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Fiber-based materials are prevalent in nature and in engineering applications. Microscopically, these
materials resemble a discrete assembly of crosslinked or entangled fibers. To understand the relationship
between the effective mechanical properties and the underlying microstructures, we consider a variety of
periodic and random two-dimensional (2D) networks of crosslinked long fibers. The linearly elastic prop-
erties of periodic 2D networks (e.g., square, triangular and Kagome) are well understood. However, for
low-density networks, cooperative buckling of the fiber segments can take place at small strains, leading
to nonlinear, anisotropic elastic behaviors. A transition from stretch to bending and then back to stretch
dominated deformation is predicted for the Kagome and triangular networks. For random 2D networks,
the elastic behaviors are different. Under uniaxial tension, the stress–strain behavior is statistically iso-
tropic and slightly nonlinear, dominated by stretch of the fibers aligned closely to the loading direction.
Meanwhile, stochastic buckling occurs continuously in the random networks, leading to significant lat-
eral contraction. Consequently, while the effective Young’s modulus follows a nearly linear scaling with
respect to the relative density, the effective Poisson’s ratio exhibits a transition from stretch to bending
dominated mode as the relative density decreases. A statistical analysis is performed to estimate the rel-
ative errors of the effective properties that depend on both the computational box size and the number of
random realizations. The comparison between the periodic and random 2D networks highlights the pro-
found effects of the network topology on the effective elastic properties.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Fiber-based materials are prevalent both in nature and in
engineering applications. As an example, fibrous extracellular
matrices (ECM) consist of three-dimensional (3D) collagen net-
works with long-range force transmission and peculiar mechani-
cal properties enabling a variety of cell interactions (Abhilash
et al., 2014; Wang et al., 2014; Hall et al., 2016; Ban et al.,
2018; Ban et al., 2019). Paper is another example made from nat-
ural materials and has long been considered as a random fiber
network with anisotropic elastic properties due to process-
dependent fiber orientations (Cox, 1952; Ostoja-Starzewski and
Stahl, 2000). A recent development of nanopaper made of
nano-fibrillated cellulose networks with fiber diameters down
to 11 nm has demonstrated excellent mechanical properties in
both strength and toughness (Zhu et al., 2015; Meng and
Wang, 2019). Carbon nanotubes (CNTs), nanofibers and nano-
wires have also been used to make network materials such as
fabrics (Smith et al., 2010; Holmberg et al., 2012) and aerogels
(Jung et al., 2012; Jung et al., 2014; Wu et al., 2018; Yu et al.,
2019). Besides random fiber networks, periodic network struc-
tures have recently emerged as lattice or cellular materials that
may be hierarchically architected to achieve lightweight, flaw-
tolerant, and ultrastrong properties (Fleck et al., 2010; Meza
et al., 2014; Meza et al, 2015; Schwaiger et al., 2019; Xia et al.,
2019; Zhang et al., 2019).

To understand the relationship between the effective mechan-
ical properties and the underlying microstructures for the random
or periodic fiber networks, both 2D and 3D network models have
been developed (Fleck et al., 2010; Picu, 2011; Broedersz and
MacKintosh, 2014; Merson and Picu, 2020). The linearly elastic
properties under infinitesimal strain have been predicted analyti-
cally for a variety of periodic networks (Christensen, 2000;
Ostoja-Starzewski, 2002; Romijn and Fleck, 2007). For the random
fiber networks, different scaling relations have been found
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between the effective elastic moduli and network parameters
(Cox, 1952; Wu and Dzenis, 2005; Broedersz et al., 2012;
Shahsavari and Picu, 2012; Shahsavari and Picu, 2013; Ban et al.,
2016), depending on the network topology. In particular, a transi-
tion from stretch dominated (affine) deformation to bending dom-
inated (non-affine) deformation has been predicted for random
networks as the relative density decreases. Beyond small-strain
linear elasticity, it has been found that the random fiber networks
typically stiffen at large strains (Onck et al., 2005; Huisman et al.,
2007; Broedersz et al., 2008; Islam and Picu, 2018). Moreover,
inelastic mechanical properties such as strength and toughness
have also been simulated in some network models (Romijn and
Fleck, 2007; Åström et al., 2008; Koh and Oyen, 2012;
Kulachenko and Uesaka, 2012; Sozumert et al., 2020). In this study,
we focus on the linear and nonlinear elastic properties of low-
density 2D networks of crosslinked long fibers. As illustrated in
Fig. 1, the long fibers may form a variety of periodic lattices, each
with a characteristic length for the unit cell. Alternatively, for a
random network of long fibers (Fig. 1d), statistically representative
Fig. 1. Periodic and random 2D networks: (a) square network; (b) triangular network; (c
show unit cells for the periodic networks with a segment length L. (For interpretation of t
of this article.)

2

elements may be used to simulate the effective mechanical prop-
erties. Unlike most of the previous works on random fiber net-
works, we assume that the fiber lengths are greater than the size
of the statistically representative element so that fibers have no
dangling ends within the element. This assumption eliminates
the fiber length as one of the network parameters so that the fiber
segment length(s) and diameter become the most relevant, which
is also the case for the periodic networks in Fig. 1 (a–c). As a result,
the effective elastic properties of these 2D networks depend pri-
marily on the relative density and the network topology. In the
remainder of this paper, we first present analytical and numerical
results for the periodic 2D networks (Section 2), comparing the
square, triangular and Kagome networks in both the linear and
nonlinear regimes. Then, random 2D networks are considered in
Section 3 including a statistical analysis of the network parameters
and elastic properties. A comparison between the periodic and
random 2D networks illustrates the profound effects of network
topology (random versus periodic) on the elastic properties, as
summarized in Section 4.
) Kagome network; (d) random network (with all joints marked as red dots). Insets
he references to color in this figure legend, the reader is referred to the web version
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2. Periodic 2D networks

2.1. Linearly elastic properties

A periodic 2D network has two relevant length scales: the fiber
diameter d and the segment length L, as illustrated in Fig. 1 (a-c).
The relative density of the periodic 2D network can be written as:

q ¼ Ad
L

ð1Þ

where A is a constant depending on the network topology and the
cross section of the fibers. Table 1 lists the values of A for periodic
networks consisting of fibers with a circular cross section, which
are different from those for a rectangular cross section in Romijn
and Fleck (2007).

Assuming linear elasticity for the fiber material and rigid
(welded) joints between the fibers, the effective in-plane elastic
moduli of the periodic 2D networks depend on the relative density
and can be predicted as (Romijn and Fleck, 2007):

Eeff ¼ BqbEf ð2Þ

Geff ¼ CqcEf ð3Þ
where Eeff is the effective Young’s modulus and Geff is the effective
shear modulus, both proportional to Ef , Young’s modulus of the
fiber material; B, C, b and c are constants depending on the network
topology (see Table 1). In addition, the effective in-plane Poisson’s
ratio (t12) is independent of the relative density but depends on
the network topology as listed in Table 1.

According to Table 1, the square network is highly anisotropic
with different scaling for the effective Young’s modulus (b = 1)
and shear modulus (c = 3), while the triangular and Kagome net-
works are isotropic (b = c = 1) with a Poisson’s ratio of 1/3. Evi-
dently, the cubic scaling (c = 3) for the effective shear modulus of
the square network indicates the bending dominated deformation
of the fibers under shear, whereas the linear scaling for the effec-
tive Young’s modulus (b = 1) indicates the stretch dominated fiber
deformation under uniaxial stresses; the linear scaling for both
moduli of the triangular and Kagome networks indicates stretch
dominated fiber deformation in both loading modes. It should be
noted that the analytical predictions are applicable only under
infinitesimal strains. Notably, for the triangular and Kagome net-
works, the linear scaling of the effective moduli persists at low
density (q� 1), with no transition to the bending dominated
behavior as predicted for the random networks (Wu and Dzenis,
2005; Broedersz et al., 2012; Shahsavari and Picu, 2012; Ban
et al., 2016).

