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Outline

 Part I: Mechanics and mechanical properties of 2D materials
• Elastic and thermoelastic properties
• Inelastic properties: strength and toughness

 Part II: Interfacial properties of 2D materials (adhesion and friction)
• 2D-3D interactions
• 2D-2D interactions



Part I:
• Mechanical properties: elastic and inelastic
• Electromechanical coupling
• Interfacial properties: adhesion and friction
• Applications (synthesis, origami/kirigami, devices)



Elastic properties of monolayer 2D materials

 Young’s modulus (N/m)
 Poisson’s ratio
 Bending modulus (eV or J)
 Gaussian modulus (eV or J)

Uniaxial tension
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A linear elastic sheet model
Elastic strain energy density (per unit area)
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Wang, et al., J. Applied Mechanics 80, 040905 (2013).

Transition from plate-like 
to membrane-like behavior



Nonlinear elasticity at large strain

Graphene (0 K)

MoS2 (1 K)

 Linear elasticity is typically acceptable for small strains (< 5%).
 At large strains, additional material properties are needed to describe the nonlinear and anisotropic 

elastic behavior of 2D materials. 



AFM indentation experiment

𝜎 = 𝐸 𝜀 + 𝐷 𝜀

𝜈 = 0.165 𝑞(𝜈) = 1.02

 A nonlinear elastic membrane model, with a pre-stress 
and negligible bending rigidity

Lee et al., Science 321, 385-388 (2008)



“Intrinsic” Strength of Graphene

Lee et al., Science 321, 385-388 (2008)

 A linear elasticity model overestimates the strength (~55 N/m).
 Numerical simulations with nonlinear elasticity (𝐷 = −690

N/m and 𝐸 = 340 N/m) yields an intrinsic strength of 42 N/m.
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 The corresponding stress-strain curves 
have a peak stress, defining the intrinsic 
strength as a result of elastic instability.



Membrane-like vs Plate-like behaviors

Castellanos-Gomez, et al., Ann. Phys. (Berlin), 1–18 (2014)
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Pressurized blister experiment
Koenig et al., Nature Nanotech. 6, 543–546 (2011)

Geometrically nonlinear response of a linearly elastic membrane

Δ𝑝 = 𝐾(𝜈)
𝐸

𝑎

𝛿

𝑎
𝐾(𝜈 = 0.16) ≈ 3.09 𝐸 = 347 N/m



Multilayer graphene: elastic modulus and adhesion 

𝐸𝑡 = 𝑛𝐸

Δ𝑝 = 𝐾(𝜈)
𝐸𝑡

𝑎

𝛿

𝑎

Elastic response before delamination: 
the in-plane stiffness (Et) is 
proportional to the number of layers

Pressure induced delamination: Γ = 𝜙(𝜈) 𝐸𝑡
𝛿

𝑎

 Pressurized blisters or bubbles can be used to measure elastic and interfacial 
properties of 2D materials (monolayer and multilayer)

Koenig et al., Nature Nanotech. 6, 543–546 (2011)



Bending moduli of multilayer 2D materials

Wang et al., PRL 123, 116101 (2019).

A nonlinear plate model:

𝐸𝑡 = 𝑁𝐸 𝐷 =
𝐸𝑡

12 1 − 𝜈
𝑓(𝑁)

𝑡 = 𝑁𝑡



Bending with interlayer slip

Wang et al., PRL 123, 116101 (2019). Han et al., Nature Materials 19, 305–309 (2020).

b

𝑓 𝑁 ~𝑁

𝑓 𝑁 ~1 − 𝑁

𝐷 =
𝐸𝑡

12 1 − 𝜈
𝑓(𝑁)



Thermoelastic properties of graphene
 Thermal rippling
 Thermal expansion/contraction
 Thermal stress
 Temperature/size-dependent mechanical properties



Thermal rippling of freestanding graphene

A statistical mechanics analysis 
under harmonic approximation:  

k

i
k

keww rqqr )(ˆ)(








 


Tk

UU

Z
P

B

sbexp
1

ℎ = 𝑤 𝒒 ~
𝑘 𝑇

𝐷
𝐿

Rippling amplitude with 
no pretension:

ℎ ~
𝑘 𝑇

𝐸∗𝜀
ln 1 +

𝐸∗𝜀 𝐿

4𝜋 𝐷

Rippling amplitude with 
pre-strain:

Gao and Huang, JMPS 66, 42-58 (2014). 

