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Mechanical Effects of Electrodes on the
Vibrations of Quartz Crystal Plates

Peter C. Y. Lee, Member, IEFFE, and Rui Huang

Abstract—A system of approximate first-order equations
is extracted from an infinite system of 2-D equations for
piezoelectric crystal plates with thickness-graded material
properties, which is deduced from the 3-D equations of lin-
ear piezoelectricity. These equations are used to study me-
chanical effects on the thickness-shear (TS), flexural (F),
and face-shear {FS) vibrations of an AT-cut quartz plated
with two identical electrodes.

Dispersion curves are calculated from the present 2-D
equations as well as the 3-D equations. The comparison of
these curves shows that the agreement is very close for all
three frequency branches of TS, F, and FS modes in a range
up to the 1.5 times the fundamental TS frequency and for
gold and aluminum electrodes with R, the ratio of the mass
of the electrodes to that of the plate, equal to 0.05. without
introducing any correction factors.

In order to assess electrode effects, spectra of {2 vs. a/bg
{length-to-thickness ratio of the quartz) are computed for
plates with gold and aluminum electrodes and different R
ratios. And the spectrum of 2 vs. R is computed for plates
with aluminum electrodes and a given e/b; ratio. For a
plate with gold electrodes, the frequencies of predominant
TS, F, and FS modes are decreasing as R increases, but
the amount of frequency changes for the TS mode is much
greater than those for the other two modes. However, for a
plate with aluminum electrodes, the frequencies of the TS
and F'S modes are decreasing, but those of the F modes are
increasing as R increases.

I. INFTRODBUCTION

ASYSTEM of five first-order equations of motion for
piezoelectric crystal plates with platings was derived
by Mindlin [1} in which the resulting equations have the
same number and almost the same form as those for the
erystal plate alone (by power series expansion), except the
coefficients of the elastic stiffness and those of the iner-
tia terms are slightly modified. In the 2-D plate equations
derived by trigonometrical series expansion [2], the modi-
fication of the inertia terms due to the mass effect of elec-
trodes was similarly obtained. These equations are simple
and easy to use, but they are limited to plates with very
thin electrodes.

As the resonating structures in the micro-electromechan-
ical systems (MEMS) become smaller and thinner, the ra-
tio of the electrode to the plate thickness becomes signifi-
cantly larger [3]. In these cases, the mechanical properties
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of the electrodes {such as the mass deusity, thickness and
elastic stiffness), must be taken into account.

Exact solutions of the 3-D equations for an infinite
isotropic plate fully covered by isotropic platings were ob-
tained by Lee and Chang [4]. Similar solutions for an AT-
cut quartz plate with identical electrodes are obtained and
included in the present paper. Exact analysis of acoustic
waves in multilayered piezoelectric plates using the trans-
fer matrix method was presented by Stewart and Yong [5].
These solutions provide the exact dispersion relations (i.e.,
the frequency-wave number relations for straight-crested
waves in an infinite plate), but they cannot be easily ex-
tended to those of finite plates.

In the present paper, an infinite system of 2-D equa-
tions for piezoelectric crystal plates with thickness-graded
material properties is deduced from the 3-D equations of
linear piezoelectricity by an approach similar to that of Lee
and Yu [6] with the new series expansion of Lee et al. [7].
Then, a system of 2-D first-order equations is extracted
from the infinite set for the study of the thickness-shear
(TS}, fiexural (F), and face-shear (FS) vibrations of an
AT-cut quartz plate with two identical electrodes and a
pair of parallel free edges.

We note that the derivation of the present equations is
similar, in general, to those of the composite or laminated
plate thecries, for instance, the laminated plate theory by
Yong et al. [8]. However, no correction factors are intro-
duced in the present 2-D equations to improve the pre-
dicted dispersion relations because of the use of the new
series expansion [7].

1I. Two-DIMENSIONAL EQUATIONS

For a piezoelectric crystal of volume V and bounded by
surface S, the 3-D equations of linear piezoelectricity are
summarized below.

The stress equations of motion and the charge equation
of electrostatics and boundary conditions in variational
form, which can be obtained from a variational princi-
ple [9]:

£
f dt] [(szz — pﬂj)éuj —+- Dmdqb] dV = 0,
io v

[ dt fs [(t; — niTi;)ouy — (o + neDy)s¢) dS =0. (1)
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The constitutive equations:

Tis = Cijht Skt — eris Bk, @)

D; = eiijjk + EijEJ.

The strain-displacement relations and the electric field-
potential relations:

1
i =5 (wi g+ wja),
=4,

In the above, Ti;, Sy, wi, Dy, and Ly are the com-
ponents of stress, strain, mechanical displacement, elec-
tric displacement, and electric field, respectively; and ¢
is the electric potential. Material properties are the elastic
stiffness coeflicients ¢;;1, the piezoelectric strain constants
€i;k, the dielectric permittivity €;;, and the mass density p.

In (1), #; and & are the surface traction and surface
charge density, respectively, and n; is the unit outward
normal to the surface S. Equation (1) will be used to de-
duce a system of 2-D equations and associated face and
edge conditions for piezoelectric crystal plates.

In [6], 2-D equations for piezoelectric crystal plates with
thickness-graded material properties were derived by es-
sentially power series expansion, and they were used to
study the vibrations of homogeneous and symmetric bi-
morph disks in [10] and of asymmetric bimorph disks of
piezoelectric ceramics in [11]. Predicted results compare
closely with experimental data. However, in these equa-
tions, correction factors were introduced to adjust the cut-
off frequencies of the thickness modes. In order to improve
the accuracy of the dispersion relations and eliminating
the need of correction factors, the new series expansion
of [7] will be used for deriving the 2-D equations in the
present paper.

