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Extensional, Thickness-Stretch and Symmetric
Thickness-Shear Vibrations of |

Piezoceramic Disks
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Abstract—A set of two-dimensional (2-D), second-order
approximate equations for extensional, thickness-stretch
and symmetric thickness-shear vibrations of piezoelectric
ceramic plates with electroded faces is extracted from the
infinite system of 2-D equations deduced previously. The
new truncation procedure developed recently is used for
it improves the accuracy of calculated dispersion curves.
Closed-form solutions are obtained for free vibrations of
circular disks of barium titanate, Dispersion curves cal-
culated from the present approximate 2-D equations are
compared with those obtained from the 3-D equations, and
the predicted resonance frequencies are compared with ex-
perimental data. Both comparisons show good agreement
without any corrections, The frequencies of the edge modes
calculated from the present 2-D equations are very close
to the experimental data. Furthermore, mode shapes at
various frequencies are calculated in order to identify the
frequency segments of the spectrum at which one of the
coupled modes—i.e., the radial extension (R), edge mode
(Eg), thickness-stretch (TSt), and symmetric thickness-
shear (s.TSh)—is predominant.

I. INTRODUCTION

N A PREVIOUS paper [1], an infinite system of two-

dimensional (2-D) equations for piezoelectric crystal
plates with electroded faces was derived. The approximate
first-order equations extracted from the infinite system
were shown to give very accurate dispersion curves and fre-
quency spectra for the vibrations of thickness-shear, flex-
ural, and face-shear modes varying in the ; direction and
thickness-twist and face-shear modes varying in the xg di-
rection in rectangular AT-cut guartz plates. In a recent
paper [2], an infinite system of 2-D equations for plates
with charge-free faces was similarly obtained. The approx-
imate second-order equatious, extracted by a new trun-
cation procedure, were shown to give very accurate dis-
persion curves and, consequently, very accurate frequency
spectrum for the extensional, thickness-stretch and sym-
metric thickness-shear vibrations of piezoelectric crystal
strips [2]. Free vibrations of piezoelectric ceramic ackuators
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had been analyzed by Yu [3] using a system of second-order
2-> equations of extensional motion.

In the present paper, a set of second-order governing
equations for piezoelectric crystal plates with electroded
faces is obtained from the infinite system of 2-D equa-
tions in [1] by the new trumcation procedure developed
in [2]. Closed-form solutions are obtained for the exten-
sional, thickness-stretch, and symmetric thickness-shear
vibrations of circular disks of piezoelectric ceramics. Dis-
persion curves computed from the present 2-D equations
for barium titanate {BaTiOj) disks are compared with
those from the 3-D equations, and predicted resonance
frequencies are compared with the experimental data of
Shaw [4].

Special attention is given to the edge mode, which was
first discovered experimentally by Shaw [4] then investi-
gated by Gazis and Mindlin [5]. The theoretical frequency
spectrum in [5] was compared with Shaw's [4] experimental
results with very good general agreement, except that the
theoretical frequencies of the edge modes are lower than
the experimental data by about 12%. From the present 2-
D equations, the predicted frequencics of the edge modes
agree closely with the experimental data, with the discrep-
ancy less than 3%, and without using any correction fac-
tors. In many previous approximate 2-ID equations, such
as that in Gazis and Mindlin [5], correction factors were
usually introduced in order to improve the accuracy of
predicted dispersion relations of vibrations of the plate.

Mode shapes of the circular disks of BaTiOg are com-
puted to determine the patterns of vibrations. The cal-
culated displacement patterns of the extensional modes,
edge modes, and thickness-stretch modes are compared
with Shaw’s [4] observations. The symmetric thickness-
shear mode, which was not observed in Shaw’s [4] exper-
iments for thick BaTiOgs disks, is shown to exist in the
frequency spectrum for thin disks with large diameter-to-
thickness ratios.