Boltzmann distribution:

𝑇 = 300 K



Anharmonic Effects (MD simulations)

Harmonic approximation:

 ζ < 1: Significant anharmonic effects due to coupling between bending and stretching 
(similar to biomembranes).
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Gao and Huang, JMPS 66, 42-58 (2014). 

𝑇 = 300 K

𝐿 = 20 nm



A nonlinear (anharmonic) analysis of thermal rippling

Ahmadpoor et al., JMPS 107, 294-310 (2017)

Variational perturbation theory (VPT): ℎ ~ 𝐿
𝑘 𝑇

𝐸

ℎ ~ 𝐿

𝑇 = 300 K

ℎ ~ 𝑇

𝐿 = 20 nm

 Thermal rippling amplitude depends on the membrane size and temperature nonlinearly.
 Thermal rippling also depends on the boundary constraints (pre-strain, NVT vs NPT).



Free energy, Stress and Entropy
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Stress and Entropy:
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Biaxially strained graphene (T = 300 K)

Nonlinear elasticity due to two effects: 
(1) Strain stiffening, due to thermal rippling (small strain behavior)
(2) Strain softening, intrinsic large strain behavior (> 0.5%) 

Gao and Huang, JMPS 66, 42-58, 2014. 

L0 = 20 nm



Nonlinear Thermoelasticity: 
Thermal Expansion and Thermal Stress

     0020
*

00 ,,~,, LTTELT D  

Stress-free thermal expansion (NPT):

0    020 ,~, LTTLTf D  
Rippling induced 
contraction

Thermal stress at zero strain (NVT):

 02
* ,,0~ LTTE DT   Rippling induced 

tension
𝜀 = 0



NPT: Thermal Expansion/Contraction 

 Negative thermal expansion at low T, and positive at high T.
 Thermal expansion/contraction is size dependent!
 By suppressing out-of-plane fluctuations, 2D simulations predict a constant positive CTE 

(size-independent).

Gao and Huang, JMPS 66, 42-58, 2014. 



NVT: Thermal Stress at Zero Strain

 Thermal rippling leads to a tensile stress that depends on size, which may be 
interpreted (qualitatively) as a result of negative thermal expansion.

 02
* ,,0~ LTTE DT  

Gao and Huang, JMPS 66, 42-58, 2014. 



Effective Elastic Properties

(Los et al, PRL 2016)

 Both the statistical membrane theory and 
atomistic MC simulations predicted a 
power-law dependence of the in-plane 
elastic moduli of graphene on the size at a 
finite temperature.

 However, experimental data is lacking on 
the size and temperature dependence of 
the elastic properties for graphene and 
other 2D materials.

LY ~



Effective Bending Moduli
• A surprisingly high bending modulus for monolayer graphene was 

obtained by Blees et al. (2015), which was attributed to the effect of 
thermal rippling  (Košmrlj and Nelson, 2016).
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Beyond Linear Elasticity
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zigzag (MM/REBO)
armchair (MM/REBO)
zigzag (Wei et al., 2009)
armchair (Wei et al., 2009)

 High-order elastic moduli for nonlinear elasticity
 Tensile strength, anisotropic (zigzag vs armchair)
 Fracture toughness (energy), brittle or ductile
 Effects of defects, grain boundaries, etc.

Lu et al., Modelling and Simulation in Materials Science and Engineering 19, 054006 (2011). 



Graphene nanoribbons under uniaxial tension

Lu et al., MSMSE19, 054006 (2011). 

