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Effects of a Liquid Layer on Thickness-Shear
Vibrations of Rectangular AT-Cut Quartz
Plates

Peter C. Y. Lee, Member, IEFE, and Rui Huang

Abstract—Thickness-shear vibrations of a rectangular
AT-cut quartz with one face in contact with a layer of New-
tonian {linearly viscous and compressible) fluid are stud-
ied. The two-dimensional (2-D} governing equations for vi-
brations of piezoelectric erystal plates given previously are
used in the present study. The solutions for 1-D shear wave
and compressional wave in a liquid layer are obtained, and
the stresses at the bottom of the liquid layer are used as ap-
proximations to the stresses exerting on the crystal surface
in the plate equations.

Closed form solutions are obtained for both free and
piezoelectrically forced thickness-shear vibrations of a fi-
nite, rectangular AT-cut quartz in contact with a liquid
layer of finite thickness. From the present solutions, a sim-
ple and explicit formula is deduced for the resonance fre-
quency of the fundamental thickness-shear mode, which in-
cludes the effects of both shear and compressional waves in
the liquid layer and the effect of the thickness-to-length ra-
tio of the crystal plate. The formula reduces to the widely
used frequency equation obtained by many previous inves-
tigators for infinite plates. The resonance frequency of a
rectangular AT-cut guartz, computed as a function of the
thickness of the adjacent liquid layer, agrees closely with
the experimental data measured by Schneider and Martin.

I. INTRODUCTION

HE utilization of thickness-shear mode (TSM) quartz
Tcrysta} resonators as liquid-phase sensors has been
studied for a long time [1]-[6]. The frequency equations
for thickness-shear vibrations of quartz crystal plates of
infinite extent in contact with a liquid layer have been ob-
tained and widely used to predict the relationship between
the change in resonance frequencies and the liquid proper-
ties, which assume that the shear displacement is uniform
across the surface of the TSM resonator and ounly a shear
wave is generated in the liquid layer. Until recently, the
influences of compressional wave generation in the liguid
layer due to the nonuniform thickness-shear motion in a
finite quartz plate have been considered [6]-{8].

In the present article, the nonuniform thickness-shear
vibrations of a finite, rectangular AT-cut quartz in contact
with a liquid layer of finite thickness is studied. The effects
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of both shear and compressional waves in the liquid layer
are considered.

The recently derived two-dimensional (2-D) equations
for thickness-shear and flexural vibrations of piezoelectric
crystal plates with electroded faces [9] are used for the AT-
cut quartz plate. The normal and tangential stresses in the
liquid layer subject to uniform oscillating boundary condi-
tions are obtained from simplified governing cquations for
the Newtonian fluid (linearly viscous and compressible) by
assuming small perturbations in fluid density and pressure.
By requiring the continuity of displacements and stresses
at the interface of the crysial plate and the liquid layer, the
face tractions of the plate are expressed in terms of bound-
ary stresses of the liquid layer. The resulting equations are
further simplified by Tiersten’s “thickness-shear approxi-
mation” {10]. Closed form solutions are obtained for both
free and piezoelectrically forced thickness-shear vibrations.
A simple and explicit formula for the resonance frequency
of the fundamental thickness-shear mode is deduced, in
which the cffects of shear and compressional waves in the
liquid layer and the effect of the thickness-to-length ra-
tio of the plate are included. The resonance frequency is
computed as a function of the thickness of the adjacent
liquid layer and compared with the experimental data by
Schneider and Martin [8].

11. FirsT-ORDER 2-D EQUATIONS

Consider a rectangular AT-cut quartz plate with thick-
ness 2b and length 2a as shown in Fig. 1. The surfaces of
the plate at zo = Lb are fully covered by electrodes of
thickness 20" and mass density o’. A liquid layer of thick-
ness by is in contact with the upper surface of the plate at
g = b+ 2b'. The dimension of the plate in the x3 direction
is assumed to be infinite.