I[I. Two-DIMENSIONAL EQUATIONS

For the system of 2-D governing equations of piezoelec-
tric crystal plates in {1], the thickness coordinate was des-
ignated by z. In this paper, we consider piezoelectric ce-
ramic plates, for which the thickness coordinate is in the
peling direction of the ceramics and is designated by z3, as
shown in Fig. 1. After transferring the thickness coordinate

0885-3010/810.00 © 2002 IEEE



1508

X3
Electrode
2b'_!_____
b ! —_——
o T

Piezoelectric ¢

Electrode

X

Fig. 1. A piezoelectric ceramic disk with electroded faces.

from x5 to z3, the 2-D equations in [1] are summarized as
follows.
Series expansion of displacement and electric potential:

ui(mla$25$3:t) = 'uég)(wi:fﬂ?at) T3

n nw
+ Zug a1, %2, £) cos ?(1 - 1),

n=0

¢($172"2: r3, t) = VO(t) + 171 (t)w

+ 36 (1,2, 1) sin (1 - ),

n=0

(1)

where 1) = x3/b and V;, V; are determined by the specified
electric potentials at the electroded faces.
Strain and electric field:

¢+Z [S(”) cos X w)-l-gi(;) sin %(1 - ?f;)],
S (20 g (M) o5 " (1 — (2)
E; = ;[E — )+ B cos (1 - )]
where
(0)
S;-ij = —buy BT
st — : [uﬁj;) + ull? = Son(Baiul) + Baul’))]
(n) _ {n) (1)
S” 4b ((53in +633uz. ),
B = 4P, ©

o) _s (M) < WA
E; da; (2b¢ don — 7 ) .
Field equations:

—Cn pbugoj) ,

(4)

(n) 1 ()
2bT +35

i T (n)
D((l.,&+ %Db’l =0

wheren =0,1,2,---,a=1,2, and

F{™ = Tyilzs = b) — (—1)"Tyj(ma = —b). (5
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Constitutive equations:

2 o0
TH = gcijklsgi + Z
m=0 .
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m=0
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(6)
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_8

n = odd
nig?’

1
nm
cn=/ cos (1~ p)dp=
-1 0 n = even
4
2 n=246,.-
nmw
09, n=01305,-

(M)

1
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1 2

1
Bopn = f sin m(1 — ) cos E(1 — )dy
o 2 2
4dm
=< (m? —nt)x’
0. m+n = even.

m+n = odd

Edge conditions to be specified:

tgo) + btd‘ = T(O) + ijs,m or uf{’) = ﬂgo)
td = ij, or ué v = &éal),,

t = w1,
m (m)
tg ) = Illi'l.7 N

or ul® = 20,
or u(m) = ”gm),
or ) = gom).

where the capped quantities are specified values on edge, s
and v are unit vectors tangential and normal to the edge,
respectively, a = 1,2, m=1,2,3,. .-, and

1
- ] biapedy,
-1

1
t§n) :/ ti cos %(1—1}:)(&[),
-1

(8)

&(m) = ViDi(m),

(9)

1
5 :/ o sin X (1 — )dp,
i 2
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in which ¢; and o are the surface traction and the surface
charge density, respectively.

I1I. SECOND-ORDER EQUATIONS
To extract a finite set of second-order approximate

equations from the infinite system of 2-D equations in the
previous section, we let:

u§”) =0, n > 2 except ugf), “(1 ), ug4),

" —0g n>2,
¢<3) @ _ ) (10)
i =&l = af® =,

79 =70 =20 =0

and disregard Tf;'), T1(") and D™, D(") for n > 2. The
new truncation procedure developed in [2] is used in (10),
where ué , u§4), ugl) are allowed for free development; but

in the previous truncation for second-order equations only
uga) is permitted for free development.

Accordingly, the infinite number of field equations in
(4) reduce to:

i

T+ 3 F = Qpﬁ-ff”’s

(1) (1) 1 _ (1) (0)
Tﬂ i Q—'bT + bF pbugﬁ,

(@ 7(2) (2) _ (2
T — —T F ,

27 b + b u.? ’ (11)
D+ %ng =0,

D+ P8 =0,

wherei,7=1,2,3and a =1, 2.
The mechanical strain-displacement relations and the
electric field-potential relations are obtained from (3). As-

_sociated with the higher order displacements ugﬁ, uf]),
ug ), we have:
=(3 3 3 =(4 27 4 =(4 2 (4)
Sé):-z—[—)-ug), S‘E):Tu’g)' S;E)t—b—ul s
(12)

which can be solved from the constitutive equations (8) by
setting TS(SE'), Téf), T:s(;) to zero, Le.:

1
gL

e

4 12 _

[*gg(%q%m —ewB) + e (3 53 — ek 2))]

~ 1 (1 16 .
50 = - [;%Sg + T (eag S ~ e,c4E,gl))l . (13)
_ 1 [1 16 -
Séq) = e [;059 é“r w—ﬂ(céqsél) - ekﬁEél))} .