For the triangular and Kagome networks (Fig. 1, b and c), the
effective in-plane stress–strain relation in the linear regime can
be written in a matrix form as:

r11

r22

r12

0
B@

1
CA ¼

C11 C12 0
C21 C22 0
0 0 C33

2
64

3
75

e11
e22
e12

0
B@

1
CA ð4Þ
Table 1
Parameters for the effective properties of periodic 2D networks.

Square Triangular Kagome

A p=2 ffiffiffi
3

p
p=2

ffiffiffi
3

p
p=4

B 1=2 1=3 1=3
b 1 1 1
C 3=ð32p2Þ 1/8 1/8
c 3 1 1
m12 0 1/3 1/3

3

where C11 ¼ C22 ¼ 9
8Eeff , C33 ¼ 2Geff , and C12 ¼ C21 ¼ 3

8 Eeff . It can be
shown that the effective Young’s modulus and Poisson’s ratio of a
triangular/Kagome network are independent of the loading direc-
tion under uniaxial stresses.

For a square network (Fig. 1a), we have: C11 ¼ C22 ¼ Eeff ,
C33 ¼ 2Geff , and C12 ¼ C21 ¼ 0 in Eq. (4). Thus, the effective 2D stiff-
ness of a square network is anisotropic with the symmetry of a
square lattice (orthotropic). In this case, the effective Young’s mod-
ulus and Poisson’s ratio depend on the loading direction under uni-
axial stress. By considering a square network subject to uniaxial
stress in an arbitrary direction h (the angle between the loading
direction and the fibers; Fig. 2), we obtain the effective Young’s
modulus as a function of h as

Eh ¼ Eeff 1þ g� 2ð Þsin2hcos2h
h i�1

ð5Þ

where g ¼ Eeff
Geff

¼ 8q�2. Interestingly, if g ¼ 2, the effective Young’s

modulus becomes isotropic! This however requires an unrealisti-
cally high relative density, q ¼ 2. Typically, with q� 1, we have
g � 1 and thus the effective Young’s modulus is highly anisotropic
(see Fig. 2a). While the maximum effective modulus is Eeff for

h ¼ 0 and 90
�
(parallel to the fibers), the minimum modulus is at

h ¼ 45
�
, with Emin ¼ 4Eeff 2þ g½ ��1 � 4Geff , where the approximation

is made for g � 2. Therefore, the maximum and minimum Young’s
moduli have different scaling relations with the relative density:
Eeff � q (stretch dominated fiber deformation) and Emin � q3

(bending dominated fiber deformation). A transition from the linear
scaling to the cubic scaling for the Young’s modulus is thus pre-
dicted for the square network as the loading direction changes.
With q � 1 for low density square networks, the difference
between the minimum and maximum Young’s moduli could be sev-
eral orders of magnitude (Fig. 2a).

Similarly, the effective Poisson’s ratio of a square network can
be obtained as a function of h as

mh ¼ g� 2ð Þsin22h

4þ g� 2ð Þsin22h
ð6Þ

which is zero for h ¼ 0 and 90
�
but is approximately 1 for h ¼ 45

�
,

for a low-density square network (q � 1) as shown in Fig. 2b. The
large Poisson’s ratio (mh � 1) again indicates bending dominated
fiber deformation.

2.2. Nonlinear elastic properties

Numerical simulations were conducted using the commercial
finite element package ABAQUS to simulate the nonlinearly elastic
behavior of the periodic 2D networks under uniaxial stresses. The
fibers were modeled using the Timoshenko beam elements (B22)
with nonlinear geometry for finite strain, and the joints were
assumed to be rigid (welded). The fiber material was assumed to
be isotropic and linearly elastic in terms of the Cauchy stress and
the logarithmic strain, with Young’s Modulus Ef and Poisson’s ratio
mf . Periodic boundary conditions were assumed for the unit cells
(Fig. 1, a-c), and only the in-plane deformation is considered for
the present study. The effective stress for the network was calcu-
lated with respect to a rectangular cross section area with a thick-
ness equal to the fiber diameter.

First, for the square networks under uniaxial tension parallel to
the fiber directions (h ¼ 0 and 90

�
), geometric nonlinearity leads

to slightly nonlinear behavior (in terms of the nominal stress and
nominal strain) when the axial strain is relatively large (e.g.,
e > 0.05), as shown in Fig. 3a. Recall that the fiber material was
assumed to be linearly elastic in terms of the Cauchy stress and
the logarithmic strain, but nonlinear in terms of the nominal stress



Fig. 2. Effective Young’s modulus (a) and Poisson’s ratio (b) of square networks (with different relative densities) versus the direction of uniaxial tension.

Fig. 3. Nonlinear elastic behavior of square networks: (a) under uniaxial tension (h ¼ 0 or 90
�
); (b) under uniaxial compression (h ¼ 90

�
); inset shows cooperative buckling of

fibers. (c) Under uniaxial tension with h ¼ 45
�
, and (d) under uniaxial compression with h ¼ 45

�
; insets show deformation of fibers with color contours for the strain energy

density distributions.
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and nominal strain (shown as the solid line in Fig. 3a). In this case,
the nonlinear elastic properties of the square network follow the
same scaling as the effective Young’s modulus, i.e., linearly propor-
tional to the relative density. In contrast, under uniaxial compres-
sion, buckling of the fiber segments leads to more significant
nonlinearity, as shown in Fig. 3b, where the critical strain for onset
of buckling depends on the relative density. Therefore, the elastic
behaviors of the square network under tension and compression
4

are drastically different in the nonlinear regime. Remarkably, while
the Poisson’s ratio remains zero under tension (h ¼ 0 and 90

�
), the

cooperative buckling pattern (see inset in Fig. 3b) suggests a nega-
tive Poisson’s ratio under compression in the nonlinear regime.
Moreover, the nonlinear elastic behavior of the square networks
also depends on the loading direction (Fernandes et al., 2021). As
shown in Fig. 3c, where the stress is normalized by the effective
Young’s modulus for h ¼ 45

�
in Eq. (5), the square networks stiffen
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significantly with the increasing strain under uniaxial tension in
the direction of h ¼ 45

�
, signaling a transition from bending to

stretch dominated fiber deformation as the fibers rotate toward
the loading direction. Under compression, the fibers rotate toward
the transverse direction, leading to a softening behavior, as shown
in Fig. 3d. We note that long-wave buckling modes are possible in
the periodic networks under compression (Gong et al., 2005;
Fernandes et al., 2021), whereas the present study focuses on the
cases of uniaxial tension and no long-wave modes were observed
in our simulations.