A set of first-order 2-D equations for vibrations of piezo-
electric crystal plates with electroded faces was derived
in [9]. For a rectangular AT-cut quartz, the equations
for thickness-shear {T'Sh) and flexural {F'} modes varying
along the 21 direction are reduced as follows:

T x
w1z, 22, 1) = —ug,]% (z1,t)x2 +ugl)(9:1, ticos [E (1 - ?2)] ,

ualz1, 2, t) = ul (21, 1),

Gz, e, 1) = Volt) + Vl(t)%g -+ qb(z)(:m,t)sin (TTI—;) , (1)

0885-3010/$10.00 © 2002 IEEE



LEE AND HUANG: THICKNESS-SHEAR VIBRATIONS AND AT-CUT QUARTZ PLATES

”
hLI Electrades (p*)
2b
VT "/

2h I_ M WXI
+ |

| 1 Quartz (p)
a { a

Fig. 1. A finite AT-cut quartz with electrodes and in contact with a
liquid layer.
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For plates in contact with a liquid’layer, the coupled
thickness-shear and flexural vibrations will generate hoth
shear and compressional waves in the liquid layer, and both
tangential and normal tractions are exerted on the plate
surface, i.e., J”-"](]) and .7-'2(0) in {2} are nonzero and related
to the Hquid layer.

IIl. EFFECTS OF A LIQUID LAYER

The governing equations of motion of a linearly viscous
and compressible fluid consist of the continuity equation,
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the equation of motion, and the constitutive equation, i.e.,

dpL

o +pLV v =0,

dv (5)
——-V T+ f
Lar +1i5,

T=—pl+ ,u(Vv +vV)+IA(V -v),

where pi, is the density of fluid, f5 is the body force per
unit volume, v is the velocity vector, T is the stress tensor,
p 1s the pressure in the fluid as a function of space and
time, I is the identity tensor, p and A are the coefficients
of viscosity. In fact, the second coefficient of viscosity A is
not well defined and the term A(V - v) is almost always so
small that it is quite proper to simply ignore the effect of
A altogether [11].

In (5), we have 10 equations for 11 unknowns: pr, p,
v{3), T(6). The system is completed by including an equa-
tion of state, i.e., a relation between the change in density
and the associated change in pressure. Although the equa-
tion of state of liquids is not known with sufficient preci-
sion to make the theoretical calculation practical, a simple
relation can be obtained by defining the adiabatic com-

pressibility coeflicient as:
1 dpr,
6
( 9p ) ©

where s denotes that (6} is evaluated at constant entropy.

Assuming small oscillations about the equilibrium val-
ues of density and pressure, prp and pg, we have:

Be = —

|PLel < pro,
Ipel =4 7o,

PL = Pro+ PLe;
P="Do +Pe:

(7)

where pro, po are considered constant by the homogeneous
approximation [12], and pre, pe are small disturbances. By
substituting {7) into (6) and neglecting pr. in comparison
with ppo, we obtain a relation between the disturbances:

Le = ﬁsPLOPe- (8)

By substituting (8) into (7)1 and, in turn, into {(5); and
neglecting the convective term in the material derivative

d
2oL , we obtain:

ﬁsﬁg-l-V'l.l:O, (9)

where u is the displacement vector in the fluid, and a dot

on top means ETe Integrating (9) with respect to time
gives:

(10}

= fﬁv u.
Pe 3.

By substituting (10) into (7)2, (5)s, and in turn, into
(5)2, and neglecting the body force and the convective
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. dv . . .
term in the material derivative ——, we obtain a lincar dis-

placement equation of motion for liquids:

profi = V(Y - u) + (1 + NV(V - 1) + 770

(11)
By taking the divergence of {11), we have:
i
pLoV -t = —V3(V-u) + (2u + MVE(V - 0),
)63 (12)

which is a wave equation of V - u for liquids with viscous
damping. The wave velocity of V - u without damping is:

{1
= s
0 PLoﬁs

which is the sound velocity in liquids.