Substitution of (13) into the remaining relations of (6)

eliminates S(S) 5',,&4), 5’é4j from the constitutive equations,
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and thus u;(f), u§4), ugé) from the second-order equations.
The modified constitutive equations for second-order equa-
tions are obtained as:

19 =250 - B0 + 5P e BLD)
" S = el B,
70 = 8 524 (s - oDED)
+ %( 5'( - EkaE)),
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- — 1 4 {0
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4 ) =(2
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T =~ 87 + (ea S5 — erp B

8 =(1
+ %(Cpqsr(;l) - eka,E ))a
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= (L- S
Ci(;';') =Cpg— gig cp:::q' (15¢)
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144 Cp3Cag

cl(ﬁ]) = Cpg — 5.2 oo (15g)
o = ery =~ 2, (15h)
o) = o B (150)
o) = sy, 153)
€ — ey g 2, (15%)
e ()
D =i+ g et (15m)
S) = 517?2 el—f:;—g {15n)

The effect of inertial forces of the symmetrically plated
thin electrodes, which have mass density p’ and thickness
25 (0 < b), can be taken into account in the face tractions
in (5) by letting:

F J'(n) - }-J('n)

Fj(n) — J_-J(n)

— b (@ i), forn =02,

. ..(0 -
_ 4bfpr(u;_1) _ ug!}b) forn=1,3,.., (16)

where

}T}”) =Tyi(zs = b+ 20") — (—1)"Ta;(z3 = ~b— 25’%. |
17

Hence, the second-order governing equations for piezo-
electric crystal plates with electroded faces can be obtained
by substituting (16) into (11). For piezoelectric ceramic
plates, constitutive equations (14) are greatly reduced for
the material symmetry of polarized ferroelectric ceramics.
Substitution of these reduced relations into (11) leads to
the second-order governing equations of mechanical dis-
placements and electric potentials:

(91 +c 12 )V(V ‘1’1"))‘|'2Ct36v2 {0 —Clsvu

b
Cll)v(v “(2)) + Eeé?’)vqu + EF(O)

=2(14 R)piid? + 2Rpill”, (18a)
2 4 1
seanV g £ —es Vg 4 LAY
=201+ R)pug°> +2Rpii | (18b)
ci1+c ! 8
11 T ee 5 HV(V-u(l))—i-c Vz ﬁCnvz(V’ugﬂ))
2 w2
+ —(4013 + C55)Vu§2) 10z C55u.(r)
1
25(63.1 +es) Vel 4 bF( )
= (1+2R)pu — (= 8 +2R)pbVEL,  (18¢)
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1
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2613V2U:(30) + 655V2u§,,2) ((_.55 + 4013)V 11(1)
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T 4
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2
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8
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It may be seen that (18) is separated into two coupled
groups: (18a), (18d), (18e), and (18h) govern the sym-
metric vibrations of extensional (ugg)), thickness-stretch
(uél)), and symmetric thickness-shear (ug? ") modes and
potential ¢(2); and (18b), (18c), (18f) and (18g) govern the
antisymmetric vibrations of flexural (u_gm), antisymmetric
thickness-shear (ugf )), and second-order thickness-stretch
(uéz)) modes and potential $(1}. For the remainder of this
paper, the first group of equations will be used to study
the extensional (1), thickness-stretch (TSt) and symmet-
ric thickness-shear (s TSh) vibrations in circular disks of
piezoelectric ceramics.