For a plate referred to the rectangular coordinates z; as
shown in Fig. 1, the new series expansions of the displace-
ment and electric potential are [7]:

(3)

0 )
i = —7L§3$2+Zu(n COS—2—(171,[)) 1=1,2,3,

n=0

Tolt) + Valery -+ > ¢ sin (),
q n=0

=
Il

where ¢ = z2/b, uf;") and ¢™ are functions of z1, 3, and
time £, 2b and 2b, are the thicknesses of the composite
plate and crystal, respectively, as shown in Fig. 2, and Vg,
V4 are determined by the specified electnc potential at the
electroded surfaces.

Insertion of (4) into (3) leads to the series expansions
of strain and electric field

Sy = w+Z |55 cos
Ei = i [E}") sin %(1

n=(

— )+ E-'i(n) cos

~4)+ 55 sin - (1-v)]

), ©)
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Fig. 1. A plate of uniform thickness referred to the z; coordinate
systern.

X

Electrodes (p*, cj)
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‘ .

Fig. 2. A composite plate of quartz crystal and two identical elec-
trodes.

where
0
Ssj = *bué’gja
- 17 ¢ n 0 0
S@_(_) = 2 [ ul )+u( U (52j’ug,z‘) +§2%u£3)]
S = % (5 50,

Vi

EM = 856
2i¢n0 T b

+ 621 _¢(n)

and d;; is the Kronecker delta.

By substituting {4) into (1)1, setting dV = bdyd A with
dA = dzydx3, and integrating with respect to ¢ from —1
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to 1, we obtain:

(n) 7(n) | 1 yn)
T T )
fooe [ [ -5

_ Z (p(m+n) + p(m—n)) ﬁ‘EiM) + bﬁ(n)ﬁ(z?;] 5’1{(1»”)

m—()

1 1
d (0) (1)
(TaJ’ - Esz + EFj

. (7)
- Z ﬁ(m)ﬁgm) + bpdugoj)) bdug}
m=0
Z ( fojSp R D(”)) 5¢(“)} dA =0,
n=>_0
where ¢ = 1,3, and
1
-1
n 1 nm
T:g ) = / . Tij COS —‘“—(1 - ".b)d'(f)a
i) = f T sin — - T (1 — )i,
Dgn) = / Dz Cos —2—(1 - w)d¢7 (8}
1
1
P = f Disin T5(1 - 4)dd,
-1
F{™) = Toy(0) — (1) Ty (-b);
1
™) = / poos ZE(1 - p)a,
i ! nw
p(") = f . p’@l’) COs —5"(1 - Tp)d'l/)) (9)

i
d 2
= dip.
P /_1mb¢

Note that, in (7), the thickness-graded mass density of
the plate has been assumed as a function of the thickness
coordinate, and the effective mass densities p("), ﬁ(n), and
p? are defined in (9).

By using Fourier series expansion, the linear function ¢
can be expressed by, for —1 < ¢ < 1,

ad nmw
6= 3 cncos 01— ) (10)

where

1 8 _
Cn = / 1 cos EE(1 —)dyp = < n2q2’ n = odd .
-1 2 0 , m=even(11)
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By substituting (10) into (8); and (9)2,3, we obtain

o
d _ (n)
;= chTij .

n=0
=1
a{m) _ = (m+n) (m—n)
pm =3 5en (0™ 4 pfm=m), (12)
n=0
o
pd = Z cn,ﬁ(n) .
n=0
By the integration by parts, we have
! © 10
[ Tyt = - LT . (13)

By substituting (10) into the left-hand side of (13) and
using the integration by parts again, we obtain:

o~ (1) P
n (1]
> en (EFJ 5515 )

r=0

(0) (1) j—

Further substitution of (12) and (14) intc the terms
enclosed by the second bracket of {7) leads to:

¢ =
1
dt T(”’) T(") _F_(") b aln) (0)
]to fA{n:o[““ op 2 Tyt TPy
— 1
_ bt (m+n) (m—n) .(m) (") (0}
mzz:og (p +p )uj Jé(uJ — cabusy )

(15)
+3 (Dg}g + %EDQ”)) 6¢(")}dA =0.

n=0

~ Thus, for arbitrary variations § (u;") -~ cnbug?j-) and
8¢, we have, in A:

(n) () 1 pm)
Taja — 25 50 gFj
=1
=33 (p(m+n) + plm= nJ) — bl
m=0 (16)
pr) o M pin)
D) + 5Dy =0,

where n =0,1,2,-- -, and P =g by definition.

In a similar manner, substituting (4) into (1)2, noting
that § = AT + A~ + A, where A*, A~ are the upper and
lower surfaces, A’ the lateral surface, and dA’ = bdiyds
with s being the coordinate measured along the curve of
the edge C' as shown in Fig. 1, we obtain:

t
/ dt{ / [(tj - n,-Tij) 5'U,J' — (o +n; D) (5(;5] dA
to A+ +A-
+b j{ [Z (tgn) - niTi(jn)) Jul™ — (1 — T boul)
[

n=0 (17)

oo

- Z (6'(") + niDE")) 5¢(“)} ds} =0,

=0



LEE AND HUANG: ELECTRODES AND QUARTZ CRYSTAL PLATES

where

1
= [ oy,

1
t;n) = [1 t;cos -?:;E(l - )i, (18)

1
a(“>=f crsin%f-(1~7,l’))dgb.
~1

Again, by substituting {10) into (18); and using (18),
we obtain:

(19)

=3 et
n=0

The surface integral in (17) vanishes by specifying the
face tractions, t; = n;T;;, through the definition of FJ-(“) in
(8)s, and the electric potentials at the electrodes through
Vo, V1 in (4)5. By using (19) and (12)4, the remaining part
of (17) becomes:

t )
0
[ d |50 (87 - naa) 6 (4 - env)
to C La=o
=3 (5 +niDf) w} ds=0. (20
n=0
Hence, we have the edge conditions on C:
t§") = niTi(“,,-n) or ugn) - cnbug?} ( ) cﬂbug?; ,
8™ = D or ¢ = 4, (21)

where n=0,1,2,--, and ﬂg"), ™ are prescribed values
of the nth-order displacements and electric potentials on
C.