(13)

A. Shear Wave in Liquids

It was pointed out by Stokes [13] that it is possible to
produce a transverse shear wave in‘a viscous liquid, even
without the presence of shear elasticity. Assume that the
liquid is disturbed by the harmonic motion of a plate at-
tached to the bottom face of the liquid layer and oscil-
lating in the z; direction. Because v is the only nonzero
displacement component and it depends on x3 and ¢ only,
(11) reduces to:

.
proty = #%—;%1- (14)

By assuming that wy being a harmonic function of the
time with angular frequency w, we obtain the general so-
lution of (14):

u1 = {Aexp[—(1+ i)ksT2] + Bexp[{1 + i}ks22]} et
(15)

where &, is the attenuation coefficient of the shear wave

given by:
1
Ky = — = pLOw,
) 21

and 4 is the decay length of the shear wave in the viscous
fluid.

The stress in the liquid is obtained by substituting (15)
into (10} and (5)z. It follows that p. is zero and the only
nonzero shearing stress 157 is given hy:

(16)

PLOM
2

— Bexp((1 +9)xxa] Jet. (17)

. Toy = (1 — i) {Aexp|—(1 -+ i)rsrs]

The constants A and B are determined by applying
appropriate boundary conditions. As shown in Fig. 1, the
liquid layer with thickness hr occupies the region b+2¢ <
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T < b+ 26 + hp. Assuming that there is no slip between
the liquid and the plate and that the surface of the liquid
layer at © = b+ 26 + hy is traction-free, we have:
at zo = b+ 20,
at o = b+ 20 + by,

Uy = ﬂlezwt’

18
Ty =0 (18)

where 77 is the amplitude of the oscillation of the plate at
the bottom face of the liquid layer.

By substituting (15) and (17} into {18) and solving for
A and B, we obtain the shearing stress exerted on the plate
at the bottom of the liguid layer as:

Torlwa = b+ 20") = (1 ~ i)w’/?

% p_LQf?ﬁ tanh[(1 + 1)Kehy | e™".

(19)

We see from (16) that x, is large or the decay length § is
small in the case the liquid has a small viscosity p and the
frequency w is moderate. Accordingly, the displacement
uy in (15) is damped out in a very short distance from the
lower boundary and the effect of wave reflection from the
upper surface of the liquid layer becomes insignificant as
long as [14]

kshp = h—L > 1.
6o
Under the condition {20), tanh[{1 + $)k.hr] = 1 and,
therefore, the shearing stress Ty in (19} also becomes al-
most independent of iz, and the boundary condition at the
upper surface of the liquid layer.

(20)

B. Compressional Wave in Liquids

Similarly, if a plane attached to the bottom face of the
liquid layer oscillates in the x2 direction, a 1-D compres-
sional wave is generated in the liquid. In this case, the
motion of the liquid is only in z, direction and depends
on g and ¢ only. Hence, (11) becomes:

RN
-5
oz

62u2

3’_.E§+(2#+/\)

pLoiiz = proch (21)

Again, assuming that w3 is a harmonic function of the
time with angular frequency w, we obtain the general so-
lution of (21):

up = {Ae "7 4 Bellem2] gt {22)

where

CZ _ }OLDL“J2
¢ proch +iw(2p+ Ay

(23)

Note that (. is complex for viscous liquids, which means
that the compressional wave propagates with damping in
the viscous liquids. For the liquids with small viscosity,
(23) can be approximated by: '

Co=— [1—iw2”+;\] :
Co 2pr0ch

(24)
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By substituting (22) into (10) and then into (5)3, we
obtain the normal stress in the liquid:

'LPLD&J

ng = _ [A —iCew2 Bez’(cmg] eiwt.

(25)

For a liquid layer with a traction-free upper surface, we
have:

at xo = b+ 21)’,

at zo = b+ 28 + Ay,

Uy = Up glwt ,

26
Ty = 01 ( )

where 4y is the amplitude of the plane boundary at the
bottom of the liquid layer.

By substituting (22) and (25) into (26) and solving for
A and B, we obtain the normal stress exerted on the plate
at the bottom of the liquid layer as:

w?
PLow

Too(ma = b+ 20') = tan(Cohy )age™®.