GNRs with unpassivated zigzag and 
armchair edges

zigzag armchair



Size-dependent modulus and strength

Lu et al., MSMSE19, 054006 (2011). 

 The edge effects (e.g., passivation and reconstruction) lead to size-dependent 
elastic modulus and tensile strength of GNRs.



Fracture toughness measurements
Zhang et al, Nature Comm. 5:3782 (2014). 

𝜞~𝟏𝟓. 𝟗 𝐉/𝐦𝟐

Na et al, ACS Nano 10, 9616-9625 (2016).



Mechanics of brittle fracture

Zhang et al, Nature Comm. 5:3782 (2014). 

Fracture stress by Griffith criterion
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Toughening Mechanisms

 2D materials are typically brittle
 Various defect engineering approaches 

may enhance the toughness of 2D 
materials

 Polycrystalline graphene could be 
tougher than pristine graphene 
(depending on the grain size).

 The strength of nanocrystalline graphene 
could become insensitive to the pre-
existing flaw.

 Some concentration of defects can 
change the catastrophic failure of a 
pristine graphene to a localized failure 
mode under a nanoindenter.





2D-3D interactions
• Adhesion
• Friction and shear
• Mixed mode interactions

2D-2D (interlayer) interactions
• Adhesion/compression
• Friction (superlubricity) and 

shear
• Interlayer phenomena (moiré)

Part II: Mechanical interactions between 
2D materials



Adhesion experiments
Koenig et al., Nature Nanotech. 6, 543–546 (2011) Jiang and Zhu, Nanoscale 7 (2015) 10760–10766.

Na, et al., ACS Nano 8 (2014) 11234–11242.

 In addition to adhesion energy, the adhesive interactions can be described 
by a traction-separation relation (with hysteresis).

 Bubbles/blisters
 Nanoindentation
 DCB



Friction experiments

 Friction force microscopy (FFM): friction signal/force, friction coefficients (?)
 Sliding of 2D materials on substrates: shear strength, traction-separation relation (?)



Coupling adhesion and friction: mixed-mode interactions
Egberts, et al. ACS Nano 8: 5010-5021 (2014).

 FFM experiment: indentation-sliding-retraction
 Pressurized bubble/blister: inherently mixed-mode

Wang et al., PRL 119, 036101 (2017).



2D-2D interlayer adhesion: normal interactions
• Primarily van der Waals interactions
• Binding energy from DFT: 20 to 120 meV/atom
• Adhesion energy: ~ 100 mJ/m2

• Interlayer separation: 3-7 Å

• How to measure the adhesion energy?
• How to characterize the normal interactions?

Traction-separation relation:

Compression (repulsive)

Tension 
(attractive)



Interlayer friction: shear interactions
• Generally low friction (friction coefficient < 0.01)
• Superlubricity 
• Commensurate/incommensurate stacking

• Interlayer shear strength (~0.04 MPa for G/G)

• Friction is more than just shear interactions, 
depending on adhesion and deformation of the 
2D layers.

Shear traction-separation relations 

Dienwiebel, et al., Phys. Rev. Lett. 92 (2004) 126101.
Ribeiro-Palau, et al., Science 361 (2018) 690–693.
Liu, et al., Nat. Commun. 8 (2017) 14029.



Micro/nano-bubbles of 2D materials

 Measuring interfacial/interlayer adhesion
 Measuring interfacial/interlayer shear strength
 Measuring elastic and bending moduli of multilayers
 Strain engineering (e.g., pseudo-magnetic fields, quantum emitters)

Bunch et al, 2011-2013 Darlington et al, 2020Levy et al, 2010



Adhesion of 2D materials from 
spontaneously formed bubbles

Sanchez et al., PNAS 115, 7884-7889 (2018)

Elastocapillary:



Water-filled graphene bubbles

A continuum model predicts the aspect ratio as a function of the 
adhesion energy, independent of the number of water molecules. 

Sanchez et al., PNAS 115, 7884-7889 (2018)

ɸ = 0.6

ɸ = 1.2



However, the continuum model breaks down when the adhesion is 
too weak or the number of water molecules is too small. 
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Interlayer shear in bilayer graphene 

Wang et al., PRL 119, 036101 (2017).