The 2-D constitutive relations for plates with thickness-
graded material properties are obtained by inserting (5)
into (2) and then into (8)2_s,

0
(n) _ a(n) 1 Smtn) | men)Y glm)
T, = &5aSh+ 2 Z [( ik e ) S

+ (égﬁn) 4 —(mﬁn))
_ (é(wn) + é@-n)) B
)2

kig

— (et 4 o

ek‘i.j kij
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=(n) _ o 1o [ mes
T =0 st + = 5D {(Cg:rtz n)
m=0Q
m-—mn) {rm)
Ejkl )ST
— (el 4 ey ) B

( () _ n— n)) E(m)}

_ Al M olm)
L;ztn)sm

( )
Ukl

kif Crij

m) A p(mn) _ (m=n}) o(m)
Din)‘ z?ﬂgsfk+22 [( ‘;7; Cijk )Sm
m=0

m+n _(m—n mn
( Vel )) (m)

8
b (e 4 g g
rin) . o) pm)]
+ (e e B
Wi [( ) — gl s
b (el el S
() Y g

(e = =) Ef(m)] ’

(22)

~(")S

[ 1_7k

+

where

1
M) = f M) cos T (1 - 9,
-1

1
o) = [ (wysinZE0 - )av,
-1 2 (23)

1
o =/1M(¢)¢cos7—;—r(l - ¥)d,

1
A /1 M) sin 5 (1 = 9)d,

and M (1)) stands for any thickness-graded material prop-
erty, Cijil, €ijk, OF €i;. For homogeneous plates with uni-
form material properties, (22) reduces to the constitutive
equations obtained in [7].

IiI. FIRST-ORDER EQUATIONS
To extract a finite set of first-order approximate equa-

tions from the infinite system of 2-D equations in the pre-
ceding section, we let:

u&n) = 'u.gn) =0, n>1,
u$? =0,607 =0, n>2, (24)
T(n —0.a® =0,

and disregard Tl(Jn), Tz(J"), D(nH) D("H), and S(”) for
n>1.
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Accordingly, the field equations in (16) reduce to:

7O 4 1 CFO = p 050y O 00,
() M lom_ .
Taj,a - sz + EFJ = ﬂ( )uj
L, @)@ _ awps
+ 7 (p +p )uj pbig g, (25)

D)+ 208 =0,

D+ %Df) = 0.

From the constitutive relations in (22) in terms of the
contracted notation, we have

T(l) A(l)Sd + c(l)S(U)

( @ +c(2)) s
+__E(2) 5(1) + — ( (1) + —(3 ) 8(2) .
5 2q g 9 C2q ) Pq
1 _(1) _(3 2 1) &=(0)
-5 (ek &t )) E® — ) El

5 (e + el B - 5 (o) 4 o) B

(2 1
sm

(26)

{2)

By impesing T( ) =0 and solving for S(z) u2 , We

. b
obtain:

= 2

o} .
) 3)
Gy +C (22

() 2 (2 &
(cgq) -+ cgq)) S,gl) + icgq)S‘gl) —

Ly, 3 2
~5 (egcz) + e§c2)) E,E )

1 3 =(2
-5 (o) 0]

{A%)Sd +02q)3(0)
1oy )

+ eyl
1) {0
- ech)Ei(c )

1
2
(27)

3 (eg;) + ekg) E

Substitution of (27) into the remaining relations of (22)
eliminates 5';2) from the constitutive relations and thus

uf) does not appear in the first-order equations. The re-
sulting constitutive relations, in the contracted notations,
are:

0) __ .(0d) od 00 G 01 1 ol) o(1
T = 395 + VS0 + IS 1 DS

— 0B _ PO R 00 p0)
_ ég)m B 7(20) E®,
TR0 = 4195+ 00 + )50 + DS
_ ég,l)E]E:l) _ é‘562]01)‘!;;("‘2) _ EESJI)E;E,G)
- B a2,
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T~ iSE 4 PS04 DS 4 LDSP
_ éEOI)E}(:) B éﬁ,i)E;(f) B égc?}I)EJEO)
e B 2 B

E;d)S,'f + eE;O)SéD) + 6531)3(21) + egi)gél)

A 4 D £

D(l) =e
11 1
+eG BN 4
+ VD 1 DD,
2 2d) od (20) 21 2 a
p® = egq ISd e S 4 VS el 5D
(21) 1) 22 (2) (20) 5(0)
EN 4 23 L L0 pt

(QI)E(l) Le (22 E(z) (28)