IV. DISPERSION RELATION

By setting FgP), F:,El),Fg?), and ¥} to zero in (18a),
(18d), {18e¢), and (18h) for free vibrations of ceramic plates
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with traction-free and shorted faces and taking the diver-
gence of (18a) and (18e), we obtain:

(D)) ﬁ

QC(O)VZ(V -u c(3)v2(v . u(z)) + 2013V2u§1)

7; eIV2® =201 + R)pv - il + 2RpV - @2,

2
cé?Vzu&” '6013V u + %(cn + dess )V - u
2 ) k]
) —cgauly + 3¢ 15V
2m
B messdt = (1+2R)pil,
2
Cgi)v2(v . ug?)) (3)V2( -SS)) - %(Cld + 4C55)V2ugl)
2
T
~ eV uf - 5 Z(eD + e15) Vi@

=1 +2R)pV - il + 2RpV - il

—(815 + e(z))'\'? u(z) - Eeﬁ)v . ug)) + 3 g V2u§1)
27
- el —en Vi + 26 0. (20)

For axisymmetric vibrations of circular disks, we let:
1 )
voull = TATo(Er)e™,
u(l) — Azjo{gr)eiwt

21
AVAN (2) EASJO(ET) u..'t ( )
(15(2) — cﬁAqu(g,r}eiwt'
V €33
Upon substituting (21) into (20), we obtain:
4
SoQuXima; =0,  ij=1,234, (22

J=1

where the matrix @5 is given in (23) (see next page) and

=2
I

€
be
f
|m

' 7 !
& fess 35
R 25

2,
Ri=1+R, Ry =1+2R,

P i, = —ckp e = i
" oy kP /Cs5€33 T ey (24)
(n) {n) (ﬂ)
an) - Cpa s . Chp A _ G
P Chp V/Co5€33 T e
For nontrivial solutions, we have
det [Q;(X; )] = 0, (25)

which gives the dispersion relation for E-TSt-s.TSh vibra-
tions of an infinite circular disk of piezoelectric ceramics.

It may be seen that, for a given value of frequency (2,
(25) gives four roots in wave number:

&

2

X; = j=1,23,4. (26)

|=:

o
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Fig. 2. Comparison of dispersion curves for E-TSt-s. TSh vibrations
of a BaTiO3 ceramic disk. Solid lines are from 2-D equations, and
dotted lines are from 3-D equations, for R —= 0.

Dispersion curves are calculated from (25) for BaTiOs
disks with B = 0, and they are shown by solid lines
in Fig. 2. The material properties of BaTiO3 are taken
from [6]. For comparison, dispersion curves also are calcu-
lated from the 3-D equations of linear piezoelectricity for
straight-crested waves in an infinite plate, and they are
shown in Fig. 2 by dotted lines. The complex branch of
the TSt mode is represented by two lines for its real (Re)
and imaginary {Im) parts, respectively. It is seen in Fig. 2
that the dispersion curves calculated from the present 2-D
equations agree closely with those from the 3-D equations.
We note that the new truncation procedure of (2] used in
(10) has made significant improvement in accuracy of the
dispersion curves without resorting to any correction fac-
tors. As it will be shown in Section V, the correct behavior
of the TSt branch, especially in the vicinity of the cut-off
frequency at the nonzero wave number (the intersection
point of the real and complex segments of the TSt branch
in Fig. 2), is crucial for predieting the correct frequencies
of the edge modes. Similar observations was given in [5].

V. FREQUENCY SPECTRUM

For the general solution of a finite disk, all four rcots of
{25) are needed in order to satisfy edge conditions. Hence,
we let, for axisymmetric vibrations:

4
1 .
V- llgg) = E Z alijJU(EjT‘)Bzwt, (27&)
=1
4 .
ugl) = Zaszon(fj?')Endt, (27b)

j=1
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aR, 02 - 220 x2 —26,X? 2RO? + Y X miy X
—2y (R0 )X d)  2Eetd)  —F(EsXP+ i) (23)
2ROZ + &0 X2 B+ XD R -] X7 -4 (e 4 o)X
—& —2(&15X7 + 33) é15 + e( : Z(gMX? +42)
@ 1 4 ot where
Veup = D s By do(gm)e™”, (27¢) . 3 3
=1 M; = (25&1)0113- + 2813005 — 5&1)0533‘ + ‘*‘Tégl)a‘lj) Jo(§;a)
C
¢(2) = 55 ZO{4JB ]D(fjr)e“"t - 4666051_1 l(fj ) 3
V €33 5 (27d)

where B, 7 = 1,2, 3,4 are the amplitudes to be determined
from edge conditions and a; satisfy:

4
3 Que(X;Man; =0, i,5=1,23,4.
k=1 (28)
The components of displacement u( ) and ug) are ob-
tained by integrating (27a} and (27c¢):
4
Z ']1 53,?‘) zwt
! ; (29)
%("2) - Zaaij 1(§m) gt
=1 &b

Edge conditions for circular disks are obtained by trans-
forming (8) from Cartesian coordinates to cylindrical co-
ordinates. Accordingly, for the second-order equations and
axisymmetric vibrations of circular disks, the traction-free
and charge-free edge conditions are

0 =@ =D =5 =0, atr—a, (30)
where a is the radius of the disk, and
5 (0)
t,(.?,) =2 (cgg)v . u( 4+ 2cee :; - rll}V uT?)
DT @V
+ bClW( 3631)(;5(2) +2ey; 3
B (2)
t(?) _ C(Q)v u(z) + 2cg6 Z’)T _ C(ﬁ)V' 59)
2 T (2 3 Vi 31
- %Clsug ) — el )¢(2) (1)7: (1)
: (2
m _ (1)3u3 E g, 8 0
b 3 3y + 38 Ur + 37 o
(1) (2)
s _ T, o, 8 Qw09
7 bewur + 378 or e or
By substituting (27) and (29) into (30), we obtain:
4
Z =0, i=1,2734, (32)

. - 2.
My = ((,(121)&33 6(131)(113' — 5013025 — 71'531 0543) JD(EJQ')

3
- 2gon; 2, (33)
Msj = @5&15)042;')(}! - %033' + %éw%iXJ?) Jlg(fja)
My = (73%(?15(12;,')(? +énag X; + %«‘5150133‘) %f).

The vanishing of the determinant of the coefficient ma-
trix M;; of (32) gives the frequency equation for the E-
TSt-5.T'Sh vibrations of circular disks of piczoelectric ce-
ramics, i.e.:

F (Q %) = det[M;;] = 0. (34)

The resonance frequencies of the first 11 modes for
BaTiOs disks with the diameter-to-thickness ratio {a/b)
up to 20 are numerically calculated from {34) and plotted
as solid lines in Fig. 3. The experimental data of Shaw [4],
which arc extracted from Fig. 10 of [4] and converted to
the dimensionless frequency €2, defined in (24), by using
the shear-wave velocity [5]:

vz = Cj: 2690 m/sec,

(35)
arc plotted as dots in Fig. 3 for comparison.

Fig. 3 shows very good general agreement between the
experimental data and the theoretical results, including
the frequencies of edge modes. In [5] the theoretical fre-
quency of edge modes is lower than the experimental value
by about 12%; the discrepancy in Fig. 3 is less than 3%. As
discussed in [5], the most likely cause of the discrepancy
seems to be that the details of the complex segments of the
dispersion curves become important in the neighborhood
of the frequency of the edge modes. As shown in Fig. 2, the
imaginary part of the complex segments calculated from
the present 2-D equations agrees very closely with that
from the 3-D equations, and the agrecment between the
real parts is only fair. Nevertheless, the overall agreement
is better than the 2-D theory in [5], thus the present 2-D
equations provide closer prediction in the frequency of the
edge mode.
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Frequency Q

0 5 10 15 20
Diameter-to-thickness Ratio a/b

Fig. 3. Frequency §2 vs. diameter-to-thickness ratio a/b of BaTiOg
disks. Solid lines are predicted from the 2-D equations, and the solid
dots are experimental data of Shaw,
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Fig. 4. Distribution of displacements along a diameter of a BaTiO3
disk with a/b = 5.76 at frequencies correspending to points A, B,
and C in Fig. 3.
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Fig. 5. Distribution of displacements along a diameter of BaTiO3
disks for the edge modes Fg-2, Eg-4, and Eg-6 at frequencies corre-
sponding to points D, E, and F in'Fig. 3.