€e (27)

Alternatively, for a liquid layer with a rigid plane
boundary at the upper surface, instead of (26) we have:

up = Gpe™®,  at zg = b+ 2V,

28
at 70 = b+ 26 + hyp. (28)

.UQ:O,

In a similar manner, we obtain the normal stress exerted
on the plate at the bottom of the liquid layer:

2
Lrow

Toa{ze = b+ 20) = — ctan(Cuhy Yioe™?

° (29)
C. Face Tractions on Crystal Plates

For a plate vibrating in the coupled thickness-shear and
flexural modes, both shear and compressional waves are
generated in the adjacent liquid layer, and they should
be coupled to each other. However, we may assume this
coupling to be negligible so that the analysis of the 1-D
uncoupled shear and compressional waves in the preceding
two subsections can be used to obtain approximately the
face tractions exerted on the crystal by the liquid layer.

By requiring the continuity of displacements at the in-
terface of the crystal plate and the liquid layer and disre-
garding the deformation of electrodes, we have, from (1)
and (18), (26),

e ui” - bulll, 30)
m Twi (0) (
2€ Uy

By substituting (30) into (19) and (27) or (29), requiring
the continuity of tractions at the interface, and using the
definition of fJ@") in {3), we obtain:

“)f(1ﬂ)tanh[u+z)nshL)ud/2,/"L0“( M _ gy,

FO = Leprohrwul”, (31)
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where L. depends upon the boundary condition at the
upper surface of the liquid layer as:

L, = EML—) for traction free surface,
thL i) ' (32)
L. = fgd—n(c—{’— for rigid surface.
CchL

Thus, effects of the liquid layer on vibrations of the
crystal plate are accommodated by inserting (31) into the
2-D plate equations in (2).

IV. THICKNESS-SHEAR APPROXIMATION
For AT-cut quartz of infinite extent in xz; and z3 di-

rections, the 2-D equations in {2} can be reduced to one
single equation for simple thickness-shear vibrations:

3/2
- “ K (1)
(1 =)L, (wl) ] (Zb) Co6t1

16 e
971'2 Cg€rn

2 _
+ 1+ 2R)pil + eV =0, (33)
where
2
Lo== p;“f;“”t nh [(1 + )rshyl],
PCe6 (34)
_r [ms
W b ,D

By setting V1 to zero and ugl) to be a harmonic function
of time with angular frequency w, we obtain the frequency

equation:
2 3/2
[1+£ “6_ _(1-9)L, (i) }
G2 Cg6ER2 Wy
T2 35
(35) e =0 )

From (35), we obtain a complex resonance frequency
for the fundamental simple thickness-shear vibrations of
AT-cut quartz, which can be approximately written as:

(1+2R)pw

, 2
0= -1_-Rpy+ > 8 e
W 972 cgoezn

Es(l — ).
(36)

We see in (36) that the effects from the mass of elec-
trodes, piezoelectric stiffening, and viscous liquid layer are
represented by the second, third, and fourth terms, respec-
tively. By inserting {34) into the last term of (36), which is
complex, we see that its real part decreases the frequency
and the imaginary part reduces the quality factor of the
resonator, Results similar to (36) have been obtained and
widely used by many as those of [1]-[6].

For AT-cut quartz of finite extent, the thickness-shear
mode is always coupled with flexural mode in (2). For fre-
quencies confined in a narrow range centered at the fun-
damental thickness-shear resonance and for small wave
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numbers,; (2); can be eliminated by applying Tiersten’s
thickness-shear approximation method [10] to the present
case of study.