Next, for the triangular and Kagome networks (Fig. 1, b and c),
while the effective elastic properties are isotropic in the linear
regime, it is found that their nonlinear elastic behaviors are highly
anisotropic. Fig. 4 shows the effective stress–strain and strain-
strain diagrams for the Kagome networks under uniaxial tension
in the two perpendicular directions, i.e., the x and y directions (hor-
izontal and vertical in Fig. 1); similar results were obtained for the
triangular networks (not shown).When stretched in the x direction,
the load is carried primarily by the fibers parallel to the x direction,
and the stress–strain behavior (Fig. 4a) is slightly nonlinear, similar
to that of the square networks (Fig. 3a), but the Poisson’s ratio is
different as shown in Fig. 4b. The Poisson’s ratio is 1/3 for the tri-
angular and Kagome networks in the linear regime but becomes
slightly larger in the nonlinear regime (due to bending of fibers).
In contrast, very different nonlinear elastic behaviors are predicted
for the Kagome/triangular networks under uniaxial tension in the y
direction. The effective stress–strain diagrams (Fig. 4c) are initially
linear but become much more compliant beyond a small critical
strain that depends on the relative density. Subsequently, the
Fig. 4. Effective stress–strain diagrams and lateral strains of Kagome networks under un
insets in (a) and (c) show the directions of uniaxial tension with respect to the Kagome

5

stress–strain diagram stiffens and the tangent modulus approaches
the initial modulus at relatively large strains. Meanwhile, the lat-
eral strain undergoes a similar transition from the initial Poisson’s
effect in the linear regime to much larger lateral contractions in the
nonlinear regime (Fig. 4d). In this case, the transition from linear to
nonlinear behavior is a result of buckling of the fibers in the lateral
direction. Fig. 5 shows the deformation patterns of a Kagome net-
work before and after buckling. Evidently, the lateral buckling
effectively reduces the axial stiffness in the y-direction and
increases the lateral contraction of the Kagome network. We note
that the stress–strain behaviors in Fig. 4 are independent of the
computational box size and no long-wave modes were observed
in our simulations of uniaxial tension (from a single unit cell to a
maximum of 50 by 50 unit cells). In contrast, long-wave buckling
modes are possible in the periodic networks under compression
(Gong et al., 2005; Fernandes et al., 2021).

The critical strain for the onset of lateral buckling under uniax-
ial tension in the y-direction can be predicted for both the Kagome
and triangular networks. Before buckling, the initial Poisson’s
effect with an effective Poisson’s ratio of 1/3 leads to compression
of the fibers in the lateral direction. Following the classical Euler
buckling analysis, the critical lateral strain for onset of buckling
can be written as

�xc ¼ p2d2

16 KLð Þ2
¼ p2q2

16A2K2 ð7Þ

where K is a constant depending on the boundary conditions for
each fiber segment in the lateral direction. The corresponding crit-
ical strain in the y direction is:
iaxial tension: (a-b) tension in the x direction; (c-d) tension in the y direction. The
network.



Fig. 5. Deformation patterns of a Kagome network (q ¼ 0:118) under uniaxial tension in the y-direction: (a) before buckling (regime I, �y ¼ 3%); (b) after buckling (regime II,
�y ¼ 10%); (c) fibers are either nearly aligned or collapsed (regime III, �y ¼ 25%). The color scale shows the strain energy density distribution.
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�yc ¼ 3�xc ¼ b
q2

K2 ð8Þ

where b ¼ 1 for the Kagome networks and b ¼ 1=4 for the triangu-
lar networks. With the same relative density, the aspect ratio of
each fiber segment in a Kagome network is half of that in a triangu-
lar network. As a result, the critical strain is expected to be higher
for the Kagome networks.

Although the joints between the fibers are assumed to be rigid
(welded), the joining fibers may rotate together without changing
the relative angles at the joints, and thus rotation at the joints is
not fully constrained for each fiber segment. Consequently, the
constant K in Eq. (8) takes a value between 0.5 for the fully fixed
(no rotation) condition and 1 for the pinned (free rotation) condi-
tion. By the numerical results as shown in Fig. 6, we found that
K ¼ 0:72 for the Kagome networks and K ¼ 0:55 for the triangular
networks. The smaller K for the triangular networks reflects the
Fig. 6. Critical strain for the onset of lateral buckling in the Kagome and triangular
networks under uniaxial tension in the y direction.

6

higher constraint (less rotation) at the joints, due to the higher con-
nectivity (i.e., 3 fibers at each joint versus 2 for the Kagome
networks).

To further understand the nonlinear elastic behaviors of the
Kagome and triangular networks, we calculate the total strain
energy, consisting of fiber stretch, bending and shearing compo-
nents. In particular, the bending energy provides a measure of
the overall bending deformation in the network, which can be used
to distinguish stretch- and bending-dominated behaviors
(Abhilash et al., 2014; Shahsavari and Picu, 2012). Fig. 7a shows
the energy fractions for a Kagome network (q ¼ 0:118) under uni-
axial tension in the y-direction. The shearing component is gener-
ally small compared to the stretch and bending components for
such a small relative density. Before the critical strain for lateral
buckling (�y < �yc), the network deformation is stretch dominated
(Fig. 5a), similar to a truss network with pin joints. After onset of
lateral buckling, the fraction of bending energy increases rapidly
and exceeds the fraction of stretch energy. Thus, the network
deformation becomes bending dominated, where the lateral buck-
ling allows the fibers in the other two directions to rotate toward
the loading direction with little increase in fiber stretch (Fig. 5b).
The lateral buckling and fiber rotation together lead to a reduced
effective stiffness in the y direction and a much larger Poisson’s
effect for lateral contraction. The transition from the stretch dom-
inated behavior in the linear regime to the bending dominated
behavior can be defined based on the energy fractions, when the
fraction of the bending energy first surpasses the fraction of the
stretch energy (e.g., �y1 � 0:06 in Fig. 7a). By this definition, the
transition strain is slightly larger than the critical strain for the
onset of lateral buckling.

Beyond the first transition strain (�y > �y1), the fraction of the
bending energy first increases and then decreases, dropping below
the fraction of the stretch energy at a relatively large strain (e.g.,
�y2 � 0:22 in Fig. 7a). Thereafter, the network deformation transi-
tions back to being stretch-dominated (Fig. 5c), when the fibers are
either nearly aligned in the loading direction or fully collapsed by
lateral buckling. This explains the stiffening in the stress–strain
diagrams (Fig. 4c) and saturation of the lateral strain (Fig. 4d).
Therefore, three regimes can be identified for the elastic behaviors
of the Kagome and triangular networks under uniaxial tension in
the y-direction: (I) Stretch dominated linear regime at small strains



Fig. 7. (a) Evolution of the energy fractions in a Kagome network (q ¼ 0:118) under uniaxial tension in the y direction; (b) Fraction of the bending energy in Kagome networks
with different relative densities. The horizontal dashed line in (b) indicates the bending energy fraction at 50%, and the two transitions are observed for each case as the
bending energy fraction crosses the horizontal line as the strain increases, first from below to above 50% and then back to below 50%.
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(�y < �y1), (II) bending dominated regime at intermediate strains
(�y1 < �y < �y2), and (III) stretch-dominated regime at large strains
(�y > �y2).

The transition strains for the Kagome and triangular networks
depend on the relative density. Fig. 7b shows the fraction of bend-
ing energy for Kagome networks with different relative densities;
similar results were obtained for triangular networks (not shown).
For each relative density, the two transition strains can be deter-
mined by setting the fraction of bending energy to be 0.5, and they
are shown in Fig. 8. Similar to the critical strain for lateral buckling,
the first transition strain approximately scales with the relative
density as: �y1 � q2. In contrast, the second transition strain
increases slowly with the relative density. Consequently, the bend-
ing dominated regime expands as the relative density decreases.
For the lowest relative density (q ¼ 0:02) considered for the
Kagome networks, the first transition strain is <0.01 and the frac-
tion of bending energy is close to 1 for a significant portion of
the bending-dominated regime II before it transitions to stretch-
dominated regime III (see Fig. 7b).

Two types of transitions may be noted in Fig. 8 for both the
Kagome and triangular networks. First, at a small strain (e.g.,
�y ¼ 0:01), the network deformation transitions from the
stretch-dominated regime I to the bending-dominated regime II
as the relative density decreases (as indicated by the horizontal
Fig. 8. Transition strains versus the relative density for (a) Kagome and (b) triangular n
relative density and the strain changes, respectively.

