtxS = ,            (9) 
where k is the wave number,  and  are the amplitudes. The plane-strain 
deformation of a viscoelastic layer subjected to such a periodic surface traction has been 
solved by Huang (2005) using Laplace transform and the correspondence principle of 
viscoelasticity. The Laplace transform of the displacements at the top surface are 
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and )(43 ssνκ −= . A bar over a variable designates its Laplace transform, and s is the 
transform variable. 

In general, the surface of the viscoelastic layer undergoes both out-of-plane and in-
plane displacements and they are coupled. The coupling is broken in two special cases, 
one for an infinitely thick ( ∞→kH  ) and incompressible ( 5.0=ν ) layer and the other 
for a very thin layer ( ). The former has been considered previously (Huang, 
2005). This paper considers the thin layer limit, for which Eqs. (10) and (11) reduce to 
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where only the leading terms in kH are retained and the Poisson’s ratio has been 
assumed to be a constant independent of time. In addition, 5.0≠ν  is assumed. As will 
be shown in a subsequent study, the kinetics is quite different if the underlayer is 
incompressible (i.e., 5.0=ν ). 

The surface displacement as a function of time is obtained by the inverse Laplace 
transform of Eqs. (15) and (16). To be specific, consider the Kelvin model of 
viscoelasticity with a spring and a dashpot in parallel, for which the relaxation modulus 
is,  

)()( tt ηδµµ += ∞ ,          (17) 
where ∞µ  is the elastic shear modulus at the rubbery limit and η  is the viscosity. The 
Laplace transform of the relaxation modulus is 

η
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After substituting (18) into Eqs. (15) and (16), the inverse Laplace transform leads to 
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 Note that, in case of incompressible materials ( 5.0=ν ), the first term at the right 
hand side of Eq. (20) vanishes. Using the next leading term of kH in Eq. (16), Eq. (20) 
becomes 
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Equations (19) and (21) are similar to those for a thin liquid layer by Reynold’s 
lubrication theory (Huang and Suo, 2002A), but with an additional term accounting for 
the elastic limit.  
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Assuming 5.0≠ν  and neglecting the H2 terms in Eqs. (19) and (20) as a thin-layer 
approximation, we obtain that 
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Equation (22) is a combination of the shear lag model for elastic and viscous layers (Xia 
and Hutchinson, 2000; Huang et al., 2002), and Eq. (23) is similar to the Winkler model 
for elastic foundation (Allen, 1969) but includes a viscous term. The two equations are 
uncoupled under the thin-layer approximation. 
 In the development of Eqs. (22) and (23), plane strain deformation and periodic 
tractions have been assumed. The restriction of periodic tractions have been relaxed by 
linear superposition of all Fourier components in the form of (8) and (9). The restriction 
of plane strain deformation can also be relaxed by including the other in-plane 
component in the same form as Eq. (22), which leads to 
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for 2,1=α . 
 
2.3 COUPLED EVOLUTION EQUATIONS 

 
The interface between the elastic film and the viscoelastic layer is assumed to remain 
bonded during deformation. Consequently, the displacements and the tractions are 
continuous across the interface. Therefore, the equilibrium equations (1) and (2) are 
coupled with Eqs. (23) and (24), leading to 
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Equations (25) and (26) are coupled, nonlinear evolution equations, which can be 
solved numerically to simulate the evolution of two-dimensional wrinkles. In the 
remainder of this paper, however, we consider one-dimensional plane-strain wrinkles 
only, for which some analytical solutions can be obtained to provide useful insights. 
The reduced equations for the plane-strain wrinkles are summarized as below: 
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3. Linear Perturbation Analysis 
 
Assume a small deflection from the reference state in the form of  

kxtAtxw cos)(),( = .           (30) 
The in-plane displacement is uncoupled from the lateral deflection in the linear 
perturbation analysis and therefore ignored. Inserting (30) into Eq. (27) and retaining 
only the leading order terms in A, we obtain that 
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Solving Eq. (31) leads to 

)exp()( 0 τ
tsAtA = ,           (33) 

where fEητ =  is the time scale and fEs ∞−= µα  is the dimensionless growth rate. 
Figure 2 plots the growth rate as a function of the wavelength ( kL /2π= ) of the 
perturbation for various ratios between the rubbery modulus of the viscoelastic layer 
and the elastic modulus of the film. For a given residual stress in the film, there exists a 
critical ratio between the moduli, above which the growth rate is negative for all 
wavelengths and the film is stable against any perturbation. By setting the maximum 
growth rate to be zero, we find the critical ratio 
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In figure 2, the critical modulus ratio is 0.00025. For smaller modulus ratios, however, 
the growth rate is positive for intermediate wavelengths within a window bounded by 
two critical values; the film becomes unstable and a small perturbation grows to form 
wrinkles. The wavelength of the fastest growing mode is 