HW — eggfﬂsg e ng) T e{DgM 1 LDFM
+ GV + GV B + (VB
+ GBS + VB,
pe =e§f‘” 5t +e§20}8[50) +egl) 56 +egi) 5
+6(21) ED 4 EDEE) | 20 o)
LE (22) B®,

where
-(2+n) (2 n)
clnd) — aln) Te égl)
Cpg Pg _(1)+-(3) q
(2+n) (2 n}
clad) _ a(ny te A0
Py g _(1) _{3) C2g
(29)
24 ,2
nd) _ st _ a5 » +e ( R
Cip Cip _(1) _(3J 2p>
€y +
) _ ) e +€5§ » A0,
3
ip Cip Eg12)+ég3) P
com) = L f many | men)
Cpq 5 \“pa Cpq
+1 -1
_E(amn) - n)) eyt 4 Y
P2 T (3
2 ng) + ng
_ 1
nm) +n =(rn—n
el )‘5(@“ )+l ))
_(m+1) _{m—1
1 (a(2+ﬂ) -(2 n)) ng +e gq :
P2 (1 {3 !
2 {) C§2)
- 1
nm) __ = “+n —{m-—n
Cl(i‘q )= 2 (Cg? = cérq )) (30}
(m—+1) (m—1)
_}( @ | (2 n)) Coq T+
2 —(1) +-(3)
. 1 _
cg;'m-) — 5 (__Cg;+ﬂ) + C;an 11))
( +1) § Am-1)
_1( (Bt | 2 n)) Ty
i {3 2
: e
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eg;m) — 2 (EE;R+1L) +e(m n,))

(m+1) (m 1)
1 _ C + e
5 (el ey T

2 D 4z —(%) ;
(n’rn) 1 (m,+n) ~(m—mn)
1p - 5 ( + c’ip ™ )
~{m+1) 1
_ _( ) o) +ay
2 =1 c(a) t
Cag 22
(nm) 1 ( (m+n) ;(m—n))
ip 2 “ip
(m+1 {m—1)
_1( (2+n)+ (2 n)) 62: )—I-Cm
-, =
2 §Q)+ A(3)
am 1 _
e =g (el s el ’”)
+1) ~(m=1)
. l( (@) 4 o2 n)) + Ty
12 Eglg) +e —(3}
Eg;”n) - 5 (é£;n+n) + Egl_"))
_ 1 ( (2+n)+_(2 n)) ( +1)+e(m 1)
{1 _f{3
: Teel)
I 1 m n 1,1
1 m—1
_ ((2+n)+6(2 71)) ( +)+e( )
AN »2 EONE O
man ]- _
égp ) _ 5( S;’H'”) +e£;71 n))
1 (m+l) _(m 1)
-5 (e el "))T::ﬁ—
Cog + Ly
sma) 17 (min)  _(mom)
Ein 3 (eip e )
_l( (2+n)Jr (2 n)) ( H)-i-e(m L
1), (3
2 W
(nm) _ 1 ( min) | o _(m n))
27 2
( +1) {m—1)
4= ({2+n)+é(2 n)) +e5,
2 12 i2 Eég) +z _(3) 1
(nm) l((m+n)+ (m n))
zj 5
+1 m-—1
+1( (2+n)+_(2 n)) (m )+E( )
2 T
am) _ 1 mn n
G =g (e ))
+ ) _(m—1)
1 n +e
+_( (2+)+(2 n)) : 252
2 5(2) +C(d)
(“m) 1 (m+n) _{m—n)
“ T3 ( Ty )
( mtl) | (m—lJ
+1( (2+n)+ (2—71))
<1, 43
2 EopE

3

)

3

)

(31)

(32)

(33)
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The strain-displacement relations and electric field-
potential relations for the first-order equations are ob-
tained from (6},

Sg = —2bug023,5’ff = —buéO%S,
(0

Stli = _bug,]%lﬂ

SO = %), 880 = 4 1 u®), 510 ,%-,

s = g? S8 = ”glg + ull) i = 3,37

S = ), 51 = ull), 5O = i),

50 = T g _ %ugl),Em =g, ()
B = —Vijby, B = g0 B® = _g®),

E‘él) _ 215¢(1)’E§2) _ 7¢,(§) ER _ ¢(2)

From (21), the edge conditions for the first-order equa-
tions are:

(0 = n @ or 4O = 0@,
9 = M or u :2 bul®) = alt) b ©
" =—n DM or ¢V = g, (35)
7' = —TJ.,;DZ-(Z) or ¢ =@,

According to {8)s 3, stress components T(z) and T(l)
are related to transverse shear stress 7, by:
1
TS = [ Tudy,
o (36)

— 1) 1 m
Tég =/ Tagcos(Ey’;)dw.
~1

It is well-known that the distribution of 7, across the
thickness is a parabolic function, i.e., T, = c(1—%?), for a
plate which is free of tangential tractions at faces ¢ = +1
and under statical bending or at low-frequency flexural
vibrations. Substitution of the distribution into (36) leads
to:

0 1
=T
which agrees with (33) of [7]. By inserting (37) into the
second equation (25) (for j = 2), which is the equation of
the lowest order for flexural vibrations, we have the mod-

ified equation of motion for the transverse displacement
(0},

(37)

+ 1RO 2 J0u0 | w0,

ﬂ a2,a b
It is shown that the 2-D equations (25) with the mod-
Hication (38) yield the exact asymptotic dispersion rela-
tion from 3-D theory for flexural vibration of isotropic
homogeneous plate as both frequency and wave number
approaching zero [12]. It also has been observed in [7] that
the modified system of first-order 2-D equations gives pre-
diction of the frequency spectrum for AT-cut quartz closer
to the experimental data by Koga and Fukuyo [13].