7

arrows in Fig. 8), similar to that predicted for random fiber net-
works (Wu and Dzenis, 2005; Broedersz et al., 2012; Shahsavari
and Picu, 2012; Ban et al., 2016). Second, for a relatively low
density (e.g., q ¼ 0:06), the network deformation transitions
from the bending-dominated regime II to the stretch-
dominated regime III as the strain increases (as indicated by
the vertical arrows in Fig. 8), similar to strain stiffening as pre-
dicted for random fiber networks (Onck et al., 2005; Huisman
et al., 2007; Broedersz et al., 2008; Islam and Picu, 2018).
Remarkably, these transitions occur despite the infinitely long
fibers in the periodic networks.

3. Random 2D networks

To construct a random 2D network model, a square representa-
tive area element (RAE) was used, within which long, straight
fibers of random orientations were placed at random seed points,
with each fiber terminating on the edges of the square element.
To control the relative density of the random network, we define
the line density as the total length of all fibers (Lall) per unit area,
namely,

qL ¼
Lall
L2RAE

ð9Þ
etworks. The horizontal and vertical arrows indicate two types of transitions as the
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where LRAE is the side length of the square element. Fibers were
added to the element until the desired line density was reached
within a small tolerance (<0.1%). The seed points and orientations
of the fibers follow simple uniform distributions. In this process,
the line density and the fiber diameter can be independently con-
trolled. The relative density of the 2D network is proportional to
the product of the line density and the fiber diameter, namely,

q ¼ aqLd ð10Þ

where a ¼ p
4 for fibers with a circular cross section; the same is true

for both the periodic and random 2D networks.
Unlike the periodic networks with a single segment length, the

fiber segment length (Ls) in a random network is statistically dis-
tributed. As a result, to represent the statistical distribution of
the segment lengths, the size of the RAE must be sufficiently large
compared to the average segment length, i.e., LRAE � hLsi, following
the concept of separation of scales (Ostoja-Starzewski, 2006). The
average segment length in a 2D fiber network is inversely propor-
tional to the line density, i.e., hLsi � q�1

L � d=q, for both the ran-
dom and periodic 2D networks (Picu, 2011). In this study, we
take LRAE � 50hLsi � 50d=q, which is much larger than the fiber
diameter for a low relative density (q < 0:12). For a given fiber
diameter, the RAE size increases as the relative density decreases.
As an example, for a network of Ge nanowires with d ¼ 50 nm
(Smith et al., 2010), the RAE size is about 25 mm (500 times the
fiber diameter) for a relative density of 0.1. Alternatively, for a
given line density (qL) and the network topology, the relative den-
Fig. 9. (a) Histogram of the normalized average fiber segment lengths in 1000 RA
ðqLLRAE ¼ 50; d=LRAE ¼ 0:003). The inset shows the exponential distribution of the segm
relative density. (c) Histogram of the normalized number density of joints in the 1000 RA
periodic 2D networks. The error bars in (b) and (d) show the standard deviations amon

8

sity can be varied by changing the fiber diameter according to Eq.
(10). The choice of the RAE size will be discussed further following
a statistical analysis in order to quantify the precision in the effec-
tive elastic properties of the 2D random networks.

The porosity of a random 2D network can be defined as the vol-
ume ratio of the space not occupied by the fibers, namely:

/ ¼ 1� q ð11Þ
The average pore size is proportional to the average segment

length, i.e., hLpi � hLsi � d=q, which is inversely proportional to
the relative density.

3.1. Structural properties: Statistics and scaling

Consider two key structural properties of the random 2D net-
works: the fiber segment length (Ls) and the number density of
joints (qJ). For each RAE (see Fig. 1d), the fiber segment lengths
between neighboring joints vary statistically and the average seg-
ment length is calculated. For a given relative density, a large num-
ber of RAEs were generated and the histogram of the average
segment length is shown in Fig. 9a (for q ¼ 0:118). The inset of
Fig. 9a shows the exponential distribution of the segment lengths
in one realization, similar to the 3D random networks generated
by Kim et al. (2009) and Z�agar et al. (2011), although generation
of the random networks in 3D is more complicated. The ensemble
average of the segment lengths among a large number of RAEs
depends on the relative density as shown in Fig. 9b. As expected,
E realizations of the random 2D network with the relative density q ¼ 0:118
ent lengths in one realization. (b) The normalized average segment length vs the
Es. (d) Average number density of joints vs the relative density in both random and
g the 1000 RAE realizations of the random networks.
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the ratio, hLsi=d, is inversely proportional to the relative density,
qualitatively similar to the periodic 2D networks. Following Eq.
(1), we write

hLsi
d

¼ Aq�1 ð12Þ

where A � 1:2 is obtained for the random 2D networks, in close
agreement with the prediction by Kallmes and Corte (1960). Recall
that A ¼ p=2 for the square networks, A ¼

ffiffiffi
3

p
p=2 for the triangular

networks, and A ¼
ffiffiffi
3

p
p=4 for the Kagome networks (Table 1).

Apparently, in terms of the average segment length, the random
2D networks are closest to the Kagome networks.

Taking qLLRAE ¼ 50 in construction of the random 2D network
model, the ratio between LRAE and the average segment length is
then: LRAE

hLsi ¼ a
AqLLRAE ¼ 32:7, which is considered sufficiently large

for the RAE to be statistically representative. The relative density
is then varied by changing the ratio d=LRAE following Eq. (10). We
note that the ratio between LRAE and the fiber diameter is:
LRAE
d ¼ aq�1 qLLRAEð Þ ¼ 39q�1 for qLLRAE ¼ 50. This ratio (LRAE=dÞ in
the present study ranges from 330 to 1950, which is larger than
those in previous works (Dirrenberger et al., 2014; Chatti et al.,
2020) for 3D random networks.

The number density of joints (per unit area) in a periodic 2D
network is inversely proportional to the square of the segment

length, i.e., qJ � L�2
s � q2d�2. For random 2D networks, the num-

ber of joints (NJ) varies statistically among a large number of RAEs,
and Fig. 9c shows the histogram of the number of joints for 1000
RAEs with the same relative density (q ¼ 0:118). It is found that
the average number density of joints follows the same scaling as
the periodic networks as shown in Fig. 9d, namely

hqJi ¼
hNJi
L2RAE

¼ AJ
q2

d2 ð13Þ

where AJ ¼ 0:485 is obtained for the random 2D networks. For com-

parison, AJ ¼ 1=A2 ¼ 0:405 for the square networks,

AJ ¼ 2=ð
ffiffiffi
3

p
A2Þ ¼ 0:156 for the triangular networks, and

AJ ¼
ffiffiffi
3

p
=ð2A2Þ ¼ 0:468 for the Kagome networks. Again, the random

2D networks are closest to the Kagome networks in terms of the
average number density of joints. For the same relative density
and the fiber diameter, the number density of joints depends on
the joint connectivity (i.e., the number of fibers at each joint). The
joint connectivity is 2 for the square and Kagome networks, and it
is 3 for the triangular network. As a result, the triangular network
has the lowest number density of joints. The joint connectivity for
Fig. 10. (a) Effective stress–strain diagrams and (b) lateral strain respons
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the random 2D networks is approximately 2, similar to the square
and Kagome networks.

