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Swelling of rubber and gels

• Southern and Thomas, 1965

• Tanaka et al, 1987

• Trujillo et al., 2008

� Critical condition for the onset of 

surface instability?

� Any characteristic size?

� Effect of kinetics?



A theoretical framework for gels
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• Hong, Zhao, Zhou, and Suo, JMPS 2008
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Equilibrium equations

Boundary conditions

Volume change
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NkBT : initial shear modulus of the polymer network

N : No. of polymer chains per unit volume

ν : Volume of a solvent molecule

χ : Enthalpy of mixing parameter

A specific material model

Free energy density function

Neo-Hookeon rubber elasticity:
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Flory-Huggins polymer solution theory:
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Homogeneous swelling of a hydrogel layer
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A linear perturbation analysis
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Linear perturbation: ( ) ( )21222111 ,,, xxuuxxuu ==

Homogeneous swelling

Kang and Huang, J. Mech. Phys. Solids 58, 1582-1598 (2010).
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Linearized equilibrium equations

Solution by the method 

of Fourier transform
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Kang and Huang, J. Mech. Phys. Solids 58, 1582-1598 (2010).
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Critical Conditions for Surface Instability
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Boundary conditions

Critical condition:

Kang and Huang, J. Mech. Phys. Solids 58, 1582-1598 (2010).



Effect of perturbation wave number

Critical swelling ratio

Nv = 0.001

• Long wavelength perturbation is stabilized by the substrate effect.

• Short wavelength perturbation is unaffected.

• Thus the critical condition can be taken at the short-wavelength 

limit.

Kang and Huang, J. Mech. Phys. Solids 58, 1582-1598 (2010).



Short-wave limit (kh0 →∞)
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• The critical swelling ratio 

depends on Nv and χ, ranging 

between 2.5 and 3.4.

• For each χ, there exists a 

critical value for Nv.

• For small Nv (< 10-4), the 

critical swelling ratio is nearly 

a constant (~3.4).

Kang and Huang, J. Mech. Phys. Solids 58, 1582-1598 (2010).



A stability diagram

χc = 0.63

Soft network in good solvent

Poor solvent

Stiff network

Kang and Huang, J. Mech. Phys. Solids 58, 1582-1598 (2010).



Critical linear strain
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Relative to the unconstrained, 

free swelling in 3D:

• Trujillo et al.’s experiments for a swelling hydrogel

• Biot’s analysis for rubber under equi-biaxial compression

33.0=cε

Kang and Huang, J. Mech. Phys. Solids 58, 1582-1598 (2010).



0 2 4 6 8
3

3.5

4

4.5

5

5.5

6

 Normalized wavelength S

C
ri
tic

a
l s

w
e

lli
n

g
 r

a
tio

 λ
c

 

 

h
0
=1µm

h
0
=10µm

h
0
=100µm

Nv = 0.001, χ = 0.4

Effect of surface tension

� Long wavelength perturbation 

is stabilized by the substrate.

� Short wavelength 

perturbation is stabilized by 

surface tension.

�An intermediate characteristic 

wavelength emerges.

� The minimum critical swelling 

ratio depends on the layer 

thickness.

Kang and Huang, Soft Matter 6, 5736-5742 (2010).
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Kang and Huang, Soft Matter 6, 5736-5742 (2010).
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Nv = 0.001, χ = 0.4

Thickness-dependent stability

• The hydrogel layer becomes increasingly stable as the initial layer 

decreases; 

• Below a critical thickness (hc), the hydrogel is stable at the 

equilibrium state.
Kang and Huang, Soft Matter 6, 5736-5742 (2010).
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� The critical thickness is linearly proportional to L, with the 

proportionality depending on Nv and χ.

Kang and Huang, Soft Matter 6, 5736-5742 (2010).



Finite element simulation

Nv = 0.001, χ = 0.4

Kang and Huang, J. Mech. Phys. Solids 58, 1582-1598 (2010).



Surface Evolution

Kang and Huang, J. Mech. Phys. Solids 58, 1582-1598 (2010).



W/H=1

W/H=5

Volume ratio

Inhomogeneous Swelling of 

Substrate-Supported Hydrogel Lines

W/H
Kang and Huang, J. Applied Mechanics 77, 061004 (2010).



Spontaneous Formation of  Creases

W/H=12

Kang and Huang, J. Applied Mechanics 77, 061004 (2010).



Swell-induced buckling
Tirumala et al., 2005



Effect of material parameters
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Kang and Huang, Int. J. Applied Mechanics, in press.



Effect of geometry (constraint)
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Kang and Huang, Int. J. Applied Mechanics, in press.



Summary

• Opportunity: Within the general theoretical framework, 

instability of hydrogel-like soft material can be understood 

and exploited.

• Challenge: The highly nonlinear aspects in the material, 

geometry, and instability mechanics pose serious challenges 

for theoretical analysis and numerical simulations.

• Strategy: Collaborations between experimental and 

theoretical studies will be most successful.