 More sliding of bilayer graphene due to 
weaker interlayer shear strength. 



Strain distributions and wrinkles

1 m

Wrinkle

AFM image of a bilayer graphene bubble 
(Dai and Lu, JMPS 2021) 
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The interfacial sliding and wrinkling could considerably 
affect the strain distributions in bubbles of 2D materials.

𝜀 ~ ℎ/𝑎



Peeling and sliding of graphene nanoribbons
SCIENCE 351 (6276), 957-961, 2016.



Peeling and sliding of GNRs



A continuum model for peeling and sliding of GNRs

Periodic interlayer potential 
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+2 cos cos

(a) Peeling -> adhesion
(b) Pulling -> sliding friction
(c) Coupled peeling and pulling

Γ = 0.25 J/m2 

z = 0.335 nm
𝜀 = 1.33 × 10  eV
𝛽 = 28.7

𝜎 =
𝜕𝑈

𝜕𝑢
, 𝜏 =

𝜕𝑈

𝜕𝑢
, 𝜏 =

𝜕𝑈

𝜕𝑢

Interlayer normal/shear tractions

implemented as a user subroutine (UINTER) in ABAQUS 
Xue et al., J. Mech. Phys. Solids 158, 104698 (2022).



Interlayer potential and traction-separation relations

Different stacking orders in 
a periodic landscape of the 
interlayer potential energy

Normal traction (AB) Shear traction (zigzag) Shear traction (armchair) 

𝜎 =
𝜕𝑈

𝜕𝑢

𝜏 =
𝜕𝑈

𝜕𝑢
 𝜏 =

𝜕𝑈

𝜕𝑢

𝜏 = (𝛽 − 1)
8𝜋𝜀

9𝑎

The shear interaction is 
isotropic in the linear 
regime but anisotropic 
in general.



Simple peeling vs Fixed-end peeling

𝐹 = Γ 𝑏

• Steady-state peeling force (no stick-slip): 

• Initial peeling stiffness:

• Peak force:
𝐹 ≈ 2Γ 𝑏

𝐾 =
2

2
𝑏𝐷 /

40Γ
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/
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Peeling with fixed end
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Peeling with sliding — zigzag vs armchair

 Unlike simple peeling, the fixed-end peeling depends on the GNR orientation due to coupling with
stick-slip sliding;

 Different types of strain solitons lead to different peak pulling forces, and correspondingly different
peak peeling forces.

 Compared to the zigzag GNR, the peak peeling force is slightly higher for the armchair GNR.
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Xue et al., J. Mech. Phys. Solids 158, 104698 (2022).

cos 𝜃 = 1 +
Γ 𝑏

𝐹



Constrained 1D sliding in the zigzag direction

Sine-Gordon equation 
(1D Frenkel-Kontorova model)  𝐸𝑡

𝑑 𝑢

𝑑𝑥
= 𝜏 sin

3

2
𝐺 𝑢

𝜀 =
8𝜏

3𝐺 𝐸𝑡
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3 ⁄ 𝑎
𝛽 − 1 𝐸𝑡𝜀

Maximum strain and force:

𝜀 =
4𝜏

3𝐺 𝐸𝑡
1 − cos

3

2
𝐺 𝑢

Inhomogeneous, nonlinear solution for a long GNR:

𝐹 = 𝑏
4𝜏 𝐸𝑡

3𝐺
1 − cos

3

2
𝐺 𝛿

𝜏 = (𝛽 − 1)
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Linear solution:

𝐾 =
𝐹

𝛿
=

𝐸𝑡𝑏

𝜆
tanh

𝐿

𝜆

𝜆 = (~4.85 nm)

Characteristic length:

𝜏 ≈
3

2
𝜏 𝐺 𝑢 = 𝑘 𝑢

Sliding stiffness:

Xue et al., J. Mech. Phys. Solids 158, 104698 (2022).