3.2. Elastic properties

Similar to the periodic 2D networks, finite element simulations
were conducted to study the elastic behavior of the random 2D
networks under uniaxial tension. The fibers were modeled using
the Timoshenko beam elements (B22), and the fiber material was
assumed to be isotropic and linearly elastic in terms of the Cauchy
stress and the logarithmic strain. Unlike the periodic networks, the
boundary conditions for the RAE of random 2D networks were ape-
riodic. Instead, the displacement along the edges of each RAE is
constrained such that the edges remain straight during deforma-
tion. Essentially, we assume that the deformation of a large ran-
dom network is affine down to the scale of the RAE (mesoscale)
but may become non-affine microscopically within the RAE. More-
over, for a given relative density, there are many possible network
structures as a result of the random realization of RAE. Thus, the
elastic properties in general vary statistically among different
RAE realizations, and the averaged properties over a large number
of RAEs are most relevant for potential applications at scales much
larger than LRAE. A statistical analysis is necessary to estimate the
relative errors that depend on both the RAE size and the number
of random realizations (Kanit et al., 2003; Dirrenberger et al.,
2014).

First, we simulated the random 2D networks by using one par-
ticular RAE realization (Fig. 1d) with the same line density (qL) and
joint connectivity but varying the fiber diameter (d) to obtain dif-
ferent relative densities (recall that q � qLd). Fig. 10a shows the
stress–strain diagrams under uniaxial tension in the y-direction,
whereas Fig. 10b shows the lateral strain versus the axial strain.
For the purpose of comparison, the effective stress is normalized
in Fig. 10a by the effective Young’s modulus of the corresponding
Kagome network with the same relative density (Eq. (2)). For all
the relative densities considered, the elastic responses are similar
under uniaxial tension in the x-direction (not shown), indicating
an essentially isotropic behavior as expected for a statistically rep-
resentative RAE. Compared to the linearly elastic responses pre-
dicted for the periodic 2D networks shown as the straight lines
in Fig. 10a, the random 2D networks are generally more compliant
even at infinitesimal strains. The axial stress–strain response of the
random 2D network is slightly nonlinear, with no clear transition
from linear to nonlinear regimes. Unlike the previous studies of
2D and 3D random networks with short fibers (Onck et al., 2005;
Huisman et al., 2007; Broedersz et al., 2008; Islam and Picu,
es of random 2D networks under uniaxial tension in the y-direction.
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2018), Fig. 10a shows no significant strain stiffening. In contrast,
the lateral strain responses in Fig. 10b are highly nonlinear, similar
to those in Fig. 4d for the Kagome networks subject to uniaxial ten-
sion in the y-direction. It is noted that, while the lateral strain
response of the Kagome network is linear up to a critical strain
for buckling, the random networks do not show a clear transition
from the linear to nonlinear lateral strain responses. Fig. 11 shows
the simulated deformations of the random 2D network with the
relative density q ¼ 0:118. Evidently, there is considerable buck-
ling of the fiber segments even at a relatively small strain (3%).
Similar to the Kagome network (Fig. 5), the uniaxial tension leads
to lateral contraction and thus buckling of the fibers in the lateral
direction. While the onset of lateral buckling in the periodic
Kagome network occurs cooperatively at a well-defined critical
strain, the buckling in the random network occurs stochastically
and continuously with no obvious critical strain. Since the segment
lengths are statistically distributed within one RAE (Fig. 9a inset),
the long segments close to the lateral direction are likely to buckle
first. As the axial strain increases, more segments buckle, leading to
more lateral contraction. Meanwhile, due to the random fiber ori-
entations, there are a few fibers oriented in the direction close to
the loading direction and they seem to dominate the axial
stress–strain behavior. The other fibers are either buckled or
rotated towards the loading direction, without contributing signif-
icantly to the overall stiffness. Clearly, the deformation within the
RAE is largely non-affine except for a few nearly aligned fibers.
Fig. 11. Simulated deformations of a random 2D network (q ¼ 0:118, undeformed in Fig.
(c) 25%. The color scale shows the strain energy density distribution.

Fig. 12. (a) Energy fractions versus the strain for a random 2D network (q ¼ 0:118) un
networks of different relative densities.
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To shed more insight into the elastic behaviors of the random
2D networks, we calculated the energy fractions during deforma-
tion as shown in Fig. 12a. Unlike the Kagome network in Fig. 7a,
the stretch energy remains dominant (>80%) in the random 2D net-
work throughout the deformation, and there is no transition from
stretch to bending dominated regime for the random 2D network.
Despite all the buckling fibers in Fig. 11, the fraction of the bending
energy is fairly low (<20%). The strain energy distributions in
Fig. 11 show that most of the strain energy is stored in the fibers
oriented close to the loading direction and they are primarily being
stretched. This behavior is in sharp contrast with short-fiber ran-
dom networks (Onck et al., 2005; Huisman et al., 2007;
Broedersz et al., 2008; Islam and Picu, 2018), where a transition
from bending to stretch dominated deformation leads to signifi-
cant strain stiffening. Fig. 12b compares the fractions of bending
energy in the random 2D networks with different relative densi-
ties. The maximum fraction increases slightly with decreasing rel-
ative density, but remains low (<25%). Hence, the deformation of
the random 2D network of long fibers remains stretch-dominated
for the range of the relative density considered here.

We have noted that the stress–strain behavior in Fig. 10a
appears to be different from previous studies of random networks
(e.g., Onck et al., 2005; Huisman et al., 2007; Wang et al., 2014;
Islam and Picu, 2018), with no significant strain stiffening and no
transition from bending to stretch dominated behavior. There are
at least two differences between the present study and the previ-
1d) under uniaxial tension in the y-direction with increasing strain: (a) 3%; (b) 10%;

der uniaxial tension; (b) Variation of the bending energy fraction for random 2D



Fig. 13. Comparison of the uniaxial stress–strain responses between the random 2D
networks and the Kagome networks.
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ous works that may lead to the different behavior: (i) While many
of the previous works considered relatively short fiber lengths
compared to the cell size (or in terms of the fiber length/diameter
ratio), the present study considers a limiting case of infinitely long
fibers (or fiber length much greater than the fiber diameter and the
segment length); (ii) While some of the previous studies consid-
ered simple shear with a macroscopic volumetric constraint, the
present study focuses on the uniaxial tension with no volumetric
constraint.

As noted in the previous works (Onck et al., 2005; Wang et al.,
2014; Islam and Picu, 2018), the rotation and alignment of the
fibers along the principal loading direction led to the transition
from bending to stretch dominated behavior and hence strain stiff-
ening. In contrast, for the random 2D networks with long fibers,
there are always a few fibers oriented close to the principal loading
direction (under uniaxial tension), and these fibers form primary
stress paths connecting the opposite faces of the model, carrying
most of the applied load from the beginning with little rotation.
As shown in Fig. 11, these fibers have the largest strain energy den-
sity and thus dominate the uniaxial stress–strain behavior (with
little stiffening). This behavior is also consistent with the stress–
strain behaviors of the Kagome networks (Fig. 4), where there is
no stiffening under uniaxial tension in the x-direction (Fig. 4a)
but there is strain stiffening in the y-direction (Fig. 4c), because
the fibers in the x-direction dominate the behavior in the former
case, but with no fibers oriented in the y-direction, buckling and
rotation of the fibers lead to strain stiffening in the y-direction.
Similarly, for the square networks, there is no stiffening under uni-
axial tension in the x or y-direction (Fig. 3a) but there is significant
strain stiffening under uniaxial tension with h ¼ 45

�
(Fig. 3c).

To examine the effect of volumetric constraint, we have also
conducted simulations of the random 2D networks under biaxial
deformation with a constraint on the area of the RAE and found
that the effective shear stress–strain response does exhibit some
level of strain stiffening, more so than the case of uniaxial tension
in Fig. 10. However, the strain stiffening appears to be less signifi-
cant compared to some of the previous works (e.g., Onck et al.,
2005), which we believe is due to the effects of the long fiber
length and the kinematic constraints with the crosslinks along
each fiber. As noted by Islam and Picu (2018), additional con-
straints are imposed through crosslinking along each fiber in the
fibrous networks, and as a result, fiber re-orientation is more diffi-
cult and strain stiffening is reduced.