In order to understand the patterns of vibrations at var-
ious locations of the spectrum in Fig. 3, mode shapes at
resonance frequencies are calculated from (27) and (29)
by obtaining the amplitude ratios of B; from (32). Fig. 4
shows the distribution of relative displacements along a
diameter of a circular disk of BaTiQ3 with a/b = 5.76 at
frequencies corresponding to the points A, B, and C in
Fig. 3. Fig. 4 shows the radial displacement ut? i pre-
dominant at 2 = 0.379. As 2 increasing, the amplitude of

the thickness-stretch displacement ugl)

increases and be-
comes greater than that of ut” at Q = 1.370. Therefore,
the segments of the first three frequency branches at low
frequency and large a/b ratio in Fig. 3 are identified as
predominantly radial extensional modes R-1, R-3, and R-
5, in which the integers denote the number of nodes of u”
across the diameter of the disk.

Fig. 5 shows the distribution of relative displacements
at {2 & 1.5 for disks with a/b = 2.55, 4.06, and 5.76, corre-
sponding to the points D, E, and F in Fig. 3, respectively.
We see in Fig. 5 that ugl) is predominant and has large am-
plitude at the edge of the disks. Hence, they are the edge
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disk with a/b = 5.76 for the fundamental thickness-stretch mode
TSt-1 and its third anharmonic overtone TSt-3 at frequencies corre-
sponding to points G and H in Fig. 3.
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Fig. 7. Distribution of displacements along a diameter of a BaTiOgz
disk with a/b = 11.3 for the TSt-1 and TS5t-3 modes at frequencies
corresponding to points I and J in Fig. 3.
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Fig. 8. (a) Frequency spectrum of BaTiOj disks for 20 < a/b <
30 and 1.9 < © < 2.1; {b} Distribution of displacements for the
symmetric thickness-shear mode 5. TSh-2 corresponding to the point
K in (a).

modes of thickness-stretch deformation ugl) and denoted

by Eg-2, Eg-4, Eg-6 in Figs. 3 and 5, where the integers
denote the number of nodes of ugl)

Usually, the terrace-like structure in a frequency spec-
trum begins at the frequency near the cut-off frequency
of the corresponding mode. In Fig. 3, we see that the
terrace-like structure starts near {2 = 1.75, which is the
cut-off frequency of the TSt mode at nonzero wave num-
ber as shown in Fig. 2. Displacements of the fundamental
thickness-stretch mode (TSt-1) and its third anharmonic
overtone (TSt-3) of a disk with e/b = 5.76 at frequencies
indicated by points G and H in Fig. 3 are shown in Fig. 6.
Similar plot is given in Fig. 7 for a disk with a/b = 11.3
at frequencies corresponding to points I and J in Fig. 3.
By comparing the mode shapes in Figs. 6 and 7, it is seen

across the diameter.

that, for the thinner disk, the coupling of ugl) with other
displacement compenents is stronger, and the mode iden-
tification becomes less certain. The distributions of ug”
shown in Figs. 4, 5, and 6 corresponding to the points B,
C, D, E. F. G, and H are compared with Shaw’s measured
ones [4] with close agreement.

It is interesting to note that, in Fig. 3, there is no
additional terrace-like structure for TSt mode near its
cut-off frequency at zero wave number, 2 ~ 1.85 (see
Fig. 2). However, a terrace-like structure corresponding
to the 5. TSh mode does exist near its cut-off frequency at
zero wave number, 3 = 2 (see Fig. 2), but it is outside
the range of a/b in Fig. 3. The portion of the spectrum
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that includes the terrace structure for the s.TSh mode is
shown in Fig. 8(a), and the mode shape corresponding to
the point K in Fig. 8(a) is given in Fig. 8(b). In Fig. 8(b),
the predominant mode is u&z) and denoted by s.TSh-2.

V1. CONCLUSIONS

The newly extracted second-order 2-D equations for ex-
tensional, thickness-stretch and symmetric thickness-shear
vibrations of piezoelectric ceramic plates with electroded
faces are shown to give accurate dispersion relations with-
out any corrections as they are compared with those from
the 3-D equations. Predicted resonance frequencies of cir-
cular disks of BaTiOj3 agree closely with the experimental
data of Shaw [4], including the frequencies of the edge
modes. By examining the mode shapes at various frequen-
cies and a/b ratios, predominant modes are identified at
various segments of the frequency branches of the spec-
trum.

(1]

[5]

[6]
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