(38)
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Substitution of (34) into (28) and then into (25) and
(38) leads to the first-order governing equations on me-
chanical displacements and electric potentials. For the
composite plate consisting of an AT-cut quartz and two
identical electrodes shown in Fig. 2, the equations are
greatly reduced. Furthermore, for the z;-varying modes,
the essentially symmetric modes {extensional, thickness-
stretch, and thickuness-twist) and the essentially antisym-
metric modes (flexural, thickness-shear, and face-shear)
are uncoupled from each other. The governing equations
for the essentially antisymmetric modes, which can be
piezoelectrically excited and are of practical interests, are:

(A + i) Toi0g)
+%F§°) — PO,
oL+ S T 4 L = )
AP el S S
T Rt Y O
== (9(0) +p(2)) Pe)) p(l)bum)
”%wh+&”%+§$”%wm%w”
—P4@ 4 b_2 g I (20) z; =0,

where

06 0 ol) _ {10y _ (1
A0 = o2, 5D = o0 = ),

m_low e d &3 + e (1)
11) __ g ~(1 P PL -
ety = §(Cpq —cp) ) = a5 — 0 @2
2 22
A1 o) (40)
1 l1¢,y +¢C
1) _ 0 2 p2 (2
=4 (4 + ) - § 5T (4 )
Cao Co2
A1), =(3)
B2 _ ( 1) ‘(3)) 1% + 60 ( 2l 4 -(3))
ip {1 (3 '
3 270 4
—(20) (20) _(2) 0Ty _ —(1)
1;0 ip T e‘p ?eip 'Lp ?
S0 e L@ oo
Cip T Cp T3 (e- " ) ’
0 43 -1
JBD _ 52 (el — ely))és,) (41)
P Cip 5;;)+-{3) ’
(0} (2)
e 1( ~(1) +-<3)) ( (o) 6(4)) Cop +Cop
Cip 2 2 Ciz & sl Z8Y
Cag T €39

JREVEC)

(2 Lo (4)) 1w &2 té

=g (4 -+ g e 6?2)'£l+‘§3)
1
~3

e

((m (4)) (20} _ (2)
1) 13 3 1]

2_17
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and cg,’:;), cj(;;), ";"q), Ez), éi”’, “5;), and eg?) are obtained
from (23). For the quartz plate with identical electrodes,
we have:

MO = gpq, LETTM
].+Tt
M3 = _EMq(l — A1) 8in 2a,
m

M@ = %Mqu — ra) sinda,

M = il_Mq [rag + (1 = raq)singl,
T {43)
@

4 .
= ﬂMq‘[T‘M — (1 - TM)SIHSQL

MY = %MQ [raf + (1 - raq)(sine — acosal},

M@ = %MQ [7rpq + (1 — raq)(sin 2 — 2cx cos 2a)]
where
m Qbe o Me
a—m;Tt—Ea'f'M'qu (44)

and 7y is the ratio of the thickness of electrode to that
of quartz, M, and M, represent the material properties
(including mass density) of quartz and electrode, respec-
tively.

We note that the ratio of the mass of electrodes to that
of quartz per unit plate area, R, is related to r; and the
density ratio r,,

r

k= TtTp, Tp = ;: (45)

where ¢/ and p are the mass densities of electrode and
quartz, respectively.

By substituting (43) into (40)—(42), we see that the ma-
terial coefficients in the governing equations (39) contain
electrode effects through the explicit expressions in terms
of the thickness ratio r;, density ratio r, (or mass ratio R),
and stiffness ratios r..

IV. DISPERSION RELATIONS

For the T'S, — F, — F'S; vibrations, we let:

(0) — A Sln(£$1) iwtr’
( ) AQ Sln(f:]’:l) zwt

( ) = A, COS(fIIJ))EWt

#? = 44 i cos({a: Jet,
€22

By substituting (46) into (39) and setting Féo), F:,EO),
Fl(l), and V; to zero for free vibrations and shorted faces,
we obtain:

(46)

4
STQu(X)A; =0, di=1,--,4, (47
j=1
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’V 7 QQ Tl'3 cg}')c') X2 T Célﬁl) Wse(gﬁl) X 1
? 24 Co6 24 TiCg6 127,./cepeaz
C(UU) (01) 2—(70)
0 12 — G5 y2 So6 Cas5
C66 ~ Ficon Tt/Cap€az
(rd) L0 ) (a1 _(21) _(2D) (48)
T i1 32 =2 65 s o2 G y2 Ces . __ €11 2 2e5
BX | ——X° -7, o2 X Folle — — X — —
2 65 " Fyces 66 T 066  +/Ce€az T \/Cp6€22
3d) 20 21 21 22 23
wrtegl 3 26%5) _ 651 : 2 2e ( : 51 )X2 4 45%2 )
L 2\/cesex2 Tt/ Cop€az v/ Co6€a2 T? \/066522 €22 ft2522 J
where the coefficient matrix [@¢;] is [see (48); above] and 1
Aluminum
0=—Y _ x_— % ........
l o5 e 0.9
2b, 2bg o
b (0) 49)
ﬁrb—*l-%?"t,’rp p—, ( ) §
q o
. 8 08 -
. FO N PO +p(2) £
Tp=——Tp = 3
P 2p x
3
For nontrivial solutions of (47}, we have: 0.7 - s
B _ ---- 2-D (mass + sliffness)
det[Qi; (2 X)] = 0, (50) 2-D {mass only)
which gives the dispersion relations for the TS;-F;-F§,; 0.6 . P T T T :

vibrations of the composite plate.
By setting X = 0 in (50} and solving for €2, we obtain:

11 _(21 21
Céﬁ : + egs )ege ’
¢ 23 )
66 C66622
which is the cut-off frequency of the fundamental
thickness-shear mode. The present formula may be com-

pared with:
(1 +

1
Q. =
¢ \/'1 + 2rpry

which is obtained from the 2-D equations of [7] for which
only the effect of electrode mass is taken into account.
The exact frequency for the fundamental TS mode can be
computed as the lowest root of (87), which is obtained from
the solutions of 3-D equations given in the Appendix. Cut-
off frequencies of an AT-cut quartz plate with electrodes
of gold, silver, and aluminum are computed as functions
of r; from ( 51) {(52), and (87) and are shown in Fig. 3 for
comparison. Bechmann’s values of the material constants
of quartz [14] are used for computation. The electrodes are
assumed to be isotropic and perfect conducting, for which
the piezoelectric coefficients and dielectric constants are
set to zero, and the mass density and elastic stiffness are
obtained from [15].