We compare the uniaxial stress–strain behavior of the random
2D networks with that of the Kagome networks in Fig. 13. For the
same relative density, the random network is more compliant at
both small and large strains. At intermediate strains, however,
when the deformation of the Kagome network is bending domi-
nated, it becomes more compliant than the random network. This
difference can be directly correlated to the buckling behaviors. For
the Kagome networks, cooperative buckling of all lateral segments
leads to drastically lower stiffness in the bending dominated
regime. For the random 2D networks, however, stochastic buckling
occurs in a continuous fashion with little effect on the axial stiff-
ness, but leading to a large Poisson’s effect for the lateral strain
response (Fig. 10b).

Next, the elastic responses of different RAEs of the random 2D
networks were simulated. For each relative density, we simulated
100 RAEs and calculated the effective Young’s modulus (Eeff ) and
Poisson’s ratio (meff ), both evaluated as the secant moduli at a rel-
atively small strain of 0.01 for the network deformation. The statis-
tical distributions of the effective elastic properties are shown in
Fig. 14 (a and c). We observe considerable variances in both Eeff

and meff among the RAEs for the random network of the same rel-
ative density, which may be expected from the statistical nature of
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the random networks with different network structures in terms of
the segment lengths and the number of joints for different random
realizations as shown in Fig. 9. The mean values of these effective
elastic properties are shown as functions of the relative density
(Fig. 14, b and d). For comparison, the effective Young’s modulus
and Poisson’s ratio of the Kagome and triangular networks (at
the same strain of 0.01) are also shown. Interestingly, Fig. 14b
shows that the effective Young’s moduli of the periodic networks
transition from bending dominated (Eeff � q3) to stretch domi-
nated (Eeff � q) as the relative density increases. Since the effec-
tive Young’s moduli are evaluated at an axial strain of 0.01, the
periodic networks of higher density have not reached the critical
strain for onset of cooperative buckling so that the elastic
responses are stretch dominated (Eeff � q). For periodic networks
of lower density, the critical strain for buckling is lower than 0.01
and thus the elastic responses become bending dominated
(Eeff � q3), as noted in Fig. 8. Due to different critical strains for
the Kagome and triangular networks (Fig. 6), the critical relative
density values for the transition are also different between the
two periodic networks. In contrast, the effective Young’s moduli
of the random 2D networks do not show such a transition. Instead,
they follow a nearly linear scaling with the relative density,
hEeff i � q1:3, suggesting primarily stretch-dominated responses
for all the relative density values considered here. This result
appears to be consistent with the master curve obtained by
Shahsavari and Picu (2012) and Shahsavari and Picu (2013) for
the random 2D networks at the limit of infinitely long fibers. On
the other hand, the effective Poisson’s ratios in Fig. 14d show sim-
ilar transitions for both the periodic and random 2D networks. The
Poisson’s ratio is 1/3 for the periodic networks before buckling (for
higher relative density) and increases significantly after buckling
(for lower relative density). For the random 2D networks, the aver-
age Poisson’s ratio is slightly below 1/3 for those with a higher rel-
ative density and also increases significantly for those with a lower
relative density. This suggests that, while the effective Young’s
modulus is primarily stretch dominated for the random 2D net-
works, the effective Poisson’s ratio does show a transition to bend-
ing dominated behavior as the relative density decreases. As noted
in Fig. 11, although the stochastic buckling in the random 2D net-
works does not contribute significantly to the axial stress–strain
behavior, it is significant for the lateral contraction and hence the



Fig. 14. (a) Histogram of the normalized effective Young’s modulus in 100 RAEs of the random 2D network with the relative density q ¼ 0:118; (b) Average effective Young’s
modulus versus the relative density; The dashed and dotted straight lines indicate the linear (stretch dominated) and cubic (bending dominated) scaling relations,
respectively. (c) Histogram of the effective Poisson’s ratio of the random 2D network; (d) Average effective Poisson’s ratio versus the relative density. The error bars in (b) and
(d) show the standard deviations among the 100 RAE realizations for each relative density of the random network.
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effective Poisson’s ratio. The unusually large values of the effective
Poisson ratio (meff > 1), which have been reported previously in
soft fibrous networks (Kabla and Mahadevan, 2007; Islam and
Picu, 2018; Ban et al., 2019), are indicative of the largely non-
affine deformations in the RAEs with significant bending or buck-
ling of the fibers.

It has been shown that a proper representative volume element
(RVE) size for random 3D networks of long fibers can be associated
with a given precision of the estimation of the effective property
Fig. 15. Effect of RAE size on the effective elastic properties of the random 2D networ
deviations among the 100 RAE realizations for each case.
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and the number of realizations (Kanit et al., 2003; Dirrenberger
et al., 2014). Similarly, for the random 2D networks, the statistical
method in the previous works (Kanit et al., 2003; Dirrenberger
et al., 2014) can be adopted to estimate the proper RAE size and
associated precision for the effective elastic properties. Fig. 15
shows the effective Young’s modulus and Poisson’s ratio obtained
from RAEs of different sizes. Note that the RAE size (LRAE) normal-
ized by the line density (qL) is proportional to the ratio between
LRAE and the fiber diameter (d), i.e., qLLRAE ¼ q

a
LRAE
d , which depends
ks. (a) Young’s modulus, and (b) Poisson’s ratio. The error bars show the standard



Fig. 16. Relative errors for (a) the effective Young’s modulus and (b) Poisson’s ratio of random 2D networks.
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on the relative density (q). The ratio LRAE
d in Fig. 15 ranges from 66 in

the case of qLLRAE ¼ 10 and q ¼ 0:118 to 3927 in the case of
qLLRAE ¼ 100 and q ¼ 0:02. For each RAE size, 100 random realiza-
tions were used to calculate the average properties and the stan-
dard deviations for each relative density. The average values of
Young’s modulus and Poisson’s ratio increase with the increasing
RAE size, while the standard deviations decrease. Both the average
values and the standard deviation appear to be converging (but not
fully converged), with non-vanishing standard deviation due to the
statistical nature of the random networks. Following the statistical
method (Kanit et al., 2003; Dirrenberger et al., 2014), the relative
error in the estimation of the effective properties with a large num-
ber of random realizations can be calculated as

�rel LRAE;nð Þ ¼ 2s
l

ffiffiffi
n

p ð14Þ

where n is the number of RAE realizations of the same size (LRAE), l
is the average property and s is the standard deviation. Taking
qLLRAE ¼ 50, the relative errors for the effective Young’s modulus
and Poisson’s ratio are shown in Fig. 16. As the number of realiza-
tions increases, the relative errors decrease as expected. With
n ¼ 100, the relative errors are around 5% or lower for both the
Young’s modulus and Poisson’s ratio. With a larger RAE size (e.g.,
qLLRAE ¼ 100) and n ¼ 100, the relative errors drop slightly to
around 4%. Therefore, a proper RAE size can be used along with a
large number of random realizations to estimate the effective elas-
tic properties of the random 2D networks for a given precision.

4. Summary

In this study, we numerically simulated the nonlinearly elastic
responses of low-density 2D networks of crosslinked long fibers,
including both periodic and random networks. A comparison
between the periodic and random 2D networks highlights the pro-
found effects of the network topology on the effective elastic prop-
erties as summarized below.