First, by following [10], we let w = w; and ]—"2(0) =0in
(2)1 and solve for ul”: )
NN b o
iy " = Trz(l_,rR)ul,l' {37)

Then, by inserting (37) into (31)s for .7-'50), which is
nonzero for plate in contact with a liquid layer, and further
substituting the resulting expression of J—';(,O) back into (2),
we obtain the modified displacement component

© _ 4b

_ W {, Ll
R r R (1 1+R)’ (38)
where
R = piohy (39)
L 2pb

Finally, substitution of {38} into (2)2 and omission of
the ugg 11 term in (2); lead to the governing equations for
an AT-cut quartz in contact with a liquid layer under the
thickness-shear approximation:

. w2 .
I:cgll) + (1 - (L)Lscﬁﬁ] Uglh - (%) C66 [1 - (]_ — 1,),(',51 u(ll)

2r

aelDg - e — Zeath
(1) 32pb (1) LRy
={1+2 _ -
( + R)pul + 4(1+R) 1 11 1+ R a(40)
8 (1) Q 2w 1 (1) (2 72
Erat i n- 352 Sesuf!) — ef} G+ (3) ez = 0.

In Sections V and VI, closed form solutions are obtained
from {40) for free and piezoelectrically forced vibrations of
finite plates.

V. FREE VIBRATIONS

By setting ¥, to zero for free vibrations with shorted
electrodes, letting:

ugl) = bA; cos(ém )e™?,

. 11
6@ =p, [ 4, cos(£x1)e™?, 1)
€22
and substituting (41) into (40), we obtain:
2
> Qu(X. WA =0, i,j=12, (42)
j=1
where
Qu =C1 - C2 X7,
8 ~
ha=Qun = —g(ezs + egll)XE): (43)

Qo2 =4+ VX2
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Fig. 2. Comparison of dispersion curves for thickness-shear vibrations
of an AT-cut quartz with R = 0 and hky, = 0. Solid lines are from
the 2-D equations with thickness-shear approximation. Dotted lines
are from the 2-D equations of coupled thickness-shear and flexural
vibrations.

and
2¢6b
X = i, ="
™ -
CL=(1+2R)Q? -1+ (1 —4)L,,
AU . 80? LRy
C = 1-49)L 1-
2 =&y +( ?/)S+TF2(1+R)( 1+ &)’
1
AL Cgl) gl _ ﬁ (44)
u ces fi1 €’
(1)
Eos = f26 U _ f
VCe6€az’ 1 V/ C66€22
For nontrivial solutions to (42), we have:
det[Q; (X, )] = (45)

which gives the dispersion relation of thickness-shear vi-
brations.
For a given value of 2, (45) yields two roots,
2 .
X.j = ;Ejb: J= 1)2: (46)
where X; denotes the wave number corresponding to
thickness-shear displacement u( ) and X 5 the wave number
to electric potential ¢(2). The dispersion curves compuied
from (45} for an AT-cut quartz without electrodes (R = 0)
and with no liquid in contact (hz = 0) are plotted as solid
lines in Fig. 2. Dispersion curves also are computed from
{2), the equations without using the thickness-shear ap-
proximation to eliminate u(QO), and shown by dotted lines
in Fig. 2 for comparison. We see, in Fig. 2, that the two
sets of curves for ugl) and ¢(2) are very close and X is very
small for a range of frequency in the vicinity of 2 = 1.
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In order to satisfy edge conditions of finite plates, both
roots X; or £ of (45) are needed for general solutions.
Hence, we let:

2
) = bz a]ij COS(fj&,“l)Ciwt,

! (47)
I
¢,(2) — 66 ZG'ZJB COS(EJ"El) iwt’
J 1
where a;; arc the ratios of amplitudes and satisfy:
2
Z sz(Xj, Q)()‘kj = 0, ’i,j = 1, 2 (48)

k=1

For plates with fixed displacement and charge-free
edges, we require:

VoD =0, ata =a (49)
whete D&z) is a 2-1» charge density, for which the consti-
tutive equation is given by (39)7 of {9] as:

@ _ 2y (o o 1,02
I

(50)

By substituting {47) into (50} and then into (49), we

obtain: ]
€y COS (W—ZXl) 12 COS ( (Bl) 0
B2/ sy

EXQ)
[ 5in (Q_ZXI) 2 sin (Qﬁ;sz)

where

s (52)

