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Figure S1. Raman spectrum of a bilayer graphene on PET. The large peak at 1615cm-1 is 

from PET background. Inset is an optical image of the graphene flake. 
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Figure S2. Nominal stress–strain curve of PET by uniaxial tension tests with cyclic loading 

and unloading for nominal strain up to 18% at strain rate of 0.001/s. Inset shows the stress–

strain curve with strain less than 2.0%, for which the strain in PET was almost totally 

recovered after unloading. When the strain was larger than 2.0%, the strain was not fully 

recovered due to viscoplastic deformation. For example, when the PET was stretched up to 

4% and 8%, the recovered strain was 3.3% and 4.8%, respectively.  
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Figure S3. AFM image of a graphene synthesized by the SiC sublimation method.[1] The 

ridges are similar to those induced by stretching and releasing PET in the present study (see 

the AFM image in the last panel of Figure 4).  

 
 
 

(a) 



 4 

A Nonlinear Shear-Lag Analysis 
 
Consider a graphene membrane of length L on an elastomer substrate. Apply uniaxial tension 
to the substrate. The graphene membrane first deforms concurrently with the substrate due to 
the interfacial shear stress transfer. When the interfacial shear stress reaches a critical value, 
however, the graphene may slide along the interface. Let τ be the interfacial shear stress and σ 
the axial force in the graphene membrane. The equilibrium requires that 
 

τσ
=

dx
d    (S1) 

 
Assume the graphene membrane to be linear elastic so that  
 

dx
du

E g
D2=σ    (S2) 

 
where ug is the axial displacement of graphene and E2D is the 2D Young’s modulus of 
graphene. The axial strain in graphene is simply Df E2/σε = .  
 
The substrate is subject to a nominal axial strain εm and the shear stress τ at the interface. The 
surface displacement of the substrate is approximately 
 

mmm kxu /τε +=
  

(S3) 
 
where km is the effective surface stiffness of the elastomer (assumed to be a constant). 
 
When εm is relatively small, there is no sliding between the graphene and substrate so that 

mg uu =  and  
 

dx
d

k
EE

m

D
mD

τεσ 2
2 +=    (S4) 

 
Substituting (S4) into (S1), we obtain 
 

ττ
=2

2
2

dx
d

k
E

m

D    (S5) 

 
Solving (S5), we obtain  
 

)cosh()sinh( xBxA ββτ +=    (S6) 
and 

[ ] βββεσ /)sinh()cosh(2 xBxAE mD ++=    (S7) 
 
where Dm Ek 2/=β . To determine the coefficients A and B, we apply the boundary 
condition: the axial force σ must be zero at both ends of the graphene membrane. Let x = 0 at 
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the center and x = ±L/2 at the ends. The boundary condition requires that B = 0 and 

)2/cosh(
2

L
EA mD

β
εβ

−= . Therefore, the interfacial shear stress is 

 

( )
)2/cosh(

)sinh(
2 L

xEx mD β
βεβτ −=    (S8) 

 
And the axial strain in the graphene membrane is 
 

( ) 







−==

)2/cosh(
)cosh(1

2 L
x

E
x m

D
f β

βεσε    (S9) 

 
 
It can be shown that the maximum shear stress occurs at the ends of the graphene membrane 
(x = ±L/2) with the magnitude 
 

( )2/tanh2max LE mD βεβτ =    (S10) 
 
When the maximum interfacial shear stress reaches a critical value ( cττ =max ), interfacial 
sliding occurs between the graphene and the substrate. The critical strain for onset of sliding 
is thus 
 

( )2/coth
2

L
E D

c
c β

β
τε = .   (S11) 

 
When cm εε > , the interface consists of two sliding zones emerging from the edges and a no-
sliding zone in between.  Noting the symmetry of the problem, let the sliding zone size to be s 
at each end. In the sliding zones ( sLxL −>> 2/2/ ), mg uu ≠  and the interfacial shear stress 
is assumed to be a constant ( cττ ±= ). By Eq. (S1), the axial force in graphene becomes 
 

( )2/Lxc ±±= τσ    (S12) 
 
In the no-sliding zone ( sLx −< 2/ ), we have  
 

)sinh( xA βτ =    (S13) 
ββεσ /)cosh(2 xAE mD +=    (S14) 

 
By requiring the shear stress to be continuous at ( )sLx −±= 2/ , we obtain 

( )[ ]sL
A c

−
−=

2/sinh β
τ . 