Constrained sliding in the zigzag direction

Effect of elastic deformation in GNR

 Reduces the friction remarkably (as opposed
to uniform sliding of a rigid flake);

 Strain solitons form and glide to facilitate the
stick-slip sliding;

 The peak pulling force is reduced by ~10%
due to the normal displacement.
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Xue et al., J. Mech. Phys. Solids 158, 104698 (2022). 



Unconstrained sliding in the zigzag direction
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For a narrow GNR, 𝜏 ≈ 0 and thus 

Compared to the constrained sliding: 
reduced peak force, half period, lateral 
displacement

Xue et al., J. Mech. Phys. Solids 158, 104698 (2022). 



Unconstrained sliding in the zigzag direction

 Following the lateral displacement of the pulling end, the entire GNR oscillates laterally between 0 and 𝑎/2, similar
to snake-like sliding in fully atomistic simulations (Ouyang et al., 2018);

 Once the pulling end slides laterally by 𝑎/2, a strain soliton forms and glides through the GNR;

 For a narrow GNR (b ~ 1 nm), the strain soliton is primarily tensile with a small kink due to lateral bending.



Unconstrained sliding in the armchair direction

Stair-like sliding trajectories over 
the interlayer energy landscape

Xue et al., J. Mech. Phys. Solids 158, 104698 (2022). 



Unconstrained sliding in the armchair direction: strain solitons

 Two branches are predicted analytically for unconstrained sliding in the armchair direction;

 The lateral jump (point 1 to 2) precedes the formation of the first soliton (point 3) and leads to a kink near the pulling end;

 The first strain soliton glides simultaneously with the kink at point 3 (𝛿 = 0.5𝑎);

 Another strain soliton forms and glides at point 5, with no kink;

 Two kinds of strain solitons alternate to form, and both are are primarily tensile strain solitons for a narrow GNR.



Effects of ribbon length and width on sliding

P
e

ak
 p

u
lli

n
g

 f
o

rc
e 

(n
N

)
 The dependence of the peak force on the ribbon length is similar to fully atomistic simulations (Ouyang et al., 2018),

with an initial linear rise followed by a plateau beyond a characteristic length of around 10 to 20 nm;

 The peak pulling force for sliding of relatively long GNRs (L > 20 nm) depends on the ribbon width quasi-linearly;

 Only for very short GNRs (L < 5 nm), the sliding is approximately uniform like a rigid flake.

Xue et al., J. Mech. Phys. Solids 158, 104698 (2022). 



Strain solitons in wide GNRs

Zigzag direction: mixed type 

Armchair direction: shear type



Twisting a graphene sheet atop a rigid graphene substrate

The competition between the interlayer potential energy and the intralayer strain energy 
leads to structural relaxation and possible phase transition in 2D moiré superlattices. 



2D moiré patterns

R = 50 nm at 𝜃 = 0.5°

Relative rotation:

𝜃 = tan
𝜕𝑢

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
− 𝜃



2D moiré: angular dependence and stability

• The relaxed total energy has local extremes at particular angles, 
where the twisting moment is zero.

• With zero twisting moment, stable moiré patterns are expected at a 
set of critical angles where the relaxed total energy is a local 
minimum.
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Biaxial strain induced moiré 
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Moiré by equi-biaxial strain

𝜆 = 3𝑎
1 + 𝜀

𝜀
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 Interlayer coupling leads to a higher initial stiffness and an anisotropic, 
serrated stress-strain behavior associated with formation and evolution 
of 2D moiré patterns.



Moiré by anisotropic strains
The two principal strain components may be controlled 
independently to obtain different moiré patterns.

𝜆 = 3𝑎 and 𝜆 = 1.5𝑎

𝜀 = 2𝜀
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Summary
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 Part I: Mechanics and mechanical properties of 2D materials
• Elastic and thermoelastic properties
• Inelastic properties: strength and toughness

 Part II: Interfacial properties of 2D materials (adhesion and friction)
• 2D-3D interactions
• 2D-2D interactions