4 q 1
By = X; [ Jossen) + 20‘21'5(11)] :
Vanishing of the determinant of the coeflicient matrix
of (51} gives a transcendental equation for resonance fre-

guencies:
a1/ .
cot ( X ) = cot ( ) .
2T anp 2b
As we can see from the dispersion curves in Fig. 2, X; <«
1 and X7 = 2i. By the definitions of «;; and 35, it can be
shown that the right-hand side of (53) is very small and
can be approximated by zero. Then, from the left-hand
side of (53}, we have: '

(53)

b
le%, n=1235. (54)
For the fundamental thickness-shear mode, n = 1,
hence:
b
X o= -
i~ (55)

We see from (55) that the prior requirement of X to be
small under the thickness-shear approximation is satisfied
for thin plates.
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By substituting (55) into (45), imposing the condition
(20}, neglecting higher-order terms of small quantities, and
solving for the resonance frequency of the fundamental
thickness-shear mode, we obtain:

8 &l
N=1-R+-— 2
T o2 97’T2 Ceg€22
N 4+lc(1)+15626 b2 .
w3 2 Cs6 92 Cp6€22 CL2 (06)
1 : e
T L .
2 *af14 BB LR

It may be seen from (56) that effects of the edge con-
ditions of a finite plate are given by the two terms that
are proportional to (b/a)?, the square of the thickness-to-
length ratio of the plate. As the length of the plate becomes
longer and longer (i.e., as & — oo}, (56) reduces to {36).
We note that in (56) the fourth term represents mainly the
effect of flexural stiffness of the plate and the last term con-
tains the effect of the compressional wave in the liquid layer
through the factor £.f2;, which are given in (32) and (39)
for either traction-free or rigid-displacement conditions at
the upper surface of the liquid layer.

We define the frequency change by:

Af=f-fo,

where f and f denote the thickness-shear frequencies of
the plate with and without the liquid layer, respectively.
The real part of Af is computed from (56) as a function
of hy for a rectangular AT-cut quartz with B = 0, 2a =
10.16 mm, 2b = 0.33 mm and in contact with a layer of
water {pro = 998.2 kg/m?, p = 1.002 mPa-s, A = 0, ¢p ~
1500 m/s), for which the upper surface is assumed to be
in contact with a rigid plane and thus (32)2 is used for £,.
Predicted results are compared with the experimental data,
of Schneider and Martin [8], as shown in Fig. 3. Although
the experiments were conducted for circular disks of AT-
cut quartz, it may be seen in Fig. 3 that the agreement
is close, especially for the pericdical characteristics of the
response. We note that the reflection of the compressional
wave contributes to the cyclical variation. We sec from (24)
and (32) that the period of the variation is approximately
meg fw, which equals to half wave length of the sound wave
in the liquid. In Fig. 3, the dotted line is computed from
(36); therefore, it represents the frequency change of an
infinite plate or that of a finite plate without taking into
account the effect of compressional waves.

(57)

V1. PIEZOELECTRICALLY FORCED VIBRATIONS

Consider the thickness-shear vibrations piezoelectri-
cally forced by an alternating potential, ¢ = +¢pe™?, ap-
plied across the electrodes at z2 = +b. By (3)2,3, we have
Vi = ¢oe™t and Va = 0. The complete solution of (40)
consists of two parts: the homogeneous solution for ¥y, = 0
and a particular solution accommodating the nonzero V3.
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Fig. 3. Comparison of predicted changes in the fundamental
thickness-shear frequency A f (solid lines) with the experimental data
of Schneider and Martin [8] {dots) for an AT-cut quartz in contact
with a layer of water of varying thickness hp.

The homogeneous solution is the same as (47), the solu-
tion obtained in the previous section for free vibrations.
For the particular solution, we let:

2 )
= iwt
7="Y€Poe™",

(1 _ €22 | it (2 .
ul ¥ o6 ¢U€ bl ¢ 3

(58)
where
B 8eog
TR 2R -1 S+ (1- L] (5

Thus, the complete solution for piezoelectrically forced

vibrations is:
€22 ;
éﬂezwt)
Ce6

2
) 60)
¢ = 3. es Z o9 By cos(§;x1) | doe™*.