From Fig. 3, we see that the present 2-D equations,
including both stiffness and mass effects of electrodes, give

1 1

T\ T

(51)

I

52
971'2 Cg6ER2 ) ? ( )

0 001 002 003 0.04 005 0.06 0.07 008 009 01
Thickness Ratior,

Fig. 3. Comparisons of the thickness-shear cut-off frequencies of an
AT-cut quartz plate as a function of the thickness ratio {r; = 2be/bg)
predicted by the 3-D equations (solid lines), present 2-D equations
(dashed lines), and 2-D equations with mass effect only {dotted
lines). .

closer prediction for the cut-off frequencies than the 2-D
equations including only mass effect, especially for large
thickness ratio .

Dispersion curves are then calculated from (50) for com-
posite plates with gold and aluminum electrodes of mass
ratios R = (.05, as shown in Fig. 4. For comparison, disper-
sion curves are also calculated from (86), which is obtained
from the solutions of 3-D equations given in the Appendix,
and plotted in Fig. 5. It may be seen from Figs. 4 and 5 that
the dispersion curves of the TSy, F1. and F'S; modes pre-
dicted from the present 2-D equations agree closely with
the corresponding ones from the 3-D equations for different
electrodes, without introducing any correction factors.

V. FREQUENGY SPECTRA

For a given value of frequenc

v £, (50) yields four roots
of wave numbers: X or & with k=1, -

- ,4, and for each
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15 ' ' The general solution for free vibrations of the composite
plate takes the form:
4 - A
uld = Z ay; By sin{é;z: e,
1} j:l
a
el
§ Zagj sin(g;mq et
5 (54)
(Y8 N
05 | = Z aa; By cos(gy w1 )e™",
j—'l
P = ICGF Zau;jB cos(&;aq )e™.
_‘) 1
0 ] ] 1 L
251 2 1A i 05 0 05 1 1.5 By inserting {37) into (35), we obtain the edge condi-
Re(X) tions for 7'S; — Fy — F'S; vibrations of an infinite strip with

Im{X)} Wave Number X
Fig. 4. Dispersion curves computed from the present 2-D equations
for AT-cut quartz plates: solid lines for plate without electrodes (R =
0}, dashed lines for plate with gold electrodes (R = 0.05), and dotted
lines for plate with aluminum electrodes (R = 0.05).

1.5 7 T
'
v
1
'
1
I
!
i
)i
1k ti
"
g
e I
£ g
] whi
=3 HiSE I
o i
e TR
[ v o}
0.5 *
0 b L 1 i 1
2.5i 2i 1.5 i 0.5i 0 0.5 1 1.5
Im(X} Wave Number X Re{X)

Fig. 5. Dispersicn curves computed from the 3-D equations for AT-
cut quartz plates: solid lines for plate without electrodes (R = 0),
dashed lines for plate with gold electrodes (R = 0.05), and dotted
lines for plate with aluminum electrodes (R = 0.05).

root the amplitude ratios «;y satisfy:

4
> Qi Xk)eyk = 0,

=1

k=1, 4.

(53)

a pair of traction-free and charge-free edges at #; = La:

T(]) T(O) T(l) D(z) (55)

The stresses and charge density in {55) expressed in

terms of ugn) and $(™ are obtained by substituting (34)
into (28],

T = ) + bl - Jelio,
T 0+ el - Eé;i°)¢<2),
7 =~ + Va1 @ (56)
DP = e, 4 20 g

Substitution of (54) inte {56) and then into (55) leads

to

4
Z =0, i=1,---,4, (57)

where {see (58); next page].
Vanishing of the determinant of the matrix M;; gives

the frequency equation for the free vibrations of a quartz
strip with two identical electrodes,

det {M@'J‘ (Q, 3 —, R, TM)] =0.

The resonance frequency is computed from (59} as a
function of a/bg, the length-to-thickness ratio of the quartz
plate. For plates without electrodes (ie., R = 0), the
spectrnm reduces to that obtained in |7] for homogeneous
plates, as shown by the dotted lines in Fig. 6. The solid
lines in Fig. 6 denote the spectrum of the AT-cut quartz
plates with gold electrodes and for mass ratio R = 0.005.
Similar computations are made for AT-cut quartz with
aluminum clectrodes; the results are shown in Fig. 7.

Fig. 8 shows the predominantly T'S; — 1 and Fy — 46
branch of the spectrum in Fig. 6 with different mass ra-
tios of gold electrodes. It may be seen from Figs. 6 and 8

(59)
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o
M]j = | =/ 'Xj + ——ag3; — ¥y COS(f tI)
66 g a6 Veeeeaz ¢
(00} (01) 5(20)
C C 2e
My = —5;5—1:;(12 X + —56‘Oi3' - ——-LCM COb(E‘(L)
4 Co6 T ees 0 Joagem e
(1d) (11) 5(21) (58)
Msy= | T ra;x? Al g X, — S __g, 0 X, | sin(gse)
34 Dcen g o (i Canean W i
2d 21 22
My = ___71'651 ) Tt 'XQ—LEI)—CQ‘X'-F (1)04')(' sin(¢;a)
= j 3
7 2\/Cagtaz T Jfeerer 7 ! 7
1.20
1.15 |
1.10
1.05
G
> Ci 1.00 2%
2 2
1] [
= =3
g g
finy & 095
0.80
0.85
0.80

38
a.’bq

Fig. 6. Resonance frequency §2 vs. length-to-thickness ratio a/bg for
AT-cut quartz plates, solid lines for plates with gold electrodes (R =
0.005) and dotted lines for plates without electrodes (R = 0).

that, for a quartz plate with gold electrodes, the resonance
frequencies of all three modes are decreasing as the mass
ratio increases; but, the amount of the frequency changes
for the T'S7 mode is much greater than those for Fy and
FS; modes.