	 The structural properties such as the average segment length
and the number density of joints (crosslinks) follow similar
scaling laws for the periodic and random 2D networks. For ran-
dom 2D networks, a large number of statistically representative
elements are used to determine the average structural
properties.

	 The square networks are anisotropic in both the linear and non-
linear regimes, whereas the triangular and Kagome networks
are isotropic in the linear regime but becomes anisotropic in
13
the nonlinear regime. The random 2D networks are statistically
isotropic in both the linear and nonlinear regimes.

	 For low-density triangular and Kagome networks, cooperative
buckling of the fiber segments could take place at small strains,
leading to nonlinear, anisotropic elastic behaviors. As a result, a
transition from stretch dominated to bending dominated defor-
mation is predicted as the strain increases (strain softening). A
second transition from the bending dominated to stretch dom-
inated deformation with strain stiffening occurs at a larger
strain.

	 For the random 2D networks of long fibers, the axial stress–
strain behavior is statistically isotropic and slightly nonlinear,
primarily stretch dominated. Meanwhile, stochastic buckling
occurs continuously in the random networks, leading to signif-
icant lateral contraction. Consequently, while the effective
Young’s modulus follows a nearly linear scaling with respect
to the relative density, the effective Poisson’s ratio exhibits a
transition from stretch to bending dominated behavior as the
relative density decreases.

	 Finally, following the statistical method, a given precision can
be achieved with small relative errors (�rel < 5%) in the estima-
tion of the effective elastic properties of the random 2D net-
works by using a proper RAE size along with a sufficiently
large number of random realizations.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments

We gratefully acknowledge funding of this work by the Center
for Dynamics and Control of Materials (CDCM) supported by the
National Science Foundation (NSF) under Award No. DMR-
1720595. Discussions with Dr. Brian Korgel and Taizhi Jiang
regarding the synthesis and structural characterization of Ge nano-
wire aerogels were helpful.
References

Abhilash, A.S., Baker, B., Trappmann, B., Chen, C., Shenoy, V., 2014. Remodeling of
fibrous extracellular matrices by contractile cells: predictions from discrete
fiber network simulations. Biophys. J. 107 (8), 1829–1840.

http://refhub.elsevier.com/S0020-7683(21)00254-7/h0005
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0005
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0005


S. Mane, F. Khabaz, R.T. Bonnecaze et al. International Journal of Solids and Structures 230–231 (2021) 111164
Åström, J.A., Kumar, P.B.S., Vattulainen, I., Karttunen, M., 2008. Strain hardening,
avalanches, and strain softening in dense cross-linked actin networks. Phys.
Rev. E 77 (5), 051913. https://doi.org/10.1103/PhysRevE.77.051913.

Ban, E., Barocas, V.H., Shepard, M.S., Picu, R.C., 2016. Softening in random network of
non-identical beams. J. Mech. Phys. Solids 87, 38–50.

Ban, E., Franklin, J.M., Nam, S., Smith, L.R., Wang, H., Wells, R.G., Chaudhuri, O.,
Liphardt, J.T., Shenoy, V.B., 2018. Mechanisms of plastic deformation in collagen
networks induced by cellular forces. Biophys. J. 114 (2), 450–461.

Ban, E., Wang, H., Franklin, J.M., Liphardt, J.T., Janmey, P.A., Shenoy, V.B., 2019.
Strong triaxial coupling and anomalous Poisson effect in collagen networks.
Proc. Natl. Acad. Sci. 116 (14), 6790–6799.

Broedersz, C.P., MacKintosh, F.C., 2014. Modeling semiflexible polymer networks.
Rev. Mod. Phys. 86 (3), 995–1036. https://doi.org/10.1103/RevModPhys.86.995.

Broedersz, C.P., Sheinman, M., MacKintosh, F.C., 2012. Filament-length-controlled
elasticity in 3D fiber networks. Phys. Rev. Lett. 108, (7). https://doi.org/10.1103/
PhysRevLett.108.078102 078102.

Broedersz, C.P., Storm, C., MacKintosh, F.C., 2008. Nonlinear elasticity of composite
networks of stiff biopolymers with flexible linkers. Phys. Rev. Lett. 101 (11),
118103. https://doi.org/10.1103/PhysRevLett.101.118103.

Chatti, F., Bouvet, C., Michon, G., Poquillon, D., 2020. Numerical analysis of shear
stiffness of an entangled cross-linked fibrous material. Int. J. Solids Struct. 184,
221–232.

Christensen, R.M., 2000. Mechanics of cellular and other low-density materials. Int.
J. Solids Struct. 37 (1-2), 93–104.

Cox, H.L., 1952. The elasticity and strength of paper and other fibrous materials. Br.
J. Appl. Phys. 3 (3), 72–79.

Dirrenberger, J., Forest, S., Jeulin, D., 2014. Towards gigantic RVE sizes for 3D
stochastic fibrous networks. Int. J. Solids Struct. 51 (2), 359–376.

Fernandes, M.C., Aizenberg, J., Weaver, J.C., Bertoldi, K., 2021. Mechanically robust
lattices inspired by deep-sea glass sponges. Nat. Mater. 20 (2), 237–241.

Fleck, N.A., Deshpande, V.S., Ashby, M.F., 2010. Micro-architecture materials: Past,
present and future. Proc. R. Soc. A 466, 2495–2516.

Gong, L., Kyriakides, S., Triantafyllidis, N., 2005. On the stability of Kelvin cell foams
under compressive loads. J. Mech. Phys. Solids 53 (4), 771–794.

Hall, M.S., Alisafaei, F., Ban, E., Feng, X., Hui, C.-Y., Shenoy, V.B., Wu, M., 2016.
Fibrous nonlinear elasticity enables positive mechanical feedback between cells
and ECMs. Proc. Natl. Acad. Sci. 113 (49), 14043–14048.

Holmberg, V.C., Bogart, T.D., Chockla, A.M., Hessel, C.M., Korgel, B.A., 2012. Optical
properties of silicon and germanium nanowire fabric. J. Phys. Chem. C 116 (42),
22486–22491.

Huisman, E.M., van Dillen, T., Onck, P.R., Van der Giessen, E., 2007. Three-
dimensional cross-linked f-actin networks: relation between network
architecture and mechanical behavior. Phys. Rev. Lett. 99 (20), 208103.
https://doi.org/10.1103/PhysRevLett.99.208103.

Islam, M.R., Picu, R.C., 2018. Effect of network architecture on the mechanical
behavior of random fiber networks. J. Appl. Mech. 85, 081011. https://doi.org/
10.1115/1.4040245.

Jung, S.M., Jung, H.Y., Dresselhaus, M.S., Jung, Y.J., Kong, J., 2012. A facile route for 3D
aerogels from nanostructured 1D and 2D materials. Sci. Rep. 2, 849. https://doi.
org/10.1038/srep00849.

Jung, S.M., Jung, H.Y., Fang, W., Dresselhaus, M.S., Kong, J., 2014. A facile
methodology for the production of in situ inorganic nanowire hydrogels/
aerogels. Nano Lett. 14 (4), 1810–1817.

Kabla, A., Mahadevan, L., 2007. Nonlinear mechanics of soft fibrous networks. J. R.
Soc. Interface 4 (12), 99–106.

Kallmes, O., Corte, H., 1960. The structure of paper I. The statistical geometry of an
ideal two dimensional fiber network. Tappi J. 43 (9), 737–752.

Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D., 2003. Determination of the
size of the representative volume element for random composites: statistical
and numerical approach. Int. J. Solids Struct. 40 (13-14), 3647–3679.