=1

2
u(ll) = |y + ZQ]_ij COS(fjﬂfl)
i=1

Substituting (60) into the edge condition {49), we ob-
tain:

B 0

ovncos (35.) oo (7432 (=) ()
(61)

1 sin (%Xl) f2 sin (Q—ZXQ)

where j3; are given by (52).

Once the coefficients B; and Bs are solved from (61),
the displacement and electric potential can be computed
from (60).

The total surface charge on the electroded surface of an
area 2a x 2c 1s:

ngcfbgmm, (62)
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and the constitutive equation for the 2-D charge density
D is given by (39)5 of [9] as:

= T 4 4 _
Dgl) = —e2eu(11) — —eg'® — 56221/’1-

2b 3b

By substituting (60) into {63) and then into (62}, we
obtain:

dac 72 2N _
Q= —b—622¢n [1 - (? - 5) €267
i (r2 T sinﬁja} ot
- — 82615 — —Oézj) By——=— e"". (64)
= 8 3 &a
Hence, the motional capacitance is:
Q T 2
Mmoo = = Py 1 _— _—— =
Cm =57, =C g 9]
2 2 .
e T siné;a
— ; (;ezﬁau - ECEQJ') Bj—éja }7 (65)

and the admittance:

(63)

Y = iwCi, (66)
where C; is the static capacitance defined by:
2
C, = 622%. (67)

We note that the motional capacitance in (65) is com-
plex due to the damping effect of the viscous liquid layer.
We define the capacitance ratio €. as the real part of C,,

divided by C,, i.e.,
Cm
C. =Re ( z. ) ,

and obtain the motional conductance G,, from the real
part of the admittance:

{68)

G = Re(iwCi). (69)

Both €, and G,,, are computed and plotted in Fig. 4 as
functions of the forcing frequency f for the AT-cut quartz
and for four different values of hy corresponding to the
four points labeled as A, B, C, and D in Fig. 3. For the-
case of the quartz with no liquid in contact (i.e., kg = 0),
the capacitance ratio C, is represented by the curve E in
Fig. 4, and the corresponding motional conductance Gp,
is zero because no damping is present. If we define the res-
onance frequency as the forcing frequency at which G, is
a maximum or C, = 1, then we see the changes of reso-
nance frequencies from Fig. 4 agree with the corresponding
points in Fig. 3. It may be seen in Fig. 4 that the max-
imum values of G, remain almost constant with respect
to hy. It is because the damping effect is mainly from the
shear wave in the liquid and as noted earlier that under
the condition (20) the effect of the shear wave is almost
independent of kr.
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Fig. 4. Computed capacitance ratio and motional conductance as
functions of forcing frequency for a rectangular AT-cut quartz in
cantact with a layer of water of thickness hr. A: by = 306 ym, B:
hy =325 pum, C: hy =425 pm, D: Ay, = 440 pym, E: hy = 0.

VII. CONCLUSIONS

Nonuniform thickness-shear vibrations of a finite, rect-
angilar AT-cut quartz in contact with a viscous and com-
pressible liquid layer are studied. Solutions are obtained
for free and piezoelectrically forced vibrations with fixed
digplacement and charge-free edge conditions.

A simple and explicit formula for the fundamental
thickness-shear frequency is deduced, which includes the
effects of the mass of electrodes, the piezoelectric stiff-
ening, the thickness-to-length ratio of the plate, and the
liquid layer. Effects from both shear and compressional
waves in the liquid layer are considered. The computed
resonance frequency as a function of the thickness of the
liquid laycr agrees closely with the experimental data of
Schneider and Martin [8]. The viscous damping effect is
contributed mainly by the shear wave in the liquid through
the viscosity coefficient y, and it is independent of the lig-
uid thickness Ay as long as hz 3 4, where 4 is the decay
length of the shear wave. The compressional wave, which
is essentially generated by the flexural motion of the plate,
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causes a periodic change in the resonance frequency with
a period depending on the operating frequency and the
sound velocity in the liquid. The effect of the compressional
wave depends upon the thickness-to-length ratio of the
plate and diminishes to zero as the plate length approaches
infinity.
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