Frequency spectrum of {2 vs. R is computed from (59)
for a quartz plate with aluminum electrodes and for a/b; =
36.5, and it is shown in Fig. 9. It is seen from Fig. 9 that
the mass ratio R can affect the strength of coupling among
the vibrational modes. From Fig. 7 and 9, we see that reso-
nance frequencies of the T'S) and F'S; modes decrease and
those of F} modes increase as the mass ratio of aluminum

38
a.’bq

Fig. 7. Resonance frequency {2 vs. length-to-thickness ratio a/bg for
AT-cut quartz plates, solid lines for plates with aluminum electrodes
(R = 0.005) and dotted lines for plates without electrodes (R = 0).

electrodes increases.

Therefore, it is seen from (51} or Fig. 3 that the fre-
quency of T'S; mode decreases as R increases for plates
with gold, silver, or aluminum electrodes. For the F; mode,
it seems that the increase or decrease of the frequency
depends on whether the extensional wave velocity in the
electrode is greater or less than that in the quartz, i.e.,

(252, -
Qg

where {1 is the frequency for the plate without electrodes.

/ ’
/P —1,

" (60)
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Fig. 8. Effects of gold electrodes on the predominantly thickness-
shear and flexural branches of the frequency spectrum of AT-cut
quartz plates with various mass ratio R.
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Fig. 9. Resonance frequency {2 vs. mass ratio R for AT-cut quartz
plates with aluminum electrodes and a/bg = 36.5.
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Similarly, for the face-shear mode,

(Q - QU) «
0 F8;

which agrees with Mindlin's observations in [1].

chs/ -1

Css/p (61

APPENDIX A
3-D EQUATIONS AND SOLUTIONS

Consider straight-crested waves propagating in the x;
direction of an infinite composite plate as shown in Fig. 2.
We let:

u; = uwi(®1, w2, 1), ¢ = P{z1, T2, £),8 = 1,2, 3,
(62)
Constitutive equations for the AT-cut quartz (—b, <
Tp < by) are:

Ty = cii11 + c12uss 4 Cratiz s + €111,
Ty = caquq,1 + C2outn,2 + Caain g + €129,1,
T3 = c31ty,1 + €39Up2 + Caaliaz + €139 1,
Ty = cq1¥11 + Caglin s + C4qlin g + €149 1,

Ts = cssin,1 + cse e + ug1) + eosdh 2,

Ts = cestta,1 + cos(u1,2 +uz,1) + essd 2,
Dh = €11U11 + e12lie2 + €14tz e — €11¢,17

Dy = easuz + eas(ur2 +ug,1) — €220.2,

Dy = essugy + eas(uie +uz1) — €300 2,

(63)

and for isotropic clectrodes (—b < zg < —b, or by < xg <
B),
Ty = ¢jyu1,1 + Couz,z,
Ty = chyur g + chyuz 2,
T5 = cgyua,1 + dypuay,
Ty = ciguz 2,
T5 = costa 1.
Ts = cgelua,z + uz,1).
Substitution of (63) and (64) into (1), leads to the gov-
erning equations of u; and ¢, for quartz:
C11U1,11 + €e61,22 + (€12 + C66)U2,12 + (€14 + Cra)tiz 12
+en1¢,11 + et 2z = piiy,
(c12 + co6)u1 12 + coptia, 11 + €22tz 20 + C36t3.11
+ coauz,za + (€12 1 €25)912 = plig,
(c14 + cs6)u1 12 + esetia, 11 + C2aU2 22 + Co5u3, 11
+ castiz a2 + (€14 + €25) ¢ 10 = pita,
e11u1,11 + e26u1,22 + {€12 + eos)uz,12 + (E14 + €95)u312

—eng 11 —€nda =0,

(65)

and for electrodes,

! U } 2 I
e11t,11 + Cogtia o2 + (Clo + Chg)un 12 = pliin,
! J 7 I /-
(c12 + Coglu1,12 + Ceglin,11 + Coptiz 20 = plila,

; ; I
Co513,11 + C1q¥3,20 = P Uis. (66)
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For u; and ¢ antisymmetric with respect to the middle

plane of the plate, we let, for quartz (—b,; < z2 < by),

uy = Ay sin(nz)e’ 017,

g = 1 Ag cos(nmy)etlET17wt)

uy = iAs cos(an)ei(é“‘“’t), (67)
¢ = CﬁA{; sin(nwz)ei@“—“’”,
V e
and for electrodes
uy = [A sin(yzq) + B} cos(rf @2)]ei ™18,
ug = 1| A cos(n/zz) F Bhsin(nza)]etE=1—wt),
igws—wt) (68)

ug = #[A} cos(n'z2) F Bisin{n'za)le

where the upper and lower signs are for the upper and
lower electrodes, respectively.
Upon substituting (67) into {65), we have:

4
ST Qi X, Y)4; =10,

iaj:lr"'!4-a (69)
=1
where
Q= - X Y3,
Qo = Q% — X% — 722772,
Qaz = B — G5 X% — TagV?,
Qu =& X* + Y7,
Q2 = Qo = (14 C12) XY, (70)
Q13 = Q31 = (14 + C56) XY,
Q23 = Qa2 = o6 X° — CaaY?,
Qua=Qu = -8 X% — &Y,
Q214 = Qua = (E12 + E26) XY,
Q34 = Qus = (B14 + E25) XY,
and
w 2 2
= = —£b,, Y = “nb,,
T Cﬁﬁ 1rg v ‘.’l'n v
2b, (71)
Cpg = i)éi;p — _ﬂ_’gij — ei
Cces /Ce6€22 €22
The vanishing of the determinant

gives a fourth-order polynomial equation of ¥2. For given
frequency 2 and wave number X, (72) yields four roots,
Yi or i, k= 1,-.- ;4. Thus, the general solution for the

displacement and potential in the quartz are, for —b; <
T << bq:

4
up = Z(Ilej sin(nsz)g"(ffl—wt),
J=1
uz = ZZ ijngj Cos(njﬂ'}z)e'i(ﬁml*“’t):
j=1 .
4 (73)
uz = @Z or3; A; COS(ﬂjmz)ei(le_W),
J=1
b= [ Cob ZQ4JA sin ?735’32) eil€zs wt)
where ay; satisfy:
4
ZQik(QyX,Yj)akj =0, ¢j=1,---,4.
k=1 ’ (74)

Similarly, for the electrodes, substitution of (68) into
(66) leads to:

ZQH(Q X, YA, = ZQ {2, X,Y)B] =0,

s=1 (75)
where r = 1,2, 3, and
’ 7E92k—r X?f-a’ Yt2
Q= P €11 Cost T,
' p’ 2 _ X2 YIQ
@y = ;Q Coa X~ — Chn
o (76)
Qs = ;QZ — G X — B Y,
Qla = Q= (hy + ) XY,
Q’n = Qéa = Q’23 = ng =0,
and
' 2 ’ =/ C;’Q
=—7b = =, 77
Y —1bg,  Cpg o (77)
The vanishing of the determinant
det[@., (2, X, Y] = 0, {(78)

gives a third-order polynomial equation of ¥™2. For given
frequency Q and wave number X, (78) yields three roots,
Y, or ., s = 1,2,3. Thus, the general solution for the
displacement in the electrodes are:

3
U= Ealls (A sin{n,z2) + B, cos(n,xz2)] HEm—wt)

s=1
1(5:’51 —wt) ,

g =1 Z 0423
(79)

s = 3 e[ A conlr2) % B sinfza)ei6ei—0,

g=1

" cos(ihze) F B sm{'r)gasg)}
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where aj, satisfy:
3
ZQﬂ (Q,X,Yoj, =0, rs=1,2,3 - (80)

The continuity conditions at the interfaces of the quartz
and electrodes are

ui(mg = :I:bj) =ufzy =xb;), i=1,2,3,
. Tp(ﬂfg = ib:) = TP(CCQ = ib;), r= 2,4, 6, (81)
and the traction-free and shorted-face conditions are
T, (ze = £b) =0, p=2,4,6,
) (T2 ) P (82)
gb(:E-g = :i:bq) =0

Substitution of (73) and (79) intc (63) and (64}, respec-
tively, and then into (81) and (82} leads to a system of 10
simultaneous algebraic equations, which can be written as

N

M4 @) MTT() 0 ],

MTY (b)) M7 (b) =M, | [} _ g

=M (bg) ~M*H(bg) M*A(by) | \'s | gy
0 0 M#4 (b, }

where A’ B, and A are vectors with components A}, B,
and A;, respectively, s =1,2,3,5=1,2,3,4, and

M (22) = 3, sin{nza),
M (22) = o), sin(n)z2),

M3 (@2) = By, sin(niaa),
MPA (25) = oy, cos(1ixs),
M (22) = fiy cos(n, )
M3 (w2) = oy, cos(ns
MEF (w2) = B, cos(r, )
MEF (25) = alscos( xa),
M3 (w2) = By, cos(ras),
M3E (22) = —ab, Sln(mﬂz) (84)
M.)?;B (x2) = =834, sin{n)z),
M3F (22) = —ay, sin(n)z2),
M’TA(xg) = B, bm(njzg)
J\J1 Algy) = 1; sin{m;za),
3" (@2) = Baj Sm(nﬂz)
A/IQA(.EQ) = az; cos(1;72),
5 (2 ﬁ COS(ﬂﬂz)
M%A(Ez) = a; cos(7;22),
M () = SlH(Wz),
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and
! = ’ — r ’
Bis = B0 X — Byparg, Y,
! PN YY)
!823 = _L44a3<:y
1)
Bss = Cssalsy ast)

Py = Corv1; X — Tapoen; Yy — Cogara; Y + Er200; X

'(85)

Baoj = Eqroj X — Caa0ep; Yy — Caaia; Yy + 8ra0u; X,

ﬂgj = EGG(CEUYJ' — CYQJ‘X) — Eﬁ5a3jX 4+ égﬁﬂ!;;ij.

The vanishing of the determinant of the coefficient ma-
trix in (83) gives the dispersion relations of the antisym-
metric waves in an infinite plate of AT-cut quartz with two
identical electrodes:

D(Q, X) = 0. (86)

For simple thickness modes (i.e., u; and ¢ are functions
of x5 and t only), the governing equations for ©; and ¢ are
uncoupled from s and uz in (65) and (66), from which
the frequency equation for antisymmetric simple thickness-
shear modes is obtained:

[(1 + &54) Chy cos (Cby) — e3g sin (¢by)] cos (2¢'be)
— gl by sin {Chy) sin (2¢'b,) = 0,

(87)
where
[ , [
(=w ool ¥ 25} ¢ =w\/%- (88)
We note that (87) reduces to:
(1 + €36)Cby cos(Chy) — E268in(Chy) =0, (89)

for plates without electrodes (b, = 0), and furthermore to:

cos (wbq i) =0,
€66

for plates without piezoelectric effect {e¢ = 0). The lowest
frequency from (90) is:

(90)

T /ces
wp = s

2b {91)

which is the cut-off frequency used for normalization in
{49).
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