 
 
By requiring the axial force in graphene to be continuous at ( )sLx −±= 2/ , we obtain an 
equation for the sliding zone size s: 
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[ ]
c

mDEssL
τ
εβ

ββ 2)2/(coth =+−    (S15)  

 
When cm εε > , we solve the equation (S15) to find the sliding zone size s, as shown in Figure 
S4. 
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Figure S4. Normalized sliding zone size versus the applied strain. 

 
Once s is known, the shear stress at the interface and the axial force in the graphene 
membrane can be calculated from Eqs. (S12)-(S14), as shown in Figure S5.  
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Figure S5. Evolution of the interfacial shear stress (left) and the graphene strain (right) as the 
applied suibstrate strain increases for βL = 10. Interfacial sliding begins when 1/ =cm εε  (red). 
 
Before sliding ( cm εε < ), the maximum axial strain in graphene at the center of the membrane 
(x = 0) is 

( ) 







−=

)2/cosh(
110

Lmf β
εε    (S16) 

 



 7 

After sliding ( cm εε > ), 

( ) [ ])2/(sinh
10

2 sLE D

c
mf −
−=

ββ
τ

εε    (S17) 

 
Figure S6 shows the maximum membrane strain as a function of the applied strain, for 
different βL. It is noted that the strain in graphene approaches a plateau as observed in 
experiments, but the critical strain for onset of sliding ( cε ) does not correspond to the plateau. 
Instead, the plateau strain in the graphene membrane is approached as the sliding zone size (s) 
approaches L/2. In the limiting case when s → L/2, the two sliding zones converge at the 
center, and the axial stress becomes linear on both side, with the maximum strain at the center 

approaching the limit, 
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Figure S6. The maximum strain in graphene as a function of the applied strain, for different 
βL. 
 
Next consider unloading ( mε  decreasing). During unloading, the sliding displacement first 
remains constant at each point while the shear stress relaxes. The governing equations can be 
written in the rate form: 
 

dx
d

k
EE

m

D
mD

τεσ


 2
2 +=   (S18) 

ττ



=2

2
2

dx
d

k
E

m

D     (S19) 

 
Solving the rate equations with the boundary conditions, 0=τ  at x = 0 and 0=σ  at x = ±L/2, 
we obtain that 
 

)2/cosh(
)sinh(

2 L
xkE mDm β

βετ  −=   and 







−=

)2/cosh(
)cosh(12 L

xE mD β
βεσ    (S20) 
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The interfacial shear stress relaxes most rapidly at the edges and becomes zero when the 
substrate strain is unloaded by cm εε −=∆  (assuming that the maximum applied strain during 
loading is greater than the critical strain for onset of sliding). Further unloading leads to 
reverse shear stress and correspondingly compressive membrane strain in graphene near the 
edges. The reverse shear stress reaches the critical level when cm εε 2−=∆ , beyond which 
reverse sliding occurs.  
 
Let sr be the reverse sliding zone size. In the reverse sliding zone ( rsLxL −>> 2/2/ ), 

0==τσ




dx
d . Since 0=σ  at x = ±L/2, 0=σ  everywhere in the reverse sliding zone. For 

rsLx −< 2/ , the rate equations in (S18) and (S19) lead to 
 

)2/cosh(
)sinh(

2
r

mDm sL
xkE
ββ

βετ
−

−=    and 







−

−=
)2/cosh(

)cosh(12
r

mD sL
xE
ββ

βεσ  (S21) 

 
Figure S7 shows the evolution of the shear stress and the membrane strain during unloading 
for βL = 10, after loading to cm εε 10= . 
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Figure S7. Evolution of the interfacial shear stress and the graphene strain during unloading 
for βL = 10. Unloading starts at 10/ =cm εε , and reverse sliding begins when 8/ =cm εε  (red). 
 
To summarize the nonlinear shear lag analysis, we plot in Fig. S8 the membrane strain in 
graphene at the center, ( )0fε , versus the applied substrate strain for a loading-unloading cycle 
with βL = 10. The hysteresis over the loading-unloading cycle is a result of the interfacial 
sliding. Note that the unloading leads to compressive stress/strain in the graphene membrane 
and may result in buckling. The shear-lag analysis assumes no buckling. 
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Figure S8. The membrane strain in graphene at the center, ( )0fε , versus the applied substrate 
strain for a loading-unloading cycle with βL = 10, predicted by the nonlinear shear-lag 
analysis. 
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