Kim, T., Hwang, W., Kamm, R.D., 2009. Computational analysis of a cross-linked
actin-like network. Exp. Mech. 49 (1), 91–104.
14
Koh, C.T., Oyen, M.L., 2012. Branching toughens fibrous networks. J. Mech. Behav.
Biomed. Mater. 12, 74–82.

Kulachenko, A., Uesaka, T., 2012. Direct simulations of fiber network deformation
and failure. Mech. Mater. 51, 1–14.

Meng, Q., Wang, T.J., 2019. Mechanics of Strong and Tough Cellulose Nanopaper.
Appl. Mech. Rev. 71 (4), 040801. https://doi.org/10.1115/1.4044018.

Merson, J., Picu, R.C., 2020. Size effects in random fiber networks controlled by the
use of generalized boundary conditions. Int. J. Solids Struct. 206, 314–321.

Meza, L.R., Das, S., Greer, J.R., 2014. Strong, lightweight, and recoverable three-
dimensional ceramic nanolattices. Science 345 (6202), 1322–1326.

Meza, L.R., Zelhofer, A.J., Clarke, N., Mateos, A.J., Kochmann, D.M., Greer, J.R., 2015.
Resilient 3D hierarchical architected metamaterials. PNAS 112 (37), 11502–
11507.

Onck, P.R., Koeman, T., van Dillen, T., van der Giessen, E., 2005. Alternative
explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett.
95 (17), 178102. https://doi.org/10.1103/PhysRevLett.95.178102.

Ostoja-Starzewski, M., 2002. Lattice models in micromechanics. Appl. Mech. Rev. 55
(1), 35–60.

Ostoja-Starzewski, M., 2006. Material spatial randomness: From statistical to
representative volume element. Probab. Eng. Mech. 21 (2), 112–132.

Ostoja-Starzewski, M., Stahl, D.C., 2000. Random fiber-networks and special elastic
orthotropy of paper. J. Elasticity 60, 131–149. https://doi.org/10.1023/
A:1010844929730.

Picu, R.C., 2011. Mechanics of random fiber networks—A review. Soft Matter 7 (15),
6768–6785. https://doi.org/10.1039/c1sm05022b.

Romijn, N.E.R., Fleck, N.A., 2007. The fracture toughness of planar lattices:
Imperfection sensitivity. J. Mech. Phys. Solids 55 (12), 2538–2564.

Schwaiger, R., Meza, L.R., Li, X., 2019. The extreme mechanics of micro- and
nanoarchitected materials. MRS Bull. 44 (10), 758–765.

Shahsavari, A., Picu, R.C., 2012. Model selection for athermal cross-linked fiber
networks. Phys. Rev. E 86 (1), 011923. https://doi.org/10.1103/
PhysRevE.86.011923.

Shahsavari, A.S., Picu, R.C., 2013. Size effect on mechanical behavior of random fiber
networks. Int. J. Solids Struct. 50 (20-21), 3332–3338.

Smith, D.A., Holmberg, V.C., Korgel, B.A., 2010. Flexible germanium nanowires: Ideal
strength, room temperature plasticity, and bendable semiconductor fabric. ACS
Nano 4 (4), 2356–2362.

Sozumert, E., Farukh, F., Sabuncuoglu, B., Demirci, E., Acar, M., Pourdeyhimi, B.,
Silberschmidt, V.V., 2020. Deformation and damage of random fibrous
networks. Int. J. Solids Struct. 184, 233–247.

Wang, H., Abhilash, A.S., Chen, C., Wells, R., Shenoy, V., 2014. Long-range force
transmission in fibrous matrices enabled by tension-driven alignment of fibers.
Biophys. J. 107 (11), 2592–2603.

Wu, C., Taghvaee, T., Wei, C., Ghasemi, A., Chen, G., Leventis, N., Gao, W., 2018.
Multi-scale progressive failure mechanism and mechanical properties of
nanofibrous polyurea aerogels. Soft Matter 14 (38), 7801–7808.

Wu, X.-F., Dzenis, Y.A., 2005. Elasticity of planar fiber networks. J. Appl. Phys. 98 (9),
093501. https://doi.org/10.1063/1.2123369.

Xia, X., Afshar, A., Yang, H., Portela, C.M., Kochmann, D.M., Di Leo, C.V., Greer, J.R.,
2019. Electrochemically reconfigurable architected materials. Nature 573
(7773), 205–213.

Yu, Z.-L., Qin, B., Ma, Z.-Y., Huang, J., Li, S.-C., Zhao, H.-Y., Li, H., Zhu, Y.-B., Wu, H.-A.,
Yu, S.-H., 2019. superelastic hard carbon nanofiber aerogels. Adv. Mater. 31 (23),
1900651. https://doi.org/10.1002/adma.201900651.

Z�agar, G., Onck, P.R., Van der Giessen, E., 2011. Elasticity of rigidly cross-linked
networks of athermal filaments. Macromolecules 44 (17), 7026–7033.

Zhang, X., Vyatskikh, A., Gao, H., Greer, J.R., Li, X., 2019. Lightweight, flaw-tolerant,
and ultrastrong nanoarchitected carbon. Proc. Natl. Acad. Sci. 116 (14), 6665–
6672.

Zhu, H., Zhu, S., Jia, Z., Parvinian, S., Li, Y., Vaaland, O., Hu, L., Li, T., 2015. Anomalous
scaling law of strength and toughness of cellulose nanopaper. Proc. Natl. Acad.
Sci. 112 (29), 8971–8976.

https://doi.org/10.1103/PhysRevE.77.051913
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0015
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0015
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0020
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0020
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0020
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0025
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0025
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0025
https://doi.org/10.1103/RevModPhys.86.995
https://doi.org/10.1103/PhysRevLett.108.078102
https://doi.org/10.1103/PhysRevLett.108.078102
https://doi.org/10.1103/PhysRevLett.101.118103
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0045
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0045
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0045
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0050
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0050
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0055
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0055
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0060
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0060
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0065
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0065
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0070
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0070
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0075
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0075
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0080
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0080
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0080
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0085
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0085
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0085
https://doi.org/10.1103/PhysRevLett.99.208103
https://doi.org/10.1115/1.4040245
https://doi.org/10.1115/1.4040245
https://doi.org/10.1038/srep00849
https://doi.org/10.1038/srep00849
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0105
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0105
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0105
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0110
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0110
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0115
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0115
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0120
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0120
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0120
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0125
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0125
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0130
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0130
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0135
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0135
https://doi.org/10.1115/1.4044018
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0145
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0145
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0150
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0150
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0155
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0155
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0155
https://doi.org/10.1103/PhysRevLett.95.178102
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0165
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0165
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0170
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0170
https://doi.org/10.1023/A:1010844929730
https://doi.org/10.1023/A:1010844929730
https://doi.org/10.1039/c1sm05022b
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0185
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0185
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0190
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0190
https://doi.org/10.1103/PhysRevE.86.011923
https://doi.org/10.1103/PhysRevE.86.011923
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0200
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0200
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0205
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0205
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0205
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0210
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0210
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0210
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0215
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0215
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0215
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0220
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0220
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0220
https://doi.org/10.1063/1.2123369
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0230
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0230
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0230
https://doi.org/10.1002/adma.201900651
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0240
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0240
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0240
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0245
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0245
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0245
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0250
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0250
http://refhub.elsevier.com/S0020-7683(21)00254-7/h0250

	A numerical study on elastic properties of low-density two-dimensional networks of crosslinked long fibers
	1 Introduction
	2 Periodic 2D networks
	2.1 Linearly elastic properties
	2.2 Nonlinear elastic properties

	3 Random 2D networks
	3.1 Structural properties: Statistics and scaling
	3.2 Elastic properties

	4 Summary
	Declaration of Competing Interest
	Acknowledgments
	References