0
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which is indicated by the dashed line (Lm = 26.9hf) in Figure 2. 
The effects of the viscoelastic layer on the stability of the elastic film can be drawn 

from the above analysis. The critical condition for the flat film to remain stable is 
controlled by the rubbery modulus of the underlayer, as given by Eq. (34). In cases that 
the film is unstable, the growth time scale is proportional to the viscosity and the growth 
rate increases as the rubbery modulus decreases. However, the wavelength of the fastest 
growing mode is independent of the underlayer properties, as given in Eq. (35). A 
similar analysis was conducted for a film on an incompressible viscous layer (Huang 
and Suo, 2002B), which led to a slightly smaller fastest growing wavelength; the 
difference is due to the incompressibility of the viscous liquid. 
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Figure 2: The dimensionless growth rate by the linear perturbation analysis. 

 
 
4. Equilibrium Wrinkles 
 
Setting 0=∂∂ t  in Eqs. (27) and (28) leads to two coupled nonlinear ordinary 
differential equations, from which one can solve for the equilibrium state. An 
approximate solution has been obtained by neglecting the in-plane displacement and the 
shear traction (Huang, 2005), from which the equilibrium amplitude of a sinusoidal 
wrinkle is  
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It can be confirmed that only when the film is unstable does there exist a nontrivial 
solution corresponding to the equilibrium wrinkled state. 
 Furthermore, at the equilibrium state, the wrinkle selects a wavelength that 
minimizes the elastic energy, namely,  
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The equilibrium state is identical to that for a film on a thin elastic layer with the shear 
modulus ∞µ  (Huang et al., 2004). For a viscoelastic layer with zero rubbery modulus, 
however, the equilibrium wavelength approaches infinity. Consequently, the wrinkle 
wavelength coarsens indefinitely. 
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Figure 3: Growth of the amplitude of a sinusoidal wrinkle with wavelength L = 30hf. 

 
 
5. Numerical Simulations 
 
In this section, we simulate the wrinkling process by integrating Equations (27) and (28) 
numerically with a finite difference method. First, a sinusoidal perturbation is assumed 
for the initial deflection. The wavelength was selected to be close to the fastest growing 
wavelength and it remains constant for the entire period of simulation. The amplitude 
grows over time, first exponentially and then approaching a constant corresponding to 
the equilibrium amplitude, as shown in Figure 3. The time is normalized by the time 
scale fEητ = . The exponential growth predicted by the linear perturbation analysis is 
plotted as the dashed line in Figure 3, and the equilibrium amplitude corresponding to 
the selected wavelength (L = 30hf, Aeq = 0.537hf) is indicated by the horizontal dotted 
line. The numerical simulation confirms the validity of the linear perturbation analysis 
at the initial stage and the equilibrium wrinkle amplitude of a particular wavelength. 

Next, a random perturbation is generated for the initial deflection. Figure 4 shows 
the evolving deflection curves and their Fourier transforms. Figure 5 plots the evolution 
of the dominant wavelength (maximum intensity in the Fourier transform), and Figure 6 
shows the growth of the RMS (i.e., the root mean square value). While many 
wavelengths co-exist in the initial perturbation, only those of intermediate wavelengths 
grow and the fastest growing wavelength (Lm = 26.9hf) dominates at the initial stage. 
Three stages of the wrinkle evolution are identified: initial growth of the fastest growing 
mode, intermediate growth with mode transition, and finally an equilibrium wrinkled 
state. For 00001.0/ =∞ fEµ , the equilibrium wrinkle has a wavelength Leq = 60.0hf and 
an amplitude Aeq = 1.63hf (RMS = 1.15hf). Such behavior qualitatively agrees with the 
experimental observations in a metal/polymer bilayer film (Yoo and Lee, 2003). 
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Figure 4: Simulated evolution of wrinkles (left) and their Fourier transform (
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Figure 5: Simulated evolution of the dominated wavelength (left) and the RMS of a wrinkled film on a 
viscoelastic layer. 
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